Teoria da Complexidade

Cid C. de Souza / IC-UNICAMP

Universidade Estadual de Campinas Instituto de Computação

1º semestre de 2012

Revisado por Zanoni Dias

C. de Souza

Teoria da Complexidade

Autor

Prof. Cid Carvalho de Souza Universidade Estadual de Campinas (UNICAMP) Instituto de Computação Av. Albert Einstein nº 1251 Cidade Universitária Zeferino Vaz

13083-852, Campinas, SP, Brasil

Email: cid@ic.unicamp.br

Direitos autorais

- Este material só pode ser reproduzido com a autorização do autor.
- Os alunos dos cursos do Instituto de Computação da UNICAMP bem como os seus docentes estão autorizados (e são bem vindos) a fazer <u>uma</u> cópia deste material para estudo individual ou para preparação de aulas a serem ministradas nos cursos do IC/UNICAMP.
- Se você tem interesse em reproduzir este material e não se encontra no caso acima, por favor entre em contato comigo.
- Críticas e sugestões são muito bem vindas!

Campinas, agosto de 2010.

Cid

C. de Souza

Teoria da Complexidade

Tratamento de problemas \mathcal{NP} -difíceis: Heurísticas

- - construtivas: normalmente adotam estratégias gulosas para construir as soluções. Tipicamente são aplicadas a problemas onde é fácil obter uma solução viável.
 - de busca local: partem de uma solução inicial e, através de transformações bem definidas, visitam outras soluções até atingir um critério de parada pré-definido.

Heurísticas Construtivas (TSP)

> Exemplo 1: TSP em um grafo não orientado completo.

```
Vizinho-Mais-Próximo(n, d) (* d: matriz de distâncias *)
    Para i = 1 até n faça visitado[i] \leftarrow Falso;
    visitado[1] \leftarrow Verdadeiro;
    ciclo \leftarrow {}, comp \leftarrow 0 e k \leftarrow 1;
    Para i = 1 até n - 1 faça
        j^* \leftarrow \operatorname{argmin}\{d[k,j] : \operatorname{visitado}[j] = \operatorname{Falso}\};
        visitado[j^*] \leftarrow Verdadeiro;
        ciclo \leftarrow ciclo \cup {(k, j^*)}; comp \leftarrow comp + d[k, j^*];
         k \leftarrow j^*;
    fim-para
    ciclo \leftarrow ciclo \cup \{(k,1)\}; \quad comp \leftarrow comp + d[k,1];
Retorne comp.
```

 \triangleright Complexidade: $O(n^2)$

C. de Souza

Teoria da Complexidade

Heurísticas Construtivas (TSP)

 \triangleright Exemplo 2: heurística para o TSP \equiv algoritmo de Kruskal para AGM.

```
(* d: matriz de distâncias *)
TSP-Guloso(n, d)
    \mathcal{L} \leftarrow \text{lista} das arestas ordenadas crecentemente pelo valor de d;
    Para i = 1 até n faça grau[i] \leftarrow 0; componente[i] = i fim-para
    k \leftarrow 0:
                 ciclo \leftarrow \{\};
                                  comp \leftarrow 0;
    Enquanto k \neq n faça
        (u, v) \leftarrow \text{Remove-primeiro}(\mathcal{L});
        Se (\text{grau}[u] \le 1 \text{ e grau}[v] \le 1 \text{ e componente}(u) \ne \text{componente}(v))
        ou (grau[u] = grau[v] = 1 e k = n - 1) então
            ciclo ← ciclo \cup {(u, v)};
                                              comp \leftarrow comp + d[u, v];
            Unir-componentes(u, v);
            \operatorname{grau}[u] + +; \quad \operatorname{grau}[v] + +; \quad k + +;
        fim-se
    fim-enquanto
Retorne comp.
```

 \triangleright Complexidade: $O(n^2 \log n)$ (usar compressão de caminhos para união de conjuntos disjuntos).

Heurísticas Construtivas (TSP)

Aplicação das heurísticas para o TSP:

Aplicação das heurísticas para o TSP:
$$d = \begin{bmatrix} - & 9 & 2 & 8 & 12 & 11 \\ 9 & - & 7 & 19 & 10 & 32 \\ 2 & 7 & - & 29 & 18 & 6 \\ 8 & 19 & 29 & - & 24 & 3 \\ 12 & 10 & 18 & 24 & - & 19 \\ 11 & 32 & 6 & 3 & 19 & - \end{bmatrix}$$

$$d = \begin{bmatrix} - & 9 & 2 & 8 & 12 & 11 \\ 9 & - & 7 & 19 & 10 & 32 \\ 2 & 7 & - & 29 & 18 & 6 \\ 8 & 19 & 29 & - & 24 & 3 \\ 12 & 10 & 18 & 24 & - & 19 \\ 11 & 32 & 6 & 3 & 19 & - \end{bmatrix}$$

$$d = \begin{bmatrix} - & 9 & 2 & 8 & 12 & 11 \\ 9 & - & 7 & 19 & 10 & 32 \\ 2 & 7 & - & 29 & 18 & 6 \\ 3 & 12 & 3 & 6 & 6 \end{bmatrix}$$

Vizinho-Mais-Próximo

- CUSTO = 52

C. de Souza

Teoria da Complexidade

Heurísticas Construtivas (TSP)

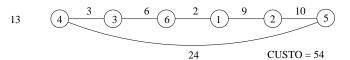
Iteracao

- 3
- Aresta (2,3) rejeitada (grau de 3)

TSP-GULOSO

- Aresta (1,4) rejeitada (subciclo)

9, 10, 11, 12 Rejeita as arestas (1,6), (1,5), (3,5), (2,4) e (5,6) (subciclos)



Heurísticas Construtivas (Mochila)

> Exemplo 2: Problema da Mochila.

```
Mochila-guloso(c, w, W)
Ordenar itens segundo a razão \frac{c_i}{w_i};

(* assuma que \frac{c_1}{w_1} \geq \frac{c_2}{w_2} \geq \ldots \geq \frac{c_n}{w_n} *)

\overline{W} \leftarrow W; S \leftarrow \{\};
Para i = 1 até n faça
Se w_i \leq \overline{W} então
\overline{W} \leftarrow \overline{W} - w_i;
S \leftarrow S \cup \{i\};
fim-se
fim-para
Retorne S.
```

 \triangleright Complexidade: $O(n \log n)$.

C. de Souza

Teoria da Complexidade

Heurísticas Construtivas (Mochila)

⊳ Aplicação da heurística Mochila-guloso.

maximize
$$8x_1 + 16x_2 + 20x_3 + 12x_4 + 6x_5 + 10x_6 + 4x_7$$

Sujeito a $3x_1 + 7x_2 + 9x_3 + 6x_4 + 3x_5 + 5x_6 + 2x_7 \le 17$, $x \in \mathbb{B}^7$.

Observação:
$$\frac{8}{3} \ge \frac{16}{7} \ge \frac{20}{9} \ge \frac{12}{6} \ge \frac{6}{3} \ge \frac{10}{5} \ge \frac{4}{2}$$

- ightharpoonup Solução gulosa: $S = \{1, 2, 4\}$, custo = 36.
- \triangleright Solução ótima: $S = \{1, 2, 6, 7\}$, custo = 38.

Heurísticas Construtivas

- ⊳ Soluções gulosas podem ser arbitrariamente ruins!
- ⊳ Mochila-guloso é arbitrariamente ruim.
- ⊳ Instância: W=n, $c_1=3/n$, $w_1=2/n$ e, para todo $i=2,\ldots,n$, $c_i=n-(1/n)$ e $w_i=n-(1/n)$. Observação: $\frac{c_1}{w_1}\geq \frac{c_2}{w_2}=\ldots=\frac{c_n}{w_n}$.
- \triangleright Solução gulosa: $S = \{1\}$, custo = 3/n.
- \triangleright Solução ótima: $S = \{2\}$, custo = n (1/n).
- $| \lim_{n \to \infty} \frac{(3/n)}{n (1/n)} = 0.$

Ou seja, aumentando o valor de *n* nesta instância, a solução gulosa pode se afastar tanto quanto eu quiser da solução ótima!

C. de Souza

Teoria da Complexidade

Heurísticas Construtivas

- ▷ Vizinho-Mais-Próximo para o TSP é arbitrariamente ruim.
- \triangleright Instância: matriz simétrica de distâncias d onde, para i < j, tem-se:

$$d[i,j] = \left\{ egin{array}{ll} n^2, & ext{se } i=n-1 ext{ e } j=n, \ 1, & ext{se } j=i+1, \ 2, & ext{caso contrário.} \end{array}
ight.$$

- ightharpoonup Solução gulosa: ciclo = $\{1,2,\ldots,n-1,n\}$ e comp = n^2+n .
- $ightarrow ext{Solução \'otima: ciclo} = \{1,2,\ldots,n-3,n,n-2,n-1\} \ ext{e}$ comp = n+3.

Novamente, aumentando o valor de *n* nesta instância, a solução gulosa pode se afastar tanto quanto eu quiser da solução ótima!

Heurísticas de Busca Local

- \triangleright Sendo \mathcal{F} o conjunto de todas as possíveis tuplas e $t \in \mathcal{F}$, a vizinhança da solução t, N(t), é o subconjunto de tuplas de \mathcal{F} que podem ser obtidas ao se realizar um conjunto de transformações pré-determinadas sobre t.
- > Complexidade da vizinhança: número de tuplas na vizinhança.

A tupla é um vetor binário de tamanho n.

 $N_1(t)$: conjunto de todas as tuplas obtidas de t "flipando" uma de suas componentes.

Complexidade: $\Theta(n)$.

C. de Souza

Teoria da Complexidade

Heurísticas de Busca Local

A tupla é um vetor representando uma permutação de $\{1,\ldots,n\}$.

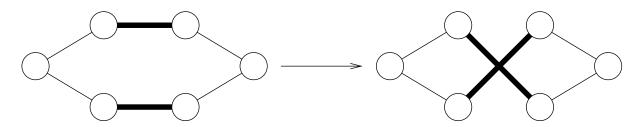
 $N_2(t)$: conjunto de todas as tuplas obtidas trocando-se as posições de dois elementos da permutação.

Complexidade: $\Theta(n^2)$.

- ⊳ Algoritmo de busca local (problema de minimização):
 - Encontrar uma solução inicial t.
 - Encontrar t' em N(t) com menor custo.
 - Se o custo de t' é menor que o custo de t, fazer $t \leftarrow t'$ e repetir o passo anterior. Se não, retorne t e pare.

Heurísticas de Busca Local (TSP)

- ⊳ Heurística da 2-troca para o TSP (Lin e Kernighan, 1973).

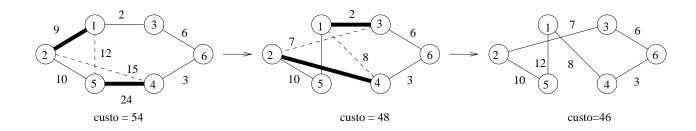


 \triangleright Complexidade: $\Theta(n^2)$.

C. de Souza

Teoria da Complexidade

Heurísticas de Busca Local (TSP)



- \triangleright Tuplas: vetor de permutações de 1 até n.
- \triangleright Vizinhança: inverte seqüência entre posições i e j (mod n) ($j \ge i + 2$).

Heurísticas de Busca Local (Partição de Grafos)

- \triangleright Entrada: grafo não orientado G = (V, E), com |V| = 2n, e custos c_{ij} para toda aresta $(i, j) \in E$.
- ightharpoonup Saída: um subconjunto $V'\subseteq V$, com |V'|=n e que minimize o valor de $\sum_{i\in V'}\sum_{i\not\in V'}c_{ij}$.
- \triangleright Solução representada por um vetor a de 2n posições, com os valores de 1 até 2n. Nas n primeiras posições estão os vértices de V' e nas n seguintes os vértices de $\overline{V'}$.
- \triangleright Vizinhança: todas as trocas possíveis de pares de vértices (a[i], a[j]), onde $1 \le i \le n$ e $(n+1) \le j \le 2n$.
- \triangleright Complexidade: $\Theta(n^2)$.

C. de Souza

Teoria da Complexidade

Heurísticas de Busca Local (Partição de Grafos)

 \triangleright Exemplo: grafo completo com 6 vértices (K_6).

$$c = \begin{bmatrix} - & 9 & 2 & 8 & 12 & 11 \\ 9 & - & 7 & 19 & 10 & 32 \\ 2 & 7 & - & 29 & 18 & 6 \\ 8 & 19 & 29 & - & 24 & 3 \\ 12 & 10 & 18 & 24 & - & 19 \\ 11 & 32 & 6 & 3 & 19 & - \end{bmatrix}$$
Solução inicial:
$$a = \{1, 4, 6, 2, 3, 5\}.$$

- ullet vizinhos (1,2) (1,3) (1,5) (4,2) (4,3) (4,5) (6,2) (6,3) (6,5) ganho -29 -12 -7 -66 -15 -40 -22 -43 -32
- Nova solução: $a = \{1, 2, 6, 4, 3, 5\}.$
- vizinhos (1,4) (1,3) (1,5) (2,4) (2,3) (2,5) (6,4) (6,3) (6,5) ganho 37 34 23 66 51 26 44 59 54
- Ótimo Local!

Heurísticas de Busca Local

$$g(.) = f(.) + \alpha h(.),$$

- onde f é função original, h é uma função que mede quão inviável é a solução e α é um fator de penalização.
- \triangleright Exemplo: no problema da partição de grafos, considere a vizinhança onde só um vértice muda de V' para $\overline{V'}$ ou vice-versa.
- \triangleright Penalizar as soluções inviáveis usando $\alpha > 0$ grande e definindo:

$$h(V', \overline{V'}) = ||V'| - |\overline{V'}||^2.$$

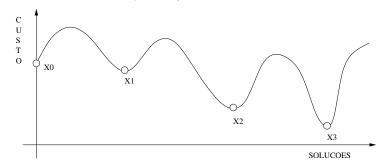
Se acabar em uma solução inviável, aplicar um algoritmo guloso que rapidamente restaura a viabilidade.

C. de Souza

Teoria da Complexidade

Heurísticas de Busca Local

⊳ Busca local retorna solução que é ótimo local.



Heurísticas de Busca Local (Busca Tabu)

- ▷ Inserir na busca local uma lista de movimentos tabu que impedem, por algumas iterações, que um determinado movimento seja realizado.
 - Objetivo: evitar que uma solução seja revisitada.
 - Exemplo: no caso da equipartição de grafos, pode-se impedir que a troca de dois vértices por t iterações.
- ightharpoonup Repetir a busca local básica por lpha iterações ou se nenhuma melhora foi obtida nas últimas eta iterações.
- \triangleright Os parâmetros α e β são fixados *a priori*.
- \triangleright Parâmetros a ajustar: tamanho da lista tabu t, α e β .

C. de Souza

Teoria da Complexidade

Tratamento de problemas \mathcal{NP} -difíceis: Aproximações

- Algoritmos aproximados encontram uma solução com garantia de qualidade em tempo polinomial.
- > Nomenclatura:

Р	problema \mathcal{NP} -difícil
Н	algoritmo aproximado
1	instância de <i>P</i>
$z^*(I)$	valor ótimo da instância <i>l</i>
$z^H(I)$	valor da solução obtida por H para a instância I

ightharpoonup Aproximação absoluta: para algum $k \in \mathbb{Z}_+$ tem-se que

$$|z^*(I) - z^H(I)| \le k$$
, para todo I .

Aproximação Absoluta

- \triangleright Exemplo 1: alocação de arquivos em discos (MFA). Dados n arquivos de tamanhos $\{\ell_1,\ldots,\ell_n\}$ e **dois** discos de capacidade L, qual o maior número de arquivos que podem ser armazenados nos discos?
- ightharpoonup Teorema: MFA $\in \mathcal{NP}$ -completo. (Exercício)
- ightarrow Algoritmo: supor que $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_n$.

```
\begin{array}{lll} \operatorname{Aprox-MFA}(n,\ell); & L' \leftarrow L; & j \leftarrow 1; \\ & \operatorname{Enquanto} \ L' \geq \ell_j \ \operatorname{faça} \\ & L' \leftarrow L' - \ell_j; & \operatorname{Colocar}(j,1); & j++; \\ & \operatorname{fim-enquanto}; \\ & L' \leftarrow L; \\ & \operatorname{Enquanto} \ L' \geq \ell_j \ \operatorname{faça} \\ & L' \leftarrow L' - \ell_j; & \operatorname{Colocar}(j,2); & j++; \\ & \operatorname{fim-enquanto}; \\ & \operatorname{Retornar} \ j-1. \end{array}
```

C. de Souza

Teoria da Complexidade

Aproximação Absoluta

Teorema: $|z^*(I) - z^H(I)| \le 1$.

<u>Prova</u>: Seja p o número de arquivos que o algoritmo Aprox-MFA consegue armazenar em um grande disco com capacidade 2L. Além disso, seja $j = \operatorname{argmax}\{\sum_{i=1}^{j} \ell_i \leq L\} \leq p$.

$$\ldots \stackrel{\text{(c)}}{\Longrightarrow} z^H(I) \ge p - 1 \stackrel{\text{(a)} \land \text{(c)}}{\Longrightarrow} z^H(I) \ge z^*(I) - 1. \qquad \Box$$

Aproximação Absoluta

- - \circ CGP $\in \mathcal{NP}$ -completo.
 - Todo grafo planar tem pelo menos um vértice de grau menor do que 6.
 - o Um grafo é bipartido se e somente se ele não tem ciclos ímpares.

```
\begin{aligned} &\mathsf{6-cores}(G); \quad (*\ G = (V,E)\ *) \\ &\mathbf{Se}\ |V| = 0\ \mathbf{ent\~ao}\ \mathbf{Retornar}\ 0; \quad \mathbf{Se}\ |E| = 0\ \mathbf{ent\~ao}\ \mathbf{Retornar}\ 1; \\ &\mathbf{Se}\ G\ \acute{\mathrm{e}}\ \mathrm{bipartido}\ \mathbf{ent\~ao}\ \mathbf{Retornar}\ 2; \\ &\mathbf{se}\ \mathbf{n\~ao} \\ &\mathbf{Escolher}\ v\ \mathrm{com}\ \mathrm{grau}(\mathsf{v}) \leq 5; \quad G' \leftarrow G - \mathsf{v}; \quad k \leftarrow \mathsf{6-cores}(G'); \\ &\mathbf{Seja}\ x \in \{1,2,3,4,5,6\}\ \mathrm{uma}\ \mathrm{cor}\ \mathrm{diferente}\ \mathrm{daquela}\ \mathrm{dos}\ \mathrm{vizinhos}\ \mathrm{de}\ v; \\ &\mathbf{Se}\ (x > k)\ \mathbf{ent\~ao}\ \ k \leftarrow k + 1; \ x \leftarrow k; \ \mathbf{fim-se}; \\ &\mathbf{cor}[v] \leftarrow x; \\ &\mathbf{fim-se} \\ &\mathbf{Retornar}\ \ k. \end{aligned}
```

C. de Souza

Teoria da Complexidade

Aproximação Absoluta

▶ **Teorema**: $|z^*(I) - z^H(I)| \le 3$. <u>Prova</u>: Se |V| = 0, |E| = 0 ou o grafo é bipartido então a coloração feita por 6-cores é ótima e o resultado é imediato. Caso contrário, G tem pelo menos um *ciclo ímpar*. Logo qualquer coloração precisará de pelo menos três cores. Como o número de cores usadas por 6-cores é \le 6 e a solução ótima requer pelo menos 3 cores, tem-se que

$$|z^*(I) - z^H(I)| \le |3 - 6| = 3.$$

> Observações:

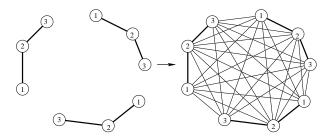
- o Todo grafo planar admite uma 4-coloração.
- São poucos problemas que tem aproximação absoluta.

C. de Souza Teoria da Complexidade

handout.pdf June 15, 2012 13

Aproximação Absoluta imes Questão $\mathcal{P} = \mathcal{N}\mathcal{P}$

Teorema: Não existe uma aproximação absoluta para CLIQUE com complexidade polinomial a menos que $\mathcal{P} = \mathcal{NP}$. <u>Prova</u>: Suponha que $\mathcal{P} \neq \mathcal{NP}$ e que existe um algoritmo polinomial H para CLIQUE tal que $|z^*(I) - z^H(I)| \le k \in \mathbb{Z}_+$. Seja G^{k+1} o grafo composto de k+1 cópias de G mais todas as arestas ligando pares de vértices em diferentes cópias.



Observação: se α é o tamanho da maior clique de G então a maior clique de G^{k+1} tem $\alpha(k+1)$ vértices.

C. de Souza

Teoria da Complexidade

Aproximação Absoluta imes Questão $\mathcal{P} = \mathcal{N}\mathcal{P}$

ightharpoonup Prova: (cont.) Executando-se H para G^{k+1} tem-se que

$$z^*(G^{k+1}) - z^H(G^{k+1}) \le k \Longrightarrow z^H(G^{k+1}) \ge (k+1)z^*(G) - k.$$

Se C é a clique encontrada por H em G^{k+1} , existe uma cópia de G tal que $C'=V\cap C$ e $|C'|\geq |C|/(k+1)$. Logo

$$|C'| \ge \frac{(k+1)z^*(G)-k}{k+1} = z^*(G)-\frac{k}{k+1}.$$

Portanto, $|C'| \ge z^*(G)$, ou seja C' é uma clique máxima de G.

Absurdo!

- \triangleright Um algoritmo H para um problema P é uma α -aproximação se
 - ∘ P é um problema de **minimização** e $\frac{z^H(I)}{z^*(I)} \le \alpha \ \forall \ I$,

ou

∘ P é um problema de **maximização** e $\frac{z^*(I)}{z^H(I)} \le \alpha \ \forall I$.

Observação: α é sempre maior ou igual a 1.

ightharpoonup Um algoritmo H é uma lpha-aproximação relativa para um problema P se

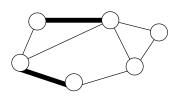
$$\left|\frac{z^*(I)-z^H(I)}{z^*(I)}\right| \leq \alpha$$
, para todo I .

C. de Souza

Teoria da Complexidade

α -Aproximação

- > Definições: emparelhamento em grafos.



MAXIMAL

MAXIMO

> Algoritmo:

$$CV-2-Aprox(G); \quad (* G = (V, E) *)$$

$$C \leftarrow \{\};$$

Construir um emparelhamento maximal M^* em G;

Para todo $(u, v) \in M^*$ faça $C \leftarrow C \cup \{u, v\}$;

Retornar C.

handout.pdf

$$ightharpoonup$$
 Teorema: $\frac{z^H(I)}{z^*(I)} \leq 2$.

Prova:

Parte I: C é uma cobertura de vértices pois, se existisse uma aresta (u, v) não coberta então M^* não seria maximal.

Parte II:
$$|C| \le 2z^*(I)$$
.

Se C' e M' são respectivamente uma cobertura e um emparelhamento qualquer de G então $|C'| \ge |M'|$. Logo:

$$z^*(I) \ge |M^*| = \frac{|C|}{2} = \frac{z^H(I)}{2}.$$

C. de Souza

Teoria da Complexidade

α -Aproximação

Exemplo 2: bin packing unidimensional.

Dados n arquivos de tamanhos $\{t_1, \ldots, t_n\}$ e disquetes de capacidade de armazenamento C, qual o menor número de disquetes necessários para fazer o *backup* de todos os arquivos?

Observação: supor que $t_i \leq C$ para todo i = 1, ..., n.

> Algoritmo básico:

```
\begin{aligned} & \text{Bin-Aprox}(t,n,C); \\ & \text{Preprocessamento}(t,n); \quad \text{Disquetes-em-uso} \leftarrow \{\}; \quad k \leftarrow 0; \\ & \textbf{Para} \ i = 1 \ \text{at\'e} \ n \ \text{faça} \\ & j \leftarrow \text{Escolher-disquette}(\text{Disquetes-em-uso},i); \\ & \textbf{Se} \ j = 0 \ \text{ent\~ao} \quad (* \ \text{arquivo n\~ao cabe nos disquetes em uso } *) \\ & k + +; \quad \text{Disquetes-em-uso} \leftarrow \text{Disquetes-em-uso} \cup \{k\}; \quad j \leftarrow k; \\ & \textbf{fim-se} \\ & \text{Armazenar}(i,j); \\ & \textbf{fim-para} \\ & \textbf{Retornar} \ k. \end{aligned}
```

C. de Souza

Teoria da Complexidade

handout.pdf June 15, 2012 16

- ▷ Descrição dos procedimentos do algoritmo Bin-Aprox:
 - Preprocessamento: retorna uma nova permutação dos arquivos.
 - Escolher-disquete: retorna o número do disquete em uso onde será armazenado o arquivo i ou zero caso não encontre disquete com capacidade residual de armazenamento suficiente.
 - Armazenar: registra que o arquivo i será alocado ao j-ésimo disquete, atualizando a sua capacidade residual de armazenamento.

C. de Souza

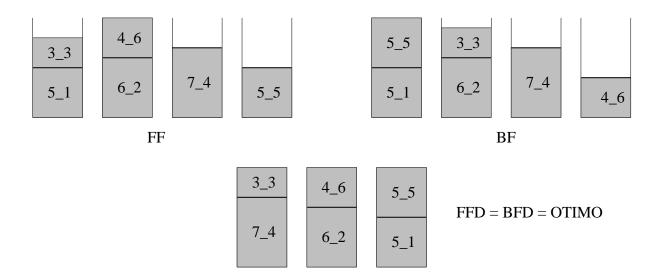
Teoria da Complexidade

α -Aproximação

- - o First Fit (FF): Preprocessamento mantém ordem dos arquivos de entrada e Escolher-disquete procura o disquete em uso de menor índice aonde cabe o arquivo corrente.
 - Best Fit (BF): Preprocessamento mantém ordem dos arquivos de entrada e Escolher-disquete procura o disquete em uso de menor capacidade residual de armazenamento aonde cabe o arquivo corrente.
 - First Fit Decrease (FFD): variante do algoritmo FF onde o Preprocessamento ordena os arquivos em ordem decrescente de tamanho.
 - o Best Fit Decrease (BFD): variante do algoritmo BF onde o Preprocessamento ordena os arquivos em ordem decrescente de tamanho.

C. de Souza Teoria da Complexidade

 \triangleright Exemplo de aplicação dos algoritmos para *bin packing*: C=10, n=6, $t=\{5_1,6_2,3_3,7_4,5_5,4_6\}$ (notação: $i_j\Longrightarrow t_j=i$).



C. de Souza

Teoria da Complexidade

α -Aproximação

Teorema: FF é um algoritmo 2-aproximado para bin packing. <u>Prova</u>: seja b o valor retornado por FF e b^* o valor ótimo. Suponha que os disquetes estão ordenados decrescentemente pela sua capacidade residual. Note que a capacidade residual dos b-1 primeiros disquetes da solução de FF é ≤ C/2. Caso contrário, se dois disquetes tivessem capacidade residual $\geq C/2$ os seus arquivos teriam sido armazenados em um único disquete. Como o total armazenado no disquete b é maior que a capacidade residual dos demais disquetes, tem-se

$$S=\sum_{i=1}^n t_i\geq b\,\frac{C}{2}.$$

Como $b^* \geq \lceil \frac{S}{C} \rceil \geq \frac{S}{C}$, a equação acima implica que $b^* \geq \frac{1}{2} b$.

$$z^{xx}(I) \le \frac{17}{10} z^*(I) + 2$$
 e $z^{xxD}(I) \le \frac{11}{9} z^*(I) + 2$,

onde $xx \in \{FF, BF\}$.

Exemplo 3: 2-aproximação para o TSP-*métrico*, ou seja, quando as distâncias obedecem à *desigualdade triangular*.

```
TSP-Aprox(G); (* G = (V, E) e completo *)

Construir T, uma árvore geradora minima de G;

Construir o grafo C duplicando-se todas as arestas de T;

Enquanto houver vértices de grau > 2 em C faça

v \leftarrow vértice de grau > 2 tal que existem vértices

distintos x e y com (x, v) e (y, v) em C;

Faça C \leftarrow (C \cup (x, y)) - \{(x, v), (y, v)\}; (*)

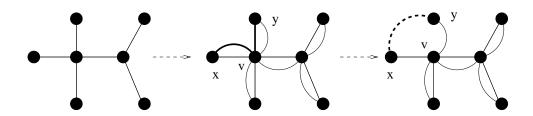
fim-enquanto

Retorne C;
```

C. de Souza

Teoria da Complexidade

α -Aproximação



► Teorema: TSP-Aprox é uma 2-aproximação para o TSP-métrico.

<u>Prova</u>: se z^* é o custo mínimo de um ciclo hamiltoniano em G,

$$\operatorname{custo}(T) \le z^* \Rightarrow 2 \operatorname{custo}(T) \le 2z^*$$
.

Por outro lado, devido aos custos obedecerem à desigualdade triangular, o comando (*) só pode diminuir o custo de C ao longo das iterações. Logo

$$custo(C) \le 2 custo(T) \le 2z^*$$
.

C. de Souza

Teoria da Complexidade

handout.pdf June 15, 2012 19

lpha-Aproximação imes Questão $\mathcal{P} = \mathcal{N}\mathcal{P}$

ightharpoonup Teorema: Não existe uma lpha-aproximação para TSP (genérico) com complexidade polinomial a menos que $\mathcal{P}=\mathcal{NP}$.

<u>Prova</u>: Suponha que $\mathcal{P} \neq \mathcal{NP}$ e que existe um algoritmo polinomial H tal que $\frac{z^H(I)}{z^*(I)} \leq \alpha \in \mathbb{Z}_+$.

Seja G o grafo dado como entrada do problema de decisão do ciclo hamiltoniano (HAM). Construa o grafo G' completando com as arestas que faltam. Atribua custo um às arestas originais e custo αn àquelas que foram inseridas no passo anterior.

Se G tem um ciclo hamiltoniano, então o valor ótimo do TSP é $z^*(G) = n$. Como H é α -aproximado para o TSP

$$\frac{z^{H}(G)}{z^{*}(G)} \leq \alpha \Rightarrow z^{H}(G) \leq \alpha \ n.$$

C. de Souza

Teoria da Complexidade

lpha-Aproximação imes Questão $\mathcal{P} = \mathcal{N}\mathcal{P}$

▷ Prova (cont.):

Assim, quando G tem um ciclo hamiltoniano, o ciclo encontrado por H para o TSP só terá arestas originais de G!

Por outro lado, se G não tem ciclo hamiltoniano, $z^H(G) \ge 1 + \alpha n$.

Portanto, G tem um ciclo hamiltoniano se somente se $z^H(G) \le \alpha$ n, ou seja, H resolve HAM em tempo polinomial.

 \triangleright Absurdo, já que, por hipótese, $\mathcal{P} \neq \mathcal{NP}$.