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Abstract

Measuring the minimum number of rearrangement events that transforms one genome
into another is an important tool for the comparative analysis of genomes. We propose
a new algorithm for finding a minimum sequence of Fissions, Fusions, and Signed Re-
versals that transforms a genome into another. The algorithm is based on representing
a chromosome as a cycle (a circular sequence) instead of a mapping. Thus a genome
is a product of cycles instead of the usual representation as a set of mappings. By
representing a chromosome as a cycle, rearrangement events like fissions, fusions, and
signed reversals are performed in constant running time. Besides the change in the
representation, the algorithm uses a hash table to deal with the problem of using the
gene names for indexes. The total time complexity is O(nh), where n is the number of
genes and h is the time spent to retrieve data for a gene in the hash table (ideally h is
a constant).

We also present a formula for the minimum number of Fissions, Fusions, and Signed
Reversals that can be calculated in O(nh) running time.

1 Introduction

The comparison of positions and orientations of genes in two distinct genomes may reveal
relevant information about the genome’s positions in a phylogeny, modifications of evolu-
tionary hypothesis, and similarities among genome structures [14].

A genome of a species is a set of macromolecules (chromosomes) that encode in certain
molecular segments (genes) the information necessary to produce every protein in a live
being. We present two formal models for genes, chromosomes and genomes. The first one
is based on the work of Hannenhalli and Pevzner [5] and we call it the classical formalism.

A gene is identified by an integer whose sign represents the orientation of the gene.
A chromosome is a function that maps a position in the chromosome to the gene in that
position; that is, for the chromosome π the gene found in the position i is πi. The classical
formalism assumes that a chromosome is linear, that is, there are two genes that are called
the extremities of the chromosome. A circular chromosome does not have extremities, so
in order to be represented by the classical formalism two adjacent genes are chosen to be
the extremities. A chromosome has two equivalent representations [5]: π = [π1, . . . , πn]
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and −π = [−πn, . . . , −π1]. A chromosome π can also be represented by a permutation
over {1, . . . , 2n}, called the image of π, that consists of the sequence obtained from
π by replacing πi by 2πi − 1 and 2πi when πi is a positive element, and by 2πi and
2πi − 1, otherwise. For instance, the image of [−3, 2, −1, −4, −5] is the permutation
[6, 5, 3, 4, 2, 1, 8, 7, 10, 9]. A genome is a set of chromosomes. Given a genome
Π = {π(1), . . . , π(N)} containing N chromosomes, there are 2N distinct ways for represent-
ing this genome based on the two representations of chromosomes.

Let π = [π1, . . . , πi−1, πi, . . . , πj, πj+1, . . . , πn] be a chromosome and 1 ≤ i ≤
j ≤ n. A signed reversal ρ(π, i, j) transforms the chromosome π into the chromosome
[π1, . . . , πi−1, −πj, . . . , −πi, πj+1, . . . , πn]. A fission ρ(π, i) for 1 < i ≤ n is the
rearrangement event that “breaks” the chromosome π into two chromosomes [π1, . . . , πi−1]
and [πi, . . . , πn]. Given the chromosomes π = [π1, . . . , πn] and σ = [σ1, . . . , σn], a fusion
ρ(π, σ) transforms chromosomes π and σ into the chromosome [π1, . . . , πn, σ1, . . . , σn].
Notice that Hannenhalli and Pevzner [5] define fissions and fusions based on the definition
of translocations. Because we do not use translocations, we use direct, equivalent definitions
instead.

The second model for genomes, chromosomes, and genes is called the algebraic formal-
ism. In the classical formalism, a chromosome α is a mapping of a position i into the gene
αi. This mapping representation follows straightforwardly the structure of a linear chromo-
some; that is, a sequence of genes. In the algebraic formalism, we represent a chromosome
not as a sequence, but as a cycle, that is a circular list of genes. For example, given the
representation α = [α1, . . . , αn], instead of being a sequence representing a linear chromo-
some, we can view it as a permutation that maps αi into αi+1 for 1 ≤ i < n and αn into α1

and α models a circular chromosome. Figure 1 illustrates the distinction between the two
kinds of representation. Different representations for the same genome imply distinct inter-
pretations for data structures that implement these representation. We will show later that
we can take advantage of this distinct interpretation of algebraic formalism to implement
rearrangement events faster than in the classical formalism.

We now formalize and present the same basic concepts for modeling genomes in the
algebraic formalism.

Given a permutation π over the set E, the orbit of x ∈ E under the permutation π,
denoted by orb(π, x), is the set {y | y = πkx for an integer k}. An orbit is called nontrivial
when it has more than one element. Let o(π,E) be the number of orbits in permutation π.
The support of a permutation π over E is the set Supp(π) = {x ∈ E | πx 6= x}. A cycle
is a permutation α over E such that it has at most one nontrivial orbit. A cycle α is an
r-cycle when its nontrivial orbit contains r > 1 elements or an 1-cycle when α = ι, where
ι is the permutation such that ιx = x for any x ∈ E. As we have mentioned previously, a
cycle α can be represented as a circular list of elements. For instance, let α be a cycle that
maps a into b, b into c, c into a, and d into d over the set E = {a, b, c, d}. The cycle
α is represented by (a b c). The product of permutation β by α both over E, denoted by
αβ, is the permutation that maps x to α(βx) for any x ∈ E. A k-cycle decomposition of
a permutation π is a representation of π as a product of k-cycles, not necessarily disjoint.
The norm of π, denoted by ‖π‖, is the minimum number of 2-cycles whose product is π.

A DNA chromosome has two strands with complementary orientation. A set of genes E
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Figure 1: (a) Circular chromosome. (b) Array data structure for Algebraic formalism representation:
α = (−3 2 − 1 − 4 5)(−5 4 1 − 2 3) over the E = {x | 1 ≤ |x| ≤ 5}. (c) Array data structure for Classical
representation: β = [6, 5, 3, 4, 2, 1, 8, 7, 9, 10] is the image of the chromosome [−3, 2, −1, −4, 5]. In
the classical representation, we suppose that the extremities are −3 and 5.

and a permutation Γ over E is called a gene system, denoted by (E,Γ), when Supp(Γ) = E
and ΓΓ = ι. The permutation Γ associates each gene to its complementary. For instance,
given the set of genes E = {−4, −3, −2, −1, 1, 2, 3, 4} and the permutation Γ =
(1 − 1)(2 − 2)(3 − 3)(4 − 4), the pair (E,Γ) is a gene system since the support of Γ
is E and ΓΓx = x for any x ∈ E. A partition of E into two sets E+ and E− such that
E− = {Γx | x ∈ E+} is called a valid partition. The valid partition where all the the
genes in E+ (resp. in E−) have the same orientation is called the oriented partition of
E. For instance, the oriented partition of E = {−5, −4, −3, −2, −1, 1, 2, 3, 4, 5} is
E+ = {1, 2, 3, 4, 5} and E− = {−1, −2, −3, −4, −5}.

Given a gene system (E,Γ), a cycle α is called a strand when x ∈ Supp(α) implies
Γx 6∈ Supp(α) for each x ∈ E. The conjugation of a permutation α by β, denoted by β ·α , is
βαβ−1 [12]. A chromosome is a product of two strands α and Γ·α−1. Two chromosomes are
disjoint when their supports are disjoint. A genome is a product of disjoint chromosomes.
A fundamental property of genomes is: if π is a genome, then ΓπΓ = π−1.

We deal in this work with genomes composed solely of circular chromosomes instead of
linear chromosomes since circular chromosomes are naturally modeled by cycles. In some
cases, it is straightforward to translate problems in circular genomes to liner genomes and
vice and versa [7, 13].

Given a genome π in the gene system (E,Γ), the permutation (u v)(πΓu πΓv) is called a
2-break applicable to π when u 6= v and u, v ∈ E. It is easy to see that ρ = (u v)(πΓu πΓv)
is a 2-break if and only if ρπ is a genome in (E,Γ). A 2-break is classified as a fission, a
fusion, or signed reversal depending on the distribution of the elements u, v, πΓu, and πΓv
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among the orbits of π. We introduce a few concepts that will be used to better explain
the relation between a 2-break applicable to π and the distribution of the elements in its
support among the orbits of π. Given the permutations α and β, both over a set E, we say
that α divides β, denoted by α|β, when ‖βα−1‖ = ‖β‖−‖α‖. Meidanis and Dias [12] point
out that a 2-cycle (a b) divides a permutation β if and only if the elements a and b belong
to the same orbit in β. Moreover, a product of a 2-cycle α = (a b) and a permutation β
results in the permutation αβ such that a and b belong to distinct orbits in αβ if and only if
a and b belong to the same orbit in β. In other words, the product by α “breaks” the cycle
in β whose orbit contains a and b into two cycles in αβ, or it “joins” the two cycles, the
orbit of each one containing one of a or b. But this property is a description of the action
of fissions and fusions on genomes! Figure 2 illustrates the action of 2-breaks on genomes
as 2-cycles operating on cycles.
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Figure 2: Genome rearrangement events as breaking-joining operation on cycles. All the cycles are
clockwise oriented. (a) The genome π = (a b c d)(Γd Γc Γb Γa) is transformed into the genome
ρπ = (a b)(Γb Γa)(c d)(Γd Γc) by the fission ρ = (a c)(Γb Γd). (b) The genome π = (a b)(Γb Γa)(c d)(Γd Γc)
is transformed into the genome ρπ = (a b c d)(Γd Γc Γb Γa) by the fusion ρ = (a c)(Γd Γb). (c) The genome
π = (a b c d)(Γd Γc Γb Γa) is transformed into the genome ρπ = (a Γc Γb d)(Γd b c Γa) by the signed
reversal ρ = (b Γb)(d Γa).

Using divisibility, we can classify 2-breaks as fissions, fusions, and signed reversals as
follows:

Definition 1.1 Let π be a genome in the gene system (E,Γ), and ρ = (u v)(πΓvπΓu) a
2-break applicable to π. Then

1. Operation ρ is a fission on π when u and v belong to the same orbit of π, that is,
(u v)|π.
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2. Operation ρ is a signed reversal on π when u and v belong to distinct orbits of the
same chromosome.

3. Operation ρ is a fusion on π when u and v belong to orbits of distinct chromosomes.

Given the genomes π and σ in the gene system (E,Γ), the algebraic rearrangement by
fusions, fissions, and signed reversals problem consists of finding a sequence ρ1, . . . , ρk

such that:
σ = ρk ρk−1 . . . ρ1 π

where each rearrangement event ρi+1 is a fusion, fission, or signed reversal on ρi ρi−1 . . . ρ1 π,
and k is minimum. We call this minimum k the genomic distance d(π, σ).

As we are going to show in the next sections, the algebraic formalism allows one to
implement simple and efficient data structures that represent genomes and chromosomes
as cycles. We propose an algorithm based on these efficient data structures for the com-
parison of genomes based on 2-breaks, that is, signed reversals, fissions, and fusions. These
rearrangement events, especially signed reversals [1, 6, 5, 2, 10], have been shown to be
important in comparative analysis of genomes [15, 4].

The paper is organized as follows. In Section 2 we show how to detect 2-breaks belonging
to a minimum sequence of rearrangement events that transforms a genome into another. In
Section 3 we present data structures that implement the main ideas behind the algebraic
formalism and we design a polynomial time algorithm for finding a minimum rearrangement
event sequence that transforms a genome into another. Moreover, we present a formula for
the genomic distance based on the norm of a permutation. We summarize the results in
Section 4.

2 Good Events

Given the genomes π and σ in the gene system (E,Γ) and a sequence of 2-breaks ρ1, . . . , ρk

such that ρk . . . ρ1π = σ and ρi+1 is applicable to ρi . . . ρ1π for 1 ≤ i ≤ k − 1, we have
ρk . . . ρ1 = σπ−1. Since the permutation σπ−1 can be rewritten as a product of 2-
breaks then the algebraic rearrangement by fusions, fissions, and signed reversals problem
is equivalent to find a product ρk . . . ρ1 that equals to σπ−1 and each ρi+1 is a 2-break
applicable to ρi . . . ρ1π for 1 ≤ i ≤ k − 1 and k is minimum. We define some concepts
and show some properties of the permutation σπ−1 that will help find one such minimum
sequence of 2-breaks.

Let θ be a permutation over a set E. A cycle α is said to be a cycle of θ when α
is one of the cycles in the unique disjoint cycle decomposition of θ. A pair of σπ−1 is a
couple of cycles α and (πΓ) · α−1 of σπ−1. Let c(π, σ) be the number of pairs of σπ−1. It
has been shown that the number of pairs of σπ−1 is c(π, σ) = (|E| − ‖σπ−1‖)/2 [12]. We
denote c(ρπ, σ) − c(π, σ) by ∆c(ρ, π, σ) where ρ is a 2-break applicable to π. The concept
of a pair of σπ−1 corresponds to the concept of alternate cycles in the cycle diagram (or
breakpoint graph) of a genome [5, 6, 10]. If ρ is a signed reversal on π, then we have
∆c(ρ, π, σ) ∈ {−1, 0, 1} [6].

A good event for (π, σ) is a fusion, fission, or a signed reversal ρ such that ∆c(ρ, π, σ) = 1.
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Lemma 2.1 Given genomes π, σ in the gene system (E,Γ), a 2-break ρ applicable to π is
a good event for (π, σ) if and only if ρ|σπ−1.

Proof: If ρ|σπ−1 then ‖σπ−1ρ−1‖ = ‖σπ−1‖ − ‖ρ‖. Manipulating the later formula:

‖ρ‖

2
=

‖σπ−1‖ − ‖σπ−1ρ−1‖

2
=

|E| − ‖σπ−1ρ−1‖ − |E| + ‖σπ−1‖

2
= c(ρπ, σ) − c(π, σ)

and since c(ρπ, σ) − c(π, σ) = ∆c(ρ, π, σ) then ∆c(ρ, π, σ) = ‖ρ‖
2

. Since ρ is a 2-break then
‖ρ‖
2

= 1. Therefore ρ is a good event for (π, σ).

Conversely, if ρ is a good event for (π, σ) then ∆c(ρ, π, σ) = ‖ρ‖
2

, that is, we have
c(ρπ, σ) − c(π, σ) = ‖ρ‖/2. By definition of c(π, σ) we have

‖σπ−1‖ − ‖σπ−1ρ−1‖

2
=

‖ρ‖

2
.

Therefore ‖σπ−1ρ−1‖ = ‖σπ−1‖ − ‖ρ‖ and hence ρ|σπ−1. �

Lemma 2.2 Given genomes π, σ in the gene system (E,Γ), for any sequence of rear-
rangement events ρ1, . . . , ρk, such that ρk . . . ρ1π = σ and ρi is applicable to the genome
ρi−1 . . . ρ1π, we have:

1. k ≥ ‖σπ−1‖
2

;

2. k = ‖σπ−1‖
2

if and only if each rearrangement event ρi is a good event for (ρi−1 . . . ρ1π, σ)
for 1 ≤ i ≤ k.

Proof:

1. Let ρ1, . . . , ρk be a sequence of rearrangement events such that ρk . . . ρ1π = σ and ρi

is applicable to ρi−1 . . . ρ1π for 1 ≤ i ≤ k . Therefore ρk . . . ρ1 = σπ−1, and we get the
following upper bound for ‖σπ−1‖.

‖σπ−1‖ = ‖ρk . . . ρ1‖

≤ ‖ρk‖ + . . . + ‖ρ1‖

= 2

k
∑

j=1

‖ρj‖

2

= 2k

Therefore we have k ≥ ‖σπ−1‖
2

2. Firstly, we prove the “if” part, that is, we assume that each rearrangement event ρi

is a good event for (ρi−1 . . . ρ1π, σ) for 1 ≤ i ≤ k. By definition of 2-breaks and norm,
we have ‖ρ‖ = 2, where ρ is a 2-break. Therefore, we have:

k =
‖ρ1‖ + . . . + ‖ρk‖

2
. (1)
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Since rearrangement event ρi is a good event for (ρi−1 . . . ρ1π, σ) for 1 ≤ i ≤ k then

c(ρi . . . ρ1π, σ) − c(ρi−1 . . . ρ1π, σ) = 1.

By definition of number of pairs c(, ) we have

‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖

2
+

‖σπ−1ρ−1

1
. . . ρ−1

i ‖

2
= 1. (2)

Using ‖ρ‖/2 = 1 for any 2-break ρ, Equation 1, Equation 2, and some manipulation:

k =
‖σπ−1‖ − ‖σπ−1ρ−1

1
. . . ρ−1

k ‖

2

=
‖σπ−1‖ − ‖σσ−1‖

2

=
‖σπ−1‖

2
.

Therefore k = ‖σπ−1‖
2

.

On the other hand, if k =
∑k

j=1

‖ρj‖
2

then ‖σπ−1‖ =
∑k

j=1
‖ρj‖.

By the triangular inequality property, we have

‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ ≤ ‖σπ−1ρ−1

1
. . . ρ−1

i ‖ + ‖ρi‖,

for 1 ≤ i ≤ k, in other words we have

0 ≤ ‖σπ−1ρ−1

1
. . . ρ−1

i ‖ − ‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ + ‖ρi‖,

for 1 ≤ i ≤ k. Since each term ‖σπ−1ρ−1

1
. . . ρ−1

i ‖ − ‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ + ‖ρi‖ is

nonnegative and manipulating the expanded sum we get

0 ≤
k

∑

i=1

(

‖σπ−1ρ−1

1
. . . ρ−1

i ‖ − ‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ + ‖ρi‖

)

= ‖σπ−1ρ−1

1
. . . ρ−1

k ‖ − ‖σπ−1‖ +

k
∑

i=1

‖ρi‖.

But since σπ−1ρ−1

1
. . . ρ−1

k = ι and
∑k

i=1
‖ρi‖ = ‖σπ−1‖ then

k
∑

i=1

(

‖σπ−1ρ−1

1
. . . ρ−1

i ‖ − ‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ + ‖ρi‖

)

= 0.

Then ‖σπ−1ρ−1

1
. . . ρ−1

i ‖ − ‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ + ‖ρi‖ = 0 for 1 ≤ i ≤ k; i.e. we have

‖σπ−1ρ−1

1
. . . ρ−1

i ‖ = ‖σπ−1ρ−1

1
. . . ρ−1

i−1
‖ − ‖ρi‖

for 1 ≤ i ≤ k. Therefore, we have ρi|σπ−1ρ−1

1
. . . ρ−1

i−1
for 1 ≤ i ≤ k and by Lemma 2.1

each ρi applicable to ρi−1 . . . ρ1π is a good event for (ρi−1 . . . ρ1π, σ).
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�

Lemma 2.3 Given any distinct genomes π, σ in the gene system (E,Γ), there is a 2-break
ρ applicable to π such that ρ is a good event for (π, σ).

Proof:

Consider the 2-break ρ = (x σπ−1x)(πΓσπ−1x πΓx) where x and σπ−1x are elements
of E. There are three cases depending on which orbits these elements belong to in π:

• If σπ−1x ∈ orb(π, x) then ρ = (x σπ−1x)(πΓσπ−1x πΓx) is a fission on π since
(x σπ−1x)|π.

• If σπ−1x 6∈ orb(π, x) and x and σπ−1x belong to the orbits of the same chromosome
then we are going to show that the 2-break ρ = (x σπ−1x)(πΓσπ−1x πΓx) is a
signed reversal on π and it is a good event for (π, σ). Elements x and σπ−1x belong
to distinct strands of the genome π and we have Γπ−1σπ−1x = πΓσπ−1x by the
fundamental property of genomes ΓπΓ = π−1, so πΓσπ−1x ∈ orb(π, x) and therefore
(x πΓσπ−1x)|π. In addition, we have x 6= πΓσπ−1x because otherwise x = πΓσπ−1x
implies πΓx = σΓπΓx and then there is an element z ∈ E such that σΓz = z, that
is, two complementary genes belong to the same strand in σ, which contradicts the
definition of a genome in the gene system (E,Γ). Therefore, the rearrangement event
(x σπ−1x)(πΓσπ−1x πΓx) is a signed reversal on π.

• If x and σπ−1x belong to orbits of distinct chromosomes of π then rearrangement
event ρ = (x σπ−1x)(πΓσπ−1x πΓx) is a fusion on π since (x σπ−1x) ∤ π.

Since σπ−1 is a product of pairs απΓα−1πΓ then for any cycle (a1 . . . am) of σπ−1 there
is a cycle (πΓam . . . πΓa1) of σπ−1, and therefore πΓx 6∈ orb(σπ−1, x). Moreover, because
σπ−1x ∈ orb(σπ−1, x), πΓσπ−1x ∈ orb(σπ−1, πΓx), and πΓx 6∈ orb(σπ−1, x) then ρ|σπ−1,
and by Lemma 2.1 the 2-break ρ is a good event for (π, σ). �

3 Algorithm

In this section we present an algorithm for finding a sequence of good events that transform
the genome π into σ both in the gene system (E,Γ), which takes O(nh) running time, where
n is the number of genes and h is the time spent to convert a gene name into an integer. We
describe a data structure to represent the genome π and the permutation σπ−1 that allows
us to perform queries, fissions, fusions, and signed reversals each in O(h) running time. The
data structure is a simple combination of arrays that models the mapping of genomes π,
π−1, and σ; and a hash table and a list of circular lists representing the permutation σπ−1.

3.1 Genes in {−n, . . . , −1, 1, . . . , n}

We firstly treat the case in which π and σ are genomes in the gene system (E,Γ) where
E = {−n, . . . , −1, 1, . . . , n} and Γ = (1 − 1)(2 − 2) . . . (n − n). In this case, the
running time is O(n). Later, we extend the solution for gene systems whose set E contains
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Figure 3: Genomes π = (3 −2 7)(−7 2 −3)(−5 −6)(6 5)(1 −4 8)(−8 4 −1) and σ = (1 2 3 4 5 6 7 8)(−8 −
7 −6 −5 −4 −3 −2 −1) in the gene system (E,Γ) where E = {x | |x| ∈ [8]} and Γx = −x are represented
by arrays P and S. The permutation σπ−1 is represented by the list Q. The array T makes an entry indexed
by a gene x to point to the node containing x and to the pair of circular lists in Q. In order to make the
figure clear, we show the pointers of the first four genes of T only.
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gene names, which require hash lookups. Genomes π and σ are represented by arrays P
and S where P [x] = πx and S[x] = σx for x ∈ E. Similarly we define the array invP
where invP [x] = π−1x for x ∈ E. The complementary gene Γx is simply −x. Moreover,
we describe the permutation σπ−1 as a doubly linked list Q whose nodes that we call pairs
contain pointers to two circular lists. Each node in the Q list models a pair of cycles α and
β of σπ−1 where β = (πΓ) · α−1 and these cycles are the circular lists pointed to by the
node. We do not represent 1-cycles in the list (we call a pair with two 1-cycles a trivial
pair). Finally, we use an array T whose entry T [x].pointer points to the node in Q that
contains x and T [x].pair points to the pair node of x, for every x ∈ E (we use the convention
that T [x].node = T [x].pair = NIL when there is no x in Q). Figure 3 illustrates the data
structure for a pair of genomes in a gene system.

The array P is initialized by assigning P [x] = πx, for each gene x in E. The same
procedure can be used to initialize the array S. We can initialize invP at the same time we
initialize P by assigning invP [πx] = x for each assignment of x in P . The initialization of Q
is based on the previously initialized arrays S and invP . At the beginning of the procedure
all pointers in T are initialized to NIL. For each gene x ∈ E, if S[invP [x]] 6= x and
T [x].node = NIL, then the procedure buildPair(x) is called. The procedure buildPair(x)
is reponsible for creating a new pair whith x and including it in Q. The procedure starts
creating a pair N , storing the value of x in auxiliary variable y, and entering in a loop that
creates nodes for y and πΓy, updates the pointers in T [y] and T [P [−y]] to link to the pair
N and the nodes containing y and πΓy respectively, attaches the nodes to the circular lists
being constructed, and assigns S[invP [y]] to y until y = x. Suppose that the pair N in
Q models the permutation α(πΓ) · α−1 and y ∈ Supp(α), so y is mapped to σπ−1y in α
while πΓσπ−1y is mapped to πΓy in (πΓ) · α−1. Therefore the node containing y has to
be attached to the tail of the circular list modeling α and the node containing πΓy has
to be attached to the head of the circular list modeling (πΓ) · α−1. After the end of the
loop, both lists are closed. The procedure that initializes Q, called initializePairList(Q),
and the procedure that builds a new pair and insert it into Q are illustrated by Figure 4
and Figure 5 respectively.

The arrays P , invP , S, T , and the list Q provide the following operations: query,
exchange, remove, trivial pair testing, and trivial pair deletion. The fission, fusion, and
signed reversal events combine the previous operations. A query for an element x ∈ E in
genome π (or σ) over E consists of finding πx (or σx). The query of an element x ∈ E in
array A (array A can be P , S, or invP ) is implemented by retrieving A[x]. An exchange
of two entries A[x] and A[y] (array A can be P , S, or invP ) consists of exchanging the
contents of A[x] and A[y]. The remove operation, denoted by remove(Q,x, y), removes the
nodes that contains the genes x, y ∈ E. As the circular lists shrink during the execution of
the algorithm, eventually they become nodes of a trivial pair and they need to be removed
from Q. The trivial pair testing operation, denoted by the procedure trivialPair(Q,x), is
responsible to detect whether the pair containing x is a trivial pair. The trivial pair testing
is implemented by verifying whether the content of the first node has the same content of
its next node in one of the cycles of the pair. The trivial pair deletion operation deletes a
trivial pair from Q that contains the genes x, πΓx ∈ E. The trivial pair deletion operation,
called deletePair(pair), is implemented by using the pointer T [x].pair and the standard
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initializePairsList(Pairs List Q, Array S, Array invP , Array
T )

1. for each x ∈ E do

2. T [x].node = T [x].pair = NIL;

3. for each x ∈ E do

4. if S[invP [x]] 6= x

5. if T [x].node = NIL

6. buildPair(x);

7. return Pair List Q;

Figure 4: Procedure used to initialize Pairs List Q.

removal of nodes from a doubly linked list and it involves also a modification of the pointers
node and pair in T [x] and T [πΓx] to NIL, where x and πΓx are the genes in the trivial
pair.

We discuss now how to implement fissions, fusions, and signed reversals using the pre-
vious operations. Given π and σ in (E,Γ), we restrict the implementation to 2-breaks of
the form is (a σπ−1a)(πΓσπ−1a πΓa). All such events are good events for (π, σ). We
make such a restriction to guarantee that each rearrangement event can be performed in
constant running time. The 2-break ρ = (a σπ−1a)(πΓσπ−1a πΓa) applicable to genome π
is performed as following:

1. The elements a, σπ−1a, πΓσπ−1a, and πΓa are queried in order to find the elements
π−1a, π−1σπ−1a, π−1πΓσπ−1a, and π−1πΓa in invP .

2. Updating P . The elements π−1a, π−1σπ−1a, π−1πΓσπ−1a, and π−1πΓa are mapped
to σπ−1a, a, πΓa, and πΓσπ−1a respectively in ρπ while the remaining genes do not
change their mappings because in a product of permutation αβ the element β−1x
is mapped to an element y different from x when x belongs to the support of α,
otherwise αx = x and αββ−1x = x. So, the genes π−1a, π−1σπ−1a, π−1πΓσπ−1a,
and π−1πΓa in P are updated to σπ−1a, a, πΓa, and πΓσπ−1a respectively in P ′,
where P ′ represents ρπ. Since P [π−1a] = a and P [π−1σπ−1a] = σπ−1a then we can
exchange the contents of P [π−1a] and P [π−1σπ−1a] to obtain the correct mappings
of π−1a and π−1σπ−1a in P ′. Similarly, we have P [π−1πΓσπ−1a] = πΓσπ−1a and
P [π−1πΓa] = πΓa, so exchanging P [π−1πΓσπ−1a] and P [π−1πΓa] gives the mappings
of Γσπ−1a and Γa in P ′.
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buildPair(gene x)

1. Create pair N and insert N into Q;

2. y = x;

3. do

4. Create new node A with data y;

5. Attach A to the tail of circular list 1 of N ;

6. T [y].node = A;

7. T [y].pair = N ;

8. Create node B with data P [−y];

9. Attach B to the head of the circular list 2 of N ;

10. T [P [−y]].node = B;

11. T [P [−y]].pair = N ;

12. y = S[invP [y]];

13. until y = x;

14. Close circular list containing x;

15. Close circular list containing P [−x];

Figure 5: Procedure used to build a pair N and include it into Q.
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3. Updating invP . The elements a, σπ−1a, πΓσπ−1a, and πΓa are mapped to π−1σπ−1a,
π−1a, π−1πΓa, and π−1πΓσπ−1a respectively in π−1ρ−1 (the inverse of ρπ) while the
remaining genes do not change their mappings for the same reasons presented before.
The genes in invP [a], invP [σπ−1a], invP [πΓσπ−1a], and invP [πΓa] must be updated
to π−1σπ−1a, π−1a, π−1πΓa, and π−1πΓσπ−1a respectively in invP ′, where invP ′

represents the genome π−1ρ−1. Since invP [a] = π−1a and invP [σπ−1a] = π−1σπ−1a
then invP is updated to invP ′ by exchanging the genes invP [a] and invP [σπ−1a].
Similarly, we have invP [πΓσπ−1a] = π−1πΓπ−1a and invP [πΓa] = π−1πΓa, so ex-
changing invP [πΓa] and invP [πΓσπ−1a] gives the mappings of πΓa and πΓσπ−1a in
invP ′.

4. The list Q is updated by a removal of the elements σπ−1a and πΓa from their corre-
sponding circular lists. Removing σπ−1a and πΓa can be done in constant time since
both elements are in the next nodes of a and πΓσπ−1a respectively in the circular list
and a and πΓσπ−1a are directly accessed using T [a].node and T [πΓσπ−1a].node. If it
remains a single element in each circular list pointed by a node of Q then this pair is
a trivial pair and it is removed using a as a parameter to the pair deletion procedure.

Figure 6 illustrates the action of a 2-break on the arrays P and invP .

8 9 4 7 6 5
1 2 3 4 5 6 7 8 9 −6 −8 −9

−4 −6
−7

−8 −3 −2 −9 −1 −5
−1 −2 −3

2 1
−4
−7

−5
3

7 4 6 8 3 2
1 2 3 4 5 6 7 8 9 −6 −8 −9

9 −9 −4
−7

−7 −6 −5 −3 −2 −1
−1 −2 −3 −5−4

−8 51P

P’

invP

invP’ 1 2 3 4 5 6 7 8 9 −6 −8 −9−7−1 −2 −3 −4 −5

7 4 6 3 2
1 2 3 4 5 6 7 8 9 −6 −8 −9

9 −9 −4
−7

−6 −5 −3 −2
−1 −2 −3 −5−4

−8 5

8 9 4 6 5 −4 −6−3 −2 −9 −5 2−7 31 −87 −1

8 −11 −7

(a)

(b)

Figure 6: Example of the action of a 2-break on arrays P and invP . The arrays P and invP are based
on the genome π = (−3 2 − 6 − 9 5)(−5 9 6 − 2 3)(−7 − 4 − 8 1)(−1 8 4 7) in the gene system (E, Γ).
The arrays P ′ and invP ′ represent the genome ρπ where ρ = (1 − 7)(−1 8) is a 2-break applicable to π.
(a) The genes P [7] and P [−1] are exchanged, as well as the content of the pair P [1] and P [−8] in the array
P . (b) In the array invP , the genes invP [1] and invP [−7] are exchanged, as well as the content of the pair
invP [8] and invP [−1].
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3.2 General Case

Up to this point, we assumed that the gene system is based on a set of integers, but genomes
are usually represented by sequences of gene names (strings) in genome rearrangement data
inputs. These sequences of strings must be converted to a proper representation (sequences
of integer numbers) in order to be used efficiently in the arrays P , invP , and the list Q.
To clarify the discussion, we use the following notation: genes are denoted by the letters
x, y, z, w, while the indexes associated to genes are denoted by i, j, k, l. Suppose that we
represent the gene system in the input of the problem as an array of genes L containing all
the gene names in the gene system (E,Γ). We assume that the array L is a concatenation
of the sets E+ and E− in this order in a oriented partition E+ and E− of (E,Γ) such that
L[|E+|+ i] = ΓL[i] for 1 ≤ i ≤ |E+|. We include a hash table H to store the indexes of the
genes in L. Each gene name L[i] = x is a key and the data record for the key x is the index
H[x].index = i. The indexes of L are used in the same role as the genes for the arrays P
and invP are used in the special case that E is a set of integers.

If the set of gene names is the same for any input data set then a perfect hash table [3]
implementation allows one to take a gene name as key and convert it to its index in the
arrays in O(|s|) running time where |s| is the length of the gene name and to access the
memory at most O(1) times. On the other hand, if the set of genes is different for each data
set then we use a chaining hash table and we choose an addictive hash function [11, 3]:

f(s) =

|s|
∑

i=1

char(si)|A|i−1 (mod m)

where s is the gene name, the function char(si) returns the ASCII code for the character
si in the alphabet A, the length of the alphabet is |A|, and the number m is the number of
entries in the hash table. We choose m as a prime number greater than the total number of
genes in the gene system. Function f(s) can be obtained in linear time on |s| using Horner’s
rule for fast polynomial evaluation. We choose this hash function because it is simple and it
seems to perform well for keys of small size, as it is the case of gene names. However, faster
implementations and functions with better behavior should be used for data sets involving
very large genomes with long gene names that are very similar to each other [9, 8]. We
assume that a adequately designed hash table retrieves the data for a key s in h = O(|s|)
time.

For the general case the initialization of arrays P and S are slightly modified. We make
the assumption that the genomes π and σ in the input are represented by a list of mappings
(x, πx) (or (x, σx)). For each gene name x in the list of mappings of π, the index i of x and
the index j of πx in H are retireved and j is assigned to P [i]. The same procedure is used
for the initialization of S. Figure 7 illustrates the procedure of initialization of P .

The query for an element x ∈ E in genome π (or σ) over E consists of finding πx (or
σx) by retrieving the index i of the gene x in the hash table H, and returning L[P [i]] (or
L[S[i]]). The query operation takes O(h) running time to be performed.

The update of P and invP , by using the procedure exchange for instance, and the
update of the list Q both are not modified by the inclusion of gene names to the input since
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initialize(Genome π, Table T , Genes List L)

1. for each gene x in the list of mappings of π do

2. index = H[L[i]].index;

3. P [index] = H[πL[i]].index;

4. return array P

Figure 7: Procedure used to initialize arrays P and S.

all the operations that update P , invP , and Q do not require changes in the indexes in H.
Each update operation on P , invP , and Q takes O(1) time.

Figure 3.2 illustrates the algorithm for finding a sequence of 2-breaks that transforms
the genome π into σ both in the gene system (E,Γ).

Lemma 3.1 Given π, σ, and Γ over E, FFSRsort algorithm presents a sequence of good
events for (π, σ) with minimum distance d(π, σ) that transforms genome π into σ in O(nh)
running time, where n = |E|.

Proof: We show that the algorithm FFSRSort is correct by defining the following loop
invariant over the parameter r: θ = ρr . . . ρ1π and rearrangement event ρi is a good event
for (ρi−1 . . . ρ1π, σ) applicable to ρi−1 . . . ρ1π, for 1 ≤ i ≤ r.

For r = 0, before the main loop in the line 7, we have θ = π and the invariant is trivially
valid.

Suppose that the invariant is valid for r = k, that is, we have θ = ρk . . . ρ1π and ρi

is a good event for (ρi−1 . . . ρ1π, σ) applicable to ρi−1 . . . ρ1π for 1 ≤ i ≤ k. In the next
iteration of the loop in line 10 we set ρk+1 = (x σθ−1x)(θΓσθ−1x θΓx) since x = L[i] and
σθ−1x = L[j]. The rearrangement event ρk+1 is a good event for (θ, σ) by Lemma 2.3.
Therefore the invariant remains valid before the next iteration of the loop in line 7.

If θ = ρr . . . ρ1π and r = d(π, σ) then θ = σ, i.e. σθ−1 = ι. If σθ−1 = ι then the list
Q is empty because it does not contain trivial pairs. Therefore the condition in the line 7
is false and the algorithm executes the code in the line 26. At this point in the execution
we have θ = ρr . . . ρ1π such that each ρi is a good event for (ρi−1 . . . ρ1π, σ) applicable to
ρi−1 . . . ρ1π, for 1 ≤ i ≤ r since the loop invariant is valid. Therefore σ = ρr . . . ρ1π and
ρ1, . . . , ρr is a sequence of good events, such that ρi is a good event for (ρi−1 . . . ρ1π, σ)
and it is applicable to ρi−1 . . . ρ1π, where 1 ≤ i ≤ r, transforming genome π into genome σ.

Now we discuss how long it takes to execute the algorithm. The hash table H takes
O(nh) to be constructed, since each gene is read from the input, its name taken as a key in
the hash function, and its index stored in a new node in H. The initialization of the arrays
P and S takes O(nh) running time since for each element x in E, in the order that they
appear in the mappings of π and σ, must be assigned its πx and σx what involves accessing
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Algorithm FFSRSort(Genome π, Genome σ, Genes L)

1. r = 0;

2. for each i ∈ {j | 1 ≤ |j| ≤ |E+|} do T [L[i]].index = i;

3. P = initialize(π, T , L);

4. for each i ∈ {j | 1 ≤ |j| ≤ |E+|} do invP [P [i]] = i;

5. S = initialize(σ, T , L);

6. initializePairsList(Q,S,invP );

7. while (notEmpty(Q)) do {

8. r + +;

9. Take i, j (respectively genes x and σθ−1x) in Q;

10. Make ρr = (L[i] L[j])(L[P [−j]] L[P [−i]])

11. remove(Q, j);

12. remove(Q,P [−i]);

13. T [f(L[j])].node = NIL;

14. T [f(L[P [−i]])].node = NIL;

15. if (trivialPair(Q,i)) {

16. pair = T [i].pair;

17. remove(Q, i);

18. remove(Q,P [−j]);

19. delete(pair);

20. }

21. exchange(P [invP [i]], P [invP [j]]);

22. exchange(P [−j], P [−i]);

23. exchange(invP [i], invP [j]);

24. exchange(invP [P [−j]], invP [P [−i]]);

25. }

26. return ρ1, . . . , ρr
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H and retrieving the index of each πx and σx respectively. Since we make the assumption
that π and σ are represented in the input by a list of mappings (x, πx) (or (x, σx)) then
it takes constant time to obtain πx (or σx) given x. The array invP can be initialized by
assigning invP [P [i]] = i for i ∈ {x ≤ n | 1 ≤ |x| ≤ |E+|}, so it takes O(n) running time.

Constructing the list Q takes O(n) time because finding S[invP [i]] for i ∈ {x ≤ n | 1 ≤
|x| ≤ |E+|} involves a query in invP and S that takes O(1) and the assignment of the
pointers in the entry T [i] that takes O(1).

In the worst case, just one element in each strand of the genome will be placed in its
proper position per iteration of the loop in line 7, i.e. the block while will be executed O(n)
times. For each step in the while loop it is verified whether genomes θ and σ are the same
in line 7. This verification can be accomplished in O(1) running time by checking whether
the list Q is empty. If Q is empty then θ = σ since σπ−1 = ι. Finding a fission, fusion,
or signed reversal that is a good event for (θ, σ) is performed in O(1) time by choosing the
elements i and j, corresponding to x and σθ−1x, where i is the first element in the first pair
of Q. The rearrangement event (x σθ−1x)(θΓσθ−1x θΓx) is a good event for (θ, σ) where θ
is the genome represented by the array P in the current iteration of the loop. The update
process of the data structures can be achieved in O(1) running time since the exchange
operations on the arrays P and invP take constant time. Removing j and P [−i] from Q
takes O(1) since it takes O(1) to remove the nodes in Q that contain them the pointers to
those two nodes in T [j] and T [P [−i]]. Therefore the total time complexity is O(nh). �

Theorem 3.2 Given genomes π, σ, and the function Γ, all over E, we have

d(π, σ) =
‖σπ−1‖

2
.

Proof: Given genomes π and σ over E, Lemma 3.1 guarantees the existence of a se-
quence of rearrangement events ρ1, . . . , ρk such that ρk . . . ρ1π = σ and ρi is applicable
to ρi−1 . . . ρ1π and ρi is a good event for (ρi−1 . . . ρ1π, σ) for 1 ≤ i ≤ k. In addition, by
Lemma 2.2, we have d(π, σ) ≥ ‖σπ−1‖/2 and k = ‖σπ−1‖/2. Therefore d(π, σ) = ‖σπ−1‖/2.

�

Given the genomes π and σ over E, Theorem 3.2 offers a simple formula for the rear-
rangement distance d(π, σ). We can obtain d(π, σ) in O(nh) running time, by finding σπ−1

and its norm. It is the same asymptotic running time complexity for finding a sequence of
good events that transforms the genome π into σ, although an implementation of the list
Q construction that avoids to access the hash table would have lower constants.

4 Conclusion

Genome Rearrangement analysis involving signed reversals, fissions, and fusions may be an
important technique for genome comparison. We present a formalism for modeling genomes
and rearrangement events that could be implemented by fast and simple data structures.
We use such data structures to design an algorithm that finds a sequence of signed reversals,
fissions, and fusions whose length is the genomic distance. The algorithm properly handle
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multichromosomal genomes and it performs each of those rearrangement events in constant
time. The total running time of an algorithm is O(nh). Our algorithm may be the first one
to find a sequence of rearrangement events that solves a rearrangement problem in linear
time. We direct our future research towards the application of the same data structure
and algebraic formalism to another rearrangement problems such as the problem involving
block-interchanges, for instance. We hope that we find which rearrangement events could
be implemented in constant time.
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