MO640 - Biologia Computacional

Zanoni Dias

Instituto de Computação - Unicamp

Segundo Semestre de 2017

Roteiro

- Alinhamento Múltiplo de Sequências
- Pontuação de Alinhamentos Múltiplos de Sequências
- 3 Alinhamento de Três Sequências
- 4 Alinhamento de k Sequências
- 5 Redução do Espaço de Busca
- 6 Similaridade × Distância
- Compatibilidade de Alinhamentos de Pares de Sequências
- 8 Alinhamento Estrela
- Alinhamento de Dois Alinhamentos
- Alinhamento Progressivo e Alinhamento Iterativo

Alinhamento Múltiplo de Sequências

- Dadas k sequências $\alpha_1,\alpha_2,\ldots,\alpha_k$ sobre um alfabeto $\mathcal A$ com, respectivamente, n_1,n_2,\ldots,n_k caracteres, obter um alinhamento $\alpha=\{\alpha'_1,\alpha'_2,\ldots,\alpha'_k\}$, sobre o alfabeto $\mathcal A'=\mathcal A\cup\{-\}$, tal que, $|\alpha'_1|=|\alpha'_2|=\ldots=|\alpha'_k|=n$, e α_i possa ser obtida através da remoção de todos os buracos (-) de α'_i (para todo $1\leq i\leq k$).
- O alinhamento normalmente é representado por uma matriz de dimensões n e k, onde as linhas representam as sequências.
- Uma coluna, por definição, não pode conter apenas buracos.
- Dado um esquema de pontuação para alinhamentos múltiplos, desejamos encontrar o alinhamento de maior pontuação possível.
- O problema do Alinhamento Multiplo de Sequências é também conhecido como MSA (Multiple Sequence Alignment).

Alinhamento Múltiplo de Sequências

```
P E A A L Y G R F T I K S D V W
E A A L Y G R F T I E S D V W
P E S L A Y N K F S I K S D V W
P E A L N Y G R Y S S E S D V W
P E A L N Y G W Y S S E S D V W
P E V I R M Q D D N P F S F Q S D V Y
```

Alinhamento Múltiplo de Sequências

```
P E A A L Y G R F T - - - I K S D V W
- E A A L Y G R F T - - - I E S D V W
P E S L A Y N K F - - - S I K S D V W
P E A L N Y G R Y - - - S S E S D V W
P E A L N Y G W Y - - - S S E S D V W
P E V I R M Q D D N P F S F Q S D V Y
```

Pontuação de Alinhamentos Múltiplos de Sequências

- Soma da pontuação de todas as colunas do alinhamento.
 - Necessita de uma função de pontuação de colunas.
- Exemplo de funções de pontuação de colunas:
 - Generalização da matriz de similaridade, com k dimensões.
 - Soma de Pares (SP-score: Sum-of-Pairs).
 - Entropia da coluna.

Soma de Pares

- Considera a soma, par a par, das similaridades de todos os símbolos da coluna.
- Fórmula da Soma de Pares para uma coluna c:

$$\sum_{1 \le i < j \le k} \sigma(\alpha_i'[c], \alpha_j'[c])$$

- A Soma de Pares de uma coluna pode ser calculada em tempo $\Theta(k^2)$.
- Soma de Pares pode ser usada para avaliar o alinhamento como um todo, e com isso considerar esquemas de penalidade sub-aditivos para buracos.
- Neste caso teríamos:

$$\sum_{1 \le i < j \le k} sim(\alpha_i', \alpha_j')$$

Pontuação baseada em Entropia

- Quanto mais similar forem os símbolos de uma coluna, menor a entropia.
- A pontuação de uma alinhamento pode ser obtido pela soma das entropias das colunas.
- Neste caso, estamos interessados num alinhamento de entropia mínima.
- Fórmula da entropia de uma coluna:

$$-\sum_{x\in\mathcal{A}'}p_x\log_2p_x$$

onde p_x é a frequência do símbolo x na coluna.

- Note que se $p_x = 1$, ou seja, a coluna contiver apenas o símbolo x, então a entropia da coluna será $-1 \log_2 1 = 0$.
- Caso, a coluna contiver mais de um símbolo, então a entropia será positiva. Exemplo, $p_A=p_C=p_T=p_G=\frac{1}{4}$, então a entropia será $-4(\frac{1}{4}log_2\frac{1}{4})=2$.
- A entropia de uma coluna pode ser calculada em tempo $\Theta(|\mathcal{A}|+k)$.

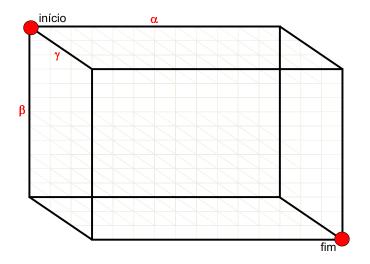
Sequência Consenso

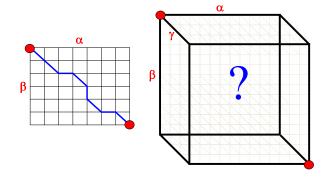
- Em muitas aplicações, além do alinhamento das sequências, deseja-se obter uma sequência que represente o consenso do alinhamento.
- Método ingênuo: coluna a coluna, fazer uma "votação", escolhendo a base mais comum.
- A sequência consenso (C) pode ser obtida, coluna a coluna, escolhendo o símbolo que maximiza a soma das similaridade entre ele e todos os demais símbolos da coluna, ou seja:

maximize
$$\sum_{i=1}^{k} \sigma(C[c], \alpha'_{i}[c])$$

com $C[c] \in \mathcal{A}'$, para toda coluna c do alinhamento múltiplo $(1 \le c \le n)$.

• A sequência consenso pode ser obtida em $\Theta(|\mathcal{A}|kn)$.

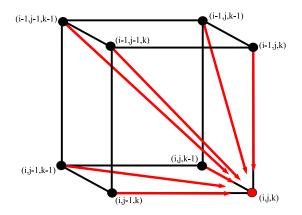




- Generalização do algoritmo de Needleman e Wunsch para alinhamento de duas sequências.
- Matriz de Programação Dinâmica deverá ser tridimensional:
 - ► Cada dimensão representará uma das 3 sequências a serem alinhadas.
- Fórmula de recorrência usada no preenchimento da matriz:

$$\mathsf{M}[\mathsf{i},\mathsf{j},\mathsf{k}] \leftarrow \max \left\{ \begin{array}{l} M[i-1,j,k] + \sigma(\alpha_1[i],-,-) \\ M[i,j-1,k] + \sigma(-,\alpha_2[j],-) \\ M[i,j,k-1] + \sigma(-,-,\alpha_3[k]) \\ M[i-1,j-1,k] + \sigma(\alpha_1[i],\alpha_2[j],-) \\ M[i-1,j,k-1] + \sigma(\alpha_1[i],-,\alpha_3[k]) \\ M[i,j-1,k-1] + \sigma(-,\alpha_2[j],\alpha_3[k]) \\ M[i-1,j-1,k-1] + \sigma(\alpha_1[i],\alpha_2[j],\alpha_3[k]) \end{array} \right\}$$

- Complexidade de tempo e espaço:
 - $\Theta(n^3)$



- Generalização do algoritmo de Needleman e Wunsch para alinhamento de duas sequências.
- Matriz de Programação Dinâmica deverá ser k-dimensional:
 - ► Cada dimensão representará uma das *k* sequências a serem alinhadas.
- Cada célula da matriz dependerá de outras $2^k 1$ células.
- Quanto custa preencher cada célula?
 - ▶ Usando Soma de Pares: $\Theta(k^2 2^k)$
 - Usando Entropia: $\Theta((|\mathcal{A}|+k)2^k)$
- Complexidade de tempo total:
 - $\triangleright \Omega(k2^k n^k)$
- Complexidade de espaço:
 - $\triangleright \Theta(n^k)$
- Lusheng Wang e Tao Jiang provaram em 1994 que o problema do alinhamento múltiplo de sequências é \mathcal{NP} -Completo.

- Metodo para redução de tempo de processamento quando usa-se Soma de Pares para pontuar cada coluna.
- Antes de expandir uma célula (e atualizar a similaridade das células que são influenciadas por ela), verificar se ela é relevante, ou seja, se ela pode fazer parte do alinhamento múltiplo ótimo.
- O método usa Matrizes de Pontuação Total entre todos os pares de sequências a serem alinhadas.
- A Matriz de Pontuação Total (c) entre as sequências α e β , de tamanho m e n, é definida como:

$$c[i,j] = a[i,j] + b[i,j]$$

onde:

$$\begin{aligned} \mathbf{a}[i,j] &= \mathit{sim}(\alpha[1..i],\beta[1..j]) \\ b[i,j] &= \mathit{sim}(\overline{\alpha[i+1..n]},\overline{\beta[j+1..m]}) \end{aligned}$$

Matriz de Pontuação de Prefixos

а	Οζ	Α	С	Т	G	Α	G	T	С
β	0	-5	-10	-15	-20	-25	-30	-35	-40
Α	-5	თ	-2	-7	-12	-17	-22	-27	-32
T	-10	-2	1	1	-4	၅	-14	-19	-24
T	-15	-7	-4	4	-1	-6	-11	-11	-16
G	-20	-12	တု	1	7	2	ფ	8	-13
Α	-25	-17	-14	-6	2	10	5	0	-5
G	-30	-22	-19	-11	-3	5	13	8	3

Matriz de Pontuação de Sufixos

b

3	-5	-7	-10	-8	-16	-19	-27	-30	Α
-5	0	ო	-5	8	-11	-14	-22	-25	Т
-8	ფ	2	-6	ကု	-6	၅	-17	-20	Т
-16	-11	-6	-1	-6	-1	-9	-12	-15	G
-24	-19	-14	-9	-4	-9	-4	-7	-10	Α
-32	-27	-22	-17	-12	-7	-7	-2	-5	G
-40	-35	-30	-25	-20	-15	-10	-5	0	β
Α	C	T	G	Α	G	Т	С	α	

Matriz de Pontuação Total

С	Ο	Α	С	Т	G	Α	G	T	С
β	3	-10	-17	-25	-28	-41	-49	-62	-70
Α	-10	3	-5	-12	-20	-28	-36	-49	-57
T	-18	- 5	თ	- 5	-7	-15	-23	-36	-44
Т	-31	-18	-10	3	-7	-7	-20	-23	-31
G	-44	-31	-23	-10	3	-7	-7	-15	-23
Α	-57	-44	-36	-23	-10	3	-2	-2	-10
G	-70	-57	-49	-36	-23	-10	3	3	3

Matriz de Pontuação Total

- A matriz a é a matriz de alinhamento global, onde cada posição a[i,j] corresponde ao valor ótimo do alinhamento do prefixo $\alpha[1..i]$ com o prefixo $\beta[1..j]$.
- A matriz b é uma das matriz utilizada no algoritmo de Daniel Hirschberg para alinhamento global usando espaço linear (que vimos anteriormente no nosso curso), onde cada posição b[i,j] corresponde ao valor ótimo do alinhamento do sufixo $\alpha[i+1..n]$ com o sufixo $\beta[j+1..m]$.
- Cada posição c[i,j] da matriz de pontuação total indica o valor do melhor alinhamento global que passa pela posição a[i,j] da matriz de alinhamento global, ou seja, que seja a concatenação do alinhamento entre o prefixo $\alpha[1..i]$ e o prefixo $\beta[1..j]$ e o alinhamento entre o sufixo $\alpha[i+1..n]$ e o sufixo $\beta[j+1..m]$.

Teorema

Seja α um alinhamento ótimo entre as sequências $\alpha_1, \alpha_2, \ldots, \alpha_k$ e α_{ij} a projeção do alinhamento entre α_i e α_j . Se SP-score $(\alpha) \geq L$, então:

$$sim(\alpha_{ij}) \geq L_{ij}$$

onde:

$$L_{ij} = L - \sum_{1 \le x < y \le k, (x,y) \neq (i,j)} sim(\alpha_x, \alpha_y)$$

Lema

Se a célula $M[i_1, i_2, \dots, i_k]$ é relevante, então:

$$c_{xy}[i_x,i_y] \geq L_{xy}$$

para todo par x e y, tal que, $1 \le x < y \le k$, onde c_{xy} é a matriz de pontuação total entre α_x e α_y .

Algoritmo 1: MSA

```
Data: k, n_1, n_2, \ldots, n_k, \alpha_1, \alpha_2, \ldots, \alpha_k, L
for all x e y, 1 \le x \le y \le k do Calcule c_{xy};
for all x \in y, 1 \le x < y \le k do L_{xy} \leftarrow L - \sum_{1 \le p \le q \le k, (p,q) \ne (x,y)} sim(\alpha_p, \alpha_q);
M[0,0,...,0] \leftarrow 0
pool \leftarrow \{M[0, 0, ..., 0]\}
while pool \neq \emptyset do
      i \leftarrow the lexicographically smallest cell in the pool
      pool \leftarrow pool \setminus i
      if c_{xy}[i_x, i_y] \ge L_{xy}, for all pair x e y, where 1 \le x < y \le k then
            for each cell i dependent on i do
                   if i \notin pool then
                         pool \leftarrow pool \cup \{i\}
                         M[i] \leftarrow M[i] + SP-score(Column(\alpha, i, i))
                   end
                   else
                         M[i] \leftarrow max(M[i], M[i] + SP\text{-score}(Column(\alpha, i, i))
                   end
            end
      end
end
return M[n_1, n_2, \ldots, n_k]
```

- O algoritmo MSA é similhar ao algoritmo de Dijkstra para distância mínima em grafos, onde podemos considerar que as células da matriz são os vértices e a relação de dependência entre as células define as arestas do grafo.
- No entanto, há algumas diferenças importantes:
 - ▶ O MSA inicializa o valor de apenas uma célula: a célula M[0,0,...,0].
 O algoritmo de Dijkstra inicializa a distância de todos os vértices.
 - O pool de células é analisado em ordem lexicográfica (dos seus índices) e não levando em conta o valor de cada célula no pool como ocorre no Dijkstra, que considera primeiro os vértices de menor distância.
 - Ao contrário do algoritmo de Dijkstra que analisa e "relaxa" todas as arestas do grafo, apenas arestas cuja uma das extremidades é uma célula relevante são avaliadas pelo MSA (células não relevantes não são inseridas no pool).

- Complexidade de tempo:
 - ► $\Omega(k^2n^2 + k^4 + r2^kk^2)$ onde r é o número de células relevantes.
 - Note que esta análise não considera o custo de buscar, inserir ou remover células no pool de células relevantes a serem processadas pelo algoritmo.
 - ▶ Pior caso: $r = \Theta(n^k)$
 - ▶ Logo, a complexidade de pior caso é $\Omega(n^k 2^k k^2)$
- Método proposto por Humberto Carrillo e David Lipman em 1988.
- Implementado no programa MSA, de David Lipman, Stephen Altschul e John Kececioglu (1989).

Exercício

O algoritmo MSA usa um parâmetro L. Quanto mais preciso o valor de L, mais rápido o algoritmo executará. Como estimar o valor de L?

Similaridade × Distância

- Propriedades de distância (ou métrica) para sequências:
 - $\delta(x,x) = 0$, para todo $x \in A$.
 - $\delta(x,y) > 0$, com $x \neq y$, para todo para $x,y \in A$.
 - $\delta(x,y) = \delta(y,x)$, para todo par $x,y \in A$.
 - ▶ $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$, para toda tripla $x,y,z \in A$.
- Distância não é adequada para uso em comparação local.
- Se $\sigma(x,x)=M$ e $\sigma(x,-)=g$, para todo $x\in\mathcal{A}$, então podemos usar as seguintes definições:
 - $\delta(x,y) = M \sigma(x,y).$
 - $\delta(x,-) = -g + \frac{M}{2}.$
- Com as definições acima, temos a seguinte relação de equivalência:
 - $sim(\alpha, \beta) + dist(\alpha, \beta) = \frac{M}{2}(m+n)$.
- Equivalência descrita por Temple Smith, Michael Waterman e Walter Fitch, em 1981.

Compatibilidade de Alinhamentos de Pares de Sequências

```
\alpha 1 = A A A A T T T T
\alpha 2 = T T T T G G G G
\alpha 3 = A A A A G G G G
\alpha 2 = - - - TTTTGGGGG
\alpha 2 = - - - T T T T G G G G
\alpha 3 = A A A A - - - G G G G
\alpha 3 = A A A A - - - G G G G
```

Compatibilidade de Alinhamentos de Pares de Sequências

```
α1 = A A A A T T T T
α2 = T T T T G G G G
α3 = A A A A G G G G
α1 = A A A A T T T T T - - - -
α2 = - - - T T T T G G G G
α3 = A A A A - - - G G G G
```

Incompatibilidade de Alinhamentos de Pares de Sequências

$$\alpha 1 = A A A A T T T T$$
 $\alpha 2 = T T T T G G G G$
 $\alpha 3 = G G G G A A A A$

$$\alpha 1 = A A A A T T T T T - - - \alpha 2 = - - - T T T T G G G G$$

$$\alpha 2 = T T T T G G G G - - - \alpha 3 = - - - G G G G A A A A$$

$$\alpha 1 = - - - A A A A T T T T$$
 $\alpha 3 = G G G G A A A A - - - -$

- Ideia: construir um alinhamento múltiplo usando uma sequência como âncora para as demais.
- Como escolher a sequência âncora?
 - ▶ Use cada uma das sequências como âncora, calcule os alinhamentos múltiplos e retorne o alinhamento múltiplo de melhor pontuação.
 - Use a sequência que maximiza a soma das similaridades em relação a todas as demais sequências.
- Passos:
 - ► Calcule os alinhamentos ótimos entre todos os pares de sequências.
 - ► Escolha como âncora a sequência que maximiza a soma das similaridades em relação a todas as demais sequências.
 - ▶ Adicione, uma a uma, as demais sequências ao alinhamento.
 - ★ Use a regra: "once a gap, always a gap".
- Complexidade:
 - $\Theta(k^2n^2 + k^2 + kn)$
- O valor do Alinhamento Estrela pode ser usado como limite inferior
 (L) para o algoritmo de Carrillo e Lipman (MSA).

$$\alpha 1 =$$
 A T T G C C A T T $\alpha 2 =$ A T G G C C A T T $\alpha 3 =$ A T C C A A T T T T $\alpha 4 =$ A T C T T C T T $\alpha 5 =$ A C T G A C C

sim	α1	α2	α3	α4	α5	soma
α1		22	-1	4	-4	21
α2	22		-1	4	-7	18
α3	-1	-1		4	-14	-12
α4	4	4	4		-4	8
α5	-4	- 7	-14	-4		-29
soma	21	18	-12	8	-29	6

dist	α1	α2	α3	α4	α5	soma
α1		5,0	29,5	21,5	28,0	84,0
α2	5,0		29,5	21,5	31,0	87,0
α3	29,5	29,5		23,0	39,5	121,5
α4	21,5	21,5	23,0		26,5	92,5
α5	28,0	31,0	39,5	26,5		125,0
soma	84,0	87,0	121,5	92,5	125,0	510,0

Match = 0

Mismatch = -5

Gap = -6,5

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 2 = A T G G C C A T T$

$$\alpha 1 = A T T G C C A - - T T$$

 $\alpha 3 = A T C - C A A T T T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 2 = A T G G C C A T T$

$$\alpha 1 = A T T G C C A - - T T$$

 $\alpha 3 = A T C - C A A T T T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 2 = A T G G C C A T T$

$$\alpha 1 = A T T G C C A - - T T$$

 $\alpha 3 = A T C - C A A T T T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 = A T T G C C A T T$$
 $\alpha 2 = A T G G C C A T T$

$$\alpha 1 = A T T G C C A - - T T$$

 $\alpha 3 = A T C - C A A T T T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 = A T T G C C A - - T T$$

$$\alpha 2 = A T G G C C A - - T T$$

$$\alpha 1 = A T T G C C A - - T T$$

$$\alpha 3 = A T C - C A A T T T$$

$$\alpha 4 = A T T G C C A T T$$

$$\alpha 4 = A T C T C - T T$$

$$\alpha 5 = A C T G A C C - -$$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 4 = A T C T T C - T T$

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T $\alpha 4 =$ A T C T T C - - - T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T $\alpha 4 =$ A T C T T C - - - T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T $\alpha 4 =$ A T C T T C - - - T T

$$\alpha 1 = A T T G C C A T T$$

 $\alpha 5 = A C T G A C C - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T $\alpha 4 =$ A T C T T C - - - T T

$$\alpha 1 = A T T G C C A - - T T$$

 $\alpha 5 = A C T G A C C - - - -$

$$\alpha 1 =$$
 A T T G C C A - - T T $\alpha 2 =$ A T G G C C A - - T T $\alpha 3 =$ A T C - C A A T T T T $\alpha 4 =$ A T C T T C - - - T T $\alpha 5 =$ A C T G A C C - - - -

 $\alpha 1 = A T T G C C A - - T T$ $\alpha 5 = A C T G A C C - - - -$

$$\alpha 1 = A T T G C C A - - T T$$
 $\alpha 2 = A T G G C C A - - T T$
 $\alpha 3 = A T C - C A A T T T T$
 $\alpha 4 = A T C T T C - - T T$
 $\alpha 5 = A C T G A C C - - - -$
301 0 20 40 41 35 20 41 26 26 26 26

Match = 0 Mismatch = -5 Gap = -6,5

Alinhamento Múltiplo

$$\alpha 1 = A T T G C C A - T T - \alpha 2 = A T G G C C A - T T - \alpha 3 = A T C C A A T T T T - \alpha 4 = A T C T T C - T T - \alpha 5 = A C T G A C C - - - - - 284 0 20 40 35 40 20 51 26 26 26 0$$

Match = 0 Mismatch = -5 Gap = -6,5

Alinhamento Múltiplo Ótimo

$$\alpha 1 = A T T G C C A - T T - \alpha 2 = A T G G C C A - T T - \alpha 3 = A T C C A A T T T T - \alpha 4 = A T C T T C - T T - \alpha 5 = A C T G A C - C - C - 276 0 20 40 35 40 20 49 26 26 20 0$$

Match = 0 Mismatch = -5 Gap = -6,5

Seja:

- $\sim \alpha = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$: o conjunto das k sequências a serem alinhadas.
- α^* : o alinhamento estrela de α .
- $\triangleright \alpha'$: o alinhamento ótimo de α .
- $ightharpoonup lpha_c$: a sequência usada como âncora do alinhamento estrela.
- $dist(\alpha_i, \alpha_i)$: distância ótima entre α_i e α_i .
- ▶ $dist'(\alpha_i, \alpha_i)$: distância entre α_i e α_i no alinhamento ótimo.
- ▶ $dist^*(\alpha_i, \alpha_i)$: distância entre α_i e α_i no alinhamento estrela.
- $V(\alpha) = \sum_{1 \le i \le k} \sum_{1 \le i \le k} dist(\alpha_i, \alpha_j) = 2 \times SP\text{-Score}(\alpha).$
- $V(\alpha') = \sum_{1 \le i \le k} \sum_{1 \le j \le k} dist'(\alpha_i, \alpha_j) = 2 \times SP\text{-Score}(\alpha').$
- $V(\alpha^*) = \sum_{1 \le i \le k}^{-} \sum_{1 \le j \le k}^{-} dist^*(\alpha_i, \alpha_j) = 2 \times \mathsf{SP-Score}(\alpha^*).$

• Note que:

$$V(\alpha) \leq V(\alpha') \leq V(\alpha^*).$$

Lema

Para quaisquer sequências α_i e α_j , com $1 \le i, j \le k$, temos que: $dist^*(\alpha_i, \alpha_j) \le dist^*(\alpha_i, \alpha_c) + dist^*(\alpha_c, \alpha_j) = dist(\alpha_i, \alpha_c) + dist(\alpha_c, \alpha_j)$.

Teorema

$$V(\alpha^*)/V(\alpha) \leq 2 - \frac{2}{k} < 2$$

Prova:

$$V(\alpha^*) = \sum_{1 \le i \le k} \sum_{1 \le j \le k} \mathsf{dist}^*(\alpha_i, \alpha_j) \le \sum_{1 \le i \le k} \sum_{1 \le j \le k} [\mathsf{dist}(\alpha_i, \alpha_c) + \mathsf{dist}(\alpha_c, \alpha_j)]$$

Note que o termo $dist(\alpha_i, \alpha_c)$ (= $dist(\alpha_c, \alpha_i)$) aparece 2(k-1) vezes no somatório do lado direito da expressão anterior. Logo:

$$V(\alpha^*) \leq 2(k-1) \sum_{1 \leq j \leq k} dist(\alpha_c, \alpha_j) = 2(k-1)X$$

Por outro lado temos que $\sum_{1 \leq j \leq k} dist(\alpha_i, \alpha_j) \geq \sum_{1 \leq j \leq k} dist(\alpha_c, \alpha_j)$, para todo $1 \leq i \leq k$. Logo:

$$V(\alpha) = \sum_{1 \leq i \leq k} \sum_{1 \leq j \leq k} dist(\alpha_i, \alpha_j) \geq k \sum_{1 \leq j \leq k} dist(\alpha_c, \alpha_j) = kX$$

Logo:

$$V(\alpha^*)/V(\alpha) \le \frac{2(k-1)X}{kX} = 2\frac{(k-1)}{k} = 2 - \frac{2}{k} < 2$$

Logo, o Alinhamento Estrela é um algoritmo de 2-aproximação.

Alinhamento Estrela - Exemplo de Aproximação

• No exemplo que executamos o Alinhamento Estrela (k = 5), temos:

$$V(\alpha^*) = \sum_{1 \le i \le k} \sum_{1 \le j \le k} dist^*(\alpha_i, \alpha_j) = 2 \times 301 = 602$$

$$V(\alpha^*) \le 2(k-1) \sum_{1 \le j \le k} dist(\alpha_c, \alpha_j) = 2 \times 4 \times 84 = 672$$

$$V(\alpha) = \sum_{1 \le i \le k} \sum_{1 \le j \le k} dist(\alpha_i, \alpha_j) = 510$$

$$V(\alpha) \ge k \sum_{1 \le j \le k} dist(\alpha_i, \alpha_j) = 5 \times 84 = 420$$

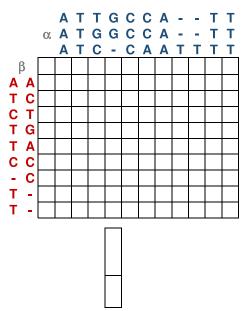
$$V(\alpha) \ge k \sum_{1 \le j \le k} dist(\alpha_c, \alpha_j) = 5 \times 84 = 420$$

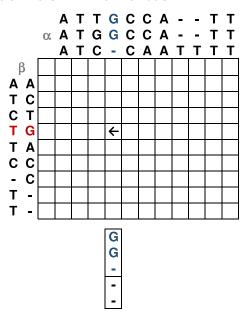
- Logo, nesta instância específica, a aproximação garantida pelo algoritmo é de $V(\alpha^*)/V(\alpha) = 602/510 = 1.18$.
- De fato, neste caso, a aproximação obtida pelo algoritmo foi de $V(\alpha^*)/V(\alpha') = 602/(2 \times 276) = 1.09$.

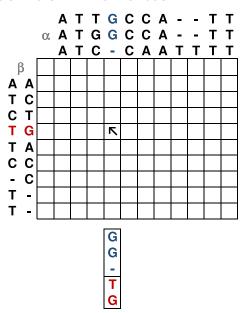
Algoritmos de Aproximação para Alinhamento Múltiplo de Sequências - Soma de Pares com Matrizes Métricas

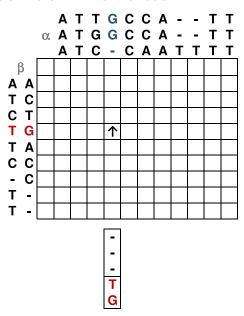
- Daniel Gusfield, 1993.
 - ► Aproximação: 2 2/k.
 - ▶ Complexidade: $\Theta(k^2n^2)$.
- Pavel Pevzner, 1992.
 - Aproximação: 2 3/k.
 - ▶ Complexidade: $\Theta(n^3k^3 + k^4)$.
- Winfried Just. 2001.
 - ▶ MSA $\in \mathcal{MAX}$ - \mathcal{SNP} -Difícil.
 - Não existe um esquema de aproximação polinomial (PTAS Polynomial Time Approximation Scheme) para MSA, a menos que $\mathcal{P} = \mathcal{NP}$.

- Generalização do algoritmo de alinhamento de duas sequências.
- Cada célula da matriz de programação dinâmica representará o valor do melhor alinhamento possivel entre os prefixos de dois alinhamentos.
- Para calcular o custo de se alinhar duas colunas de uma alinhamento, basta calcular o valor da soma de pares (ou entropia) para a nova coluna gerada.
- Complexidade:
 - ▶ Usando soma de pares: $\Theta(mnk^2)$.
 - ▶ Usando entropia: $\Theta(mn(|\mathcal{A}|+k))$.









- Consiste em construir um alinhamento múltiplo a partir de alinhamentos de pares de sequências e/ou de alinhamentos.
- Descrito inicialmente por Hogeweg e Hesper (1984) e depois reinventado por Feng e Doolittle (1987) e Taylor (1988).
- Características:
 - Simples e efetivo para MSA.
 - Requer pouco tempo e memória.
 - Bom desempenho para sequências homólogas e relativamente bem conservadas.
 - ▶ Problema: natureza gulosa e muito sensível ao esquema de pontuação.

- Etapas:
 - 1. Computar alinhamentos de todos os pares de sequências.
 - 2. Construir uma árvore guia.
 - 3. Construir o alinhamento múltiplo guiado pela árvore.
- Construção de árvore guia:
 - UPGMA (Sneath e Sokal, 1973)
 - ► Neighbor-Joining (Saitou e Nei, 1987)
- Construção do alinhamento múltiplo:
 - Seleção do par a incluir no alinhamento.
 - Alinhar duas sequências/alinhamentos.
- Programas que implementam alinhamento progressivo:
 - ► Clustal W (Thompson et al., 1994)
 - MUSCLE (Edgar, 2004)
 - ► T-COFFEE (Notredame et al., 2000)
 - ▶ ProbCons (Do et al., 2005)

$$\alpha 1 =$$
 ATTGCCATT

 $\alpha 2 =$ ATGGCCATT

 $\alpha 3 =$ ATCCAATT

 $\alpha 4 =$ ATCTTCTT

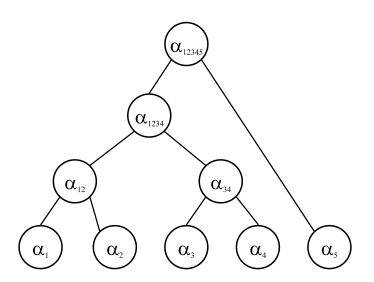
 $\alpha 5 =$ ACTGACC

dist	α1	α2	α3	α4	α5	soma
α1		5,0	29,5	21,5	28,0	84,0
α2	5,0		29,5	21,5	31,0	87,0
α3	29,5	29,5		23,0	39,5	121,5
α4	21,5	21,5	23,0		26,5	92,5
α5	28,0	31,0	39,5	26,5		125,0
soma	84,0	87,0	121,5	92,5	125,0	510,0

Match = 0

Mismatch = -5

Gap = -6,5



$$\alpha 1 =$$
 ATTGCCATT

 $\alpha 2 =$ ATGGCCATT

 $\alpha 3 =$ ATCCAATTT

 $\alpha 4 =$ ATCTTCTT

 $\alpha 5 =$ ACTGACC

$$\alpha 12 = A T T G C C A T T$$

$$A T G G C C A T T$$

$$\alpha 3 = A T C C A A T T T T$$

$$\alpha 4 = A T C T T C T T$$

$$\alpha 5 = A C T G A C C$$

$$\alpha 34 = A T C C A A T T T T A T C C - T T C T T$$

$$\alpha 5 = A C T G A C C$$

$$\alpha = \frac{\text{A T T G C C A - T T}}{\text{A T C C A A T T T}}$$

$$\alpha = \frac{\text{A T T G C C A - T T}}{\text{A T C - T T C T}}$$

$$\alpha 5 = A C T G A C C$$

$$A T T G C C A - T T$$

$$A T G G C C A - T T$$

$$\alpha 12345 = A T C C A A T T T T$$

$$A T C - - T T C T T$$

$$A C T G A C C - - -$$

Alinhamento Iterativo

- Consiste em refinar alinhamentos através de uma série de iterações.
- Geralmente é usado para melhorar alinhamentos previamente construídos.
- Problema: requer muito tempo e depende de outros métodos auxiliares.
- Programas que implementam alinhamento múltiplo iterativo:
 - ▶ PRRP: refinamento de um alinhamento progressivo (Gotoh, 1993).
 - SAGA: algoritmo genético (Notredame e Higgins, 1996).
 - ► HMMER: Modelo Ocultos de Markov (Eddy, 1998).