MO417 – Complexidade de Algoritmos
Segundo Semestre de 2005
Prof. Zanoni Dias
5ª Lista de Exercícios

1 – You are given a sequence of n elements to sort. The input sequence consists of n/k subsequences, each containing k elements. The elements in a given subsequence are all smaller than the elements in the succeeding subsequence and larger than the elements in the preceding subsequence. Thus, all that is needed to sort the whole sequence of length n is to sort the k elements in each of the n/k subsequences. Show an Ω(n lg k) lower bound on the number of comparisons needed to solve this variant of the sorting problem. 
2 – Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then answers any query about how many of the n integers fall into a range [a..b] in O(1) time. Your algorithm should use Θ(n + k) preprocessing time.

3 – Show how to sort n integers in the range 0 to n2 - 1 in O(n) time.
4 – What is the worst-case running time for the bucket-sort algorithm? What simple change to the algorithm preserves its linear expected running time and makes its worst-case running time O(n lg n)?

5 – Show that the second smallest of n elements can be found with n + ⌈lg n⌉ - 2 comparisons in the worst case. (Hint: Also find the smallest element.)
6 – Suppose that you have a "black-box" worst-case linear-time median subroutine. Give a simple, linear-time algorithm that solves the selection problem for an arbitrary order statistic.
7 – The kth quantiles of an n-element set are the k - 1 order statistics that divide the sorted set into k equal-sized sets (to within 1). Give an O(n lg k)-time algorithm to list the kth quantiles of a set.
8 – Given a set of n numbers, we wish to find the largest i numbers in sorted order using a comparison-based algorithm. Find the algorithm that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times of the algorithms in terms of n and i.

a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call EXTRACT-MAX i times.

c. Use an order-statistic algorithm to find the ith largest number, partition around that number, and sort the i largest numbers.
