Teoria da Complexidade

Cid C. de Souza / IC-UNICAMP

Universidade Estadual de Campinas Instituto de Computação

1º semestre de 2012

Revisado por Zanoni Dias

C. de Souza

Teoria da Complexidade

Autor

Prof. Cid Carvalho de Souza Universidade Estadual de Campinas (UNICAMP) Instituto de Computação Av. Albert Einstein nº 1251 Cidade Universitária Zeferino Vaz

Email: cid@ic.unicamp.br

13083-852, Campinas, SP, Brasil

Direitos autorais

- Este material só pode ser reproduzido com a autorização do autor.
- Os alunos dos cursos do Instituto de Computação da UNICAMP bem como os seus docentes estão autorizados (e são bem vindos) a fazer <u>uma</u> cópia deste material para estudo individual ou para preparação de aulas a serem ministradas nos cursos do IC/UNICAMP.
- Se você tem interesse em reproduzir este material e não se encontra no caso acima, por favor entre em contato comigo.
- Críticas e sugestões são muito bem vindas!

Campinas, agosto de 2010.

Cid

C. de Souza

Teoria da Complexidade

Tratamento de problemas \mathcal{NP} -difíceis: branch & bound.

- - Problemas cujas soluções podem ser representadas por tuplas (vetores) de tamanho fixo ou variável da forma (x_1, \ldots, x_n) .
 - Solucionar o problema equivale a encontrar <u>uma</u> tupla que otimiza uma função critério $P(x_1, ..., x_n)$.
- ⊳ Restrições:
 - Explícitas: especificam os domínios (finitos) das variáveis na tupla.
 - *Implícitas*: relações entre as variáveis da tupla que especificam quais delas respondem ao problema.

Branch & Bound: conceitos básicos

- → Métodos de exploração do espaço de estados (EE):
 - nós ativos: aqueles que ainda têm filhos a serem gerados.
 - <u>nós amadurecidos</u>: aqueles em que todos os filhos já foram gerados ou não devam ser mais expandidos de acordo com a função limitante.
 - <u>nó corrente</u>: aquele que está sendo explorado.

C. de Souza

Teoria da Complexidade

Tratamento de problemas \mathcal{NP} -difíceis: branch & bound

- Exploração do espaço de estados: todos os filhos de um nó da árvore de espaço de estados são gerados ao mesmo tempo.
- Estratégia do melhor limitante (best bound): próximo nó a ser explorado é indicado por uma função classificadora.
- Em cada nó da árvore, a *função classificadora* estima o melhor valor da função objetivo no subespaço das soluções representadas por aquele nó.
- Os nós são amadurecidos por: (1) inviabilidade (não satisfazer as restrições implícitas); (2) limitante (função classificadora indica que ótimo não pode ser atingido naquela subárvore) ou (3) otimalidade (ótimo da subárvore já foi encontrado).

Algoritmo genérico de Branch & Bound

```
B&B(k); (* considerando problema de maximização *)
     Nós-ativos \leftarrow {nó raiz}; melhor-solução \leftarrow {}; \underline{z} \leftarrow -\infty;
     Enquanto (Nós-ativos não está vazia) faça
          Escolher um nó k em Nós-ativos para ramificar;
          Remover k de Nós-ativos;
          Gerar os filhos de k: n_1, \ldots, n_q e computar os \overline{z}_{n_i} correspondentes;
                    (* \overline{z}_{n_i} \leftarrow -\infty se restrições implícitas não são satisfeitas *)
          Para i = 1 até q faça
               se (\overline{z}_{n_i} \leq \underline{z}) então amadurecer o nó n_i;
               se não
                    Se (n<sub>i</sub> representa uma solução completa) então
                         \underline{z} \leftarrow \overline{z}_{n_i}; melhor-solução \leftarrow \{solução de n_i \};
                    se não adicionar n_i à lista Nós-ativos.
               fim-se
          fim-para
     fim-enquanto
fim.
```

C. de Souza

Teoria da Complexidade

Branch & Bound: mochila binária (BKP)

- Dados n itens com pesos positivos w_1, \ldots, w_n e valores positivos c_1, \ldots, c_n , encontrar um subconjunto de itens de **valor máximo** e cujo peso não exceda a capacidade da mochila dada por um valor positivo W.
- Função classificadora: como estimar o valor da função objetivo?
- > Relaxação: posso levar qualquer fração de um item.
- ightharpoonup Algoritmo para o problema relaxado quando os itens estão ordenados de forma que $\frac{c_1}{w_1} \ge \frac{c_2}{w_2} \ge \ldots \ge \frac{c_n}{w_n}$.
- ▷ Por quê funciona?

Branch & Bound: mochila binária (BKP)

```
\begin{array}{l} {\tt Calcula\_Z}(W,C,k); \ (* \ {\tt funç\~ao} \ {\tt classificadora} \ {\tt para} \ {\tt BKP} \ *) \\ j \leftarrow k+1; \\ W' \leftarrow W; \\ C' \leftarrow C; \\ {\tt Enquanto} \ W' \neq 0 \ {\tt faça} \\ x_j \leftarrow \min \{\frac{W'}{w_j},1\}; \\ W' \leftarrow W' - w_j x_j; \\ C' \leftarrow C' + c_j x_j; \\ j \leftarrow j+1; \\ {\tt enquanto} \\ {\tt Retornar} \ C'; \\ {\tt fim} \end{array}
```

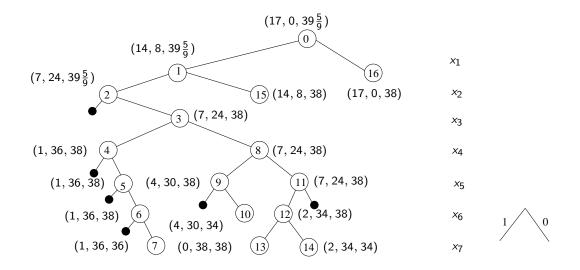
C. de Souza

Teoria da Complexidade

Branch & Bound: mochila binária (BKP)

- Parte explorada da árvore de espaço de estados (próxima transparência).
- ⊳ Legenda: $(W', C, \overline{z}_{n_i})$ onde W' é a capacidade restante na mochila, C é o custo da solução parcial correspondente ao nó e \overline{z}_{n_i} é o valor do limitante obtido pela função classificadora no nó.

Branch & Bound: problema da mochila (cont.)



Ordem de geração dos nós: 0, 1, 16, 2, 15, 3, 4, 8, 5, 6, 7, 9, 11, 10, 12, 13, 14

C. de Souza

Teoria da Complexidade

Branch & Bound: Flowshop Scheduling (FSP)

- Dados de entrada: conjunto de n tarefas J_1, \ldots, J_n cada uma delas composta de duas subtarefas sendo que a primeira deve ser executada na máquina 1 e a segunda na máquina 2, somente após encerrada a execução da primeira. O tempo de processamento da tarefa J_j na máquina i é dado por t_{ij} .
- \triangleright **Definição**: o tempo de término da tarefa J_j na máquina i é dado por f_{ij} .
- ▶ Pede-se: encontrar uma seqüência de execução das subtarefas nas máquinas de modo que a soma dos tempos de término na máquina 2 seja mínima. Ou seja, a função objetivo é:

$$\min f = \sum_{j=1}^n f_{2j}.$$

C. de Souza

- > Resultados conhecidos para o FSP:
 - ullet a versão de decisão de FSP é \mathcal{NP} -completo.
 - Existe um escalonamento ótimo no qual a següência de execução das tarefas é a mesma nas duas máquinas (permutation schedules) e no qual não há tempo ocioso desnecessário entre as tarefas.
- \triangleright Exemplo: n = 3.

t_{ij}	Máquina 1	Máquina 2
Tarefa 1	2	1
Tarefa 2	3	1
Tarefa 3	2	3

C. de Souza

Teoria da Complexidade

Branch & Bound: (FSP) (cont.)

 \triangleright Permutation Schedule ótimo: f = 18

 \triangleright Outro Permutation Schedule: f = 21

- Representação da solução: como existe uma solução ótima que é um *permutation schedule*, o natural seria utilizar uma tupla (x_1, \ldots, x_n) de tamanho fixo onde x_i é o número da i-ésima tarefa da permutação.
- Suponha que num dado nó da árvore as tarefas de um subconjunto M de tamanho r tenham sido escalonadas. Seja t_k , $k=1,\ldots,n$, o índice da k-ésima tarefa em qualquer escalonamento que possa ser representado por um nó na subárvore cuja raiz é o nó corrente. O custo deste escalonamento será:

$$f = \sum_{i \in M} f_{2i} + \sum_{i \notin M} f_{2i}.$$

C. de Souza

Teoria da Complexidade

Branch & Bound: FSP (cont.)

Como o primeiro termo da soma já está definido, as seguintes funções classificadoras poderiam estimar o valor do outro termo:

$$S_1 = \sum_{k=r+1}^{n} [f_{1,t_r} + (n-k+1)t_{1,t_k} + t_{2,t_k}],$$

na qual assume-se que cada tarefa começa a ser executada na máquina 2 imediatamente após a sua conclusão na máquina 1, e

$$S_2 = \sum_{k=r+1}^{n} [\max(f_{2,t_r}, f_{1,t_r} + \min_{i \notin M} t_{1i}) + (n-k+1)t_{2,t_k}],$$

na qual assume-se que cada tarefa começa na máquina 2 imediatamente depois que a tarefa precedente termina sua execução na máquina 2.

C. de Souza

- \triangleright A minimização de S_1 pode ser obtida ordenando-se as tarefas na ordem crescente dos valores de t_{1,t_k} .
- \triangleright A minimização de S_2 pode ser obtida ordenando-se as tarefas na ordem crescente dos valores de t_{2,t_k} .
- ightharpoonup Se \hat{S}_1 e \hat{S}_2 são os mínimos acima, tem-se um *limitante inferior* facilmente calculado por:

$$f \geq \sum_{i \in M} f_{2i} + \max(\hat{S}_1, \hat{S}_2).$$

C. de Souza

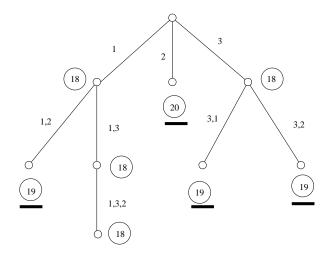
Teoria da Complexidade

Branch & Bound: FSP (cont.)

Exemplo (continuação): os valores computados para estimar f
 para os três nós filhos da raiz seriam:

$$f = \begin{cases} 18 & \text{se a tarefa 1 for escalonada primeiro;} \\ 20 & \text{se a tarefa 2 for escalonada primeiro;} \\ 18 & \text{se a tarefa 3 for escalonada primeiro.} \end{cases}$$

> Parte da árvore de espaços gerada: próxima transparência.



C. de Souza

Teoria da Complexidade

Tratamento de problemas \mathcal{NP} -difíceis: Programação Linear Inteira (PLI)

Problema PLI *Puro*:

$$\begin{array}{cccc} \min & z = cx \\ \text{Sujeito a} & Ax & \leq & b \\ & x & \in & \mathbb{Z}_{+}^{n} \end{array}$$

Problema PLI Misto:

ightharpoonup Versão de *decisão*: dada uma matriz inteira $A:m\times n$, dois vetores inteiros $c:1\times n$ e $b:m\times 1$ e um valor inteiro q, determinar se existe $x\in\mathbb{Z}^n$ tal que $Ax\leq b, x\geq 0$ e $cx\leq q$.

Programação Linear Inteira (PLI)

- ► Teorema: PLI ∈ NP.
 É possível provar que se o sistema tem solução então existe uma solução (vetor) cujo valor de cada componente é limitado polinomialmente pelo tamanho entrada, ou seja, existe um certificado sucinto para PLI.
- ► Teorema: PLI ∈ NP-difícil.
 Basta provar que um problema de NP-difícil se reduz
 polinomialmente a PLI. Mas isso é equivalente a formular o
 problema usando programação linear inteira!

C. de Souza

Teoria da Complexidade

Programação Linear Inteira: formulações

- ightharpoonup Exemplo 1: SAT $\propto_{\mathsf{poli}} \mathsf{PLI}.$
- ⊳ Instância do SAT: $\mathcal{F} = (x + y + \overline{z}).(\overline{x} + \overline{y} + z).(y + \overline{z})$ com m = 3 cláusulas e n = 3 variáveis.
- \triangleright Formulação PLI: criar 6 variáveis binárias $x, y, z, \overline{x}, \overline{y}$ e \overline{z} que terão valor um se as literais correspondentes na fórmula \mathcal{F} forem verdadeiras e terão valor zero caso contrário.

min
$$w=x$$
 (* qualquer função linear serve! *) Sujeito a $x+y+\overline{z} \geq 1$, $\overline{x}+\overline{y}+z \geq 1$, $y+\overline{z} \geq 1$, $x+\overline{x} = 1$, $y+\overline{y} = 1$, $z+\overline{z} = 1$, $x,y,z,\overline{x},\overline{y},\overline{z} \in \{0,1\}$

- \triangleright Exemplo 2: CLIQUE \propto_{poli} PLI.
- ightharpoonup Instância de CLIQUE: grafo G=(V,E) com |V|=n e |E|=m.
- \triangleright Formulação PLI: para cada vértice $u \in V$ cria-se uma variável binária x_u que vale um se e somente se o vértice u está na clique.
- \triangleright Função objetivo (CLIQUE de maior tamanho): $\max \sum_{u \in V} x_u$.
- ightharpoonup Restrições: para cada aresta (u,v) que não está em E pelo menos um dos vértices não pode estar na clique, ou seja, $x_{u} + x_{v} \leq 1$.

$$\begin{array}{lll} \max & z = \sum_{u \in V} x_u \\ \text{Sujeito a} & x_u + x_v & \leq & 1, & \forall (u,v) \not \in E \\ & x_u & \in & \{0,1\} & \forall u \in V. \end{array}$$

C. de Souza Teoria da Complexidade

Programação Linear Inteira: formulações (cont.)

- \triangleright Exemplo 3 (cobertura de vértices): CV \propto_{poli} PLI.
- \triangleright Instância de CV: grafo G = (V, E) com n vértices e m arestas.
- \triangleright Formulação PLI: para cada $u \in V$ cria-se uma variável binária x_u que vale um se e somente se o vértice u está na cobertura.
- $\min \sum_{u \in V} x_u$.
- \triangleright Restrições: para cada aresta (u, v) de E pelo menos um dos seus vértices extremos está na cobertura, ou seja, $x_u + x_v \ge 1$.

$$\begin{array}{lll} & \min & z = \sum_{u \in V} x_u \\ & \text{Sujeito a} & x_u + x_v & \geq & 1, & \forall (u,v) \in E \\ & x_u & \in & \{0,1\} & \forall u \in V. \end{array}$$

- ightharpoonup Exemplo 4 (3 coloração): 3COLOR \propto_{poli} PLI.
- ▷ Instância de 3COLOR: grafo G = (V, E) com |V| = n e |E| = m.
- ⊳ Formulação PLI (variáveis):
 - uma variável binária x_{uk} para cada vértice $u \in V$ e cada cor $k \in \{1, 2, 3\}$ tal que $x_{uk} = 1$ se e somente se o vértice u foi colorido com a cor k.
 - uma variável binária y_k para toda cor $k \in \{1, 2, 3\}$ cujo valor será um se e somente se algum vértice receber a cor k.
- > Função objetivo (minimizar o número de cores usadas):

$$\min \sum_{k=1}^{3} y_k.$$

C. de Souza

Teoria da Complexidade

Programação Linear Inteira: formulações (cont.)

- - Todo vértice deve receber exatamente uma cor, ou seja,

$$\sum_{k=1}^{3} x_{uk} = 1, \forall u \in V.$$

 Se um vértice recebe uma cor k, esta cor tem que ser usada:

$$x_{uk} < y_k, \forall u \in V, k = 1, 2, 3.$$

 Uma cor só pode ser usada se algum vértice tiver aquela cor:

$$y_k \leq \sum_{u \in V} x_{uk}, k = 1, 2, 3.$$

• Os vértices extremos de uma aresta não podem ter a mesma cor: $x_{uk} + x_{vk} \le 1, \forall (u, v) \in E, k = 1, 2, 3.$

C. de Souza

- \triangleright Exemplo 5 (*Scheduling* com janela de tempo): SJT \propto_{poli} PLI.
- ightharpoonup Instância de SJT: um conjunto T de n tarefas e, para cada $t \in T$, um prazo de início r_t , uma duração ℓ_t e um prazo de conclusão d_t , sendo r_t , d_t e ℓ_t inteiros não-negativos. Decidir se existe um seqüenciamento viável das tarefas de T em uma máquina.
- \triangleright Variáveis naturais: para todo $t \in T$ o instante de início de execução da tarefa é dado por σ_t .
- \triangleright Função objetivo: qualquer função linear serve, e.g., min σ_1 .
- > Restrições envolvendo um única tarefa:

$$egin{array}{lll} \sigma_t & \geq & r_t, & orall t \in \mathcal{T} & ext{(início da tarefa)} \ \sigma_t + \ell_t & \leq & d_t, \,, & orall t \in \mathcal{T} & ext{(fim da tarefa)} \end{array}$$

C. de Souza

Teoria da Complexidade

Programação Linear Inteira: SJT (cont.)

$$y_{tt'} = \left\{egin{array}{l} 1, ext{se } t ext{ antecede } t' \ 0, ext{caso contrário} \end{array}
ight.$$
 , para todo par $\{t,t'\} \in \mathcal{T}.$

> Restrições envolvendo pares de tarefas:

$$y_{tt'} + y_{t't} = 1, \qquad \forall \{t, t'\} \in T$$

$$\sigma_t + \ell_t \leq \sigma_{t'} + (1 - y_{tt'})M, \quad \forall \{t, t'\} \in T$$

$$\sigma_{t'} + \ell_{t'} \leq \sigma_t + y_{tt'}M, \quad \forall \{t, t'\} \in T$$

onde M é um valor suficientemente grande. Por exemplo, M poderia ser $\max_{t \in T} \{d_t\} - \min_{t \in T} \{r_t\}$.

14

Exemplo 5 (Problema de Transporte): uma grande empresa de consultoria possui m escritórios e n clientes espalhados em todo Brasil. No escritório i estão baseados a_i consultores e cada cliente j, para $j=1,\ldots,n$, contratou b_j consultores. O custo de deslocar \underline{um} consultor do escritório i para o cliente j é c_{ij} .

Equacionar este problema como um PLI.

 \triangleright Variáveis: para todo par (escritório i, cliente j), define-se a variável **inteira** x_{ij} que representa o número de consultores que serão deslocados do escritório i para o cliente j.

C. de Souza

Teoria da Complexidade

Programação Linear Inteira: formulações (cont.)

▷ A formulação do problema como um PLI é dada por:

min
$$z=\sum_{i=1}^m\sum_{j=1}^nc_{ij}x_{ij}$$
 Sujeito a $\sum_{j=1}^nx_{ij}\leq a_i, \quad i=1,\ldots,m$ $\sum_{i=1}^mx_{ij}=b_j, \quad j=1,\ldots,n$ $x_{ij}\in\mathbb{Z}_+^n, \quad i=1,\ldots,m$ e $j=1,\ldots,n.$

▷ Observação: este problema pode ser resolvido em tempo polinomial!

C. de Souza

- **Capacitado** (UFL)): Dado um conjunto $N = \{1, ..., n\}$ de locais potenciais para instalação de depósitos e um conjunto $M = \{1, \dots, m\}$ de clientes, suponha que f_i seja o custo de instalar o depósito em j e que c_{ij} seja o custo de transportar toda demanda de mercadorias do depósito j para o cliente i. Decidir quais depósitos instalar e que fração da demanda de cada cliente deve ser atendida por cada depósito.

$$y_j = \left\{ egin{array}{l} 1, ext{se for instalado um depósito em } j \\ 0, ext{caso contrário} \end{array}
ight.$$

C. de Souza

Teoria da Complexidade

Programação Linear Inteira: formulações (cont.)

 $x_{ii} \in [0,1]$: fração da demanda do cliente i atendida pelo depósito j.

- - satisfação da demanda: $\sum_{j \in N} x_{ij} = 1, \forall i \in M$. uso do depósito j: $\sum_{i \in M} x_{ij} \leq my_j, \forall j \in N$.
- ightharpoonup Função objetivo: $\min z = \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j$.

Exemplo 7 (Problema do planejamento da produção capacitado (CLS)): decidir as quantidades a produzir de um certo produto em um horizonte de planejamento de n períodos de tempo. Os dados de entrada são:

 f_t : **custo fixo** de produção no período t;

 p_t : custo unitário de produção no período t;

 h_t : custo unitário de estocagem no período t;

 d_t : demanda no período t;

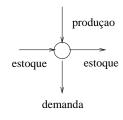
 C_t : a capacidade de produção no período t;

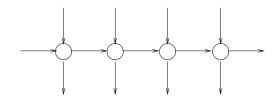
 s_0, s_n : os estoques inicial e final do produto.

C. de Souza

Teoria da Complexidade

Programação Linear Inteira: formulações (cont.)





⊳ Variáveis:

 x_t : quantidade produzida no período t;

 s_t : estoque no período t;

 $y_t: \left\{ egin{array}{ll} 1, \ \mbox{se for decidido produzir no período } t; \\ 0, \ \mbox{caso contrário}. \end{array}
ight.$

> Formulação:

$$\begin{array}{lll} & \text{min} & z=\sum_{t=1}^n(p_tx_t+h_ts_t+f_ty_t)\\ & \text{Sujeito a} & s_{t-1}+x_t&=&d_t+s_t, \quad \text{para } t=1,\ldots,n \quad (1)\\ & & x_t&\leq &C_ty_t, \quad \text{para } t=1,\ldots,n \quad (2)\\ & s_t\geq 0, x_t\geq 0, \text{para } t=1,\ldots,n,\\ & y_t\in\{0,1\}, \text{ para } t=1,\ldots,n. \end{array}$$

onde (1) representa a conservação de fluxo no período t e (2) restringe a produção no período t a C_t ou a zero dependendo se a decisão foi de produzir ou não naquele período.

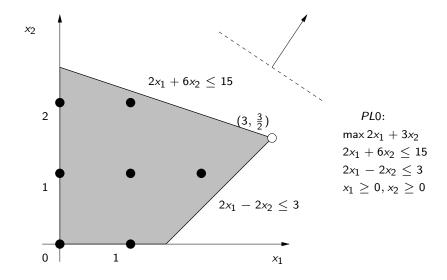
C. de Souza

Teoria da Complexidade

Prog. Linear Inteira: branch & bound

- \triangleright No caso de variáveis binárias, substituir $x \in \{0,1\}$ por 0 < x < 1.
- \triangleright Divisão do espaço de soluções: mais comum é usar a regra da variável "mais fracionária", onde dada a solução ótima x^* da relaxação linear, encontra-se a variável x cujo máximo das diferenças $(x-\lfloor x^* \rfloor)$ e $(\lceil x^* \rceil x)$ seja o mais próximo de 0.5 e cria-se dois PLIs a partir do PLI corrente acrescentando em um deles a restrição $x \leq |x^*|$ e no outro a restrição $x \geq \lceil x^* \rceil$.

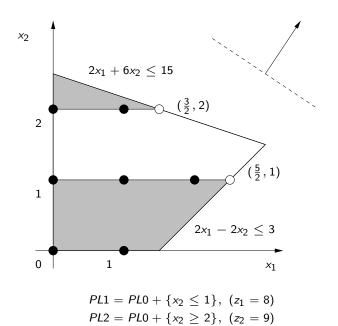
Prog. Linear Inteira: branch & bound (exemplo)



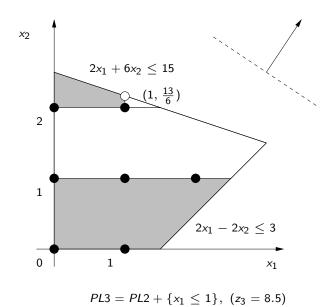
C. de Souza

Teoria da Complexidade

Prog. Linear Inteira: branch & bound (exemplo)



Prog. Linear Inteira: branch & bound (exemplo)

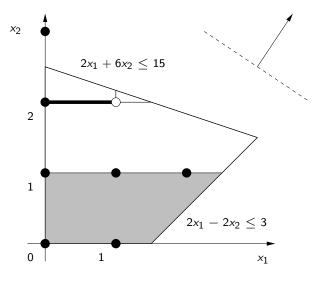


 $\textit{PL4} = \textit{PL2} + \{x_1 \geq 2\}, \; (\text{invi\'avel})$

C. de Souza

Teoria da Complexidade

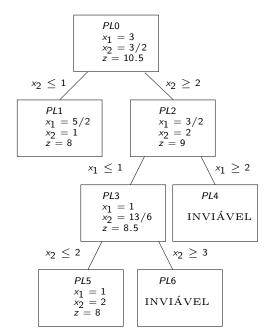
Prog. Linear Inteira: branch & bound (exemplo)



$$PL5 = PL3 + \{x_2 \le 2\}, (z_5 = 8)$$

 $PL6 = PL3 + \{x_2 \ge 3\}, (inviável)$

Prog. Linear Inteira: branch & bound (exemplo)



C. de Souza