MO417 — Complexidade de Algoritmos I

Cid Carvalho de Souza Cândida Nunes da Silva Orlando Lee

26 de outubro de 2011

Revisado por Zanoni Dias

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

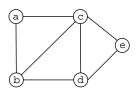
Definição de Grafo

Um *grafo* é um par G = (V, E) onde:

- V é um conjunto finito de elementos chamados vértices e
- E é um conjunto finito de pares não-ordenados de vértices chamados arestas.
- Exemplo:

$$V = \{a, b, c, d, e\}$$

$$E = \{(a, b), (a, c), (b, c), (b, d), (c, d), (c, e), (d, e)\}$$

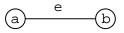


Definição de Grafo

 Dada uma aresta e = (a, b), dizemos que os vértices a e b são os extremos da aresta e e que a e b são vértices adjacentes.

Grafos: Noções Básicas e Representação

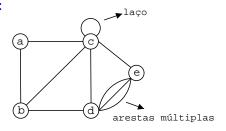
 Dizemos também que a aresta e é incidente aos vértices a e b, e que os vértices a e b são incidentes à aresta e.



Grafo Simples

- Dizemos que um grafo é simples quando não possui laços ou arestas múltiplas.
- Um laço é uma aresta com extremos idêntico e arestas múltiplas são duas ou mais arestas com o mesmo par de vértices como extremos.

• Exemplo:

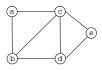


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

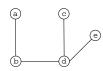
Subgrafo e Subgrafo Gerador

- Um subgrafo H = (V', E') de um grafo G = (V, E) é um grafo tal que $V' \subseteq V$, $E' \subseteq E$.
- Um subgrafo gerador de G é um subgrafo H com V' = V.
- Exemplo:



Grafo G

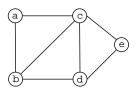
Subgrafo não gerador



Subgrafo gerador

Tamanho do Grafo

- Denotamos por |V| e |E| a cardinalidade dos conjuntos de vértices e arestas de um grafo G, respectivamente.
- No exemplo abaixo temos |V| = 5 e |E| = 7.



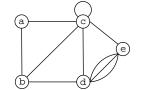
O *tamanho* do grafo G é dado por |V| + |E|.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grau de um vértice

- O grau (degree) de um vértice v, denotado por d(v) é o número de arestas incidentes a v, com laços contados duas vezes.
- Exemplo:



d(a)=2

d(b)=3

d(c)=6

d(d)=5d(e) = 4

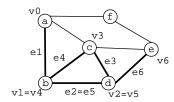
Teorema (Handshaking lemma)

Para todo grafo G = (V, E) temos:

$$\sum_{v\in V}d(v)=2|E|$$

Caminhos em Grafos

- Um caminho P de v_0 a v_n no grafo G é uma seqüência finita e não vazia $(v_0, e_1, v_1, \ldots, e_n, v_n)$ cujos elementos são alternadamente vértices e arestas e tal que, para todo $1 \le i \le n$, v_{i-1} e v_i são os extremos de e_i .
- O comprimento do caminho P é dado pelo seu número de arestas, ou seja, n.
- Exemplo:

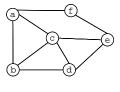


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos - v. 2.1

Grafo Conexo

- Dizemos que um grafo é conexo se, para qualquer par de vértices u e v de G, existe um caminho de u a v em G.
- Quando o grafo G não é conexo, podemos particionar em componentes conexos. Dois vértices u e v de G estão no mesmo componente conexo de G se há caminho de u a v em G.
- Exemplo:



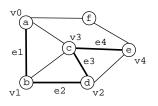
Conexo

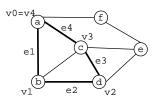
a f

Não-conexo com 3 componentes conexos

Caminhos Simples e Ciclos

- Um caminho simples é um caminho em que não há repetição de vértices e nem de arestas na sequência.
- Um *ciclo* ou *caminho fechado* é uma caminho em que $v_0 = v_n$.
- Exemplo:





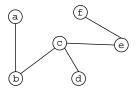
Ciclo

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Árvore

- Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico). As seguintes afirmações são equivalentes:
 - G é uma árvore.
 - G é conexo e possui exatamente |V| − 1 arestas.
 - G é conexo e a remoção de qualquer aresta desconecta o grafo (minimal conexo).
 - Para todo par de vértices u, v de G, existe um único caminho de u a v em G.
- Exemplo:



Alguns exemplos de grafos

- Floresta: grafo acíclico (não precisa ser conexo). Cada componente é uma árvore!
- Grafo completo: para todo par de vértices u, v a aresta (u, v) pertence ao grafo.
- Grafo bipartido: possui uma bipartição (A, B) do conjunto de vértices tal que toda aresta tem um extremo em A e outro em B.
- Grafo planar: pode ser desenhado no plano de modo que arestas se interceptam apenas nos extremos.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grafo orientado

- Se e = (u, v) é uma aresta de um grafo orientado G, então dizemos que e sai de u e entra em v.
- O grau de saída $d^+(v)$ de um vértice v é o número de arestas que saem de v. O grau de entrada $d^-(v)$ de v é o número de arestas que entram em v.

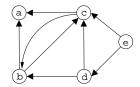
Teorema. Para todo grafo orientado G = (V, E) temos:

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |E|.$$

- Em geral considera-se que em caminhos e ciclos em grafos orientados todas as arestas "vão na mesma direção".
- Há um conceito de conexidade para grafos orientados que veremos mais tarde.

Grafo Orientado

- As definições que vimos até agora são para grafos não orientados.
- Um grafo orientado é definido de forma semelhante, com a diferença que as arestas (às vezes chamadas de arcos) consistem de pares ordenados de vértices.
- Exemplo:



 Às vezes, para enfatizar, dizemos grafo não-orientado em vez de simplesmente grafo.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grafo Ponderado

- Um grafo (orientado ou não) é ponderado se a cada aresta e do grafo está associado um valor real c(e), o qual denominamos custo (ou peso) da aresta.
- Exemplo:



Algoritmos em Grafos - Motivação

- Grafos s\(\tilde{a}\) estruturas abstratas que podem modelar diversos problemas do mundo real.
- Por exemplo, um grafo pode representar conexões entre cidades por estradas ou uma rede de computadores.
- O interesse em estudar algoritmos para problemas em grafos é que conhecer um algoritmo para um determinado problema em grafos pode significar conhecer algoritmos para diversos problemas reais.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Aplicações

- Caminho mínimo: dado um conjunto de cidades, as distâncias entre elas e duas cidades A e B, determinar um caminho (trajeto) mais curto de A até B.
- Árvore Geradora de Peso Mínimo: dado um conjunto de computadores, onde cada par de computadores pode ser ligado usando uma quantidade de fibra ótica, encontrar uma rede interconectando-os que use a menor quantidade de fibra ótica possível.
- Emparelhamento máximo: dado um conjunto de pessoas e um conjunto de vagas para diferentes empregos, onde cada pessoa é qualificada para certos empregos e cada vaga pode ser ocupada por uma pessoa, encontrar um modo de empregar o maior número possível de pessoas.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Aplicações

- Problema do Caixeiro Viajante: dado um conjunto de cidades, encontrar um passeio que sai de uma cidade, passa por todas as cidades e volta para a cidade inicial tal que a distância total a ser percorrida seja menor possível.
- Problema Chinês do Correio: dado o conjunto das ruas de um bairro, encontrar um passeio que passa por todas as ruas voltando ao ponto inicial tal que a distância total a ser percorrida seja menor possível.

Representação Interna de Grafos

- A complexidade dos algoritmos para solução de problemas modelados por grafos depende fortemente da sua representação interna.
- Existem duas representações canônicas: matriz de adjacência e listas de adjacência.
- O uso de uma ou outra num determinado algoritmo depende da natureza das operações que ditam a complexidade do algoritmo.

Matriz de adjacência

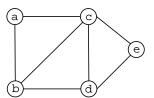
- Seja G = (V, E) um grafo simples (orientado ou não).
- A matriz de adjacência de G é uma matriz quadrada A de ordem |V|, cujas linhas e colunas são indexadas pelos vértices em V, e tal que:

$$A[i,j] = \begin{cases} 1 & \text{se } (i,j) \in E, \\ 0 & \text{caso contrário.} \end{cases}$$

 Note que se G é não-orientado, então a matriz A correspondente é simétrica.

Matriz de adjacência

 Exemplo de um grafo e a matriz de adjacência correspondente.



	а	b	С	d	е
а	0	1	1	0	0
b	1	0	1	1	0
С	1	1	0	1	1
d	0	1	1	0	1
е	0	0	1	1	0

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

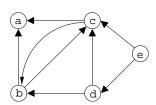
MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Matriz de adjacência

 Exemplo de um grafo orientado e a matriz de adjacência correspondente.



		а	b	С	d	е
a	3	0	0	0	0	0
t)	1	0	1	0	0
	;	1	1	0	0	0
	ł	0	1	1	0	0
E)	0	0	1	1	0

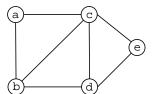
Listas de adjacência

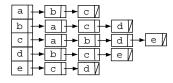
- Seja G = (V, E) um grafo simples (orientado ou não).
- A representação de G por uma lista de adjacências consiste no seguinte.

Para cada vértice v, temos uma lista ligada $\mathrm{Adj}[v]$ dos vértices adjacentes a v, ou seja, w aparece em $\mathrm{Adj}[v]$ se (v,w) é uma aresta de G. Os vértices podem estar em qualquer ordem em uma lista.

Listas de adjacência

 Exemplo de um grafo não-orientado e a listas de adjacência correspondente.



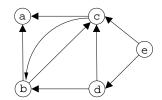


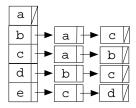
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Lista de adjacências

Exemplo de um grafo orientado e a lista de adjacências correspondente.





Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Matriz × Lista de adjacência

- Matriz de adjacência: é fácil verificar se (i, j) é uma aresta de G.
- Lista de adjacência: é fácil descobrir os vértices adjacentes a um dado vértice *v* (ou seja, listar Adj[*v*]).
- Matriz de adjacência: espaço $\Theta(|V|^2)$. Geralmente mais adequada a grafos densos $(|E| = \Theta(|V|^2))$.
- Lista de adjacência: espaço $\Theta(|V| + |E|)$. Geralmente mais adequada a grafos esparsos $(|E| = \Theta(|V|))$.

Extensões

- Há outras alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.
- Elas podem ser adaptadas para representar grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.
- Para determinados problemas é essencial ter estruturas de dados adicionais para melhorar a eficiência dos algoritmos.

Buscas em grafos

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Notação

- Para um grafo G (orientado ou não) denotamos por V[G] seu conjunto de vértices e por E[G] seu conjunto de arestas.
- Para denotar complexidades nas expressões com ou ⊖ usaremos V e E em vez de |V[G]| ou |E[G]|. Por exemplo, $\Theta(V+E)$ ou $O(V^2)$.

Busca em grafos

- Grafos são estruturas mais complicadas do que listas, vetores e árvores (binárias).
- Precisamos de métodos para explorar/percorrer um grafo (orientado ou não-orientado).
- Métodos de buscas em grafos:
 - Busca em largura (BFS Breadth-First Search)
 - Busca em profundidade (DFS Depth-First Search)
- Pode-se obter várias informações sobre a estrutura do grafo que podem ser úteis para projetar algoritmos eficientes para determinados problemas.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Busca em largura

- Dizemos que um vértice v é alcançável a partir de um vértice s em um grafo G se existe um caminho de s a v em G.
- Definição: a distância de s a v é o comprimento de um caminho mais curto de s a v.
- Se v não é alcançável a partir de s, então dizemos que a distância de s a v é ∞ (*infinita*).

Busca em largura

- Busca em largura recebe um grafo G = (V, E) e um vértice especificado s chamado fonte (source).
- Percorre todos os vértices alcançáveis a partir de s em ordem de distância deste. Vértices a mesma distância podem ser percorridos em qualquer ordem.
- Constrói uma Árvore de Busca em Largura com raiz s.
 Cada caminho de s a um vértice v nesta árvore corresponde a um caminho mais curto de s a v.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Busca em largura

- Inicialmente a Árvore de Busca em Largura contém apenas o vértice fonte s.
- Para cada vizinho v de s, o vértice v e a aresta (s, v) são acrescentadas à árvore.
- O processo é repetido para os vizinhos dos vizinhos de s e assim por diante, até que todos os vértices atingíveis por s sejam inseridos na árvore.
- Este processo é implementado através de uma fila Q.

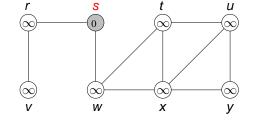
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Busca em largura

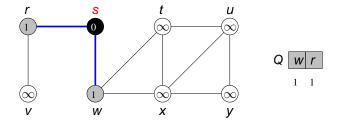
- Busca em largura atribui cores a cada vértice: branco, cinza e preto.
- Cor branca = "não visitado".
 Inicialmente todos os vértices são brancos.
- Cor cinza = "visitado pela primeira vez".
- Cor Preta = "teve seus vizinhos visitados".

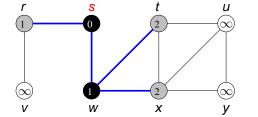
Exemplo (CLRS)



Exemplo (CLRS)

Exemplo (CLRS)





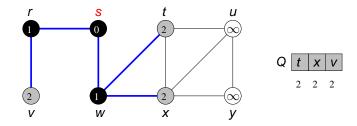
Q r t x1 2 2

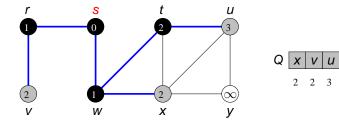
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo (CLRS)

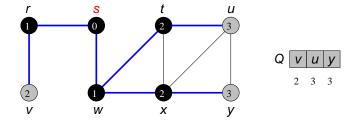
Exemplo (CLRS)

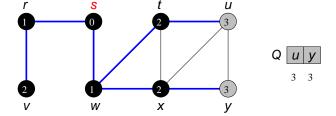




Exemplo (CLRS)

Exemplo (CLRS)



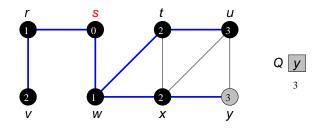


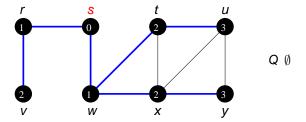
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo (CLRS)

Exemplo (CLRS)





Cores

- Para cada vértice v guarda-se sua cor atual cor[v] que pode ser branco, cinza ou preto.
- Para efeito de implementação, isto não é realmente necessário, mas facilita o entendimento do algoritmo.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Busca em largura

Recebe um grafo G (na forma de listas de adjacências) e um vértice $s \in V[G]$ e devolve

- (i) para cada vértice v, a distância de s a v em G e
- (ii) uma Árvore de Busca em Largura.

```
BUSCA-EM-LARGURA(G, s)
```

```
0 ⊳ Inicialização
```

1 para cada $u \in V[G] - \{s\}$ faça

- 2 $cor[u] \leftarrow branco$
- $d[u] \leftarrow \infty$
- $\pi[u] \leftarrow \text{NIL}$
- 5 $cor[s] \leftarrow cinza$
- 6 $d[s] \leftarrow 0$
- 7 $\pi[s] \leftarrow \text{NIL}$

Representação da árvore e das distâncias

- A raiz da Árvore de Busca em Largura é s.
- Cada vértice \mathbf{v} (diferente de \mathbf{s}) possui um pai $\pi[\mathbf{v}]$.
- O caminho de v a s na Árvore é dado por:

```
\mathbf{V}, \pi[\mathbf{V}], \pi[\pi[\mathbf{V}]], \pi[\pi[\pi[\mathbf{V}]]], \dots, \mathbf{S}.
```

 Uma variável d[v] é usada para armazenar a distância de s a v (que será determinada durante a busca).

Busca em largura

```
8 Q \leftarrow \emptyset
 9 ENQUEUE(Q, s)
      enquanto Q \neq \emptyset faça
           u \leftarrow \mathsf{DEQUEUE}(Q)
11
           para cada v \in Adj[u] faça
12
13
              se cor[v] = branco então
14
                  cor[v] \leftarrow cinza
                  d[v] \leftarrow d[u] + 1
15
16
                  \pi[v] \leftarrow u
17
                  ENQUEUE(Q, v)
           cor[u] \leftarrow preto
18
19
      retorne d, \pi
```

Consumo de tempo

Método de análise agregado.

- A inicialização consome tempo $\Theta(V)$.
- Depois que um vértice deixa de ser branco, ele não volta a ser branco novamente. Assim, cada vértice é inserido na fila Q no máximo uma vez. Cada operação sobre a fila consome tempo Θ(1) resultando em um total de O(V).
- Em uma lista de adjacência, cada vértice é percorrido apenas uma vez. A soma dos comprimentos das listas é Θ(E). Assim, o tempo gasto para percorrer as listas é O(E).

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Corretude

Para $u, v \in E[G]$, seja dist(u, v) a distância de u a v.

Precisamos mostrar que:

- d[v] = dist(s, v) para todo $v \in V[G]$.
- A função predecessor $\pi[]$ define uma Árvore de Busca em Largura com raiz s.

Complexidade de tempo

Conclusão:

A complexidade de tempo de BUSCA-EM-LARGURA é O(V + E).

Agora falta mostrar que Busca-EM-LARGURA funciona.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Alguns lemas

Lema 1. Seja G um grafo e $s \in V[G]$.

Então para toda aresta (u, v) temos que

 $dist(s, v) \leq dist(s, u) + 1.$

Prova:

Imediato.

Alguns lemas

d[v] é uma estimativa superior de dist(s, v).

Lema 2. Durante a execução do algoritmo vale o seguinte invariante

$$d[v] \ge dist(s, v)$$
 para todo $v \in V[G]$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Alguns lemas

Lema 3. Suponha que $\langle v_1, v_2, \dots, v_r \rangle$ seja a disposição da fila Q na linha 10 em uma iteração qualquer.

Então

$$d[v_r] \leq d[v_1] + 1$$

е

$$d[v_i] \le d[v_{i+1}]$$
 para $i = 1, 2, ..., r - 1$.

Em outras palavras, os vértices são inseridos na fila em ordem crescente e há no máximo dois valores de d[v] para vértices na fila.

Prova do Lema 2

Indução no número de operações **ENQUEUE**.

Base: quando s é inserido na fila temos d[s] = 0 = dist(s, s) e $d[v] = \infty \ge dist(s, v)$ para $v \in V - \{s\}$.

Passo de indução: v é descoberto enquanto a busca é feita em u (percorrendo Adj[u]). Então

$$d[v] = d[u] + 1$$

$$\geq dist(s, u) + 1 \text{ (HI)}$$

$$\geq dist(s, v). \text{ (Lema 1)}$$

Note que d[v] nunca muda após v ser inserido na fila. Logo, o invariante vale.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Prova do Lema 3

Indução no número de operações ENQUEUE e DEQUEUE.

Base: $Q = \{s\}$. O lema vale trivialmente.

Passo de indução: v_1 é removido de Q. Agora v_2 é o primeiro vértice de Q. Então

$$d[v_r] \le d[v_1] + 1 \le d[v_2] + 1.$$

As outras desigualdades se mantêm.

Passo de indução: $v = v_{r+1}$ é inserido em Q. Suponha que a busca é feita em u neste momento. Logo $d[v_1] \ge d[u]$. Então

$$d[v_{r+1}] = d[v] = d[u] + 1 \le d[v_1] + 1.$$

Pela HI $d[v_r] < d[u] + 1$. Logo

$$d[v_r] \le d[u] + 1 = d[v] = d[v_{r+1}].$$

As outras desigualdades se mantêm.

Corretude

Teorema. Seja G um grafo e $s \in V[G]$.

Então após a execução de BUSCA-EM-LARGURA,

$$d[v] = dist(s, v)$$
 para todo $v \in V[G]$.

е

 π [] define uma Árvore de Busca em Largura.

Prova:

Note que se $dist(s, v) = \infty$ então $d[v] = \infty$ pelo Lema 3.

Então vamos considerar o caso em que $dist(s, v) < \infty$.

Vamos provar por indução em dist(s, v) que d[v] = dist(s, v).

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos - v. 2.1

Corretude

- se v é branco, então a linha 15 faz com d[v] = d[u] + 1 = (k-1) + 1 = k.
- se v é cinza, então v foi visitado antes por algum vértice w (logo, $\mathbf{v} \in \mathrm{Adj}[\mathbf{w}]$) e $d[\mathbf{v}] = d[\mathbf{w}] + 1$. Pelo Lema 3, $d[w] \le d[u] = k - 1$ e segue que d[v] = k.
- se v é preto, então v já passou pela fila Q e pelo Lema 3, $d[v] \le d[u] = k - 1$. Mas por outro lado, pelo Lema 2, $d[v] \ge dist(s, v) = k$, o que é uma contradição. Este caso não ocorre.

Portanto, em todos os casos temos que d[v] = dist[s, v].

Corretude

```
Base: Se dist(s, v) = 0 então v = s e d[s] = 0.
Hipótese de indução: Suponha então que d[u] = dist(s, u)
para todo vértice u com dist(s, u) < k.
```

Seja v um vértice com dist(s, v) = k. Considere um caminho mínimo de s a v em G e chame de u o vértice que antecede v neste caminho. Note que dist(s, u) = k - 1.

Considere o instante em que u foi removido da fila Q (linha 11 de Busca-Em-Largura). Neste instante, v é branco, cinza ou preto.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Caminho mais curto

Imprime um caminho mais curto de s a v.

```
Print-Path(G, s, v)
    se V = s então
2
       imprime $
3
   senão
        se \pi[v] = NIL então
          imprime "não existe caminho de s a V"
5
        senão
           Print-Path(G, S, \pi[V])
7
          imprime V
```

Exercício

Exercício. Mostre que um grafo *G* é bipartido se e somente se não contém um ciclo de comprimento ímpar.

Projete um algoritmo linear que dado um grafo G devolve

- uma bipartição de G, ou
- um ciclo ímpar em G.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

Busca em profundidade

MO417 — Complexidade de Algoritmos - v. 2.1

Recebe um grafo G = (V, E) (representado por listas de adjacências). A busca inicia-se em um vértice qualquer. Busca em profundidade é um método recursivo. A idéia básica consiste no seguinte:

- Suponha que a busca atingiu um vértice *u*.
- Escolhe-se um vizinho n\u00e3o visitado v de u para prosseguir a busca.
- "Recursivamente" a busca em profundidade prossegue a partir de v.
- Quando esta busca termina, tenta-se prosseguir a busca a partir de outro vizinho de u. Se não for possível, ela retorna (backtracking) ao nível anterior da recursão.

Busca em profundidade

Depth First Search = busca em profundidade

- A estratégia consiste em pesquisar o grafo o mais "profundamente" sempre que possível.
- Aplicável tanto a grafos orientados quanto não-orientados.
- Possui um número enorme de aplicações:
 - determinar os componentes de um grafo
 - ordenação topológica
 - determinar componentes fortemente conexos
 - subrotina para outros algoritmos

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Busca em profundidade

Outra forma de entender Busca em Profundidade é imaginar que os vértices são armazenados em uma pilha à medida que são visitados. Compare isto com Busca em Largura onde os vértices são colocados em uma fila.

- Suponha que a busca atingiu um vértice u.
- Escolhe-se um vizinho n\u00e3o visitado v de u para prosseguir a busca.
- Empilhe v e repete-se o passo anterior com v.
- Se nenhum vértice não visitado foi encontrado, então desempilhe um vértice da pilha, digamos u, e volte ao primeiro passo.

Floresta de Busca em Profundidade

- A busca em profundidade associa a cada vértice x um predecessor $\pi[x]$.
- O subgrafo induzido pelas arestas

$$\{(\pi[x],x):x\in V[G]\ e\ \pi[x]\neq \mathsf{NIL}\}$$

é a Floresta de Busca em Profundidade.

 Cada componente desta floresta é uma Árvore de Busca em Profundidade.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Estampas/rótulos

A busca em profundidade associa a cada vértice x dois rótulos:

- d[x]: instante de descoberta de x.
 Neste instante x torna-se cinza.
- f[x]: instante de finalização de x.
 Neste instante x torna-se preto.

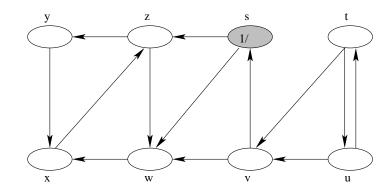
Os rótulos são inteiros entre 1 e 2 | V |.

Cores dos vértices

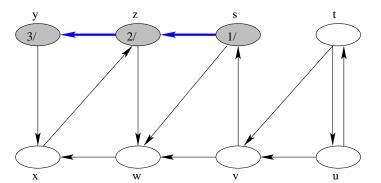
A medida que o grafo é percorrido, os vértices visitados vão sendo coloridos.

Cada vértice tem uma das seguintes cores:

- Cor branca = "vértice ainda não visitado".
- Cor cinza = "vértice visitado mas ainda não finalizado".
- Cor preta = "vértice visitado e finalizado".



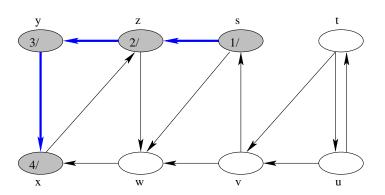
Exemplo

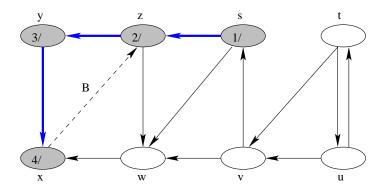


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

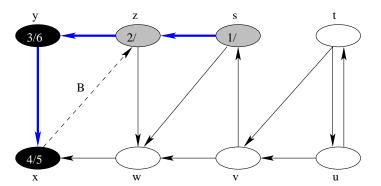
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo





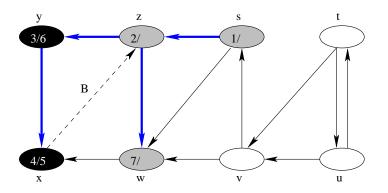
Exemplo

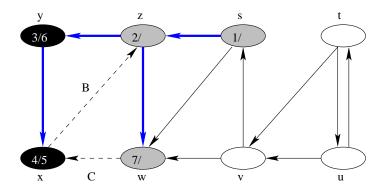


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

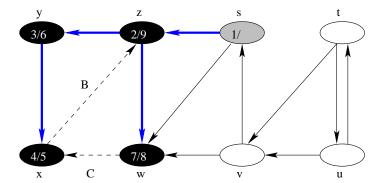
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo





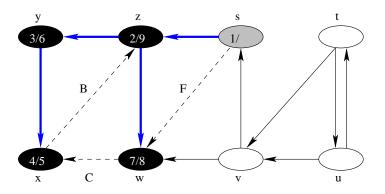
Exemplo

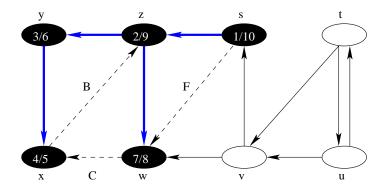


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

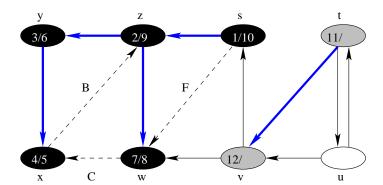
Exemplo





(11/

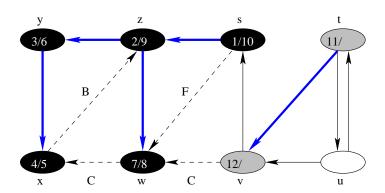
Exemplo

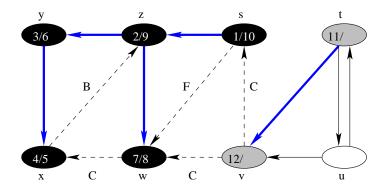


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

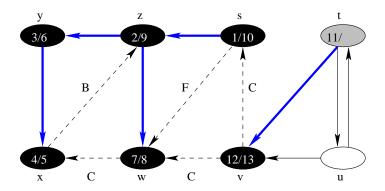
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

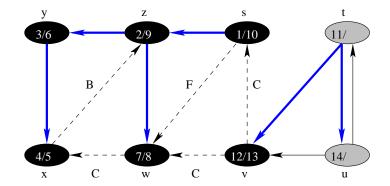
Exemplo





Exemplo

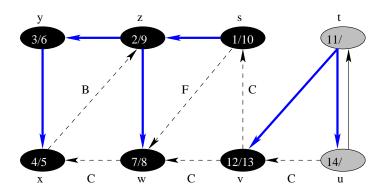


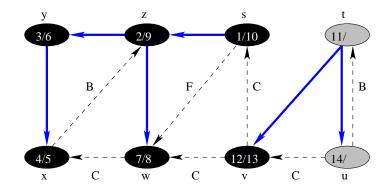


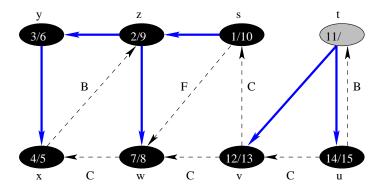
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo

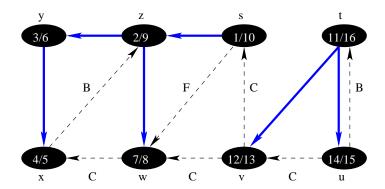






Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Rótulos versus cores

Para todo $x \in V[G]$ vale que d[x] < f[x].

Além disso

- $x \in \text{branco}$ antes do instante d[x].
- x é cinza entre os instantes d[x] e f[x].
- x é preto após o instante f[x].

Algoritmo DFS

Recebe um grafo G (na forma de listas de adjacências) e devolve

- (i) os instantes d[v], f[v] para cada $v \in V$ e
- (ii) uma Floresta de Busca em Profundidade.

$\mathsf{DFS}(G)$

```
para cada u \in V[G] faça
         cor[u] \leftarrow branco
3
         \pi[\mathbf{u}] \leftarrow \mathsf{NIL}
     tempo \leftarrow 0
    para cada u \in V[G] faça
         se cor[u] = branco
             então DFS-VISIT(u)
```

Algoritmo

Constrói recursivamente uma Árvore de Busca em Profundidade com raiz u.

```
\mathsf{DFS}\text{-}\mathsf{VISIT}(u)
1 cor[u] \leftarrow cinza
2 tempo \leftarrow tempo + 1
    d[u] \leftarrow \text{tempo}
     para cada v \in Adj[u] faça
           se cor[v] = branco
                então \pi[\mathbf{v}] \leftarrow \mathbf{u}
6
                             DFS-VISIT(V)
    cor[u] \leftarrow preto
     f[u] \leftarrow \text{tempo} \leftarrow \text{tempo} + 1
```

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Algoritmo

```
DFS-VISIT(u)
1 cor[u] \leftarrow cinza
2 tempo \leftarrow tempo + 1
3 d[u] \leftarrow \text{tempo}
    para cada v \in Adj[u] faça
          se cor[v] = branco
              então \pi[\mathbf{v}] \leftarrow \mathbf{u}
6
                           DFS-VISIT(V)
   cor[u] \leftarrow preto
     f[u] \leftarrow \text{tempo} \leftarrow \text{tempo} + 1
```

Consumo de tempo

linhas 4-7: executado |Adj[u]| vezes.

Algoritmo DFS

```
DFS(G)
    para cada u \in V[G] faça
         cor[u] \leftarrow branco
        \pi[\mathbf{u}] \leftarrow \text{NIL}
    tempo \leftarrow 0
    para cada u \in V[G] faça
        se cor[u] = branco
            então DFS-VISIT(u)
Consumo de tempo
O(V) + V chamadas a DFS-VISIT().
```

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Complexidade de DFS

- DFS-VISIT(v) é executado exatamente uma vez para cada $v \in V$.
- Em uma execução de DFS-VISIT(v), o laço das linhas 4-7 é executado |Adj[u]| vezes. Assim, o custo total de todas as chamadas é

$$\sum_{v\in V}|\mathrm{Adj}(v)|=\Theta(E).$$

Conclusão: A complexidade de tempo de DFS é O(V + E).

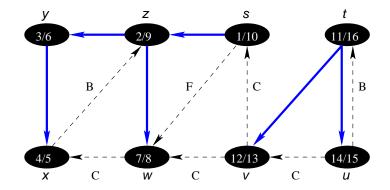
Estrutura de parênteses

- Os rótulos d[x], f[x] têm propriedades muito úteis para serem usadas em outros algoritmos.
- Eles refletem a ordem em que a busca em profundidade foi executada.
- Eles fornecem informação de como é a "cara" (estrutura) do grafo.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos - v. 2.1

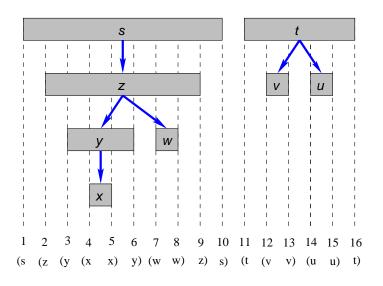
Estrutura de parênteses



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Estrutura de parênteses



Estrutura de parênteses

Teorema (Teorema dos Parênteses)

Em uma busca em profundidade sobre um grafo G = (V, E), para quaisquer vértices u e v, ocorre exatamente uma das situações abaixo:

- [d[u], f[u]] e [d[v], f[v]] são disjuntos.
- [d[u], f[u]] está contido em [d[v], f[v]] e u é descendente de v na Árvore de BP.
- [d[v], f[v]] está contido em [d[u], f[u]] e v é descendente de u na Árvore de BP.

Estrutura de parênteses

Corolário. (Intervalos encaixantes para descendentes)

Um vértice v é um descendente próprio de u na Floresta de BP se e somente se d[u] < d[v] < f[v] < f[u].

Equivalentemente, v é um descendente próprio de u se e somente se [d[v], f[v]] está contido em [d[u], f[u]].

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos - v. 2.1

Classificação de arestas

Busca em profundidade pode ser usada para classificar arestas de um grafo G = (V, E).

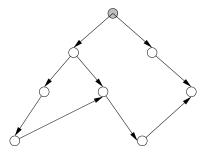
Ela classifica as arestas em quatro tipos:

- Arestas da árvore: arestas que pertencem à Floresta de BP.
- Arestas de retorno (back edges): arestas (u, v) ligando um vértice u a um ancestral v na Árvore de BP.
- Arestas de avanço (forward edges): arestas (u, v) ligando um vértice u a um descendente próprio v na Árvore de BP.
- Arestas de cruzamento (cross edges): todas as outras arestas.

Teorema do Caminho Branco

Teorema. (Teorema do Caminho Branco)

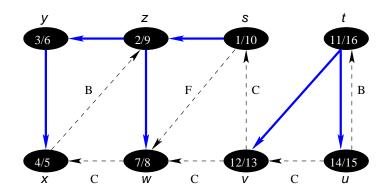
Em uma Floresta de BP, um vértice v é descendente de u se e somente se no instante d[u] (quando u foi descoberto), existia um caminho de u a v formado apenas por vértices brancos.



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

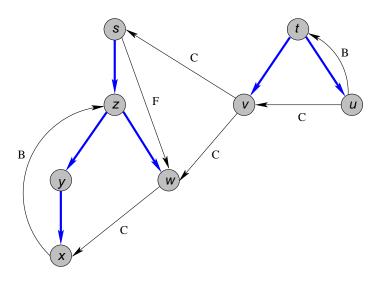
MO417 — Complexidade de Algoritmos - v. 2.1

Classificação de arestas



É fácil modificar o algoritmo DFS(G) para que ele também classifique as arestas de G. (Exercício)

Classificação de arestas



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grafos não-orientados

Em grafos não-orientados (u, v) e (v, u) indicam a mesma aresta. A sua classificação depende de quem foi visitado primeiro: u ou v.

Para grafos não-orientados, existem apenas dois tipos de arestas.

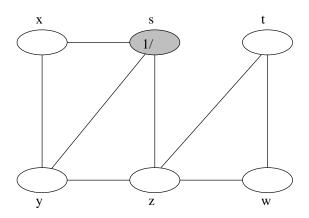
Teorema.

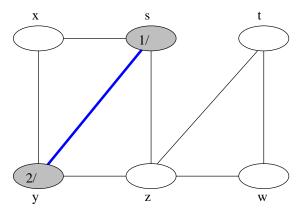
Em uma busca em profundidade sobre um grafo não-orientado *G*, cada aresta de *G* ou é aresta da árvore ou é aresta de retorno.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo

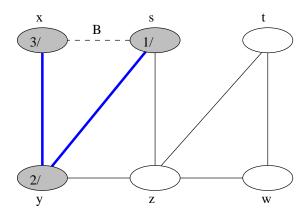




3/

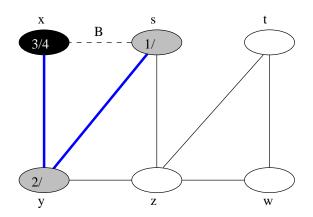
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

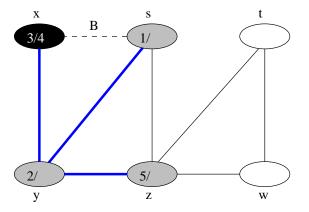
Exemplo



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo

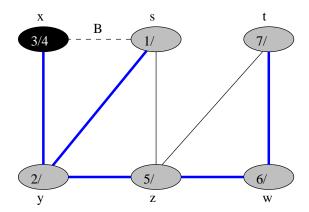




В 2/ 5/ 6/

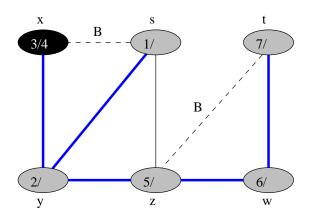
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

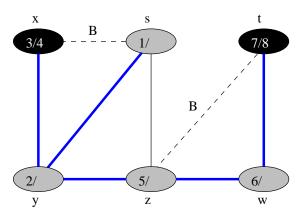
Exemplo



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo

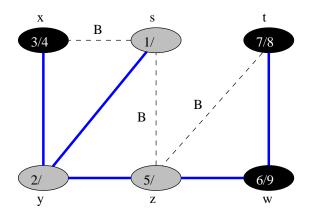




В 2/ 5/ 6/9

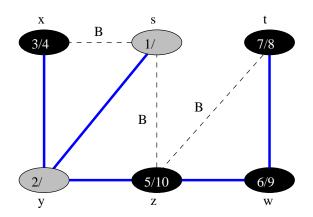
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

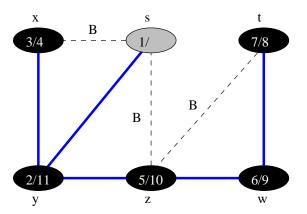
Exemplo

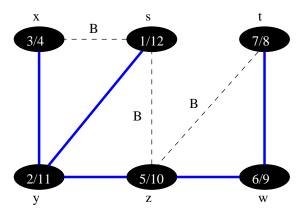


Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo



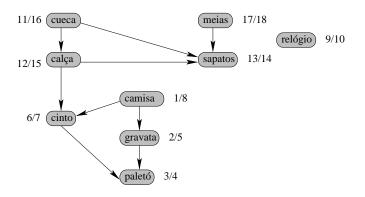




Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Ordenação Topológica

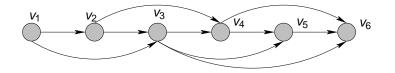
Ordenação topológica é usada em aplicações onde eventos ou tarefas têm precedência sobre outras.



Ordenação Topológica

Uma ordenação topológica de um grafo orientado G = (V, E) é um arranjo linear dos vértices de G

 V_1 V_2 V_3 ... V_{n-2} V_{n-1} V_n tal que se (v_i, v_j) é uma aresta de G, então i < j.



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

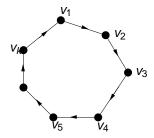
Ordenação Topológica



Ordenação Topológica

 Nem todo grafo orientado possui uma ordenação topológica.

Por exemplo, um ciclo orientado não possui uma ordenação topológica.



 Um grafo orientado G = (V, E) é acíclico se não contém um ciclo orientado.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grafo Orientado Acíclico

Lema. Todo grafo orientado acíclico possui uma fonte e um sorvedouro.

Baseado no resultado acima pode-se projetar um algoritmo para obter uma ordenação topológica de um grafo orientado acíclico *G*.

- Encontre uma fonte v_1 de G.
- Recursivamente encontre uma ordenação topológica v_2, \ldots, v_n de $G v_1$.
- Devolva v_1, v_2, \ldots, v_n .

Complexidade: O(V2) (Exercício)

Pode-se fazer melhor...

Grafo Orientado Acíclico

Teorema. Um grafo orientado G é acíclico se e somente se possui uma ordenação topológica.

Prova.

Obviamente, se G possui uma ordenação topológica então G é acíclico.

Vamos mostrar a recíproca.

Definição

Uma fonte é um vértice com grau de entrada igual a zero. Um sorvedouro é um vértice com grau de saída igual a zero.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Ordenação Topológica

Recebe um grafo orientado acíclico *G* e devolve uma ordenação topológica de *G*.

TOPOLOGICAL-SORT(G)

- 1 Execute DFS(G) para calcular f[v] para cada vértice v
- 2 À medida que cada vértice for finalizado, coloque-o no início de uma lista ligada
- 3 Devolva a lista ligada resultante

Outro modo de ver a linha 2 é: Imprima os vértices em ordem decrescente de f[v].

Complexidade de tempo

Conclusão

A complexidade de tempo de TOPOLOGICAL-SORT é O(V + E).

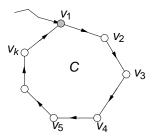
Agora falta mostrar que TOPOLOGICAL-SORT funciona.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos - v. 2.1

Corretude

Agora suponha que G contém um ciclo orientado C.



Suponha que v_1 é o primeiro vértice de C a ser descoberto. Então no instante $d[v_1]$ existe um caminho branco de v_1 a v_k . Pelo Teorema do Caminho Branco, v_k torna-se um descendente de v_1 e portanto, (v_k, v_1) torna-se uma aresta de retorno.

Corretude

Lema.

Um grafo orientado *G* é acíclico se e somente se em uma busca em profundidade de *G* não aparecem arestas de retorno.

Prova:

Suponha que (u, v) é uma aresta de retorno.

Então v é um ancestral de u na Floresta de BP.

Portanto, existe um caminho de v a u que juntamente com (u, v) forma um ciclo orientado. Logo, G não é acíclico.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Corretude

Lembre que TOPOLOGICAL-SORT imprime os vértices em ordem decrescente de $f[\].$

Para mostrar que o algoritmo funciona, basta então mostrar que se (u, v) é uma aresta de G, então f[u] > f[v].

Considere o instante em que (u, v) é examinada.

Neste instante, v não pode ser cinza pois senão (u, v) seria uma aresta de retorno.

Logo, v é branco ou preto.

Corretude

- Se v é branco, então v é descendente de u e portanto f[v] < f[u].
- Se v é preto, então v já foi finalizado e f[v] foi definido. Por outro lado u ainda não foi finalizado. Logo, f[v] < f[u].

Portanto, TOPOLOGICAL-SORT funciona corretamente.

Componentes fortemente conexos

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Componentes fortemente conexos (CFC)

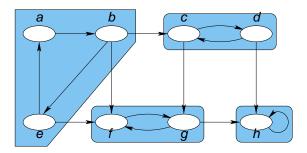
- Uma aplicação clássica de busca em profundidade: decompor um grafo orientado em seus componentes fortemente conexos.
- Muitos algoritmos em grafos começam com tal decomposição.
- O algoritmo opera separadamente em cada componente fortemente conexo.
- As soluções são combinadas de alguma forma.

Componentes fortemente conexos

Um componente fortemente conexo de um grafo orientado G = (V, E) é um subconjunto de vértices $C \subseteq V$ tal que:

- Para todo par de vértices u e v em C, existe um caminho (orientado) de u a v e vice-versa.
- C é maximal com respeito à propriedade (1).

Componentes fortemente conexos

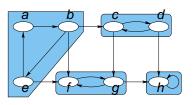


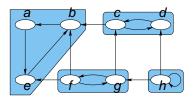
Um grafo orientado e seus componentes fortemente conexos.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grafo transposto





Um grafo orientado e o grafo transposto. Note que eles têm os mesmos componentes fortemente conexos.

Grafo transposto

Seja G = (V, E) um grafo orientado.

O grafo transposto de G é o grafo $G^T = (V^T, E^T)$ tal que

•
$$V^T = V e$$

•
$$E^T = \{(u, v) : (v, u) \in E\}.$$

Ou seja, G^T é obtido a partir de G invertendo as orientações das arestas.

Dada uma representação de listas de adjacências de G é possível obter a representação de listas de adjacências de G^T em tempo $\Theta(V + E)$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

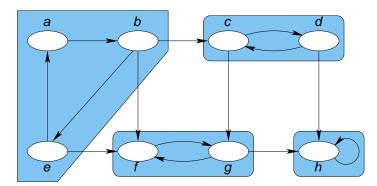
Algoritmo

COMPONENTES-FORTEMENTE-CONEXOS(G)

- 1 Execute DFS(G) para obter f[v] para $v \in V$.
- 2 Execute DFS(G^T) considerando os vértices em ordem decrescente de f[v].
- 3 Devolva os conjuntos de vértices de cada árvore da Floresta de Busca em Profundidade obtida.

Veremos que os conjuntos devolvidos são exatemente os componentes fortemente conexos de G.

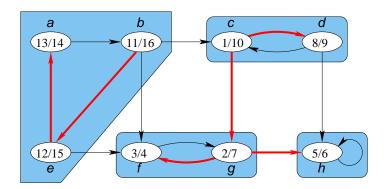
Exemplo CLRS



Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Exemplo CLRS

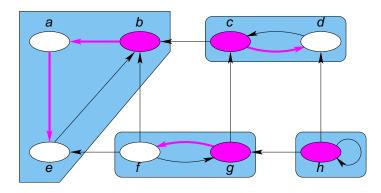


1 Execute DFS(G) para obter f[v] para $v \in V$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

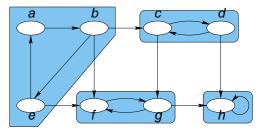
Exemplo CLRS



- 2 Execute DFS(G^T) considerando os vértices em ordem decrescente de f[v].
- 3 Os componentes fortemente conexos correspondem aos vértices de cada árvore da Floresta de Busca em Profundidade.

Grafo Componente

A idéia por trás de Componentes-Fortemente-Conexos segue de uma propriedade do grafo componente GCFC obtido a partir de G contraindo-se seus componentes fortemente conexos.



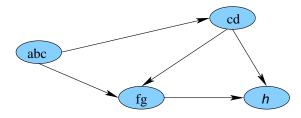
Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Grafo Componente

A idéia por trás de Componentes-Fortemente-Conexos seque de uma propriedade do grafo componente GCFC obtido a partir de G contraindo-se seus componentes fortemente conexos.



G^{CFC} é acíclico.

Os componentes fortementes conexos são visitados em ordem topológica com relação a GCFC!

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MO417 — Complexidade de Algoritmos – v. 2.1

Corretude

Daqui pra frente d, f referem-se à busca em profundidade em G feita no passo 1 do algoritmo.

Definição:

Para todo subconjunto *U* de vértices denote

$$d(U):=\min_{u\in U}\{d[u]\}\quad \text{e}\quad f(U):=\max_{u\in U}\{f[u]\}.$$

Lema 22.14 (CLRS):

Sejam C e C' dois componentes f.c. de G. Suponha que existe (u, v) em E onde $u \in C$ e $v \in C'$. Então f(C) > f(C').

Corretude

Lema 22.13 (CLRS)

Sejam C e C' dois componentes f.c. de G.

Sejam $u, v \in C$ e $u', v' \in C'$.

Suponha que existe um caminho $u \rightsquigarrow u'$ em G.

Então **não existe** um caminho $v' \rightsquigarrow v$ em G.

O lema acima mostra que GCFC é acíclico.

Agora vamos mostrar porque

COMPONENTES-FORTEMENTE-CONEXOS funciona.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MO417 — Complexidade de Algoritmos – v. 2.1

Corretude

Corolário 22.15 (CLRS):

Sejam C e C' dois componentes f.c. de G. Suponha que existe (u, v) está em E^T onde $u \in C$ e $v \in C'$. Então f(C) < f(C').

Teorema 22.16 (CLRS):

O algoritmo Componentes-Fortemente-Conexos determina corretamente os componentes fortemente conexos de G.