[1] N. Castells-Brooke. Beginner's guide to molecular biology. web pages.
[ bib | http ]
[2] J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing Company, 1997. ISBN: 0-534-95262-3.
[ bib ]
[3] R. Shamir. Pairwise sequence comparison. Lecture 2 from Algorithms in Molecular Biology, Tel Aviv University, Tel Aviv, Israel, 2001.
[ bib | .pdf ]
[4] J. A. A. Quitzau. Um consenso completamente resolvido entre árvores filogenéticas completamente resolvidas. Master's thesis, Institute of Computing, University of Campinas, 2005.
[ bib | .ps ]
[5] P. Pevzner. Educating biologists in the 21st century: bioinformatics scientists versus bioinformatics technicians. Bioinformatics, 20(14):2159-2161, 2004. Editorial.
[ bib | .pdf ]
[6] S. R. Eddy. Antedisciplinary science. PLoS Comput. Biol., 1(1):3-4, 2005. e6.
[ bib | .pdf ]
[7] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Discrete Math., 11(2):224-240, May 1998.
[ bib | .pdf ]
[8] D. A. Christie. Sorting permutations by block-interchanges. Information Processing Letters, 60:165-169, 1996.
[ bib | .pdf ]
[9] V. J. Fortuna. Distâncias de transposiçao entre genomas. Master's thesis, Institute of Computing, University of Campinas, 2005.
[ bib | .pdf ]
[10] S. Mneimneh. Genome rearragement, sorting signed permutations by reversals. Lectures 16 and 17 from course CSE 8354 - Computational Biology, Southern Methodist University, Dallas, USA, 2004.
[ bib | http ]
[11] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM, 46(1):200-223, Jan 1999.
[ bib | .pdf ]
[12] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Applied Mathematics, 146:134-145, 2005.
[ bib | .pdf ]
[13] J. Meidanis. Genome rearrangements. Talk given at Fleury Diagnostic Medicine, Sao Paulo, Brazil, Dec 2004.
[ bib | .pdf ]
[14] J. Meidanis and Z. Dias. An alternative algebraic formalism for genome rearrangements. In David Sankoff and Joseph Nadeau, editors, Comparative Genomics, pages 213-223. Kluwer Academic Publishers, 2000.
[ bib | .ps ]
[15] A. A. M. Almeida. Comparaçao algébrica de genomas: O caso da distância de reversao. Master's thesis, Institute of Computing, University of Campinas, 2007.
[ bib | .pdf ]
[16] C. V. G. Mira and J. Meidanis. Sorting by fissions, fusions, and signed reversals in O(n). Submitted for publication, 2007.
[ bib | .pdf ]
[17] J. Meidanis. A simple toolkit for DNA fragment assembly. In M. Farach-Colton, F. S. Roberts, M. Vingron, and M. Waterman, editors, Mathematical Support for Molecular Biology, volume 47 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 271-288. American Mathematical Society, 1999.
[ bib | .ps ]
[18] S. M. D. Goldberg et al. A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Nat. Acad. Sci. - USA, 103(30):11240-11245, July 2006.
[ bib | .pdf ] [ veja tb. animation ]
[19] S. Benzer. On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. - USA, 45:1607-1620, 1959.
[ bib | .pdf ]
[20] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Systems Sci., 13(3):335-379, 1976.
[ bib ]
[21] J. Meidanis, O. Porto, and G. P. Telles. On the consecutive ones property. Discrete Applied Mathematics, 88:325-354, 1998.
[ bib | .pdf ]
[22] G. P. Telles and J. Meidanis. Building PQR trees in almost linear time. Submitted for publication, 2007.
[ bib | .ps ]

This file has been generated by bibtex2html 1.66