MO640 - Biologia Computacional

Zanoni Dias

Instituto de Computação - Unicamp

Segundo Semestre de 2017

Roteiro

- Montagem de Fragmentos
- 2 Modelos para Montagem de Fragmentos
- 3 Calculando o Progresso da Montagem
- 4 Representação de Sobreposição de Fragmentos
- Caminhos e Supersequências
- 6 Algoritmo para Shortest Common Superstring
- Montagem de Fragmentos em Grafos de Sobreposições Acíclicos
- 8 Problemas com Repetições
- Montagem de Fragmentos usando Grafos de k-Mers
- 10 Phred, Phrap e Consed
- CAP3

Montagem de Fragmentos

- A tecnologia padrão de sequenciamento não permite obter fragmentos de DNA maiores que 1000 pares de bases.
- É possível obter fragmentos de DNA (um pouco) maiores, mas a um custo proibitivo.
- Na prática, muitas vezes precisamos obter a sequência de organismos de milhões de pares de bases.
- Montagem de fragmentos é a terefa de, dado um conjunto de fragmentos, reconstruir a sequência que originou os fragmentos (sequência alvo), com base nas sobreposições dos fragmentos.
- Montagem de fragmentos pode ser revolvido com estratégias convencionais de alinhamento múltiplo de sequências?
 - Não! Apesar de parecidos, os problemas tem diferenças importantes e usam técnicas distintas para obter soluções.

Principais Dificuldades

- Erros de sequenciamento.
- Orientação desconhecida dos fragmentos.
- Falta de cobertura da sequência original.
- Tamanho desconhecido da sequência original.
- Regiões repetidas na sequência original.
- Sequências quiméricas.
- Contaminação pelo vetor de sequenciamento.

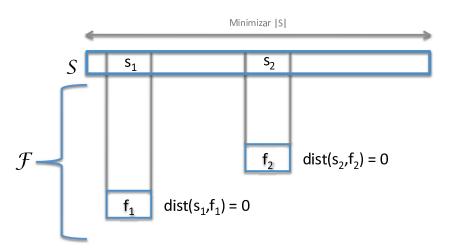
Modelos para Montagem de Fragmentos

- Modelos mais comuns:
 - Shortest Common Superstring (SCS).
 - Reconstruction.
 - Multicontig.
- Todos estes modelos supõem que os fragmentos não possuem contaminações ou quimeras.

Shortest Common Superstring

- Dada uma coleção $\mathcal F$ de fragmentos, obter a menor sequência possível S, tal que para todo $f \in \mathcal F$, S é uma supersequência de f.
- Modelo essencialmente teórico, sem suporte a maioria dos problemas práticos.
- Pode n\u00e3o produzir a sequ\u00eancia original, devido a dificuldade de lidar com longos trechos repetidos.
- $SCS \in NP$ -Completo.

Shortest Common Superstring



Reconstruction

• Dada uma coleção $\mathcal F$ de fragmentos e uma tolerância de erro ϵ ($0 \le \epsilon \le 1$), obter a menor sequência possível $\mathcal S$, tal que para todo $f \in \mathcal F$, temos:

$$min(dist_s(f,S), dist_s(\overline{f},S)) \le \epsilon |f|$$

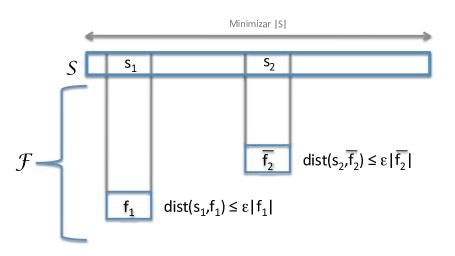
onde \overline{f} é o complemento reverso de f e $dist_s$ é definida como:

$$dist_s(a, b) = min_{s \in S(b)} dist(a, s)$$

onde S(b) é o conjunto das subsequências de b.

- Reconstruction é uma generalização de SCS.
- Reconstruction ∈ NP-Completo.

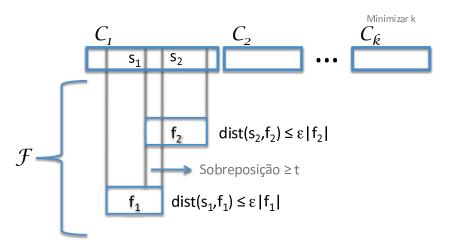
Reconstruction



Multicontig

- Dada uma coleção $\mathcal F$ de fragmentos, um inteiro $t\geq 0$ e uma tolerância de erro ϵ $(0\leq \epsilon\leq 1)$, obter uma partição de $\mathcal F$ em um número mínimo de subcoleções, $\mathcal C=\{\mathcal C_1,\mathcal C_2,\dots,\mathcal C_k\}$, tal que cada $\mathcal C_i$ (com $1\leq i\leq k$) forma um contig com sobreposição mínima t entre os fragmentos e taxa de erro ϵ de cada fragmento em relação ao consenso do contig.
- Neste caso, cada contig representa uma sequência consenso para um subconjunto dos fragmentos.
- $\textit{Multicontig} \in \textit{NP}\text{-}\mathsf{Completo}.$

Multicontig



Calculando o Progresso da Montagem

- Seja:
 - n: número de fragmentos.
 - f: tamanho médio dos fragmentos.
 - T: tamanho da sequência alvo a ser montada.
 - ▶ t: sobreposição mínima entre dois fragmentos para montagem.
- A cobertura média (c) da sequência alvo pode ser calculada como:

$$c = \frac{nf}{T}$$

 O número esperado de subsequências contíguas montadas com sobreposição mínima t é dado por:

$$p = ne^{\frac{-n(f-t)}{T}}$$

 O número esperado de subsequências contíguas montadas por pelo menos 2 fragmentos, com sobreposição mínima t é dado por:

$$p' = ne^{\frac{-n(f-t)}{T}} - ne^{\frac{-2n(f-t)}{T}}$$

Calculando a Cobertura da Sequência Alvo

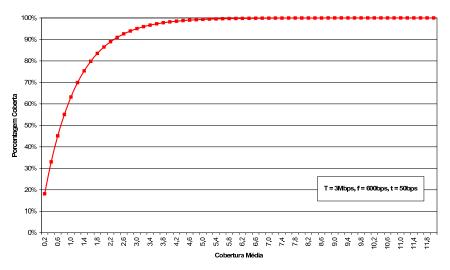
 A fração da sequência alvo coberta por exatamente k fragmentos é dado por:

$$r_k = \frac{e^{-c}c^k}{k!}$$

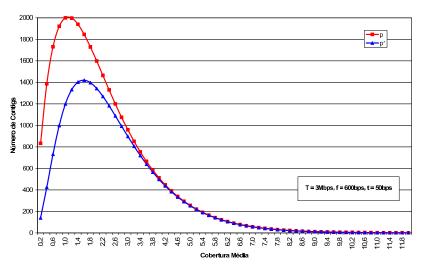
 A fração da sequência alvo coberta por pelo menos um fragmento é dado por:

$$r = 1 - \left(1 - \frac{f}{T}\right)^n$$

Calculando a Cobertura da Sequência Alvo



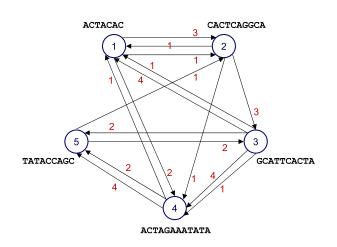
Calculando a Cobertura da Sequência Alvo



Representação de Sobreposição de Fragmentos

- ullet Seja ${\mathcal F}$ uma coleção de fragmentos de tal forma que nenhum fragmento esteja completamente contido em outro fragmento.
- O Multigrafo de Sobreposição $\mathcal{OM}(\mathcal{F})$ (ou *Overlap Multigraph*) de uma coleção de fragmentos de sequências \mathcal{F} é um multigrafo orientado e ponderado.
- O conjunto de vértices V representa cada um dos fragmentos $f \in \mathcal{F}$. Uma aresta entre os vértices a e b ($a \neq b$), com peso $t \geq 0$, existe se o sufixo do fragmento representado por a, com t caracteres, é um prefixo do fragmento representado por b.
- Por definição, $\mathcal{OM}(\mathcal{F})$ não admite autolaços.
- Podem existir múltiplas arestas entre dois vértices.
- Existe pelo menos uma aresta entre todo par de vértices (com t = 0).

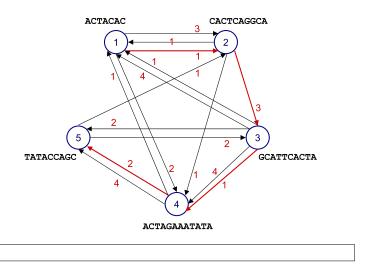
Multigrafo de Sobreposição - $\mathcal{OM}(\mathcal{F})$

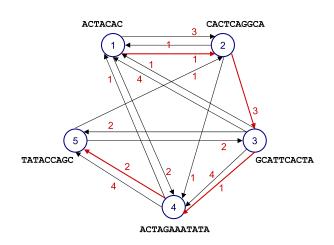


Sobreposição mínima: t = 1

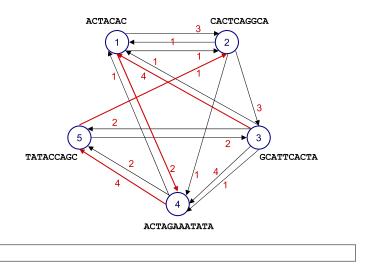
Caminhos e Supersequências

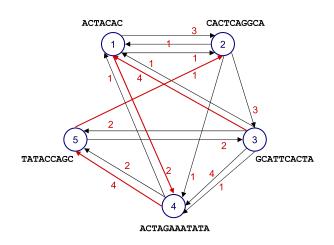
- Caminhos no Multigrafo de Sobreposição $\mathcal{OM}(\mathcal{F})$ representam supersequências envolvendo os fragmentos representados pelos vértices do caminho.
- Seja:
 - ▶ P: um caminho em $\mathcal{OM}(\mathcal{F})$.
 - \triangleright w(P): a soma dos pesos de todas as arestas de P.
 - \triangleright $\mathcal{F}(P)$: o conjunto de fragmentos representados pelos vértices de P.
 - ▶ $||\mathcal{F}(P)||$: a soma dos tamanhos de todos os fragmentos de $\mathcal{F}(P)$.
 - \triangleright S(P): a sequência consenso originada por P.
- A seguinte relação é verdadeira:
 - ▶ $||\mathcal{F}(P)|| = w(P) + |S(P)|$
- Obter uma SCS para a coleção \mathcal{F} , é equivalente a encontrar um caminho de peso máximo que passe por todos os vértices de $\mathcal{OM}(\mathcal{F})$.
- Logo, uma solução para SCS pode ser obtida através de um Caminho Hamiltoniano Máximo no multigrafo $\mathcal{OM}(\mathcal{F})$.



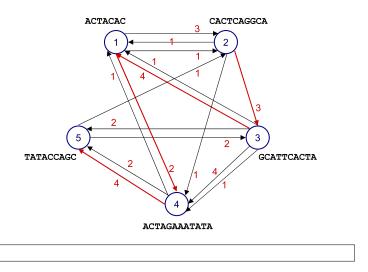


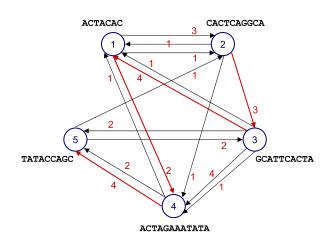
ACTACACACTCAGGCATTCACTACTAGAAATATATACCAGC



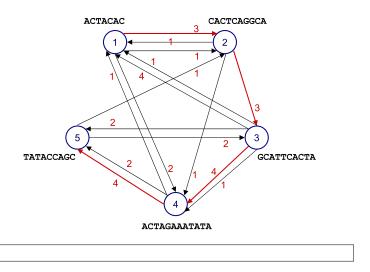


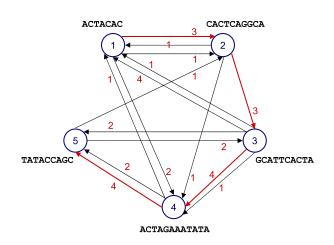
GCATTCACTACACTAGAAATATACCAGCACTCAGGCA





CACTCAGGCATTCACTACACTAGAAATATACCAGC

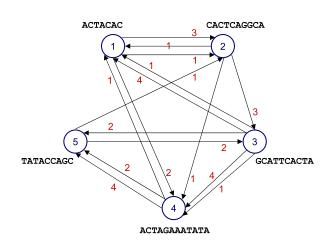




ACTACACTCAGGCATTCACTAGAAATATACCAGC

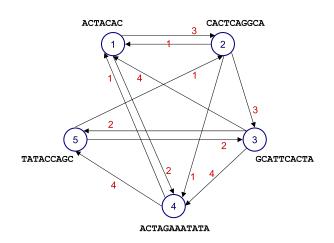
- Neste caso podemos trabalhar com o Grafo de Sobreposição $\mathcal{OG}(\mathcal{F})$ (Overlap Graph), que pode ser obtido a partir de $\mathcal{OM}(\mathcal{F})$ mantendo-se apenas a aresta mais pesada entre cada par de vértices.
- Algoritmos gulosos fazem escolhas locais ótimas.
- Para tentar maximizar o peso do caminho a ser montado, o algoritmo, a cada passo, escolhe a aresta válida mais pesada de $\mathcal{OG}(\mathcal{F})$.
- Uma aresta é dita válida se a inclusão dela na solução corrente respeita as seguintes condições:
 - Duas arestas não podem sair de um mesmo vértice.
 - Duas arestas não podem chegar em um mesmo vértice.
 - Nenhum ciclo pode ser formado.
- O algoritmo termina quando o caminho P contiver todos os vértices de $\mathcal{OG}(\mathcal{F})$.

Multigrafo de Sobreposição - $\mathcal{OM}(\mathcal{F})$

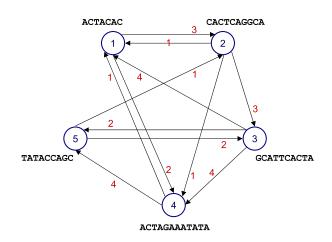


Sobreposição mínima: t = 1

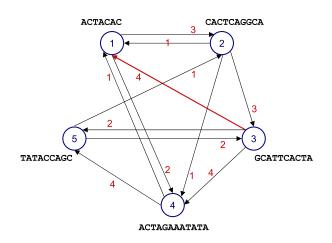
Grafo de Sobreposição - $\mathcal{OG}(\mathcal{F})$



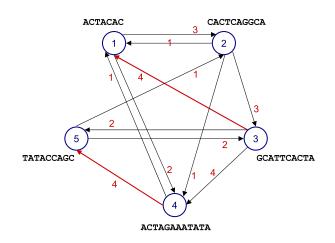
Sobreposição mínima: t = 1



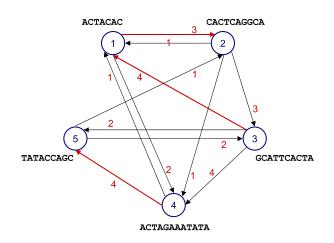
ACTACAC | CACTCAGGCA | GCATTCACTA | ACTAGAAATATA | TATACCAGC



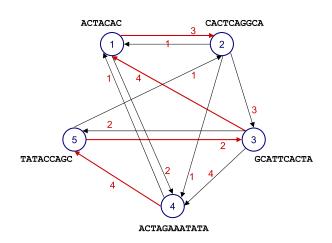
GCATTCACTACAC | CACTCAGGCA | ACTAGAAATATA | TATACCAGC



ACTAGAAATATACCAGC | GCATTCACTACAC | CACTCAGGCA



ACTAGAAATATACCAGC | GCATTCACTACACTCAGGCA



ACTAGAAATATACCAGCATTCACTACACTCAGGCA

- Complexidade:
 - 1. Construir o grafo $\mathcal{OG}(\mathcal{F})$:
 - * Usando comparação par a par: $O(\sum_{i=1}^{n} \sum_{j=1}^{n} f_i f_j + n^2)$ = $O(||\mathcal{F}||^2 + n^2)$.
 - ★ Usando árvores de prefixos: $O(||\mathcal{F}|| + n^2)$.
 - 2. Ordenar as arestas de $\mathcal{OG}(\mathcal{F})$ em função do peso:
 - ★ Usando heapsort: $O(n^2 \log n)$.
 - ★ Usando counting sort: $O(n^2 + ||\mathcal{F}||)$.
 - 3. Para toda aresta, testar se ela é válida:
 - ★ Usando conjuntos disjuntos: $O(n^2\alpha(n))$.
 - * Usando vetores auxiliares para armazenar os vértices iniciais e os vértices finais dos caminhos que passam por cada vértice: $O(n^2)$.
 - 4. Para toda aresta válida, expandir um caminho:
 - ★ Usando conjuntos disjuntos: $O(n\alpha(n))$.
 - * Usando vetores auxiliares para armazenar os vértices iniciais e os vértices finais dos caminhos que passam por cada vértice: $O(n^2)$.
 - 5. Dado o Caminho Hamiltoniano P construir a sequência S(P): $O(||\mathcal{F}||)$.
 - ▶ Total: $O(||\mathcal{F}|| + n^2)$.

- Algoritmo proposto independentemente por Jorma Tarhio e Esko Ukkonen (1988) e Jonathan Turner (1989).
- Avrim Blum, Tao Jiang, Ming Li, John Tromp e Mihalis Yannakakis (1994) provaram que o algoritmo guloso é um algoritmo de aproximação com fator 4.
- Haim Kaplan e Nira Shafrir (2005) provaram que o algoritmo guloso é um algoritmo de aproximação com fator 3.5.

Conjectura

O algoritmo guloso para SCS é um algoritmo de aproximação com fator 2.

Algoritmos de Aproximação para SCS

- Avrim Blum, Tao Jiang, Ming Li, John Tromp e Mihalis Yannakakis
 (1994) apresentaram um algoritmo de aproximação com fator 3.
- Shang-Hua Teng e Frances Yao (1993) apresentaram um algoritmo de aproximação com fator 2 + 8/9.
- Artur Czumaj, Leszek Gasieniec, Marek Piotrow e Wojciech Rytter (1994) apresentaram um algoritmo de aproximação com fator 2+5/6.
- Chris Armen e Clifford Stein (1995) apresentaram um algoritmo de aproximação com fator 2 + 3/4.
- Chris Armen e Clifford Stein (1996) apresentaram um algoritmo de aproximação com fator 2+2/3.
- Elizabeth Sweedyk (1999) apresentou um algoritmo de aproximação com fator 2+1/2.

Exercícios

Exercício

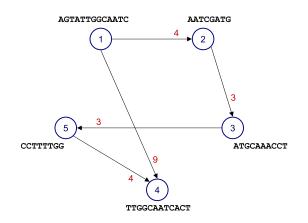
Mostre como adaptar o algoritmo guloso para Shortest Common Superstring para lidar com erros de sequenciamento.

Exercício

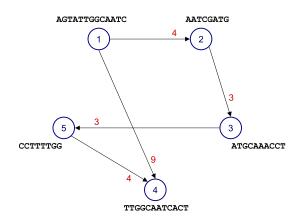
Mostre como adaptar o algoritmo guloso para Shortest Common Superstring para lidar com orientação desconhecida dos fragmentos.

Montagem de Fragmentos em Grafos de Sobreposições Acíclicos

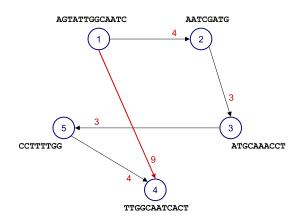
- ullet Seja ${\mathcal F}$ uma coleção de fragmentos tal que nenhum fragmento esteja completamente contido em outro.
- Considere o grafo o $\mathcal{OG}(\mathcal{F},t)$, que pode ser construído a partir de $\mathcal{OG}(\mathcal{F})$ removendo as arestas de peso menor do que t.
- Se $\mathcal{OG}(\mathcal{F},t)$ possui um ciclo orientado, então existe uma repetição de tamanho maior ou igual a t na sequência original (S). Note que o contrário não é necessariamente verdade.
- Se a sequência original (S) for totalmente coberta por um único contig, com sobreposição mínima t entre os fragmentos, e sem nenhuma repetição de tamanho maior ou igual a t, então o grafo $\mathcal{OG}(\mathcal{F},t)$ é acíclico, existe um único Caminho Hamiltoniano (P) em $\mathcal{OG}(\mathcal{F},t)$ e S=S(P).
- Neste caso, o Caminho Hamiltoniano em $\mathcal{OG}(\mathcal{F},t)$, pode ser obtido através de uma ordenação topológica, em tempo $O(n^2)$.



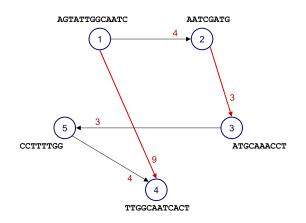
Sobreposição mínima: t = 3



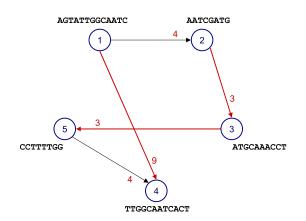
AGTATTGGCAATC | AATCGATG | ATGCAAACCT | TTGGCAATCACT | CCTTTTGG



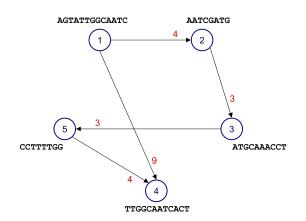
AGTATTGGCAATCACT | AATCGATG | ATGCAAACCT | CCTTTTGG



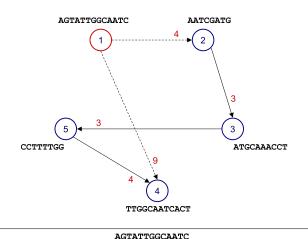
AGTATTGGCAATCACT | AATCGATGCAAACCT | CCTTTTGG

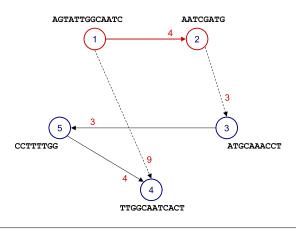


AGTATTGGCAATCACT | AATCGATGCAAACCTTTTGG

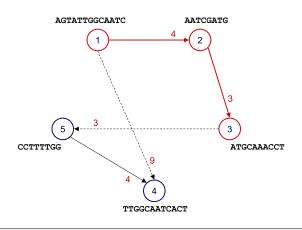


Sobreposição mínima: t = 3

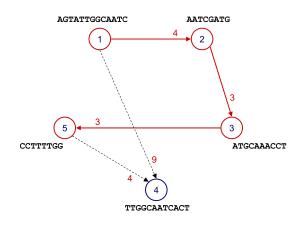




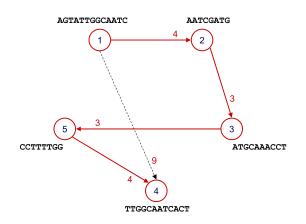
AGTATTGGCAATCGATG



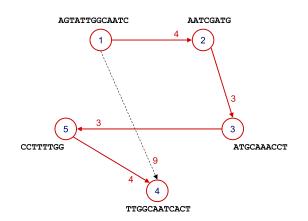
AGTATTGGCAATCGATGCAAACCT



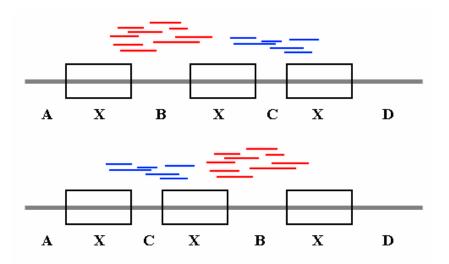
AGTATTGGCAATCGATGCAAACCTTTTGG

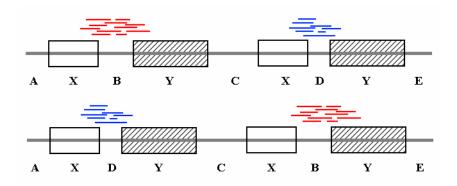


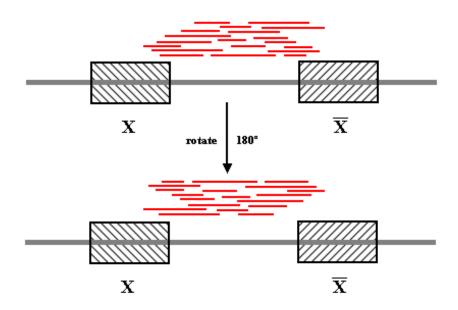
AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

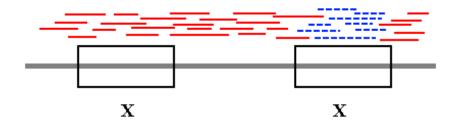


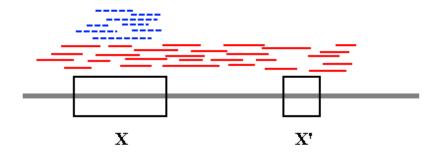
AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT







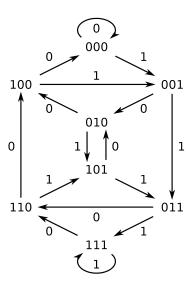




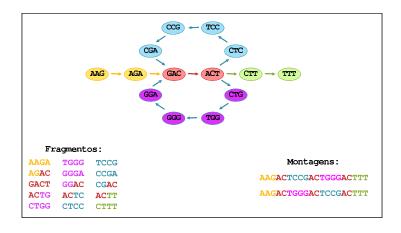
Grafo de Bruijn

- Dado um alfabeto $\mathcal A$ qualquer, um k-mer de $\mathcal A$ é definido com uma sequência de k caracteres de $\mathcal A$.
- O grafo de Bruijn de ordem k é um grafo orientado cujos vértices são todos os k-mers de \mathcal{A} e existe uma aresta entre dois vértices x e y se e somente se os k-1 últimos caracteres de x forem iguais aos k-1 primeiros caracteres de y.
- Note que o grafo de Bruijn de ordem k possui $|\mathcal{A}|^k$ vértices e $|\mathcal{A}|^{k+1}$ arestas.
- O grafo de Bruijn possui algumas características interessantes. Por exemplo, ele é tanto hamiltoniano (admite circuito hamiltoniano) como euleriano (admite circuito euleriano).
- As novas técnicas de sequenciamento possuem algumas características importantes, como gerar fragmentos de tamanho fixo e (relativamente) pequenos.

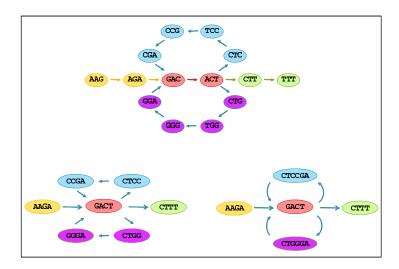
Grafo de Bruijn



- Sendo assim, dado um conjunto de fragmentos $\mathcal F$ sobre o alfabeto $\mathcal A$, todos de tamanho k+1, podemos gerar um grafo de k-mers $G(\mathcal F)$, similar ao grafo de Bruijn: para cada $f\in \mathcal F$ adicionamos os vértices x e y (casos eles ainda não existam) e a aresta (x,y) tal que x é o vértice que representa o prefixo de tamanho k de f e g é o vértice que representa o sufixo de tamanho g de g.
- Neste caso, uma montagem dos fragmentos corresponde a um passeio que contenha todas as arestas deste grafo.
- Um grafo orientado admite um passeio que contem todas as arestas do grafo se e somente se o grafo reduzido (ou seja, o grafo onde todas as componentes fortemente conexas são reduzidas a um único vértice) for um grafo caminho.
- Usando a abordagem descrita acima é possível testar se um grafo possui um passeio que contem todas as arestas do grafo em tempo polinomial.



- O valor de k usado para definir o tamanho dos fragmentos tem um forte impacto na montagem:
 - Quanto menor o valor de k, maiores e mais frequentes serão os problemas com repetições.
 - Quanto maior o valor de k, mais difícil será o grafo conter um passeio que contenha todas as arestas.
- Dado um conjunto de fragmentos \mathcal{F} , tal que para todo $f \in \mathcal{F}$ temos que $|f| \geq k$, podemos obter um conjunto de fragmentos \mathcal{F}' , todos de tamanho k, equivalente em termos da montagem desejada. Para isso, basta, para cada $f \in \mathcal{F}$, adicionar em \mathcal{F}' todas as |f| k + 1 subscadeias de f de tamanho k.
- Note que as subsequências de f irão gerar um passeio em $G(\mathcal{F}')$.
- Para diminuir o tamanho do grafo $G(\mathcal{F})$, podemos transformar todo caminho simples (sem bifurcações) em um único vértice.



- Como vimos anteriormente, existem várias formas diferentes de modelar o problema de montagem de fragmentos.
- Por exemplo, ao modelar o problema de montagem de fragmentos como SCS (Shortest Common Superstring) conseguimos montar um grafo de sobreposições em tempo e espaço $O(||\mathcal{F}|| + n^2)$. Nesse caso desejamos encontrar um caminho hamiltoniano no grafo de sobreposições (problema NP-Difícil).
- Por outro lado, ao modelar o problema de montagem de fragmentos usando grafo de k-mers conseguimos construir o grafo de k-mers em tempo e espaço $O(||\mathcal{F}|| + k \times |\mathcal{A}|^k)$. Neste caso desejamos encontrar um passeio que contenha todas as arestas do grafo de k-mers (problema que possui solução polinomial no tamanho do grafo, caso exista tal passeio).

Exercícios

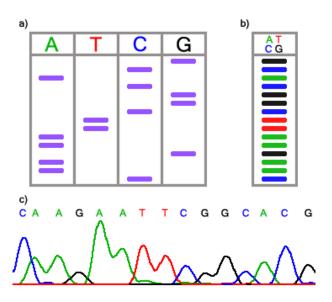
Exercício

Dada uma coleção de fragmentos \mathcal{F} sobre um alfabeto \mathcal{A} , mostre como construir o grafo de k-mers em tempo e espaço $O(||\mathcal{F}|| + k \times |\mathcal{A}|^k)$.

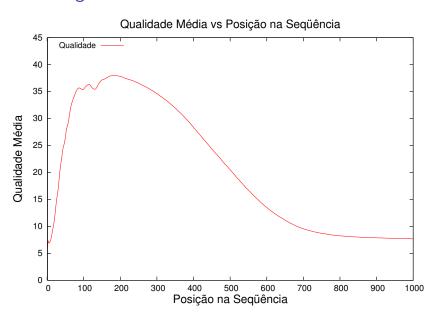
Exercício

Dada a coleção de fragmentos $\mathcal{F} = \{\textit{CTGCT}, \textit{CTCGAC}, \textit{CTCTCG}, \textit{ACTGC}, \textit{GCTCTC}\}$, construa o grafo de 3-mers e determine a montagem destes fragmentos.

Base-Calling



Base-Calling: SUCEST



Phred

- Ferramenta de base-calling produzida por Phil Green, Brent Ewing, LaDeana Hillier e Michael Wendl (1998).
- O método é composto por 4 fases:
 - Predição das localizações dos picos.
 - Identificação dos picos observados.
 - Comparação entre os picos previstos e observados.
 - Verificação dos picos observados que não são compatíveis com os picos previstos.
- Phred associa um valor de qualidade para cada base da sequência lida:

$$Q = -10 \times \log_{10} P_e$$

onde P_e é a probabilidade da base estar errada.

- Exemplo:
 - $P_e = 10 \Longrightarrow P_e = 10\%$
 - $ightharpoonup Q = 20 \Longrightarrow P_e = 1\%$
 - $P_e = 30 \Longrightarrow P_e = 0.1\%$
- Phred pode ser usado para remover pontas de baixas qualidades.

Phrap

- Ferramenta de montagem de sequências produzida por Phil Green (1998).
- Principais características:
 - ▶ Usa a sequência inteira, não apenas os trechos de alta qualidade.
 - Usa a qualidade das sequências para obter uma montagem de alta qualidade.
 - Constrói os consensos dos contigs como um mosaico das partes de mais alta qualidade das sequências.
 - Atribui valores de qualidade para as sequências consenso.
 - ► Faz comparação entre as sequências usando uma variação do algoritmo de Smith-Waterman, onde as comparações são iniciadas apenas se existir um trecho idêntico de tamanho mínimo (por padrão 30), em ambas as sequências. A extensão do alinhamento é realizada usando apenas uma faixa restrita da matriz de Programação Dinâmica (por padrão, faixa de tamanho 14).

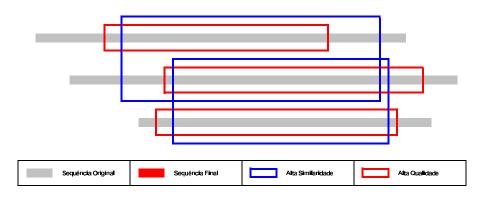
Consed

- Ferramenta de visualização e edição de montagens de sequências, com suporte a "fechamento" de montagem, desenvolvida por David Gordon, Chris Abajian e Phil Green (1998).
- Desenvolvido originalmente para dar suporte apenas ao Phrap.
- Hoje suporta uma vasta gama de montadores (que produzem arquivos no formato ace, lidos pelo Consed), inclusive os montadores desenvolvidos para as novas tecnologias 454 e Solexa (de sequências curtas e muitas curtas).

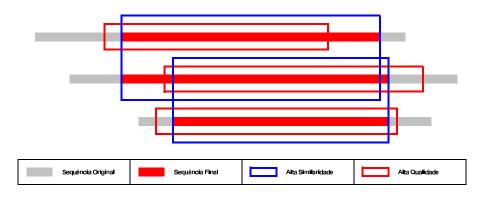
CAP3

- Ferramenta de montagem de sequências produzida por Xiaoqiu Huang e Anup Madan (1999).
- Passos principais:
 - Remoção das extremidades de baixa qualidade.
 - Identificação das sobreposição entre as sequências.
 - ► Remoção das falsas sobreposições.
 - Construção dos contigs.
 - Alinhamento múltiplo e geração da sequência consenso, considerando as somas das qualidades das bases de cada coluna.
- Sobreposições identificadas em duas fases:
 - 1. Alinhamento local ponderado restrito a uma faixa de tamanho k:
 - ★ $Match' = Match \times min(q_1, q_2)$
 - ★ $Mismatch' = Mismatch \times min(q_1, q_2)$
 - \star $Gap' = Gap \times min(q_1, q_2)$
 - 2. Alinhamento Global, restrito a uma faixa de tamanho 2k, centralizado na posição inicial do alinhamento local ótimo calculado previamente.
- As distâncias mínimas e máximas entre cada par de sequências forward e reverse são usadas para auxiliar na montagem.

CAP3 - Remoção de Extremidades de Baixa Qualidades



CAP3 - Remoção de Extremidades de Baixa Qualidades



CAP3 - Construção da Sequência Consenso

- Calcula-se a soma ponderada das qualidades de cada um dos tipos de bases presentes na coluna.
- Considera-se peso 1 para cada pontuação máxima (em cada um dos sentidos de leitura) e 0,5 para as demais qualidades.
- Para gaps, usa-se a pontuação média das bases que delimitam o bloco de gaps.
- A base de maior soma ponderada de qualidade é a escolhida para o consenso.
- A qualidade do consenso é calculada como a diferença entre a soma ponderada das qualidades da base escolhida subtraída das somas ponderadas das qualidades das demais bases daquela mesma coluna.
- Eventualmente, a base do consenso pode ter qualidade zero, indicando que as somas ponderadas das qualidades das demais bases possui soma maior ou igual a da base escolhida para o consenso.
- O CAP3 geralmente produz *contigs* mais curtos, porém de maior qualidade, quando comparados com os *contigs* gerados pelo Phrap.

CAP3 - Construção da Sequência Consenso

Consenso	Α	35		Т	5	
	Base	Qual	Peso	Base	Qual	Peso
→	Α	30	1	Α	30	1
→	Α	20	0,5	Т	30	1
\rightarrow	С	10	1	Т	20	0,5
\rightarrow	Α	20	0,5	Α	20	0,5
←	Α	20	1	Α	20	1
←	Α	10	0,5	Α	10	0,5
←	Т	30	1	Т	30	1
	\rightarrow	←	Total	\rightarrow	←	Total
Α	50	25	75	40	25	65
С	10		10			0
Т		30	30	40	30	70
G			0			0