MO637 – Complexidade de Algoritmos II
Segundo Semestre de 2007
Prof. Zanoni Dias

8ª Lista de Exercícios

1 – Show how to determine in O(n2 lg n) time whether any three points in a set of n points are collinear.

2 – Show how to compute the area of an n-vertex simple, but not necessarily convex, polygon in O(n) time.

3 – Professor Maginot suggests that we modify ANY-SEGMENTS-INTERSECT so that instead of returning upon finding an intersection, it prints the segments that intersect and continues on to the next iteration of the for loop. The professor calls the resulting procedure PRINT-INTERSECTING-SEGMENTs and claims that it prints all intersections, left to right, as they occur in the set of line segments. Show that the professor is wrong on two counts by giving a set of segments for which the first intersection found by PRINT-INTERSECTING-SEGMENTS is not the leftmost one and a set of segments for which PRINT-INTERSECTING-SEGMENTS fails to find all the intersections.

4 – Give an O(n lg n)-time algorithm to determine whether an n-vertex polygon is simple.

5 – Give an O(n lg n)-time algorithm to determine whether two simple polygons with a total of n vertices intersect.

6 – A disk consists of a circle plus its interior and is represented by its center point and radius. Two disks intersect if they have any point in common. Give an O(n lg n)-time algorithm to determine whether any two disks in a set of n intersect.

7 – In the on-line convex-hull problem, we are given the set Q of n points one point at a time. After receiving each point, we are to compute the convex hull of the points seen so far. Obviously, we could run Graham's scan once for each point, with a total running time of O(n2 lg n). Show how to solve the on-line convex-hull problem in a total of O(n2) time.

8 – Show how to implement a online algorithm for computing the convex hull of n points so that it runs in O(n lg n) time.

9 – The distance between two points can be defined in ways other than euclidean. In the plane, the Lm-distance between points p1 and p2 is given by ((x1 - x2)m + (y1 - y2)m)1/m. Euclidean distance, therefore, is L2-distance. Modify the closest-pair algorithm to use the L1-distance, which is also known as the Manhattan distance.

10 – Given two points p1 and p2 in the plane, the L∞-distance between them is max(|x1 - x2|, |y1 - y2|). Modify the closest-pair algorithm to use the L∞-distance.

