MO637 – Complexidade de Algoritmos II
Segundo Semestre de 2007
Prof. Zanoni Dias
1ª Lista de Exercícios

1 – How can we modify any sort algorithm to have a linear (O(n)) best-case running time?
2 – Prove that n! = ω(2n), n! = o(nn) and lg(n!) = Θ(n lg n).
3 – Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω, or Θ of B. Assume that k ≥ 1, ∈ > 0, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	 
	A 
	B 
	O 
	o 
	Ω 
	Ω 
	Θ 

	a. 
	lgk n 
	n∈ 
	 
	 
	 
	 
	 

	b. 
	nk 
	cn 
	 
	 
	 
	 
	 

	c. 
	n1/2
	nsin n 
	 
	 
	 
	 
	 

	d. 
	2n 
	2n/2 
	 
	 
	 
	 
	 

	e. 
	nlg c 
	clg n 
	 
	 
	 
	 
	 

	f. 
	lg(n!)
	lg(nn)
	 
	 
	 
	 
	 


4 – Referring to the searching problem, observe that if the sequence A is sorted, we can check the midpoint of the sequence against v and eliminate half of the sequence from further consideration. Binary search is an algorithm that repeats this procedure, halving the size of the remaining portion of the sequence each time. Write pseudocode, either iterative or recursive, for binary search. Argue that the worst-case running time of binary search is Θ(lg n).
5 – Observe that the while loop of the INSERTION-SORT procedure uses a linear search to scan (backward) through the sorted subarray A[1 ‥ j - 1]. Can we use a binary search instead to improve the overall worst-case running time of Insertion Sort to Θ(n lg n)?
6 – Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x.
7 – Where in a heap might the smallest element reside, assuming that all elements are distinct? Is an array that is in sorted in decresing order a heap?
8 – Show that the second smallest of n elements can be found with n + ⌈lg n⌉ - 2 comparisons in the worst case. (Hint: Also find the smallest element.)
9 – Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees?
10 – The transpose of a directed graph G = (V, E) is the graph GT = (V, ET), where ET = {(v, u) ∈ V × V : (u, v) ∈ E}. Thus, GT is G with all its edges reversed. Describe efficient algorithms for computing GT from G, for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.
11 – The square of a directed graph G = (V, E) is the graph G2 = (V, E2) such that (u, w) ∈ E2 if and only if for some v ∈ V , both (u, v) ∈ E and (v, w) ∈ E. That is, G2 contains an edge between u and w whenever G contains a path with exactly two edges between u and w. Describe efficient algorithms for computing G2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.
