MO417 - Complexidade de Algoritmos Segundo Semestre de 2008 Oitava Lista de Exercícios

Árvore Geradora Mínima

1. Let (u, v) be a minimum-weight edge in a graph G . Show that (u, v) belongs to some minimum spanning tree of G.
2. Given a graph G and a minimum spanning tree T, suppose that we decrease the weight of one of the edges not in T. Give an $\mathrm{O}(n)$-time algorithm for finding the minimum spanning tree in the modified graph.
3. Is the Fibonacci-heap implementation of Prim's algorithm asymptotically faster than the binaryheap implementation for a sparse graph $G=(\mathrm{V}, \mathrm{E})$, where $|E|=\Theta(V)$? What about for a dense graph, where $|E|=\Theta\left(V^{2}\right)$? How must $|E|$ and $|V|$ be related for the Fibonacci-heap implementation to be asymptotically faster than the binary-heap implementation?
4. Suppose that all edge weights in a graph are integers in the range from 1 to $|V|$. How fast can you make Kruskal's algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W ?
5. Suppose that all edge weights in a graph are integers in the range from 1 to $|V|$. How fast can you make Prim's algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W ?
6. Suppose that the edge weights in a graph are uniformly distributed over the half-open interval $[0,1)$. Which algorithm, Kruskal's or Prim's, can you make run faster?
7. Suppose that a graph G has a minimum spanning tree already computed. How quickly can the minimum spanning tree be updated if a new vertex and incident edges are added to G ?
8. Professor Toole proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, partition the set V of vertices into two sets V_{1} and V_{2} such that $\left|V_{1}\right|$ and $\left|V_{2}\right|$ differ by at most 1 . Let E_{1} be the set of edges that are incident only on vertices in V_{1}, and let E_{2} be the set of edges that are incident only on vertices in V_{2}. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs G_{1} $=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Finally, select the minimum-weight edge in E that crosses the cut (V_{1}, V_{2}), and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G , or provide an example for which the algorithm fails.

