Classificação Multirrótulos de Radiografias de Tórax Utilizando Aprendizado de Máquina Profundo

Vinicius Teixeira de Melo

Orientador: Prof. Dr. Zanoni Dias Coorientador: Prof. Dr. Hélio Pedrini

Instituto de Computação Universidade Estadual de Campinas

08 de Abril de 2021

- 1. Introdução
- 2. Conceitos
- 3. Bases de Dados
- 4. Trabalhos Relacionados
- 5. DuaLAnet
- 6. Conclusões e Trabalhos Futuros

- Radiografia de Tórax é um dos exames mais comuns.
- Importância dos diagnósticos no estágio inicial das doenças.
- Diagnóstico de pneumonia¹ e COVID-19.

¹https://redepara.com.br/Noticia/217040/pneumonia-a-doenca-silenciosa-que-mata

Radiografia de tórax utilizada para analisar o primeiro paciente com COVID-19 nos Estados Unidos².

²https://www.healthimaging.com/media/22185

- Diagnóstico Auxiliado por Computador.
- Classificação de Radiografias de Tórax.

- Sistemas essenciais para auxiliar os médicos.
- Melhorar a acurácia do diagnóstico.
- Consistência da interpretação da imagem radiológica.
- Interpretação automatizada da radiografia de tórax.

Classificação de Radiografias de Tórax

- Métodos de Aprendizado Profundo.
- Problemas de classificação multirrótulo de imagens de radiografias.

filtration. (b) Radiografia normal.

Exemplos de radiografias da base de dados ChestX-ray14 [1].

- Conjunto de imagens de radiografia de tórax e seus respectivos rótulos.
- Utilização de métodos de aprendizagem profunda.
- Geração de vetores de probabilidade dos rótulos.

Investigar técnicas recentes de classificação de imagens e propor uma abordagem baseada em Redes Neurais Profundas para classificação de radiografias de tórax.

- Propor um método de classificação de imagens de radiografias de tórax.
- Utilizar técnicas para suprir o desbalanceamento dos dados.
- Validar o método proposto em diferentes bases de dados.
- Comparar e avaliar o método proposto.
- Publicar os resultados.

- É possível obter resultados competitivos com os trabalhos recentes em classificação de imagens de radiografias de tórax utilizando redes neurais profundas?
- Como os pesos de redes pré-treinadas na base ImageNet e, em seguida, aperfeiçoados para o domínio médico, comparam-se aos pesos aprendidos somente a partir de imagens médicas?
- Como a complementaridade entre redes neurais profundas e técnicas de atenção podem contribuir na nossa abordagem?

- Mecanismos de Atenção:
 - Class Activation Mapping.
 - Soft Activation Mapping.
 - Feature Pyramid Attention.
- Acúmulo de Gradiente.

- Considera a identificação de uma classe em específico.
- Agrupamento Médio Global (Global Average Pooling GAP).
- Treinado de forma fracamente supervisionada.

- Considera regiões discriminativas mais locais.
- Proposto com o objetivo de classificar nódulos pulmonares.
- Agrupamento Médio (AVG pooling).

- Extrai características de diferentes escalas.
- Camadas convolucionais 3×3 , 5×5 e 7×7 .
- Multiplicação pixel a pixel.

Acúmulo de Gradiente

Método de acúmulo de gradiente.

- ChestX-ray14 [1].
- CheXpert [2].

• 112120 imagens de 30805 pacientes.

Nodule

Emphysema

Pneumonia

Fibrosis

Pleural Thickening

Effusion

Infiltration

Mass

Edema

Hernia

Normal

Ilustração de uma radiografia para cada patologia existente na base de dados ChestX-ray14 [1] e uma radiografia sem patologias (normal).

Classe	Treinamento	Validação	Teste
Atelectasis	7324	956	3255
Cardiomegaly	1468	239	1065
Effusion	7631	1028	4648
Infiltration	11783	1999	6088
Mass	3569	465	1712
Nodule	4134	574	1615
Pneumonia	770	106	477
Pneumothorax	2272	365	2661
Consolidation	2524	328	1815
Edema	1237	141	925
Emphysema	1252	171	1093
Fibrosis	1185	66	435
Pleural Thickening	1973	269	1143
Hernia	122	19	86
Normal	46376	4124	9912

Divisão da base de dados ChestX-ray14 [1].

Distribuição do número de patologias por imagem na base ChestX-ray14 [1].

• 224316 imagens de 65240 pacientes.

Edema

Enlarged

Pneumonia

Cardiomegaly

Lung Opacity

Atelectasis

Pneumothorax

Pleural Other

Support Devices

Ilustração de uma radiografia para cada classe existente na base de dados CheXpert [2].

Classe	Treinamento	Validação	Teste
No Finding	17061	1228	4130
Enlarged Cardiomediastinum	7603	1038	2266
Cardiomegaly	19460	2691	4917
Lung Opacity	70918	12533	22256
Lung Lesion	6892	609	1686
Edema	33715	7057	11519
Consolidation	10354	1705	2757
Pneumonia	4520	501	1026
Atelectasis	22023	3797	7636
Pneumothorax	13919	2191	3346
Pleural Effusion	59313	10507	16434
Pleural Other	2928	168	428
Fracture	6436	746	1858
Support Devices	76713	14859	24536

Divisão da base de dados CheXpert [2].

Distribuição do número de patologias por imagem na base CheXpert [2].

- ChestX-ray14 [1].
- CheXpert [2].

Método	Batch	Tamanho	Recursos	AUROC
U-DCNN [1]	8	$1024{ imes}1024$	4 imes Titan X	0,745
Capsule-Net [3]	-	256×256	GTX-1080Ti	0,775
Thorax-Net [4]	24	224×224	Titan XP	0,787
AGCL [5]	-	$512{ imes}512$	-	0,803
CheXNet [6]	16	224×224	-	0,807
DNetLoc [7]	128	$1024\!\times\!1024$	-	0,807
CRAL [8]	64	224×224	-	0,816
DualCheXNet [9]	8	$512{ imes}512$	4 imes Titan XP	0,823

Informações sobre os trabalhos relacionados à base de dados ChestX-ra14 [1]. As posições com o símbolo "-" indicam que a informação não foi informada no trabalho.

Método	Batch	Tamanho	Recursos	AUROC
CheXclusion [10]	32	224×224	Titan RTX	0,808
ConVIRT [11]	48	$256{ imes}256$	NVIDIA GPU 16GB	0,881
DenseNet161 [12]	32	320×320	$2 \times$ RTX 2080ti	0,882
CheXpert [2]	16	320×320	-	0,895

Informações sobre os trabalhos relacionados à base de dados CheXpert [2]. As posições com o símbolo "-" indicam que a informação não foi informada no trabalho.

DuaLAnet

Ilustração do método DuaLAnet.

DuaLAnet

Ilustração dos classificadores utilizados no método DuaLAnet: (a) módulo inserido no final das redes neurais A e B; (b) módulo usado para a classificação do vetor com a concatenação do *pooling* global das redes neurais A e B.

Estratégia de Treinamento

Algoritmo 1: Algoritmo de Treinamento do Método

Entrada : Imagens originais e os vetores de rótulos.

Saída : Predição final baseada nos resultados dos classificadores C_a , C_b e C_f .

Inicialização: Inicializa as DCNNs com os pesos pré-treinados na ImageNet; a camada FC no classificador de fusão C_f tem seus pesos inicializados de forma randômica.

repita

Atualiza os pesos do ramo da Rede Neural A: Fixa os pesos do ramo da Rede

Neural B e atualiza os pesos do ramo da Rede Neural A, o classificador auxiliar C_a e o classificador de fusão C_f .

até convergir ou o número máximo de iterações for alcançado;

repita

Atualiza os pesos do ramo da Rede Neural B: Fixa os pesos do ramo da Rede Neural A e atualiza os pesos do ramo da Rede Neural B, o classificador auxiliar C_b e o classificador de fusão C_f .

até convergir ou o número máximo de iterações for alcançado;

repita

Atualiza a rede neural por inteira: Atualiza os pesos do ramo da Rede Neural A e do ramo da Rede Neural B, os dois classificadores auxiliares $C_a \in C_b$, e o classificador de fusão C_f .

até convergir ou o número máximo de iterações for alcançado;

$$L = \gamma_1 L_f + \gamma_2 L_a + \gamma_3 L_b$$

- γ_1 , γ_2 e $\gamma_3 \rightarrow$ [0.0, 1.0].
- $L_f \rightarrow$ ramo de fusão.
- $L_a \rightarrow$ ramo da rede neural A.
- $L_b \rightarrow$ ramo da rede neural B.

- Pré-Treinamento.
- Aumentação de Dados.
- Extratores de Características.

- Atelectasis, Pneumonia, Pneumothorax e Consolidation.
- Treinamento cruzado.
- DenseNet169.

- Rotação Horizontal.
- Recorte Centralizado.
- $1024 \times 1024/2048 \times 2048 \rightarrow 556 \times 556 \rightarrow 512 \times 512$.

Extratores de Características

- DenseNet121.
- DenseNet161.
- DenseNet169.
- DenseNet201.
- VGGNet16.
- ResNet50.
- ResNet101.
- ResNet152.
- EfficientNetB5.

- Pytorch.
- Otimizador Adam e $lr = 1 \times 10^{-4}$.
- 30 épocas.
- GPU NVIDIA TITAN V 12 GB.
- Acúmulo de Gradiente.

$$\begin{split} \mathsf{TPR} &= \mathsf{Sensibilidade} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}\\ \mathsf{Especificidade} &= \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}}\\ \mathsf{FPR} &= 1 - \mathsf{Especificidade} = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}} \end{split}$$

Métrica de Avaliação

- ChestX-ray14 [1].
- CheXpert [2].

Método	Atel	Card	Effu	Infi	Mass	Nodu	Pneu1	Pneu2	Cons	Edem	Emph	Fibr	РТ	Hern	Média
D169-CAM	0,7670	0,8733	0,8216	0,7068	0,8138	0,7610	0,7271	0,8358	0,7394	0,8363	0,9073	0,8143	0,7714	0,9046	0,8057
D169-CAM-PRE	0,7664	0,8762	0,8294	0,7058	0,8131	0,7757	0,7250	0,8497	0,7408	0,8309	0,9106	0,8158	0,7780	0,9039	0,8090

Resultado do pré-treinamento.

DenseNet121 0,7705 0,8550 0,8283 0,6984 0,8180 0,7314 0,8702 0,7342 0,8455 0,9195 0,8050 0,7838 0,8091 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8050 0,7838 0,8091 0,8011 0,8011 0,8011 0,8011 0,8011 0,8011 0,8011 0,8011 0,8011 0,	Método	Atel	Card	Effu	Infi	Mass	Nodu	Pneu1	Pneu2	Cons	Edem	Emph	Fibr	РТ	Hern	Média
DenseNet161 0,7771 0,8667 0,8287 0,7111 0,8120 0,7248 0,7261 0,8252 0,7414 0,8352 0,9244 0,8075 0,7810 0,8081 0,8081 DenseNet161 0,7766 0,8631 0,8253 0,7010 0,8232 0,7310 0,7300 0,8609 0,7430 0,8242 0,9335 0,8050 0,7669 0,8101 DenseNet201 0,7760 0,8568 0,8202 0,7802 0,7230 0,7640 0,8120 0,7810 0,8160 0,8161 0,8101 0,8161 0,	DenseNet121	0,7705	0,8550	0,8283	0,6984	0,8180	0,7850	0,7314	0,8702	0,7342	0,8445	0,9195	0,8050	0,7838	0,8831	0,8091
DenseNet169 0.7766 0.8631 0.8258 0.7091 0.8232 0.7310 0.7300 0.8649 0.7433 0.8429 0.9335 0.8059 0.7669 0.8110 DenseNet201 0.7786 0.8568 0.8270 0.7080 0.8228 0.7230 0.7630 0.8429 0.9335 0.8050 0.7669 0.8110 VGG16 0.7785 0.8020 0.8202 0.7820 0.7230 0.7640 0.8120 0.7843 0.7230 0.7430 0.8120 0.9137 0.8100 0.7866 0.8101 VGG16 0.7555 0.8002 0.8204 0.7042 0.7892 0.7507 0.7403 0.7230 0.8210 0.9137 0.8100 0.7669 0.7822 ResNet50 0.7557 0.8102 0.7750 0.7130 0.8512 0.7130 0.8124 0.8102 0.7143 0.8102 0.9144 0.8028 0.7577 0.7145 0.7145 0.7147 0.8129 0.9141 0.8028 0.7143 0.8102 0.8161	DenseNet161	0,7771	0,8667	0,8287	0,7111	0,8126	0,7748	0,7261	0,8526	0,7414	0,8352	0,9244	0,8075	0,7810	0,8881	0,8091
DenseNet201 0,7780 0,8568 0,8270 0,7080 0,8282 0,7230 0,7230 0,7460 0,8120 0,7860 0,8131 0,8160 0,8161 VGG16 0,7505 0,8002 0,8002 0,7042 0,7802 0,7700 0,7802 0,7700 0,7802 0,7803 0,7803 0,7803 0,7802 0,7802 0,7802 0,7802 0,7802 0,7803 0,7803 0,7802 0,7802 0,7803 0,7803 0,7803 0,7803 0,7804 0,7944 ResNet102 0,7653 0,8180 0,7122 0,8124 0,7705 0,7207 0,8298 0,7203 <td>DenseNet169</td> <td>0,7766</td> <td>0,8631</td> <td>0,8258</td> <td>0,7091</td> <td>0,8232</td> <td>0,7815</td> <td>0,7300</td> <td>0,8609</td> <td>0,7433</td> <td>0,8429</td> <td>0,9335</td> <td>0,8095</td> <td>0,7669</td> <td>0,8871</td> <td>0,8110</td>	DenseNet169	0,7766	0,8631	0,8258	0,7091	0,8232	0,7815	0,7300	0,8609	0,7433	0,8429	0,9335	0,8095	0,7669	0,8871	0,8110
VGG16 0,7505 0,8002 0,8204 0,7042 0,7892 0,7505 0,7094 0,8574 0,7230 0,8205 0,9172 0,7493 0,7692 0,7822 ResNet50 0,7545 0,8421 0,8214 0,6203 0,7867 0,7145 0,7130 0,8521 0,7199 0,8205 0,9172 0,7493 0,7692 0,7877 0,7493 0,7693 0,7877 0,7893 0,7877 0,7893 0,7874 0,7874 0,7893 0,7874 0,7874 0,7893 0,7874 0,7874 0,7893 0,7874 0,7874 0,7893 0,7874 0,7874 0,7893 0,7874 0,7874 0,7893 0,7874	DenseNet201	0,7786	0,8568	0,8276	0,7008	0,8228	0,7823	0,7230	0,8692	0,7446	0,8426	0,9137	0,8150	0,7866	0,8831	0,8105
ResNet50 0,7545 0,8421 0,8218 0,6903 0,7867 0,7145 0,7130 0,8521 0,7199 0,8296 0,9144 0,8028 0,7577 0,7874 ResNet101 0,7597 0,8475 0,8182 0,7056 0,8090 0,7649 0,7212 0,8570 0,7177 0,8239 0,9202 0,8017 0,7633 0,8171 0,7948 ResNet152 0,7653 0,8386 0,8190 0,7122 0,8124 0,7750 0,7207 0,8598 0,7203 0,8275 0,9147 0,8033 0,7713 0,8056 0,7964	VGG16	0,7505	0,8002	0,8204	0,7042	0,7892	0,7570	0,7094	0,8574	0,7230	0,8205	0,9172	0,7877	0,7493	0,7652	0,7822
ResNet101 0,757 0,8475 0,8182 0,7056 0,8090 0,7649 0,7212 0,8570 0,717 0,8239 0,9202 0,8017 0,7633 0,8171 0,7948 ResNet152 0,7653 0,8386 0,8190 0,7122 0,8124 0,7750 0,7207 0,8598 0,7203 0,8275 0,9187 0,8033 0,7713 0,8056 0,7964	ResNet50	0,7545	0,8421	0,8218	0,6903	0,7867	0,7465	0,7130	0,8521	0,7199	0,8296	0,9144	0,8028	0,7577	0,7915	0,7874
ResNet152 0,7653 0,8386 0,8190 0,7122 0,8124 0,7750 0,7207 0,8598 0,7203 0,8275 0,9187 0,8033 0,7713 0,8056 0,7964	ResNet101	0,7597	0,8475	0,8182	0,7056	0,8090	0,7649	0,7212	0,8570	0,7177	0,8239	0,9202	0,8017	0,7633	0,8171	0,7948
	ResNet152	0,7653	0,8386	0,8190	0,7122	0,8124	0,7750	0,7207	0,8598	0,7203	0,8275	0,9187	0,8033	0,7713	0,8056	0,7964
EfficientNet 0,7684 0,8357 0,8200 0,7017 0,8046 0,7863 0,7067 0,8553 0,7460 0,8240 0,9111 0,8124 0,7670 0,8032 0,7958	EfficientNet	0,7684	0,8357	0,8200	0,7017	0,8046	0,7863	0,7067	0,8553	0,7460	0,8240	0,9111	0,8124	0,7670	0,8023	0,7958

Resultado das redes neurais utilizadas como extratoras de características.

Método	Atel	Card	Effu	Infi	Mass	Nodu	Pneu1	Pneu2	Cons	Edem	Emph	Fibr	РТ	Hern	Média
D169-CAM	0,7670	0,8733	0,8216	0,7068	0,8138	0,7610	0,7271	0,8358	0,7394	0,8363	0,9073	0,8143	0,7714	0,9046	0,8057
D169-SAM	0,7948	0,8910	0,8734	0,5376	0,8082	0,6807	0,7066	0,7982	0,7747	0,8838	0,7525	0,6719	0,7911	0,8210	0,7704
D169-FPA	0,7699	0,8881	0,8264	0,7114	0,8202	0,7557	0,7205	0,8439	0,7241	0,8209	0,8853	0,7795	0,7347	0,8300	0,7936
R152-CAM	0,7673	0,8754	0,8164	0,6934	0,8141	0,7478	0,6988	0,8347	0,7315	0,8205	0,8921	0,8024	0,7591	0,7936	0,7891
R152-SAM	0,7648	0,8797	0,8172	0,6947	0,8240	0,7492	0,7010	0,8359	0,7346	0,8250	0,8950	0,7994	0,7606	0,8850	0,7976
R152-FPA	0,7408	0,8602	0,7952	0,6942	0,7379	0,7050	0,6877	0,7694	0,6882	0,8082	0,7210	0,7164	0,7039	0,8034	0,7451

Comparação entre os resultados da DenseNet169 (D169) e a ResNet152 (R152) considerando três módulos de atenção diferentes (CAM, SAM e FPA).

Method	Atel	Card	Effu	Infi	Mass	Nodu	Pneu1	Pneu2	Cons	Edem	Emph	Fibr	РТ	Hern	Mean
U-DCNN [1]	0,700	0,810	0,759	0,661	0,693	0,669	0,658	0,799	0,703	0,805	0,833	0,786	0,684	0,872	0,745
CapsuleNet [3]	0,766	0,801	0,797	0,751	0,760	0,741	0,778	0,800	0,787	0,820	0,773	0,765	0,759	0,748	0,775
Thorax-Net [4]	0,750	0,871	0,818	0,681	0,799	0,714	0,693	0,825	0,741	0,835	0,842	0,804	0,746	0,902	0,787
AGCL [5]	0,756	0,887	0,819	0,689	0,814	0,755	0,729	0,850	0,728	0,848	0,906	0,818	0,765	0,875	0,803
CheXNet [6]	0,769	0,885	0,825	0,694	0,824	0,759	0,715	0,852	0,745	0,842	0,906	0,821	0,766	0,901	0,807
DNet [7]	0,767	0,883	0,828	0,709	0,821	0,758	0,731	0,846	0,745	0,835	0,895	0,818	0,761	0,896	0,807
CRAL [8]	0,781	0,880	0,829	0,702	0,834	0,773	0,729	0,857	0,754	0,850	0,908	0,830	0,778	0,917	0,816
DualCheXNet [9]	0,784	0,888	0,831	0,705	0,838	0,796	0,727	0,876	0,746	0,852	0,942	0,837	0,796	0,912	0,823
DuaLANet	0,783	0,884	0,832	0,708	0,837	0,800	0,735	0,866	0,746	0,841	0,937	0,820	0,796	0,895	0,820

Comparação do nosso método DuaLAnet com as abordagens do estado da arte na base de dados ChestX-ray14 [1].

Média de AUROC para o método DuaLAnet variando os valores de γ_1 , γ_2 e γ_3 . Os valores dos parâmetros são: Config1 ($\gamma_1 = 1.0, \gamma_2 = 0.5, \gamma_3 = 0.2$), Config2 ($\gamma_1 = 1.0, \gamma_2 = 0.5, \gamma_3 = 0.5$), Config3 ($\gamma_1 = 0.5, \gamma_2 = 1.0, \gamma_3 = 0.5$) e Config4 ($\gamma_1 = 0.5, \gamma_2 = 0.5, \gamma_3 = 1.0$).

Taxa de perda das etapas de treinamento e validação do método DuaLAnet (ramo de fusão).

Método	NFin	ECar	Card	LOpa	LLes	Edem	Cons	Pneu1	Atel	Pneu2	PEff	POth	Frac	Supp	Média
D169-CAM	0,8645	0,6949	0,8501	0,7314	0,7953	0,8053	0,7417	0,7651	0,6860	0,8611	0,8712	0,8129	0,7729	0,8788	0,7951
D169-CAM-PRE	0,8590	0,6895	0,8455	0,7280	0,7932	0,7942	0,7332	0,7506	0,6841	0,8512	0,8675	0,8079	0,7769	0,8694	0,7893

Resultado do pré-treinamento.

Método	Cardiomegaly	Edema	Consolidation	Atelectasis	Pleural Effusion	Média
DenseNet121	0,8410	0,7998	0,7417	0,6723	0,8711	0,7852
DenseNet161	0,8393	0,8004	0,7410	0,6743	0,8687	0,7847
DenseNet169	0,8486	0,8027	0,7425	0,6792	0,8709	0,7888
DenseNet201	0,8471	0,8012	0,7387	0,6735	0,8712	0,7863
VGG16	0,8254	0,7589	0,7100	0,6430	0,8495	0,7574
ResNet50	0,8273	0,7756	0,7267	0,6622	0,8586	0,7701
ResNet101	0,8295	0,7774	0,7298	0,6643	0,8530	0,7708
ResNet152	0,8312	0,7802	0,7305	0,6641	0,8629	0,7738
EfficientNetB5	0,8475	0,8005	0,7411	0,6713	0,8734	0,7868

Resultado das redes neurais utilizadas como extratoras de características.

Método	Cardiomegaly	Edema	Consolidation	Atelectasis	Pleural Effusion	Média
D169-CAM	0,8501	0,8053	0,7417	0,6860	0,8712	0,7909
D169-SAM	0,8396	0,7985	0,7433	0,6741	0,8664	0,7844
D169-FPA	0,8360	0,7914	0,7411	0,6754	0,8608	0,7809
Eff-CAM	0,8499	0,8031	0,7453	0,6722	0,8717	0,7884
Eff-SAM	0,8434	0,8001	0,7396	0,6685	0,8714	0,7846
Eff-FPA	0,8385	0,7966	0,7391	0,6689	0,8733	0,7833

Comparação entre os resultados da DenseNet169 (D169) e a EfficientNetB5 (Eff) considerando três módulos de atenção diferentes (CAM, SAM e FPA).

Método	Cardiomegaly	Edema	Consolidation	Atelectasis	Pleural Effusion	Média
CheXclusion [10]	0,855	0,849	0,734	0,717	0,885	0,808
ConVIRT [11]	-	-	-	-	-	0,881
DenseNet161 [12]	0,836	0,920	0,917	0,802	0,937	0,882
CheXpert [2]	0,854	0,928	0,937	0,821	0,936	0,895
DuaLAnet	0,853	0,829	0,784	0,712	0,886	0,813

Comparação do nosso método DuaLAnet com as abordagens do estado da arte na base de dados CheXpert [2]. O método ConVIRT [11] reporta somente a média final da métrica AUROC para as 5 classes.

Média de AUROC para o método DuaLAnet variando os valores de γ_1 , γ_2 e γ_3 . Os valores dos parâmetros são: Config1 ($\gamma_1 = 1.0, \gamma_2 = 0.7, \gamma_3 = 0.4$), Config2 ($\gamma_1 = 1.0, \gamma_2 = 0.5, \gamma_3 = 0.5$), Config3 ($\gamma_1 = 0.5, \gamma_2 = 0.5, \gamma_3 = 0.5$) e Config4 ($\gamma_1 = 0.3, \gamma_2 = 0.3, \gamma_3 = 0.5$).

Taxa de perda das etapas de treinamento e validação do método DuaLAnet (ramo de fusão).

- Proposição de um método de aprendizado profundo, denominado DuaLAnet, que usa a complementaridade entre redes neurais profundas e métodos de atenção para classificar imagens de radiografia de tórax.
- Proposição de um método de treinamento baseado na unificação da taxa de perda de três ramos de classificação em um só valor.
- Comparação entre três módulos de atenção para verificar o que melhor se adequa ao método principal.
- Comparação entre métodos de inicialização dos pesos das redes neurais.

 É possível obter resultados competitivos com os trabalhos recentes em classificação de imagens de radiografias de tórax utilizando redes neurais profundas?
R: Com o método DuaLAnet, obtivemos resultados praticamente empatados com o estado da arte na base de dados ChestX-ray14 [1].

- Como os pesos de redes pré-treinadas na base ImageNet e, em seguida, aperfeiçoados para o domínio médico, comparam-se aos pesos aprendidos somente a partir de imagens médicas?
 - R: Os experimentos mostraram padrões diferentes nas duas bases de dados.

• Como a complementaridade entre redes neurais profundas e técnicas de atenção podem contribuir na nossa abordagem?

R: De acordo com os nossos experimentos, a complementaridade entre redes neurais se mostrou promissora no nosso método.

- Maior variação de técnicas de Aumentação de Dados.
- Utilização somente das 5 classes reportadas na base CheXpert.
- Tratamento dos rótulos incertos.
- Experimentos sobre a influência do tamanho das imagens de entrada.

- DuaLAnet: Dual Lesion Attention Network for Thoracic Disease Classification in Chest X-Rays. Vinicius Teixeira, Leodécio Braz, Hélio Pedrini e Zanoni Dias. International Conference on Systems, Signals and Image Processing (IWSSIP), 2020.
- ImTeNet: Image-Text Classification Network for Abnormality Detection and Automatic Reporting on Musculoskeletal Radiographs. Leodécio Braz, Vinicius Teixeira, Hélio Pedrini e Zanoni Dias. Brazilian Symposium on Bioinformatics (BSB), 2020.
- Image-Text Integration Using a Multimodal Fusion Network Module for Movie Genre Classification. Leodécio Braz, Vinicius Teixeira, Hélio Pedrini e Zanoni Dias. International Conference on Pattern Recognition Systems (ICPRS), 2021.

Agradecimentos

- X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. ChestX-ray8: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv:1705.02315, 2017.
- [2] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi, J. K. Sandberg, R. Jones, D. B. Larson, C. P. Langlotz, B. N. Patel, M. P. Lungren, and A. Y. Ng. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison.
 - In AAAI Conference on Artificial Intelligence, volume 33, pages 590-597, 2019.

[3] Y. Shen and M. Gao.

Dynamic Routing on Deep Neural Network for Thoracic Disease Classification and Sensitive Area Localization.

In International Workshop on Machine Learning in Medical Imaging, pages 389-397, 2018.

[4] H. Wang, H. Jia, L. Lu, and Y. Xia.

Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography.

Journal of Biomedical and Health Informatics, pages 475–485, 2019.

 Y. Tang, X. Wang, A. P. Harrison, L. Lu, J. Xiao, and R. M. Summers. Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs. In International Workshop on Machine Learning in Medical Imaging, pages 249–258, 2018. [6] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, and K. Shpanskaya.
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv:1711.05225, 2017.

[7] S. Guendel, S. Grbic, B. Georgescu, S. Liu, A. Maier, and D. Comaniciu. Learning to Recognize Abnormalities in Chest X-Rays with Location-Aware Dense Networks.

In Iberoamerican Congress on Pattern Recognition, pages 757-765, 2018.

[8] Q. Guan and Y. Huang.

Multi-Label Chest X-ray Image Classification via Category-wise Residual Attention Learning.

Pattern Recognition Letters, 2018.

Referências IV

[9] B. Chen, J. Li, X. Guo, and G. Lu. DualCheXNet: Dual Asymmetric Feature Learning for Thoracic Disease Classification in Chest X-rays. Biomedical Signal Processing and Control, 53:101554, 2019.

[10] L. Seyyed-Kalantari, G. Liu, M. McDermott, and M. Ghassemi. CheXclusion: Fairness gaps in deep chest X-ray classifiers. arXiv:2003.00827, 2020.

[11] Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P. Langlotz. Contrastive Learning of Medical Visual Representations from Paired Images and Text. arXiv:2010.00747, 2020.

[12] K. K. Bressem, L. C. Adams, C. Erxleben, B. Hamm, S. M. Niehues, and J. L. Vahldiek. Comparing different deep learning architectures for classification of chest radiographs. *Scientific Reports*, 10(1):1–16, 2020. [13] V. Teixeira, L. Braz, H. Pedrini, and Z. Dias.

DuaLAnet: Dual Lesion Attention Network for Thoracic Disease Classification in Chest X-Rays.

In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pages 69–74. IEEE, 2020.

 [14] L. Braz, V. Teixeira, H. Pedrini, and Z. Dias.
ImTeNet: Image-Text Classification Network for Abnormality Detection and Automatic Reporting on Musculoskeletal Radiographs.
In *Brazilian Symposium on Bioinformatics (BSB)*, pages 150–161. Springer, 2020.

Classificação Multirrótulos de Radiografias de Tórax Utilizando Aprendizado de Máquina Profundo

Vinicius Teixeira de Melo

Orientador: Prof. Dr. Zanoni Dias Coorientador: Prof. Dr. Hélio Pedrini

Instituto de Computação Universidade Estadual de Campinas

08 de Abril de 2021