MO417 – Complexidade de Algoritmos
Segundo Semestre de 2005
Prof. Zanoni Dias
4ª Lista de Exercícios

1 – What value of pivot does PARTITION return when all elements in the array A[begin..end] have the same value? Modify PARTITION so that pivot = (begin+end)/2 when all elements in the array A[begin..end] have the same value.

2 – Suppose that the splits at every level of quicksort are in the proportion (1 – α) to α, where 0 < α ≤ 1/2 is a constant. Show that the minimum depth of a leaf in the recursion tree is approximately (- lg n / lg α) and the maximum depth is approximately (- lg n / lg(1 - α)). Don't worry about integer round-off.
3 – The running time of quicksort can be improved in practice by taking advantage of the fast running time of insertion sort when its input is "nearly" sorted. When quicksort is called on a subarray with fewer than k elements, let it simply return without sorting the subarray. After the top-level call to quicksort returns, run insertion sort on the entire array to finish the sorting process. Argue that this sorting algorithm runs in O(nk + n lg(n/k)) expected time. How should k be picked, both in theory and in practice?
4 – Professors Howard, Fine, and Howard have proposed the following "elegant" sorting algorithm:

STOOGE-SORT(A, i, j)

1 if A[i] > A[j]

2 then exchange A[i] ↔ A[j]

3 if i + 1 < j
4
k ← ⌊(j - i + 1)/3⌋ ▹ Round down.

5
STOOGE-SORT(A, i, j - k) ▹ First two-thirds.

6
STOOGE-SORT(A, i + k, j) ▹ Last two-thirds.

7
STOOGE-SORT(A, i, j - k) ▹ First two-thirds again.

a. Argue that, if n = length[A], then STOOGE-SORT(A, 1, length[A]) correctly sorts the input array A[1..n].

b. Give a recurrence for the worst-case running time of STOOGE-SORT and a tight asymptotic (Θ-notation) bound on the worst-case running time.

c. Compare the worst-case running time of STOOGE-SORT with that of insertion sort, merge sort, heapsort, and quicksort. Do the professors deserve tenure?

5 – Where in a heap might the smallest element reside, assuming that all elements are distinct?
6 – Is an array that is in sorted in decresing order a heap?
7 – The code for HEAPIFY is quite efficient in terms of constant factors, except possibly for the recursive call, which might cause some compilers to produce inefficient code. Write an efficient HEAPIFY that uses an iterative control construct (a loop) instead of recursion.

8 – Why do we want the loop of BUILD-HEAP to decrease from ⌊length[A]/2⌋ to 1 rather than increase from 1 to ⌊length[A]/2⌋?

9 – What is the running time of heapsort on an array A of length n that is already sorted in increasing order? What about decreasing order?
10 – Give an O(n lg k)-time algorithm to merge k sorted lists into one sorted list, where n is the total number of elements in all the input lists. Hint: Use a heap for k-way merging.
