MO417 - Complexidade de Algoritmos
 Segundo Semestre de 2008
 Sétima Lista de Exercícios

1 Representação de Grafos

1. Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees?
2. The transpose of a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the graph $G^{T}=\left(V, E^{T}\right)$, where $E^{T}=(\mathrm{v}, \mathrm{u}) \in$ $\mathrm{V} \mathrm{x} \mathrm{V} \mathrm{:} \mathrm{(u}, \mathrm{v)} \in \mathrm{E}$. Thus, G^{T} is G with all its edges reversed. Describe efficient algorithms for computing G^{T} from G , for both the adjacency-list and adjacency-matrix representations of G . Analyze the running times of your algorithms.
3. The square of a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the graph $G^{2}=\left(V, E^{2}\right)$ such that $(\mathrm{u}, \mathrm{w}) \in E^{2}$ if and only if for some $\mathrm{v} \in \mathrm{V}$, both (u, v) $\in \mathrm{E}$ and ($\mathrm{v}, \mathrm{w}) \in \mathrm{E}$. That is, G^{2} contains an edge between u and w whenever G contains a path with exactly two edges between u and w. Describe efficient algorithms for computing G^{2} from G for both the adjacency-list and adjacency-matrix representations of G . Analyze the running times of your algorithms.
4. When an adjacency-matrix representation is used, most graph algorithms require time $\Omega\left(V^{2}\right)$, but there are some exceptions. Show that determining whether a directed graph G contains a universal sink (a vertex with in-degree $|V|-1$ and out-degree 0) can be determined in time $\mathrm{O}(V)$, given an adjacency matrix for G .

2 Buscas em Grafos

5. Give a counterexample to the conjecture that if there is a path from u to v in a directed graph G , and if $\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]$ in a depth-first search of G , then v is a descendant of u in the depth-first forest produced.
6. Show that a depth-first search of an undirected graph G can be used to identify the connected components of G , and that the depth-first forest contains as many trees as G has connected components. More precisely, show how to modify depth-first search so that each vertex v is assigned an integer label cc[v] between 1 and k , where k is the number of connected components of G , such that $\mathrm{cc}[\mathrm{u}]=\mathrm{cc}[\mathrm{v}]$ if and only if u and v are in the same connected component.
7. Give an algorithm that determines whether or not a given undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ contains a cycle. Your algorithm should run in $\mathrm{O}(V)$ time, independent of $|E|$.
8. Another way to perform topological sorting on a directed acyclic graph $G=(V, E)$ is to repeatedly find a vertex of in-degree 0 , output it, and remove it and all of its outgoing edges from the graph. Explain how to implement this idea so that it runs in time $\mathrm{O}(V+E)$. What happens to this algorithm if G has cycles?
