Heaps binomiais

Gabriel Pedro de Castro

20 de setembro de 2007

Heaps binomiais são formados por uma lista ligada de *árvores binomiais*.

Definição

Árvores binomiais são definidas recursivamente da seguinte forma:

Heaps binomiais são formados por uma lista ligada de *árvores binomiais*.

Definição

Árvores binomiais são definidas recursivamente da seguinte forma:

● B₀:

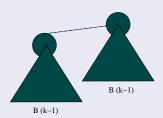
Heaps binomiais são formados por uma lista ligada de *árvores binomiais*.

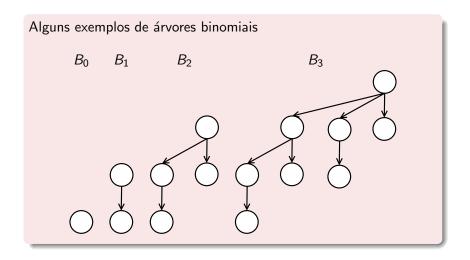
Definição

Árvores binomiais são definidas recursivamente da seguinte forma:

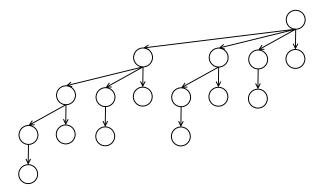
● B₀:

B_k:





Mais um exemplo: B₄



Propriedades das árvores binomiais

Uma árvore binomial B_k :

Propriedades das árvores binomiais

Uma árvore binomial B_k :

Possui 2^k nós;

Prova: Indução em k. Para B_0 : $2^0 = 1$.

 B_k possui duas subárvores B_{k-1} :

$$B_k = B_{k-1} + B_{k-1} = 2^{k-1} + 2^{k-1} = 2^k.$$

Propriedades das árvores binomiais

Uma árvore binomial B_k :

Possui 2^k nós;

Prova: Indução em k. Para B_0 : $2^0 = 1$.

 B_k possui duas subárvores B_{k-1} :

$$B_k = B_{k-1} + B_{k-1} = 2^{k-1} + 2^{k-1} = 2^k.$$

Tem altura k;

Prova: Também por indução em k. Para B_0 : k = 0.

Para B_k : Uma árvore B_k é formada por duas subárvores B_{k-1} , sendo que a raíz de uma se torna filha da raíz da outra; portanto a altura da árvore é aumentada de 1 em relação as filhas. h(k) = h(k-1) + 1 = k.

Propriedades das árvores binomiais – continuação

Propriedades das árvores binomiais – continuação

• O nível i possui exatamente $\binom{k}{i}$, $i=0,1,\ldots,k$, nós. **Prova:** Seja D(k,i) o número de nós na profundidade i da árvore B_k . Como B_k é composta de duas B_{k-1} , na profundidade i de B_k aparecem os nós da profundidade i de uma B_{k-1} e i-1 da outra. Assim, D(k,i) = D(k-1,i) + D(k-1,i-1). Pela hipótese de indução, $D(k,i) = \binom{k-1}{i} + \binom{k-1}{i-1} = \binom{k}{i}$.

Propriedades das árvores binomiais – continuação

- O nível i possui exatamente $\binom{k}{i}$, $i=0,1,\ldots,k$, nós. **Prova:** Seja D(k,i) o número de nós na profundidade i da árvore B_k . Como B_k é composta de duas B_{k-1} , na profundidade i de B_k aparecem os nós da profundidade i de uma B_{k-1} e i-1 da outra. Assim, D(k,i)=D(k-1,i)+D(k-1,i-1). Pela hipótese de indução, $D(k,i)=\binom{k-1}{i}+\binom{k-1}{i-1}=\binom{k}{i}$.
- A raíz tem grau k, maior que de todos os outros nós, e cada filho i, i = k 1, k 2, ..., 0, é raiz de uma subárvore B_i.
 Prova: A raíz de B_k tem o grau aumentado em um em relação a B_{k-1} justamente por estar ligada a outra B_{k-1}. Ainda por indução, como a raiz de B_{k-1} está ligada a subárvores B₀, B₁, ..., B_{k-2}, então B_k tambem o estará, assim como estará ligada a uma outra raíz B_{k-1}, pois é formada pela união das duas subárvores.

Definição

Um heap binomial H é um conjunto de árvores binomiais que satisfaz as seguintes propriedades:

Definição

Um heap binomial H é um conjunto de árvores binomiais que satisfaz as seguintes propriedades:

• Toda árvore binomial de *H* tem estrutura de heap, i.e., a chave de um nó é maior ou igual a chave de seu pai. Assim, sabemos que a raíz possui a menor chave da árvore.

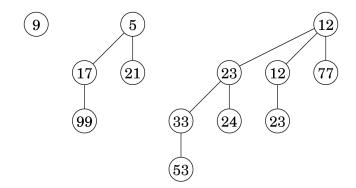
Definição

Um heap binomial H é um conjunto de árvores binomiais que satisfaz as seguintes propriedades:

- Toda árvore binomial de H tem estrutura de heap, i.e., a chave de um nó é maior ou igual a chave de seu pai. Assim, sabemos que a raíz possui a menor chave da árvore.
- Há no máximo uma árvore binomial em H com uma raíz de um determinado grau. Assim, para um heap de n nós há, no máximo, $\lfloor\lg n\rfloor+1$ árvores binárias. Para ver isto basta pensar na representação binária do número de elementos do heap: $< b_{\lfloor\lg n\rfloor}, b_{\lfloor\lg n\rfloor-1}, \ldots, b_0>$, com $n=\sum_{i=0}^{\lfloor\lg n\rfloor}b_i2^i$.

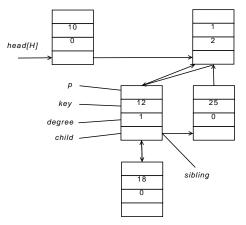
Exemplo

A figura é um heap binomial com as árvores B_0 , B_2 e B_3 , com $(1101)_2 = 13$ elementos:



Representação

Representamos um heap binomial com uma lista de árvores binomiais. Cada nó possui um apontador para o nó pai, uma para seu filho esquerdo e um para uma lista ligada de seus irmãos.



Algoritmos

Algoritmos

• Criando um novo heap. Para criar um novo heap apenas alocamos e retornamos uma estrutura H tal que head[h] = NIL. Este algoritmo tem complexidade $\theta(1)$.

Algoritmos

- Criando um novo heap. Para criar um novo heap apenas alocamos e retornamos uma estrutura H tal que head[h] = NIL. Este algoritmo tem complexidade $\theta(1)$.
- Encontrando a menor chave. Para encontrar o menor elemento basta percorrer as raízes das árvores buscando o menor elemento. Como vimos, há no máximo $\lfloor\lg n\rfloor+1$ raízes para checarmos o que nos dá um algoritmo de complexidade $O(\lg n)$.

Busca pela menor chave

Algoritmo para busca o menor elemento

Binomial-Heap-Minimum(H)

- 1. $y \leftarrow NIL$
- 2. $x \leftarrow head[H]$
- 3. $min \leftarrow \infty$
- 4. while $x \neq NIL$ do
- 5. **if** key[x] < min **then**
- 6. $min \leftarrow key[x]$
- 7. $y \leftarrow x$
- 8. $x \leftarrow sibling[x]$
- 9. **return** *y*

 Uma vantagem dos heaps binomiais em relação aos heaps binários é a união. Esta operação pode ser feita em tempo O(lg n).

- Uma vantagem dos heaps binomiais em relação aos heaps binários é a união. Esta operação pode ser feita em tempo O(lg n).
- Nesta operação vamos utilizar uma função auxiliar que junta duas árvores B_{k-1}. A raíz z será também raíz da nova árvore B_k.

Binomial-Link(y, z)

- 1. $p[y] \leftarrow z$
- 2. $sibling[y] \leftarrow child[z]$
- 3. $child[z] \leftarrow y$
- 4. $degree[z] \leftarrow degree[z] + 1$

- Uma vantagem dos heaps binomiais em relação aos heaps binários é a união. Esta operação pode ser feita em tempo O(lg n).
- Nesta operação vamos utilizar uma função auxiliar que junta duas árvores B_{k-1}. A raíz z será também raíz da nova árvore B_k.

Binomial-Link(y, z)

- 1. $p[y] \leftarrow z$
- 2. $sibling[y] \leftarrow child[z]$
- 3. $child[z] \leftarrow y$
- 4. $degree[z] \leftarrow degree[z] + 1$
- Precisamos também de um procedimento Binomial-Heap-Merge, que junta dois heaps binomiais em ordem monotonicamente crescente do grau das raízes.

Algoritmo de união

Binomial-Heap-Union (H_1, H_2) 1. $H \leftarrow \text{Make-Binomial-Heap}()$

```
2. head[H] \leftarrow Binomial-Heap-Merge(H_1, H_2)
3. if head[H] = NIL then
4. return H
5. prev_x \leftarrow NIL
6. x \leftarrow head[H]
7. next_x \leftarrow sibling[x]
8. while next_x \neq NIL do
9.
       if (degree[x] \neq degree[next_x]) or
             (sibling[next_x] \neq NIL
             and degree[sibling[next_x]] = degree[x]) then
            prev_x \leftarrow x / * Casos 1 e 2 * /
10.
11.
            x \leftarrow next_{\vee}
```

Algoritmo de união - continuação

```
else if key[x] \le key[next_x] then
12.
            sibling[x] \leftarrow sibling[next_x] /* Caso 3 */
13.
14.
            Binomial-Link(next_x, x)
15.
        else
16.
            if prev_x = NIL then /* Caso 4 */
17.
                head[H] \leftarrow next_x
18.
            else
19.
                sibling[prev_x] \leftarrow next_x
20.
            Binomial-Link(x, next_x)
21.
            x \leftarrow next_x
22.
        next_x \leftarrow sibling[x]
23. return H
```

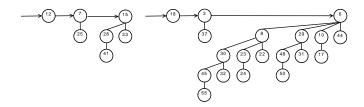
 O caso 1 ocorre quando não há árvores de mesmo grau consecutivas.

- O caso 1 ocorre quando não há árvores de mesmo grau consecutivas.
- No caso 2 há três árvores com o mesmo grau em seguida, formadas após a união de duas árvores. Exemplo: cada um dos heaps originais possuía uma B_1 e uma B_2 . Ao unir-se as árvores B_1 ficamos com três B_2

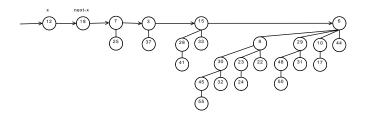
- O caso 1 ocorre quando não há árvores de mesmo grau consecutivas.
- No caso 2 há três árvores com o mesmo grau em seguida, formadas após a união de duas árvores. Exemplo: cada um dos heaps originais possuía uma B_1 e uma B_2 . Ao unir-se as árvores B_1 ficamos com três B_2
- O Caso 3 as duas ávores B_{k-1} são somadas para formar uma B_k , sendo que a que possui a raíz com menor chave aparece primeiro na lista.

- O caso 1 ocorre quando não há árvores de mesmo grau consecutivas.
- No caso 2 há três árvores com o mesmo grau em seguida, formadas após a união de duas árvores. Exemplo: cada um dos heaps originais possuía uma B_1 e uma B_2 . Ao unir-se as árvores B_1 ficamos com três B_2
- O Caso 3 as duas ávores B_{k-1} são somadas para formar uma B_k , sendo que a que possui a raíz com menor chave aparece primeiro na lista.
- Por ultimo, temos o caso análogo ao 3, porém quando a árvore que possui a menor chave aparece depois na lista.

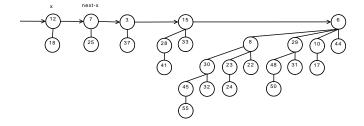
Os dois heaps iniciais.



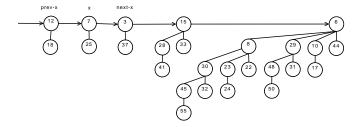
Após Binomial-Heap-Merge. Temos o caso 3.



Caso 2

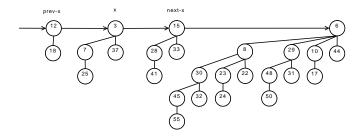


Caso 4



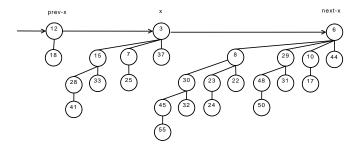
União

Caso 3



União

Caso 1



União

A complexidade do algoritmo de união é $O(\lg n)$

Prova. Se H_1 possui n_1 nós e H_2 possui n_2 , então o número total de árvores binomiais é $\lfloor \lg n_1 \rfloor + \lfloor \lg n_2 \rfloor + 2 \le 2 \lfloor \lg n \rfloor + 2 = O(\lg n)$, que é a complexidade de Binomial-Heap-Merge. Cada iteração do laço **while** consome tempo constante, e também é executado para cada árvore do heap, e portanto tem complexidade $O(\lg n)$.

Inserção

Inserção

Para inserir um nó basta criarmos um novo heap contendo apenas este elemento e uni-lo ao heap em que queremos inserir-lo. Como vimos, a criar um novo heap consome tempo constante e a união é O(lg n). Portanto, inserir um novo elemento tem complexidade O(lg n).

Algoritmo de inserção

Binomial-Heap-Insert(H, x)

- 1. $H' \leftarrow Make-Binomial-Heap()$
- 2. $p[x] \leftarrow \mathsf{NIL}$
- 3. $child[x] \leftarrow NIL$
- 4. $sibling[x] \leftarrow NIL$
- 5. $degree[x] \leftarrow 0$
- 6. $head[H'] \leftarrow x$
- 7. $H \leftarrow Binomial-Heap-Union(H, H')$

• Para extrair o menor elemento do heap buscamos sua posição (em $O(\lg n)$) e extraímos a árvore em que ele é raíz, digamos B_k .

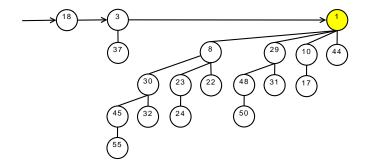
- Para extrair o menor elemento do heap buscamos sua posição (em O(lg n)) e extraímos a árvore em que ele é raíz, digamos B_k.
- Criamos um novo heap H' a partir das subárvores deste elemento, $B_0, B_1, \ldots, B_{k-1}$ e fazemos a união de H e H'. Esta operação tem complexidade $O(\lg n)$.

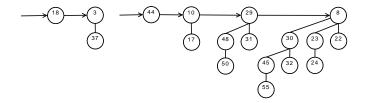
- Para extrair o menor elemento do heap buscamos sua posição (em O(lg n)) e extraímos a árvore em que ele é raíz, digamos B_k.
- Criamos um novo heap H' a partir das subárvores deste elemento, $B_0, B_1, \ldots, B_{k-1}$ e fazemos a união de H e H'. Esta operação tem complexidade $O(\lg n)$.
- Assim, concluímos que a operação de extrair o menor elemento do heap tem complexidade O(lg n).

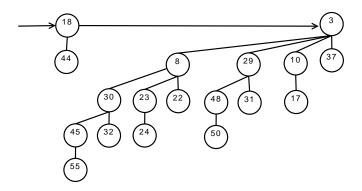
Algoritmo para extrair o menor elemento

Binomial-Heap-Extract-Min()

- 1. Encontre a raíz x com a menor chave em H e a remova da lista de raízes de H
- 2. $H' \leftarrow Make-Binomial-Heap()$
- 3. Inverta a ordem da lista ligada de filhos de x e a atribua a H'
- 4. $H \leftarrow Binomial-Heap-Union(H,H')$
- 5. **return** *x*







 Após decrementar uma chave nós precisamos colocá-la na posição correta para mantermos a propriedade de heap.

- Após decrementar uma chave nós precisamos colocá-la na posição correta para mantermos a propriedade de heap.
- Para tanto, basta checarmos se a nova chave é menor que o valor da chave do nó pai. Enquanto isto for verdade, vamos subindo o nó na árvore até a raíz.

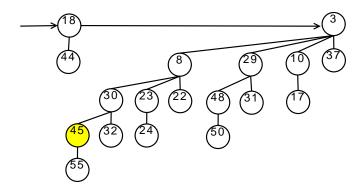
- Após decrementar uma chave nós precisamos colocá-la na posição correta para mantermos a propriedade de heap.
- Para tanto, basta checarmos se a nova chave é menor que o valor da chave do nó pai. Enquanto isto for verdade, vamos subindo o nó na árvore até a raíz.
- A complexidade do algoritmo é dominada pelo percurso de subida na árvore. Como a altura da árvore é lg k, este algoritmo tem complexidade O(lg n).

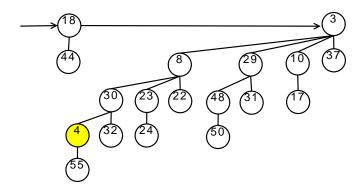
Algoritmo para decrementar uma chave

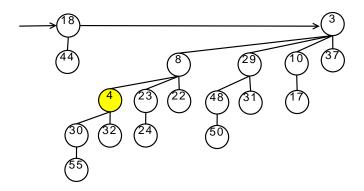
Binomial-Heap-Decrease-Key(H,x,k)

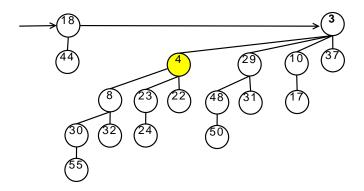
/* Coloca o valor k no nó apontado por x em H */

- 1. **if** k > key[x]
- 2. **then error** "nova chave é maior que a chave atual"
- 3. $key[x] \leftarrow k$
- 4. $y \leftarrow x$
- 5. $z \leftarrow p[y]$
- 6. while $z \neq \text{NIL}$ and key[y] < key[z] do
- 7. exchange $key[y] \leftrightarrow key[z]$
- 8. $y \leftarrow z$
- 9. $z \leftarrow p[y]$









Removendo um elemento

Removendo um elemento

• Para remover um elemento de um heap binomial nós decrementamos sua chave para $-\infty$ e extraímos o nó de menor chave.

Algoritmo para remover um elemento

Binomial-Heap-Delete(H,x)

- /* Remove o elemento apontado por x de H */
- 1. Binomial-Heap-Decrease-Key $(H, x, -\infty)$
- 2. Binomial-Heap-Extract-Min(H)

Conclusão

Conclusão

• Os heaps binomiais são eficientes na operação de união.

Complexidades dos algoritmos para três tipos de heap			
	Heap binário	Heap binomial	Heap de Fibonacci
Procedimento	(pior caso)	(pior caso)	(amortizado)
Make-heap	$\theta(1)$	$\theta(1)$	$\theta(1)$
Insert	$\theta(\lg n)$	$O(\lg n)$	$\theta(1)$
Minimum	$\theta(1)$	$O(\lg n)$	$\theta(1)$
Extract-Min	$\theta(\lg n)$	$\theta(\lg n)$	<i>O</i> (lg <i>n</i>)
Union	$\theta(n)$	$O(\lg n)$	$\theta(1)$
Decrease-key	$\theta(\lg n)$	$\theta(\lg n)$	$\theta(1)$
Delete	$\theta(\lg n)$	$\theta(\lg n)$	$O(\lg n)$