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Resumo

Avanços recentes na área de Processamento de Linguagem Natural trouxeram melhores
soluções para uma série de tarefas interessantes como Aceitabilidade Linguística, Respos-
tas a Perguntas, Compreensão de Leitura, Inferência de Linguagem Natural e Análise de
Sentimento. Neste trabalho, focamos em Análise de Sentimento, que é um campo de pes-
quisa voltado ao estudo computacional de sentimentos. A Análise de Sentimento possui
muitas aplicações práticas como sistemas de recomendação, monitoramento de satisfação
de usuários e previsão do resultado de eleições.

As tarefas mencionadas são importantes para o avanço da Inteligência Artificial, pois
são desafiadoras e podem ser aplicadas em vários problemas. A abordagem tradicional é
construir um classificador específico para cada tarefa, entretanto, com a popularização do
conceito de pré-treinamento seguido de ajuste fino, tornou-se muito comum a utilização
de uma mesma arquitetura em diferentes problemas, por meio de ajuste fino com dados
da tarefa em questão.

Métodos como ULMFiT, ELMo, BERT e seus derivados obtiveram sucesso substancial
em muitas tarefas de Processamento de Linguagem Natural, no entanto, eles compartilham
uma desvantagem: para pré-treinar esses modelos do zero, quantidades substanciais de
dados e recursos computacionais são necessários. Nesta dissertação, propomos uma nova
metodologia para classificar sentimento em textos, baseada no BERT e com foco em
emoji, tratando-os como uma importante fonte de sentimento em vez de considerá-los
simples tokens de entrada. Além disso, pode-se utilizar um modelo BERT já pré-treinado
como ponto de partida para nosso modelo, reduzindo significativamente o tempo total de
treinamento necessário.

Avaliamos o uso de pré-treinamento adicional com textos contendo pelo menos um
emoji. Também empregamos aumentação de dados para melhorar a capacidade de ge-
neralização de nosso modelo. Experimentos em dois conjuntos de dados de tweets em
português do Brasil – TweetSentBR e 2000-tweets-BR – mostram que nossa metodologia
produz resultados competitivos em relação aos métodos publicados anteriormente e ao
BERT.



Abstract

Recent advances in the Natural Language Processing field have brought better solutions
to a number of interesting tasks, such as Linguistic Acceptability, Question Answering,
Reading Comprehension, Natural Language Inference, and Sentiment Analysis. In this
work, we focus on Sentiment Analysis, which is a research field concerned with the com-
putational study of sentiments. Sentiment Analysis has many practical applications, such
as recommender systems, user satisfaction monitoring, and election outcome prediction.

The aforementioned tasks are important to the advancement of Artificial Intelligence
as they are challenging and can be used in many different scenarios. The traditional
approach is to build a specific classifier for each task, but with the popularization of the
concept of pre-training followed by fine tuning, it has become very common to use the
same architecture to solve different problems by fine-tuning it with data from the task at
hand.

Methods, such as ULMFiT, ELMo, BERT, and their derivatives, have achieved sub-
stantial success with many Natural Language Processing tasks, however they share a
drawback: to pre-train these models from scratch, substantial amounts of data and com-
putational resources are required. In this dissertation, we propose a novel methodology
to classify the sentiment of texts, based on BERT and focusing on emoji, treating them
as an important source of sentiment as opposed to considering them simple input tokens.
Additionally, it is possible to use a previously pre-trained BERT model to warm start
ours, greatly reducing the total training time required.

We evaluate the use of additional pre-training using texts which contain at least one
emoji. We also employ data augmentation to improve the generalization ability of our
model. Experiments on two Brazilian Portuguese tweets datasets – TweetSentBR and
2000-tweets-BR – show that our methodology produces competitive results compared to
the previously published methods and to BERT.



List of Figures

1.1 Examples of user-generated content in social media. . . . . . . . . . . . . . 14

2.1 Transformer model architecture. . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Transformer attention computation. . . . . . . . . . . . . . . . . . . . . . . 21
2.3 BERT framework steps: pre-training and fine-tuning. . . . . . . . . . . . . 22
2.4 BERT input representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Emoji usage on Instagram over time. . . . . . . . . . . . . . . . . . . . . . 25

3.1 Frequency of emoji in tweets from TweetSentBR – training set. . . . . . . 32
3.2 Frequency of emoji in tweets from TweetSentBR – test set. . . . . . . . . . 32
3.3 Frequency of emoji in tweets from 2000-tweets-BR – training set. . . . . . 35
3.4 Frequency of emoji in tweets from 2000-tweets-BR – test set. . . . . . . . . 35

4.1 Overview of our proposed method for sentiment classification. . . . . . . . 36
4.2 Our proposed model for sentiment classification. . . . . . . . . . . . . . . . 40

5.1 Data augmentation results for TweetSentBR – parameter α. . . . . . . . . 46
5.2 Data augmentation results for 2000-tweets-BR – parameter α. . . . . . . . 46
5.3 Data augmentation results for TweetSentBR – parameter naug. . . . . . . . 47
5.4 Data augmentation results for 2000-tweets-BR – parameter naug. . . . . . . 48

A.1 F1 score per pre-training epoch for TweetSentBR – validation. . . . . . . . 62
A.2 Dropout results for TweetSentBR. . . . . . . . . . . . . . . . . . . . . . . . 63
A.3 Dropout results for 2000-tweets-BR. . . . . . . . . . . . . . . . . . . . . . 64
A.4 Dropout results for TweetSentBR – self-attention computation. . . . . . . 65
A.5 Dropout results for 2000-tweets-BR – self-attention computation. . . . . . 66

B.1 Training and evaluation losses for TweetSentBR – validation . . . . . . . . 69



List of Tables

3.1 Outline of TweetSentBR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Average number of words per tweet in TweetSentBR. . . . . . . . . . . . . 29
3.3 Outline of TweetSentBR for tweets containing emoji. . . . . . . . . . . . . 30
3.4 Top 10 most-frequent emoji of TweetSentBR. . . . . . . . . . . . . . . . . 31
3.5 Outline of 2000-tweets-BR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Average number of words per tweet in 2000-tweets-BR. . . . . . . . . . . . 33
3.7 Outline of 2000-tweets-BR for tweets containing emoji. . . . . . . . . . . . 34
3.8 Top 10 most-frequent emoji of 2000-tweets-BR. . . . . . . . . . . . . . . . 34

4.1 Examples of samples from the pre-training corpus. . . . . . . . . . . . . . . 37
4.2 Emoticons considered in our method. . . . . . . . . . . . . . . . . . . . . . 39

5.1 Pre-training results for TweetSentBR. . . . . . . . . . . . . . . . . . . . . . 45
5.2 Pre-training results for 2000-tweets-BR. . . . . . . . . . . . . . . . . . . . 45
5.3 Data augmentation results for TweetSentBR. . . . . . . . . . . . . . . . . . 48
5.4 Data augmentation results for 2000-tweets-BR. . . . . . . . . . . . . . . . 48
5.5 Fine-tuning results for TweetSentBR – test. . . . . . . . . . . . . . . . . . 50
5.6 Fine-tuning results for 2000-tweets-BR – test. . . . . . . . . . . . . . . . . 50
5.7 Fine-tuning results for TweetSentBR – emoji subset – test. . . . . . . . . . 51
5.8 Fine-tuning results for 2000-tweets-BR – emoji subset – test. . . . . . . . . 51

A.1 Dropout results for TweetSentBR. . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Dropout results for 2000-tweets-BR. . . . . . . . . . . . . . . . . . . . . . 64
A.3 Dropout results for TweetSentBR – self-attention computation. . . . . . . 65
A.4 Dropout results for 2000-tweets-BR – self-attention computation. . . . . . 66
A.5 Data augmentation results for TweetSentBR – parameter α. . . . . . . . . 67
A.6 Data augmentation results for 2000-tweets-BR – parameter α. . . . . . . . 67
A.7 Data augmentation results for TweetSentBR – parameter naug. . . . . . . . 67
A.8 Data augmentation results for 2000-tweets-BR – parameter naug. . . . . . . 68

B.1 Layer normalization results for TweetSentBR. . . . . . . . . . . . . . . . . 70
B.2 Layer normalization additional layer results for TweetSentBR. . . . . . . . 71
B.3 Weight decay results for TweetSentBR. . . . . . . . . . . . . . . . . . . . . 72
B.4 Learning rate results for TweetSentBR. . . . . . . . . . . . . . . . . . . . . 72



List of Abbreviations and Acronyms

BERT Bidirectional Encoder Representations from Transformers
BN Batch Normalization
CNN Convolutional Neural Network
ELMo Embeddings from Language Models
GPT Generative Pre-trained Transformer
GRU Gated Recurrent Unit
LN Layer Normalization
LR Logistic Regression
LSTM Long Short-Term Memory
MLM Masked Language Modeling
MLP Multi-Layer Perceptron
NLP Natural Language Processing
NLTK Natural Language Toolkit
NSP Next Sentence Prediction
RNN Recurrent Neural Network
SNS Social Networking Service
SVM Support Vector Machines
T5 Text-To-Text Transfer Transformer
TTsBR TweetSentBR
ULMFiT Universal Language Model Fine-Tuning



Contents

1 Introduction 13
1.1 Problem Description and Motivation . . . . . . . . . . . . . . . . . . . . . 13
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background 17
2.1 Concepts and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Sentiment Analysis Tasks . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Unsupervised Language Representation Learning Methods . . . . . 18
2.1.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Bidirectional Encoder Representations from Transformers (BERT) . 22
2.1.5 Emoji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Emoji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Datasets 29
3.1 TweetSentBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 2000-tweets-BR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Methodology 36
4.1 Further Pre-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Emoji Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Training Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experimental Results 43
5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Pre-Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Data Augmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Fine-Tuning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



6 Conclusion and Future Work 52

A Additional Results 62
A.1 Pre-Training Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.2 Dropout Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.3 Data Augmentation Experiments . . . . . . . . . . . . . . . . . . . . . . . 67

B Overfitting 69
B.1 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.2 Weight Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.3 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



13

Chapter 1

Introduction

This chapter presents the problem considered in this dissertation, the motivation for
expanding the research about it, as well as our main contributions. In the latter part, the
text structure of the following chapters is explained.

1.1 Problem Description and Motivation
Sentiment Analysis, also referred to as Opinion Mining [41, 48], is a research field con-
cerned with the computational study of sentiments. In this context, “sentiment” can be
defined as the author’s attitude, opinion, or emotion expressed on a named entity, event,
or abstract concept that is mentioned in a piece of text in natural language [67].

Since early 2000s, Sentiment Analysis has grown to be one of the most active research
topics in the Natural Language Processing (NLP) field. It is also widely studied in Data
Mining, Web Mining, Text Mining, and Information Retrieval. In fact, it has spread
from Computer Science to Management Sciences and Social Sciences such as Marketing,
Finance, Political Science, Communications, Health Science, and even History, due to its
importance to business and society as a whole [82].

With the widespread access to the Internet in the last decades, people have gained a
new and powerful medium through which voice their opinions. With an unprecedented
reach, it has never been easier to make our views visible worldwide. Entities, such as
companies and government agencies, are frequently interested in knowing what people
think in order to make informed decisions.

Usual sources of subjective texts (texts which contain an opinion) are Social Net-
working Services (SNS), (micro)blogs, and websites featuring user reviews. Using data
from these sources, it is possible to know the opinion of end users about a product or
service [37, 45], build a recommender system [46], and even try to predict the outcome of
an election [75]. Examples of user-generated content in social media – tweets in this case
– are shown in Figure 1.1.

When processing user-generated content, we face some challenges such as misspellings,
use of slang, and lack of punctuation, because many users, in the social media environment,
tend to write in a fast, effortless, and often ungrammatical manner. However, this type of
content also presents some opportunities not found in more formal texts, and one of them
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(a) Example of a negative tweet. (b) Example of a positive tweet.

Figure 1.1: Examples of user-generated content in social media.

is the presence of emoji1, which can be found in many user comments and also in posts
made by companies, as they try to establish a closer relationship with their customers. In
fact, Huang et al. [31] found that using an emoji in casual conversation introduces feelings
of enjoyment, happiness, and solidifies an overall positive impression of the interaction;
and a survey from Adobe [1] has shown that 78% of emoji users say that using emoji
makes you more likeable, and 74% of emoji users consider that emoji make positive news
more sincere. While usage and interpretation of emoji vary according to culture and even
from person to person [44], it is undeniable that they add expressiveness to a message,
and sometimes actually become the entire message (e.g., replying to a question with a
– thumbs up). This is the case in 27% of the time in text messaging [1].

In this work, we sought to leverage emoji and use them in the most effective manner
possible in this context. Our methodology is based on Bidirectional Encoder Represen-
tations from Transformers (BERT) [16], which in itself performs well on a range of NLP
tasks, including Sentiment Analysis. But when faced with an emoji, BERT will either
treat it as an input token such as any other or ignore it altogether, depending on the
WordPiece [79] vocabulary. We propose a methodology to handle emoji separately from
the words, if present. We extract emoji from the input text and process them through the
Transformer [72] encoder independently to try to obtain the maximum information from
both the words sequence and the emoji sequence. Then, we combine all this information
to classify the sentiment. To conduct our experiments, we adopted two datasets of tweets
written in Brazilian Portuguese: TweetSentBR (TTsBR) [10] and 2000-tweets-BR [73].

1.2 Objectives
Our main goal, in this work, was to investigate and improve the sentiment classification
of user-generated texts. In order to achieve our general objective, we set some specific
objectives:

1. Search for suitable datasets to perform sentiment classification;

2. Evaluation of recent works on sentiment classification and on Natural Language
Processing (NLP) that can be used to perform sentiment classification, mostly un-
supervised language representation learning methods;

1We adopt the form “emoji” for both singular and plural usages, following the Unicode Consortium –
https://unicode.org/faq/emoji_dingbats.html#1.05

https://unicode.org/faq/emoji_dingbats.html#1.05
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3. Proposition of an original methodology to classify the sentiment of social media
texts using neural networks;

4. Conduction of experiments on data augmentation;

5. Performance evaluation of the developed model.

1.3 Research Questions
The following research questions guided us through the work in this project:

1. Do emoji, considered alongside their corresponding texts, improve the sentiment
classification accuracy?

2. Can further unsupervised pre-training on in-domain data improve the sentiment
classification performance?

3. Considering that unsupervised language representation learning methods are pre-
trained on gigabytes of textual data, does data augmentation improve the sentiment
classification performance?

1.4 Contributions
The main contributions of our work in Sentiment Analysis are:

• A study of emoji occurrence and distribution for the most frequent emoji in the
TweetSentBR and the 2000-tweets-BR datasets, comparing the results with general
emoji usage in Twitter;

• A novel methodology to classify the sentiment of social media texts using both the
expressiveness of emoji and the written text. Our model achieves a new state of the
art for both datasets;

• Despite being a different model, we can reduce the training time by using a pre-
viously pre-trained BERTBASE model to warm start ours, thus avoiding having to
pre-train it from scratch.

1.5 Publications
The following papers were written and published as results of this research work:

• T.M. Barros, H. Pedrini, Z. Dias. Leveraging Emoji to Improve Sentiment Clas-
sification of Tweets. In 36th ACM/SIGAPP Symposium on Applied Computing
(SAC) - Knowledge and Language Processing (KLP) track. Gwangju, Republic of
Korea, pages 845–852, 2021. Association for Computing Machinery (ACM).
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• T.M. Barros, H. Pedrini, Z. Dias. Data-Augmented Emoji Approach to Sentiment
Classification of Tweets. In 25th Iberoamerican Congress on Pattern Recognition
(CIARP). Porto, Portugal, pages 1–10, 2021. Springer.

1.6 Text Organization
The remaining of this dissertation is structured as follows. Chapter 2 presents the back-
ground of Sentiment Analysis as well as the recent methods that are related to this
research topic. In Chapter 3, we discuss the datasets used in this work and our study
about emoji occurrence and distribution. Chapter 4 explains in detail our methodology
for sentiment classification of social media texts. In Chapter 5, we present the results we
obtained. Chapter 6 concludes the text with final remarks and directions for future work.
Appendix A reports additional results obtained with this research work and Appendix B
discusses overfitting and the experiments we performed to try to keep it to a minimum.
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Chapter 2

Background

This chapter presents, in the first section, the most-relevant concepts to the research
subject, and a discussion of the related works in the literature in the second section.

2.1 Concepts and Techniques
We review some important concepts to Sentiment Analysis and to this work, such as the
usual tasks, the Unsupervised Language Representation Learning Methods, the Trans-
former, and emoji.

2.1.1 Sentiment Analysis Tasks
The Sentiment Analysis problem is generally tackled at three possible levels of granular-
ity: document-level sentiment classification, sentence-level sentiment classification, and
aspect-level sentiment classification [82].

Document-level sentiment classification categorizes a document as expressing an over-
all positive or negative opinion. It treats the entire text document as the basic unit of
the process and considers that the document contain opinions about a single entity (e.g.,
a movie review).

Sentence-level sentiment classification categorizes individual sentences in a document.
In this case, it is not reasonable to assume that every sentence contains an opinion. A
traditional approach is to first classify a sentence as subjective (contains an opinion)
or objective (does not contain an opinion), which is called subjectivity classification.
Then, the resulting subjective sentences are classified as expressing positive or negative
opinions [53]. Another possibility is to include a third class to accommodate objective
sentences (e.g., a class named “neutral”).

Aspect-level sentiment classification is concerned with the extraction of people’s opin-
ions expressed on entities and aspects/features of entities, which are also called targets.
For example, in the sentence “the art direction of ‘Star Wars: The Force Awakens’ was
amazing, but the plot was uninteresting, to say the least”, we have the entity “Star Wars:
The Force Awakens” and the aspects “art direction” and “plot”. Aspect-level sentiment
classification should classify the sentiment expressed on the art direction of the movie as
positive and on the plot as negative.
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Researchers are also working on other topics of Sentiment Analysis, such as Emotion
Analysis [11], Cross-Domain Sentiment Classification [52], Sarcasm Detection [24], and
Multilingual Sentiment Analysis [8].

Traditionally, Sentiment Analysis is cast as a classification task, either binary, with a
“positive” class and a “negative” class, or as a multi-class classification problem, including,
for instance, a “neutral” or “irrelevant” class to accommodate texts that do not have a
sentiment associated with (i.e., objective texts). Sometimes, more classes are used to make
the sentiment granularity finer, for instance the five classes: “very positive”, “positive”,
“neutral”, “negative”, and “very negative”, which are equivalent to a five-star scale [54].
The number of classes varies according to the dataset considered. In this work, use utilize
the TweetSentBR and the 2000-tweets-BR datasets, both using the three-class schema:
“positive”, “neutral”, and “negative”.

2.1.2 Unsupervised Language Representation Learning Meth-
ods

In recent years, most of the notable progress achieved in Natural Language Processing
is due to unsupervised language representation learning methods, which have established
new state-of-the-art results in many tasks. The idea is to produce a one-size-fits-all
model that is pre-trained on large amounts of unlabeled data, and then fine-tuned on an
individual target task (downstream task), in this case Sentiment Analysis. Pre-training
on large amounts of data aims to produce sentence encoders with substantial knowledge
of the target language, that can be applied later on the target task. This model was first
proposed by Dai and Le [14], with the basic idea being to use the parameters obtained
from the pre-training as a starting point for the supervised training model.

In 2018, Peters et al. [57] introduced Embeddings from Language Models (ELMo),
which employ contextualized word embedding to produce different word vectors for the
same word if the context/meaning is different, using bi-directional Long Short-Term Mem-
ory (LSTM) networks [28] trained on a language modeling objective. In the same year,
Howard and Ruder [29] introduced the Universal Language Model Fine-Tuning (ULM-
FiT), building upon the pre-training-followed-by-fine-tuning concept and addressing issues
of overfitting and catastrophic forgetting. Radford et al. [58] proposed the Generative
Pre-trained Transformer (GPT), that combines the unsupervised pre-training with the
Transformer [72], as opposed to using LSTMs. Devlin et al. [16] introduced a method
called Bidirectional Encoder Representations from Transformers (BERT), which also em-
ploys the Transformer but has a different training objective: masked language modeling,
in which words in a sentence are randomly erased and replaced with a special token
(“masked”) with some small probability. Then, a Transformer is used to generate a pre-
diction for the masked word based on the unmasked words surrounding it, both to the
left and right.

In 2019, Yang et al. [81] proposed the XLNet, a generalized auto-regressive pre-training
method that enables learning bidirectional contexts by maximizing the expected likelihood
over all permutations of the factorization order. Finally, in 2020, Raffel et al. [59] pub-
lished a large-scale empirical survey to determine which Transfer Learning techniques
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work best and, based on these insights, developed a new model called the Text-To-Text
Transfer Transformer (T5). This model employs a unified text-to-text format where the
input and output are always text strings.

2.1.3 Transformer
Vaswani et al. [72] introduced the Transformer with the goal of simplifying sequence
transduction, which is the process of transforming input sequences into output sequences.
Many Machine Learning tasks can be expressed as sequence transduction tasks, for in-
stance Speech Recognition, Machine Translation, Protein Secondary Structure Prediction
and Text-to-Speech. The Transformer architecture was originally developed to perform
Neural Machine Translation, but has since been deployed with great success to other
textual tasks, and even to Computer Vision [17].

The Transformer can be considered as a modern substitute for Recurrent Neural Net-
works (RNNs) [18], in particular, Long Short-Term Memory (LSTM) networks [28] and
Gated Recurrent Unit (GRU) networks [13], as they are used in the same type of context.
One key difference is that the Transformer eschews the use of recurrence and instead
makes use of self-attention mechanisms to draw global dependencies between inputs and
outputs. Self-attention (sometimes called intra-attention) is an attention mechanism re-
lating different positions of a single sequence in order to compute a representation of the
sequence, in other words, it decides at each step which other parts of the sequence are
important. Due to this feature, the Transformer allows for much more parallelization
than RNNs and, therefore, reduced training times [72]. It is used in most of the recent
unsupervised language representation learning methods, such as GPT [58], BERT [16],
XLNet1 [81], and T5 [59].

The Transformer, such as most competitive neural sequence transduction models, em-
ploys an encoder-decoder structure [3, 63]. In this scheme, the encoder maps an input
sequence of symbol representations x = (x1, . . . , xn) to a sequence of continuous repre-
sentations z = (z1, . . . , zn). The decoder then uses z to generate an output sequence
y = (y1, . . . , yn) of symbols one element at a time [72]. In simpler terms, the encoder
reads the input text and the decoder produces a prediction for the task. For instance,
when translating an English text to Portuguese, the encoder will read the English text
and create the representations z, then the decoder will use z to output the Portuguese
translation.

Figure 2.1 illustrates the Transformer architecture, with the encoder on the left and
the decoder on the right-hand side of the image. Both the encoder and the decoder are
composed of modules that can be stacked on top of each other multiple times, which is
described by “Nx” in Figure 2.1. In the original paper, the authors used N = 6.

The encoder module is composed of a multi-head self-attention mechanism and a
position-wise fully connected feed-forward network. It also features a residual connec-
tion [26] and layer normalization [2]. The decoder module has the same elements as the
encoder, plus a multi-head attention mechanism over the output of the encoder stack.
Furthermore, the self-attention part in the decoder module is modified to prevent posi-

1XLNet uses a modified implementation of the Transformer, called Transformer-XL [15].
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Figure 2.1: Transformer model architecture [72].

tions from attending to subsequent positions. This masking, combined with the fact that
the output embeddings are offset by one position, ensures that the predictions for position
i can depend only on the known outputs at positions less than i [72]. Since there are no
recurrent networks that can remember how sequences are fed into a model, the positions
of the words are added to the embedded representation (n-dimensional vector) of each
word, since a sequence depends on the order of its elements.

Regarding the attention function, it can be seen as mapping a query and a set of key-
value pairs to an output, where query, keys, values, and output are vectors. The output
is computed as a weighted sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the corresponding key [72]. The
attention mechanism used in the Transformer is called Scaled Dot-Product Attention, and
it is illustrated in Figure 2.2a.

The input consists of queries (a query is a vector representation of one word in the
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(a) Scaled Dot-Product Attention. (b) Multi-head attention consists of several
attention layers running in parallel.

Figure 2.2: Transformer attention computation [72].

sequence) and keys (vector representations of all the words in the sequence) of dimension
dk, and values of dimension dv. The attention computation consists of the dot products
of the query with all keys, then division of each by

√
dk, and application of a softmax

function to obtain the weights on the values. To be more efficient, the computation is
done not over a single query but over a set of queries, packed together into a matrix Q.
The keys and values are also packed together into matrices K and V , so the attention
computation can be expressed as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.1)

We can interpret it by considering that the values in V are multiplied and summed
with some attention-weights w = softmax

(
QKT
√
dk

)
. That is, these weights w are defined

by how each word of the sequence (represented by Q) is influenced by all the other words
in the sequence (represented by K). Additionally, the softmax function is applied to the
weights w so they have a distribution between 0 and 1. The weights are then applied to
all the words in the sequence that are introduced in V .

Figure 2.2b shows how the Scaled Dot-Product Attention can be parallelized into
multiple mechanisms that can be used side by side. The attention mechanism is repeated
h times with linear projections of Q, K and V . This allows the system to learn from
different representations of Q, K and V , which the authors found beneficial to the model.

Since its introduction, there have been numerous improvements proposed by different



22

researchers, mainly focusing on improving the time complexity, which is quadratic in the
original model. Some of these improved models are: Reformer [36], reducing the overall
self-attention complexity from O(n2) to O(n logn) using locality-sensitive hashing (n is
the sequence length); Linformer [76], which reduces the complexity to O(n) in both time
and space by approximating the self-attention mechanism by a low-rank matrix; and
Linear Transformer [33], also reducing the complexity to O(n), but using a kernel-based
formulation of self-attention and the associative property of matrix products to calculate
the self-attention weights.

2.1.4 Bidirectional Encoder Representations from Transformers
(BERT)

Since our proposed method for sentiment classification builds upon BERT [16], we describe
this model in more detail here. Introduced by Devlin et al. [16], one of the biggest selling
points of BERT, compared with the models that came before it, is its bidirectionality.
While GPT [58] uses a left-to-right Transformer and ELMo [57] uses the concatenation
of independently trained left-to-right and right-to-left LSTMs to generate features for
downstream tasks, BERT employs a bidirectional Transformer, producing representations
that are jointly conditioned on both left and right context in all layers, which is reflected
on the strong results obtained.

There are two steps in the BERT framework: pre-training and fine-tuning. During
pre-training, the model is trained on unlabeled data over different pre-training tasks.
For fine-tuning, the model is first initialized with the pre-trained parameters, and all of
the parameters are fine-tuned using labeled data from the downstream tasks. The fine-
tuned models are different for each downstream task, however they are all initialized with
the same pre-trained parameters. Figure 2.3 exemplifies this concept for the question-
answering task.

Figure 2.3: Steps in the BERT framework: pre-training and fine-tuning [16].

The model architecture of BERT is a multi-layer bidirectional Transformer en-
coder based on the original implementation by Vaswani et al. [72] and released in the
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tensor2tensor library2. As presented in Section 2.1.3, the Transformer consists of an
encoder and a decoder, but since the goal of BERT is to generate a language representation
model, it only needs the encoder part, to read the input text and create the continuous
representations, building contextual relationships between the words. In this work, we
denote the number of layers (i.e., Transformer blocks) as L, the hidden size as H, and
the number of self-attention heads as A. The authors trained BERT using two model
sizes: BERTBASE (L = 12, H = 768, A = 12, total parameters = 110M) and BERTLARGE

(L = 24, H = 1024, A = 16, total parameters = 340M). In this dissertation, we employed
only BERTBASE due to hardware limitations.

Since BERT is designed to handle different NLP downstream tasks, including those
with two-part inputs (e.g., 〈question, answer〉), it uses an input representation that ac-
commodates inputs consisting of one or two “sentences”. In this context, a “sentence”
is an arbitrary span of contiguous text, rather than an actual linguistic sentence [16]. A
“sentence” (or two “sentences”, depending on the task) forms a “sequence”, which is the
input token sequence to BERT. Considering Sentiment Analysis, the “sequences” consist
of one “sentence”, which in this work are tweets.

BERT employs WordPiece [79] embeddings to build the token vocabulary. The first
token of every sequence is always a special classification token ([CLS]). The final hidden
state corresponding to this token is used as the aggregate sequence representation for
classification tasks. In the cases of two-part inputs (two “sentences”), the “sentences” are
differentiated in two ways: first, they are separated with a special token ([SEP]); second,
a learned embedding (segment embedding) is added to every token indicating whether it
belongs to sentence A or sentence B. As shown in Figure 2.3, the input embeddings are
denoted as E, the final hidden vector of the special [CLS] token as C ∈ RH , and the final
hidden vector for the i-th input token as Ti ∈ RH .
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[SEP]
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Figure 2.4: Input representation for BERT. The input embeddings are the sum of the
token embeddings, the segment embeddings and the position embeddings [16].

For a given token, its input representation is constructed by summing the correspond-
ing token, segment, and position embeddings, as illustrated in Figure 2.4. The segment
embeddings are used to differentiate sentence A from sentence B, as explained earlier. The
position embeddings are used to indicate the position of each token in the sentence, as
required by the underlying Transformer.

2https://github.com/tensorflow/tensor2tensor

https://github.com/tensorflow/tensor2tensor
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BERT is pre-trained using two unsupervised tasks: Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP). MLM is the solution that the authors
found to train a language model, since standard conditional language models can only
be trained left-to-right or right-to-left3. In MLM, a percentage of the input tokens are
masked at random and the model is trained to predict those masked tokens. This proce-
dure is also known as Cloze task [65]. The NSP task objective is to build understanding
of the relationship between two consecutive sentences, to be used in downstream tasks
such as Question Answering and Natural Language Inference. The model is trained to
predict, given two sentences A and B, if B follows A or not.

2.1.5 Emoji
“Emoji” comes from the Japanese word 絵文字, which is a compound word: 絵 (e ≈
picture) + 文字 (moji ≈ written character). They were invented in Japan in the final
years of the 20th century. Most works and articles credit the creation to Shigetaka Kurita,
who was working for the Japanese mobile phone operator NTT DoCoMo as an interface
designer. During 1998/1999, Kurita designed a set of 176 emoji using a grid of 12 × 12

pixels for the “i-mode” mobile Internet software [40]. However, recently-surfaced evidence
attributes the creation of emoji to NTT DoCoMo’s rival SoftBank – then called J-PHONE
– which released in November 1997 the SkyWalker DP-211SW mobile phone, containing
a set of 90 emoji [20].

Since their inception until about 2010, they remained much more popular in Japan
than elsewhere. In that year, the Unicode Version 6.0 was published, bringing with it
support for the first batch of emoji, thus providing for data interchange between different
mobile vendors and across the Internet [70]. In 2011, another big step was taken when
Apple released the iOS 5, which popularized emoji between mobile phone users outside
of Japan.

Thereafter, emoji usage skyrocketed, as shown by Figure 2.5. By mid-2015, half of
all comments on Instagram included an emoji [21]. In 2020, approximately one in five
tweets included at least one emoji (19.04%) [21]. And over 60 million emoji are sent on
Facebook and 5 billion emoji are sent on Messenger every day, on average [19].

In total, there are 3,521 emoji in the Unicode Standard as of September 2020 [21].
Interestingly, the rise of emoji has helped Unicode’s primary goal, which is that computers
handle every human language. The pressure to fully support emoji has led many “lagging”
implementations to flesh out their Unicode support, and stay current each year [71].

2.2 Literature Review
In this section, we briefly present some works that are related to this research. These
works are grouped into three categories according to main focus: Sentiment Analysis,
Unsupervised Learning, and Emoji. The works in each category are presented in chrono-
logical order.

3In this case, the bidirectional conditioning would allow each word to indirectly “see itself”, and the
model could trivially predict the target word in a multi-layered context [16].
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Figure 2.5: Emoji usage on Instagram over time [71].

2.2.1 Sentiment Analysis
Until the first years of this millennium, texts were traditionally classified by topic. How-
ever, in 2002, two seminal papers were published, that put Sentiment Analysis on the map
of NLP research fields. The first one is the work of Pang et al. [56], in which they apply
Machine Learning methods (Naïve Bayes, Maximum Entropy Classification, and Support
Vector Machines (SVM)) to perform sentiment classification of movie reviews. The other
paper is by Turney [68], in which he presents an unsupervised learning algorithm for clas-
sifying customer reviews as recommended or not recommended using the average semantic
orientation of the phrases in the review that contain adjectives or adverbs.

Turney and Littman [69] introduced, in 2003, a method for inferring the semantic
orientation of a word (how much positive or negative) from its statistical association with
a set of positive and negative paradigm words. The authors evaluated two methods:
Pointwise Mutual Information and Latent Semantic Analysis.

In 2004, Hu and Liu [30] mined and summarized the features of products on which
customers have expressed their opinions and whether the opinions were positive or neg-
ative. This publication produced a dataset that is used by many works in the field. In
the same year, Pang and Lee [53] proposed a novel Machine Learning method that ap-
plies text categorization techniques to just the subjective portions of the document. They
presented a sentence-level graph-based formulation relying on finding minimum cuts to
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decide if a sentence is subjective (contains an opinion) or objective (does not contain an
opinion), then, considering only the subjective sentences, a standard Machine Learning
classifier is used to determine the document polarity (positive or negative).

Pang and Lee [54] considered, in 2005, the problem of classifying the sentiment of
texts with respect to a multi-point scale (e.g., one to five “stars”). They also released a
dataset of movie reviews that proved to be very popular amongst researchers.

In 2008, Pang and Lee [55] published a comprehensive and influential survey on Sen-
timent Analysis, presenting a panorama of the field at the time, covering new challenges,
promising approaches, issues regarding privacy, manipulation, and economic impact of the
development of opinion-oriented information-access services, and providing a discussion
of available resources, benchmark datasets, and evaluation campaigns.

In 2011, Taboada et al. [64] introduced the Semantic Orientation CALculator (SO-
CAL): a lexicon-based approach to extracting sentiment from text. It used sentiment
dictionaries with annotations of polarity and strength of semantic orientation. The au-
thors also described the process of dictionary creation.

Liu [41] also published an important survey, in 2012. Liu discusses the different formu-
lations (e.g., cross-domain sentiment classification and aspect-based sentiment analysis)
and approaches (e.g., dictionary-based approach and corpus-based approach) for Senti-
ment Analysis, as well as the problems that usually arise. Some other related tasks are
also discussed, for instance, opinion spam detection.

2.2.2 Unsupervised Learning
In the realm of unsupervised learning, Mikolov et al. [43] introduced, in 2013, the Skip-
Gram model to generate word vectors by training a neural network to predict words that
usually occur nearby a given word. In 2014, Le and Mikolov [39] proposed the Paragraph
Vector method, that applies the idea of word embedding to variable-length pieces of text,
ranging from sentences to whole documents. Kiros et al. [35] abstracted the Skip-Gram
model to the sentence level. Instead of using a word to predict its surrounding context,
the authors encoded a sentence to predict the sentences around it. The resulting sentence
encoder model, called Skip-Thoughts, was published in 2015.

Dai and Le [14] first proposed, in 2015, the supervised fine-tuning step after the unsu-
pervised pre-training, such as predicting adjacent sentences. The basic idea is to use the
parameters obtained from the pre-training as a starting point for the supervised train-
ing model. Following that, we have the unsupervised language representation learning
methods, such as the Embeddings from Language Models (ELMo) [57], the Universal
Language Model Fine-Tuning (ULMFiT) [29], the Generative Pre-trained Transformer
(GPT) [58], the Bidirectional Encoder Representations from Transformers (BERT) [16],
the XLNet [81], and the Text-To-Text Transfer Transformer (T5) [59]. For more informa-
tion about these models, please refer to the Section 2.1.2.
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2.2.3 Emoji
There are many interesting research works about emoji, spanning many fields such as
Linguistics, Semiotics, Psychology, and Sociology. Here, we present works related to
Natural Language Processing and Sentiment Analysis. One of such works was produced
by Novak et al. [49] in 2015, and introduced the Emoji Sentiment Ranking4, which is the
first emoji sentiment lexicon, drawing a sentiment map of the 751 most frequently used
emoji at the time. The authors used 1.6 million tweets from 13 European languages and
the sentiment labels negative, neutral, and positive. They employed 83 human annotators
to label the tweets.

In 2016, Barbieri et al. [4] used the Skip-Gram model [43] to generate and validate
semantic vectorial models that are built over 10 million tweets by consistently mapping
in the same vectorial space both words and emoji. The authors also evaluated emoji
similarity (how equivalent two emoji are) and relatedness (situations in which people
would use two emoji together). Plotting the emoji vectors, we can see that similar emoji
get clustered together5.

Felbo et al. [22] experimented, in 2017, using emoji occurrences from social media texts
to pre-train a model – called DeepMoji – to detect sentiment, emotion, and sarcasm.
The authors collected tweets which contained emoji and used them to pre-train their
model by predicting which emoji were part of each tweet. Then, fine-tuned DeepMoji to
perform sentiment, emotion, and sarcasm classifications. DeepMoji uses two bi-directional
LSTMs [28, 63] and an attention layer [3, 80].

Also in 2017, Tian et al. [66] published a study about the relationship between emoji
and the texts in which they appear. The authors argued that emoji and the linguistic
texts can modify the meaning of each other and that the overall communicated meaning
is not a simple sum of the two channels. They compiled 21 thousand posts from public
media pages from Facebook across four countries, along with 57 million reactions and 8
million comments to conduct the research. In this work, the authors proposed that an
emoji can interact with the linguistic text in six ways:

1. Replacing a word/phrase.
E.g.: “I want to have a .”

2. Repeating a word/phrase (accenting, adding focus).
E.g.: “Take note Sam, this is how you season food, you are almost done there
babe. Like you did the chicken the other nights.”

3. Expressing the speaker’s emotion or attitude independently.
E.g.: (Facebook update from survivor of the Orlando nightclub shooting in 2016-
06-12) “I am safely home and hoping everyone gets home safely as well .”

4. Enhancing/emphasizing an emotion expressed in the text.
E.g.: “This would probably be really good .”

4http://kt.ijs.si/data/Emoji_sentiment_ranking
5http://sempub.taln.upf.edu/tw/emojis

http://kt.ijs.si/data/Emoji_sentiment_ranking
http://sempub.taln.upf.edu/tw/emojis
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5. Modifying the meaning of linguistic text (e.g., marking non-literal or non-serious
use); implying propositional content.
E.g.: “I bet you are enjoying your revision .”

6. Used for politeness.
E.g.: “Can you please cook us something that I tag you in instead of your 4am
pastas? Thanks .”

In order to study the meaning interplay between linguistic texts and emoji, the authors
employed the Facebook reactions (Like, Love, Haha, Wow, Sad, and Angry) and emoji
from the comments. They found that there is a reliable correlation between Facebook
reactions and emoji usage with relation to their sentiments.

Chen et al. [12] proposed in 2018 a method to perform Sentiment Analysis of tweets
with extra attention on emoji by employing bi-sense emoji embeddings under positive
and negative sentimental tweets individually, and then training a sentiment classifier by
attending on these bi-sense emoji embeddings with an attention-based LSTM. Different
from conventional approaches, where each emoji responds to one embedding vector, the
authors embedded each emoji into two distinct vectors (bi-sense emoji embedding): two
distinct tokens were assigned to each emoji, of which one is for the particular emoji
used in positive sentimental contexts and the other one is for this emoji used in negative
sentimental contexts. The method was evaluated using a custom dataset built by the
authors – presumably composed of tweets in English – and performed better than a
simpler LSTM classifier.

In our research, we combined the special attention on emoji – akin to Chen et al. [12]
– with the power of a Transformer [72]-based model, in this case BERT [16]. We utilized
datasets of tweets written in Brazilian Portuguese, which is a language with far less
research results than English when it comes to Natural Language Processing. However,
our approach does not depend on the Portuguese specificities and can be applied to any
other language.
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Chapter 3

Datasets

In this chapter, we present the datasets we employed to conduct our experiments and
assess our methodology: the TweetSentBR and the 2000-tweets-BR.

3.1 TweetSentBR
The TweetSentBR (TTsBR) [10] is a sentiment corpus for Brazilian Portuguese, manually
annotated, with 15000 tweets on TV show domain. The tweets were labeled in three
classes: positive, neutral, and negative.

Table 3.1: Outline of TweetSentBR.

Class Training Test Total
Positive 5741 (44.2%) 907 (45.1%) 6648
Neutral 3410 (26.3%) 516 (25.7%) 3926
Negative 3839 (29.5%) 587 (29.2%) 4426

Total 12990 2010 15000

Table 3.2: Average number of words per tweet in TweetSentBR.

Class Training Test Total
Positive 11.37± 5.88 11.09± 5.66 11.33± 5.85
Neutral 11.73± 6.12 11.84± 6.20 11.74± 6.13
Negative 12.91± 6.31 13.30± 6.32 12.96± 6.32

Total 11.92± 6.11 11.92± 6.07 11.92± 6.10

Table 3.1 presents an overview of the dataset, showing the distribution of tweets be-
tween the three classes, as well as between training and test sets, which are predetermined.
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Table 3.2 shows the average number of words per tweet – along with the standard devi-
ation – in the three classes and in the training and test sets. The longest tweet in this
dataset contains 54 words. The number of words was computed using the word_tokenize
function from NLTK [7]. We can see that all word averages are similar, meaning that
the dataset is balanced in relation to sample lengths, i.e., we do not have the issue of, for
example, training a classifier on short sentences and testing it on long sentences.

Since it is a corpus of tweets, it provides us a good representation of user-generated
content, which is one of the primary sources of subjective texts used in Sentiment Analysis.
Three example tweets (one from each class) from the dataset are:

Positive A fátima fica mais bonita com cabelo curtoa

Neutral terminou a entrevista com malumab

Negative já acabouuu nãoooc

aFátima is more beautiful with short hair.
bThe interview with Maluma is over.
cIs it already over? Nooo!

As the examples show, TweetSentBR also crucially provides us with emoji usage in
social media environment. While they do not occur in every tweet (as the examples may
suggest), they do occur in about one fifth of the tweets, as shown in Table 3.3, which
presents some statistics about emoji occurrence and distribution in the dataset.

Table 3.3: Number of tweets from TweetSentBR that have emoji and their respective
percentage in relation to all tweets.

Class Training Test Total
Positive 1688 (64.4%) 274 (66.4%) 1962 (29.5%)
Neutral 379 (14.5%) 65 (15.7%) 444 (11.3%)
Negative 552 (21.1%) 74 (17.9%) 626 (14.1%)

Total 2619 (20.2%) 413 (20.6%) 3032 (20.2%)

We can see that both training and test sets have practically the same proportion
of emoji-occurring tweets: 20.2% and 20.6%, respectively, although we can also observe
that the emoji distribution between classes is more unbalanced, with the positive class
having almost twice as many emoji-occurring tweets than the neutral and negative classes
combined. This suggests that emoji which carry positive sentiment are more frequent.

To confirm if that is indeed the case, we computed the ten most frequent emoji in
the training and test sets. The result is presented in Table 3.4, which includes the code
points of the characters, their visual representations1, and their absolute frequencies in
the dataset.

We can see that “positive” emoji are more frequent. That seems to be the case for
tweets, in general, because the three most frequent emoji in Table 3.4 are the same as the

1According to the Noto Color Emoji font: https://www.google.com/get/noto/#emoji-zsye-color

https://www.google.com/get/noto/#emoji-zsye-color
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Table 3.4: Top 10 most-frequent emoji of TweetSentBR.

Training
Unicode Emoji Freq.

U+1F602 1096
U+1F60D 865
U+02764 737
U+1F44F 518
U+1F62D 282
U+1F622 120
U+1F631 105
U+1F499 93
U+1F3FB 89
U+02665 75

Test
Unicode Emoji Freq.

U+1F602 217
U+1F60D 131
U+02764 97
U+1F44F 62
U+1F62D 46
U+1F499 28
U+1F631 25
U+1F622 24
U+1F3B6 21
U+1F494 13

three more popular emoji on Twitter (with the second and third positions exchanged),
according to Emojitracker2, a service that monitors and counts the number of emoji used
on Twitter in real time. It has processed over 30 billion tweets3, since its launch in 2013,
so we can assume our results are fairly representative of the natural occurrence of emoji
in social media.

Sometimes, it is not clear if an emoji has positive, negative, or no sentiment associated
with it. However, this is certainly not the case with the three aforementioned emoji, as
their names show: – “face with tears of joy”, – “smiling face with heart-eyes”, and

– “red heart”. Names were obtained from The Unicode Consortium4.
We also investigated the number of tweets containing one emoji, two emoji, and so

forth. The results are presented in Figures 3.1 and 3.2 for the training and test sets,
respectively. Note that the figures show only values for tweets that contain at least one
emoji, since including a bar for zero emoji would eclipse all the other bars. Moreover, we
considered all emoji in the tweets, as opposed to considering only unique emoji per tweet.

3.2 2000-tweets-BR
The 2000-tweets-BR [73] is a multi-domain Brazilian Portuguese corpus of tweets built to
analyze the Brazilian and European varieties of the Portuguese language with respect to
Sentiment Analysis. It was manually annotated and organized in four classes: positive,
neutral, negative, and mixed. This last class refers to tweets having both positive and
negative opinions. Originally, the corpus is organized thus: 390 positive tweets, 1040

neutral tweets, 509 negative tweets, and 61 mixed tweets, totaling 2000 tweets. The
proportion of tweets in each class reflects the sentiment of the users at the time of the
gathering.

2https://emojitracker.com
3https://emojitracker.com/stats
4https://unicode.org/emoji/charts/full-emoji-list.html

https://emojitracker.com
https://emojitracker.com/stats
https://unicode.org/emoji/charts/full-emoji-list.html
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Figure 3.1: Distribution of tweets according to the quantity of emoji per tweet for Tweet-
SentBR – training set.

Figure 3.2: Distribution of tweets according to the quantity of emoji per tweet for Tweet-
SentBR – test set.

Following Vitório et al. [73], who introduced the dataset, we do not use the “mixed”
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Table 3.5: Outline of 2000-tweets-BR.

Class Training Test Total
Positive 329 (20.0%) 61 (20.9%) 390
Neutral 894 (54.2%) 146 (50.2%) 1040
Negative 425 (25.8%) 84 (28.9%) 509

Total 1648 291 1939

Table 3.6: Average number of words per tweet in 2000-tweets-BR.

Class Training Test Total
Positive 12.50± 6.82 10.97± 5.88 12.26± 6.70
Neutral 11.98± 6.79 12.21± 6.89 12.01± 6.80
Negative 12.84± 7.44 12.60± 6.85 12.80± 7.34

Total 12.30± 6.98 12.06± 6.68 12.27± 6.93

class in the classification process, so the actual number of samples is 1939. Additionally,
since the dataset does not have predefined training and test sets, we split it using 15% of
the samples, randomly selected, as test set. For the TweetSentBR dataset, the test set
is 13.4% of the total, so we chose the nearest multiple of five here. The statistics of the
resulting dataset are presented in Table 3.5.

Table 3.6 shows the average number of words per tweet – along with the standard
deviation – in the three classes and in the training and test sets. The longest tweet in
this dataset contains 37 words. As is the case with the TweetSentBR dataset, all word
averages are similar, meaning that the 2000-tweets-BR dataset is also balanced in relation
to sample lengths.

Three example tweets (one from each class) from the dataset are:

Positive O ultimate é lindona #BTS
Neutral Quem vive de orgulho morre de saudadeee!!b

Negative Não acreditoc

aUltimate is quite handsome.
bHe who lives with pride dies of longing.
cI can’t believe it.

We also analyzed the emoji occurrence and distribution in the 2000-tweets-BR dataset.
The results are shown in Table 3.7.

For this dataset, the proportion of emoji-occurring tweets in the training and test sets
is also similar: 15.5% and 14.1%, respectively, about 5% less than for TweetSentBR. We
can also see that, in this case, the neutral class has more emoji-occurring tweets than the
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Table 3.7: Number of tweets from 2000-tweets-BR that have emoji and their respective
percentage in relation to all tweets.

Class Training Test Total
Positive 79 (30.9%) 14 (34.2%) 93 (23.9%)
Neutral 132 (51.5%) 21 (51.2%) 153 (14.7%)
Negative 45 (17.6%) 6 (14.6%) 51 (10.0%)

Total 256 (15.5%) 41 (14.1%) 297 (15.3%)

positive class, but that is owing to the neutral class having more tweets, as 23.9% of the
positive tweets have emoji, in contrast to 14.7% in the case of neutral tweets (Table 3.7).

We computed the ten most frequent emoji in the training and test sets for the 2000-
tweets-BR dataset as well, as shown in Table 3.8.

Table 3.8: Top 10 most-frequent emoji of 2000-tweets-BR.

Training
Unicode Emoji Freq.

U+1F602 57
U+02764 52
U+1F60D 40
U+1F644 20
U+1F3FB 19
U+1F62D 15
U+1F499 13
U+1F3B6 12
U+1F494 11
U+1F44C 9

Test
Unicode Emoji Freq.

U+1F602 14
U+1F62D 14
U+02764 7
U+1F494 5
U+1F44A 5
U+1F44C 3
U+1F60D 2
U+1F64F 2
U+1F497 2
U+1F62A 2

The three most frequent emoji in the training set are the same as the three more
popular emoji on Twitter, according to Emojitracker, in the same order. In regard to the
test set, as it is considerably small, it is more susceptible to fluctuations. For example,
there is one sample5 which has 13 occurrences of the emoji – “loudly crying face”, the
fourth most-popular emoji on Twitter – putting it in the top three of the most-frequent
emoji in the test set of 2000-tweets-BR, otherwise it would be some positions lower, which
would be more consistent with the other top 10 tables.

We computed the number of tweets per quantity of emoji for the 2000-tweets-BR
dataset as well. The results are presented in Figures 3.3 and 3.4 for the training and
test sets, respectively. Note that the figures show only values for tweets that contain at
least one emoji, and we considered all emoji in the tweets, as opposed to considering only
unique emoji per tweet.

5“Nãoooooooo! https://t.co/0hJpT0c5v4”

https://t.co/0hJpT0c5v4
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Figure 3.3: Distribution of tweets according to the quantity of emoji per tweet for 2000-
tweets-BR – training set.

Figure 3.4: Distribution of tweets according to the quantity of emoji per tweet for 2000-
tweets-BR – test set.



36

Chapter 4

Methodology

The core idea behind our proposed methodology is to extract the maximum informa-
tion possible from emoji in order to have a richer representation of a piece of text and
use that to improve the sentiment classification. The methodology comprises additional
pre-training evaluation, data augmentation evaluation, emoji extraction, and fine-tuning.
Figure 4.1 illustrates the process and the sequence of the steps.

Additional
Pre-Training

Data
Augmentation

Emoji
Extraction

Fine-Tuning

Figure 4.1: Overview of our proposed method for sentiment classification of texts.

Each step is affected by the previous steps, as the data and knowledge flow through
the method. Since the starting model is already pre-trained, the pre-training we per-
form is additional, using similar texts to the ones we are ultimately interested in. Data
augmentation is applied on both datasets. Emoji extraction is performed on the aug-
mented datasets. Finally, fine-tuning builds upon the further pre-trained model and uses
the emoji extraction on the augmented datasets. The following sections delve into these
steps.

4.1 Further Pre-Training
Since pre-training a Transformer-based model from scratch is very expensive time-wise
and it also requires massive amounts of data, we make use of BERTimbau [62], which
is a BERT [16] model pre-trained on the brWaC corpus [74], which is composed of 2.7
billion tokens, from 120 thousand different websites. Following the general idea of Transfer
Learning, we can fine-tune this model on our downstream task – sentiment classification –
using a labeled dataset and obtain a trained classifier. However, according to Gururangan
et al. [25], performing a second phase of pre-training, this time using in-domain documents,
leads to better results in their experiments. So, we evaluated if this holds in our case as
well.

To pre-train our model, we prepared a corpus of user-generated texts from social media
with 89458 samples, all of which contain at least one emoji. They were obtained from
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social media pages related to TV shows, so the domain should be similar to the one of
the TweetSentBR [10] dataset. Some examples of entries are presented in Table 4.1.

Table 4.1: Examples of samples from the pre-training corpus.

Linda a Jessica e tem senso de humor.a
Quando foi isso? A mulher não ganhou com um nhoque?b

Caramba, que nível.... circo de horroresc

aJessica is beautiful and has a sense of humor.
bWhen was that? Didn’t she win with a gnocchi recipe?
cThat’s terrible... it’s like a horror freak show.

The pre-training process is unsupervised – or, more accurately, semi-supervised, since
the labels are obtained from the input samples – so we need nothing besides the corpus.
Furthermore, using the same inputs, it is possible to generate different labels using dif-
ferent configurations (tasks). We conducted pre-training experiments using six different
configurations [6] for the methodology:

• Masked Language Modeling (MLM): the same task used during pre-training
of BERT. Random tokens are masked with a probability of 15% and the model
is trained to predict those masked tokens. For more details, please refer to Sec-
tion 2.1.4. Example of this pre-training configuration:

Text Labels

Alguém pede pra Jojo 〈MASK〉 esse vestido.a 〈MASK〉 trocar

aSomeone should ask Jojo to change this dress.

• Masked Language Modeling 50% (MLM50): similar to the Masked Language
Modeling configuration, but using a probability of 50% to mask a token. Example
of this configuration:

Text Labels

〈MASK〉 pede pra 〈MASK〉 trocar 〈MASK〉 vestido.a Alguém Jojo esse〈MASK〉 〈MASK〉 〈MASK〉

aSomeone should ask Jojo to change this dress.

• All Emoji (All): all emoji (and only emoji) are masked and the model is trained
to predict those masked emoji. Example:

Text Labels

Alguém pede pra Jojo trocar esse vestido.a 〈MASK〉
〈MASK〉 〈MASK〉 〈MASK〉 〈MASK〉 〈MASK〉 〈MASK〉

aSomeone should ask Jojo to change this dress.
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• First Emoji (First): the first occurring emoji of a text is masked and the model
is trained to predict this masked emoji. If there is only one emoji in the text, it
behaves like the All Emoji configuration. Example:

Text Label

Alguém pede pra Jojo trocar esse vestido.a 〈MASK〉

aSomeone should ask Jojo to change this dress.

• Emoji Masked Language Modeling (EMLM): similar to the Masked Language
Modeling configuration, but only emoji tokens are randomly masked, with a prob-
ability of 15%. Example:

Text Label

Alguém pede pra Jojo trocar esse vestido.a 〈MASK〉

aSomeone should ask Jojo to change this dress.

• Emoji Masked Language Modeling 50% (EMLM50): similar to the Emoji
Masked Language Modeling configuration, but using a probability of 50% to mask
a token. Example of this configuration:

Text Labels

Alguém pede pra Jojo trocar esse vestido.a 〈MASK〉 〈MASK〉
〈MASK〉

aSomeone should ask Jojo to change this dress.

In addition to these six pre-training configurations, we also evaluated the scenario
without additional pre-training. In all cases, we used the original architecture of BERT.

To determine the number of pre-training epochs, we evaluated the Masked Language
Modeling configuration when pre-training for one to ten epochs on the TweetSentBR
dataset. As the Figure A.1 shows, five epochs seem to be sufficient for the result to
stabilize, so we used this number of epochs in the experiments.

4.2 Data Augmentation
We evaluated whether data augmentation could improve the results of Sentiment Analysis
of social media texts or not. The approach employed here is based on the work of Wei
and Zou [77]. The central idea is to modify a piece of text using four operations:

• Synonym Replacement: Randomly choose n words from the sentence that are
not stop words. Replace each of these words with one of its synonyms chosen at
random.

• Random Insertion: Find a random synonym of a random word in the sentence
that is not a stop word. Insert that synonym into a random position in the sentence.
Do this n times.
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• Random Swap: Randomly choose two words in the sentence and swap their po-
sitions. Do this n times.

• Random Deletion: For each word in the sentence, randomly remove it with prob-
ability p.

The number of words changed per sample, n, is based on the text length l and given
by the formula n = αl, where α is a parameter that indicates the percentage of words in
a sample to be changed. For the random deletion operation, p = α.

We experimented with the values of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 for α to determine
which one produces the best results for the TweetSentBR and 2000-tweets-BR datasets.

In addition to the parameter α, another important one is the naug, which determines
the number of augmented samples per original sample. We experimented with the values
of 1, 2, 3, 4, and 5 for naug to determine which one yields the best results for each dataset.

The original method of Wei and Zou [77] was built to work with English texts. We
modified it to work with Portuguese text by employing the Open Multilingual WordNet
through NLTK [7] to find synonyms of the words.

4.3 Emoji Extraction
For every tweet, during the fine-tuning phase, we perform emoji extraction to separate
them from the text, so that we end up with two sequences: one with words and another
with emoji [5]. Note that, in this work, we consider emoticons [23, 51] as emoji, because
albeit not being the same thing, they essentially fulfill the same role.

Table 4.2: Emoticons considered in our method.

:( =( ;( :-( ;-( :) =) ;) :-) ;-) :D ;D <3 S2

Table 4.2 contains the emoticons considered. All emoji found in the training sets are
added to the vocabulary of the WordPiece embedding [79] tokenizer.

4.4 Model Architecture
Figure 4.2 illustrates the model and the sentiment classification process, from the input
text to the output sentiment probabilities. Each step is explained as follows.

First, the words sequence is processed by the tokenizer, which inserts a special clas-
sification token ([CLS]) as the first token of the sequence and translates all input tokens
to WordPiece token IDs, according to the vocabulary. These token IDs are then fed to
the embedding layer, using hidden size H = 768. Inside the embedding layer, the token
IDs and their positions in the sequence are converted to embeddings (H-dimensional vec-
tors). Then, the embeddings for the input tokens and for the positions of the tokens are
summed and then normalized [2]. The resulting embeddings then go to the multi-layer
bidirectional Transformer [72] encoder. We use L = 12 as the number of layers (i.e.,
Transformer blocks) and A = 12 as the number of self-attention heads.
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Figure 4.2: Our proposed method for sentiment classification of tweets.

The output of the encoder is then “pooled” by taking the hidden state corresponding to
the special classification token, following Devlin et al. [16]. The same process is applied
to the emoji sequence. The next step is to concatenate the hidden states of the two
sequences and feed the result to a dropout layer and then to a fully connected classification
layer, followed by the softmax function, which returns the probability of the tweet having
positive, neutral, or negative sentiment.

To try to reduce the overfitting and obtain a better model, we experimented with
dropout probabilities ranging from 0 (no dropout) to 0.5 (approximately half the neurons’
outputs are zeroed) in steps of 0.05. We evaluated these different settings on both the
TweetSentBR and 2000-tweets-BR datasets.

The results for TweetSentBR are presented in Figure A.2 and Table A.1 on page 63.
The results for 2000-tweets-BR are presented in Figure A.3 and Table A.2 on page 64.

Besides the aforementioned dropout layer, dropout is also used in the self-attention
computation. We evaluated the same range of values, using the value of 0.35 for the general
dropout probability with TweetSentBR and 0.05 for 2000-tweets-BR, as they performed
the best.

The results for self-attention dropout for TweetSentBR are presented in Figure A.4
and Table A.3 on page 65. The results for 2000-tweets-BR are presented in Figure A.5
and Table A.4 on page 66.
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To summarize the results we obtained in our dropout experiments, the best dropout
settings for the TweetSentBR dataset are general dropout rate of 35% and self-attention
dropout rate of 5%. As for the 2000-tweets-BR dataset, the best settings are general
dropout rate of 5% and self-attention dropout rate of 15%.

4.5 Training Protocol
Starting with a pre-trained BERTimbau [62] model, we evaluated additional pre-training
using the original architecture of BERT, according to Section 4.1. We then fine-tuned
our model on the datasets using maximum sequence length of 128 tokens with padding,
which means that sequences longer than 128 tokens are truncated, and sequences shorter
than 128 tokens are padded so that every sequence in the batch has the same length. As
analyzed in Chapter 3, the datasets we use in this work do not contain any sample longer
than 128 words1, so we did not have any truncated token.

We utilized AdamW [42] optimizer with initial learning rate of 1× 10−5, weight decay
of 0.01, β1 = 0.9, β2 = 0.999, batch size of 32, and maximum number of epochs of 20

for TweetSentBR and 100 for 2000-tweets-BR, since it is smaller and the model was still
learning in the 20th epoch in some cases. To determine the best values for the training
parameters, we used a stratified 5-fold cross-validation schema for both datasets, on their
training sets. With this setting, we get five values per run (one per fold), and the result
reported as “validation” is the arithmetic mean of these five values. We opted to adopt
cross-validation over a fixed training/validation split due to its robustness, at the expense
of taking longer to execute. The test sets (holdout sets) are only used in the final fine-
tuning runs, to obtain the final results.

4.6 Loss Function
To train our model we used the cross-entropy loss function. Since there are more than
two classes, we must compute the loss for each class. Considering an input sample i, the
model produces a vector x, whose length is C, the number of classes, containing the logits
for each class. Let yi be the target class of sample i, then the loss can be expressed by:

`(x, y) = − log

(
exp (xy)∑C

j=1(exp (xj))

)
= −xy + log

(
C∑

j=1

(exp (xj))

)
(4.1)

Since, in our case, the classes are unbalanced, we used weights to ensure that no class
was neglected during the training process. For a dataset with a total of T samples, set of
classes C, and Tc samples of the class c, ∀c ∈ C, the weight assigned to each class is given
by:

wc =
T

Tc

, ∀c ∈ C (4.2)

1The longest sample in TweetSentBR has 54 words, and the longest one in 2000-tweets-BR has 37
words.
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Considering these weights, the equation of the loss per class becomes:

`(x, y) = wy

(
−xy + log

(
C∑

j=1

(exp (xj))

))
(4.3)

The losses are averaged across observations for each batch. For a batch size of N

samples, the cross-entropy loss is given by:

L =

∑N
i=1(`(i, yi))∑N

i=1(wyi)
(4.4)

4.7 Computational Resources
To develop our methodology we used the Python2 programming language, PyTorch3,
the Transformers4 library from Hugging Face, BERTimbau5, NumPy6, Pandas7, the
Natural Language Toolkit8, and scikit-learn9. To obtain the texts used to perform the ad-
ditional pre-training we used the Odysci Media Analyzer10. Most of the experiments were
executed on Google Colaboratory11, with the following hardware specifications: 2.2 GHz
Intel Xeon processors, 12 GB of RAM memory, and NVidia Tesla P100 graphics cards,
with 16 GB of memory HBM2 and 3584 CUDA cores, running Linux operating system.

2https://www.python.org
3https://pytorch.org
4https://huggingface.co/transformers
5https://github.com/neuralmind-ai/portuguese-bert
6https://numpy.org
7https://pandas.pydata.org
8https://www.nltk.org
9https://scikit-learn.org

10https://www.odysci.com
11https://colab.research.google.com

https://www.python.org
https://pytorch.org
https://huggingface.co/transformers
https://github.com/neuralmind-ai/portuguese-bert
https://numpy.org
https://pandas.pydata.org
https://www.nltk.org
https://scikit-learn.org
https://www.odysci.com
https://colab.research.google.com


43

Chapter 5

Experimental Results

We evaluate our methodology and compare the obtained results with the published re-
sults for the TweetSentBR and 2000-tweets-BR datasets. Since our model is based on
BERT and we could not find published results for it on these datasets, we performed the
evaluation of a standard BERT model using the same training protocol as our model. In
all cases, the inputs are the full tweets, including emoji, if present.

5.1 Evaluation Metrics
The evaluation metrics traditionally used for the TweetSentBR and 2000-tweets-BR
datasets are accuracy and F1 score. We also present the results for precision and re-
call to offer a better representation of the effectiveness of the classifiers. Additionally,
since the datasets used in this work are imbalanced, we computed the balanced accuracy
and the balanced F1 score. In order to keep the results as clear and unambiguous as
possible, we include the definitions we used.

Accuracy is defined as:

Accuracy(y, ŷ) = 1

N

N∑
i=1

(1(ŷi = yi)) (5.1)

where ŷi is the predicted label of the i-th sample, yi is the corresponding true label, and
N is the number of samples.

Balanced accuracy is defined as:

Balanced Accuracy =
1

|C|
∑
c∈C

(
rc
nc

)
(5.2)

where C is the set of classes, nc is the number of samples from class c, and rc is the
number of samples from class c that were predicted correctly.

Precision and recall are defined as:

Precision(c) = TPc

TPc + FPc

(5.3)
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Recall(c) = TPc

TPc + FNc

(5.4)

where TPc, FPc, and FNc are the number of “true positives”, “false positives”, and “false
negatives”, respectively, regarding the class c. Since we are working with multi-class
datasets, precision and recall are computed for each class.

F1 score, also per class, is defined as:

F1 score(c) = 2× Precision(c)×Recall(c)

Precision(c) +Recall(c)
(5.5)

To obtain one final value of F1 score for a classifier, there are different options, such
as macro-averaged F1 score (macro-F1), weighted-average F1 score (weighted-F1), and
micro-averaged F1 score (micro-F1). We adopt the first option – macro-F1 – which is
likely the most-used option. We are aware of the existence of two methods to obtain
the macro-F1 [50], and we use the arithmetic mean over harmonic means version, as it
is reported to be significantly more robust and, again, likely the most-used version. The
macro-F1 score is, then, defined as:

Macro-F1 score =
1

|C|
∑
c∈C

(F 1 score(c)) (5.6)

where C is the set of classes.
Balanced F1 score is defined as:

Balanced F1 score =
1∑

c∈C |Sc|
∑
c∈C

(|Sc| × F 1 score(c)) (5.7)

where Sc is the subset of S (the set of input samples) for the class c.
All the metrics have their values in the interval [0, 1], and the higher the better.

5.2 Pre-Training Results
One of the first aspects we have to verify is whether additional pre-training improves
the results of the final model or not. We experimented with six different pre-training
configurations (tasks), presented in Section 4.1, namely Masked Language Modeling
(MLM), Masked Language Modeling 50% (MLM50), All Emoji (All), First Emoji (First),
Emoji Masked Language Modeling (EMLM), and Emoji Masked Language Modeling 50%
(EMLM50), in addition to no further pre-training at all (None). The results for the Tweet-
SentBR dataset are presented in Table 5.1. “Bal. Acc.” and “Bal. F1” stand for balanced
accuracy and balanced F1 score, respectively.

These results are from the sentiment classification fine-tuning phase using each of the
pre-trained configurations. As we can see in the table, the best results were obtained
with the Masked Language Modeling 50% configuration, which yielded the best results
for all metrics. When considering only emoji-based configurations, the First Emoji (First)
and Emoji Masked Language Modeling 50% (EMLM50) had similar performance rates –
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Table 5.1: Pre-training experiment results for TweetSentBR – validation.

Config. Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
None 0.7592 0.7476 0.7441 0.7621 0.7425 0.7476
MLM 0.7647 0.7531 0.7495 0.7670 0.7466 0.7531

MLM50 0.7706 0.7576 0.7552 0.7727 0.7532 0.7576
All 0.7567 0.7383 0.7389 0.7589 0.7432 0.7383

First 0.7627 0.7528 0.7487 0.7668 0.7489 0.7528
EMLM 0.7582 0.7445 0.7423 0.7607 0.7431 0.7445

EMLM50 0.7637 0.7500 0.7484 0.7659 0.7482 0.7500

difference of 0.10 percentage points (p.p.) in accuracy and of 0.03 p.p. in F1 score – and
were the best options, while the All Emoji (All) configuration produced the worst results
of all configurations.

Table 5.2: Pre-training experiment results for 2000-tweets-BR – validation.

Config. Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
None 0.8144 0.7665 0.7939 0.8102 0.8416 0.7665
MLM 0.7972 0.7680 0.7796 0.7952 0.7992 0.7680

MLM50 0.7938 0.7627 0.7758 0.7911 0.7992 0.7627
All 0.7938 0.7414 0.7729 0.7892 0.8310 0.7414

First 0.8041 0.7871 0.7896 0.8033 0.7981 0.7871
EMLM 0.7938 0.7477 0.7765 0.7900 0.8274 0.7477

EMLM50 0.8041 0.7641 0.7881 0.8013 0.8270 0.7641

Table 5.2 shows the results for the 2000-tweets-BR dataset. Except for the balanced ac-
curacy and the recall metrics, the best results were obtained with no further pre-training.
One possible reason for that is the nature of the pre-training data, which is not exactly
from the same domain as the 2000-tweets-BR dataset. When considering only emoji-
based configurations, the First Emoji (First) and Emoji Masked Language Modeling 50%
(EMLM50) had similar performance rates – difference of 0.00 p.p. in accuracy and of
0.15 p.p. in F1 score – and were the best options, similar to the TweetSentBR case. Also
similar is the fact that the All Emoji (All) configuration produced the worst results of all
configurations. This can be caused by the imbalance of the number of masked tokens,
since each input sample has a different number of emoji.

5.3 Data Augmentation Results
Using an adaptation for the Portuguese language of the approach by Wei and Zou [77], we
evaluated data augmentation for Sentiment Analysis. There are two important parameters
in this method: α and naug. The former indicates the percentage of words in a sample to
be changed in the augmented samples and the latter determines the number of augmented
samples per original sample.
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Figure 5.1: Data augmentation results for TweetSentBR – parameter α – validation.

Figure 5.2: Data augmentation results for 2000-tweets-BR – parameter α – validation.

Figure 5.1 shows the results for the experiment to determine the best value for α

considering the TweetSentBR dataset. To execute this experiment, we used naug = 1.
These results are from the sentiment classification fine-tuning phase. We found 0.4 to be
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the best value, producing accuracy of 0.7756 and F1 score of 0.7607. The complete results
can be found in Table A.5 on page 67.

The results of the experiment to determine the best value for α considering the 2000-
tweets-BR dataset are presented in Figure 5.2. Again we fixed naug = 1 and varied only α.
The best value for α is not as evident as it is in the case of TweetSentBR. We considered
it to be 0.2 because it yielded the best results for F1 score, balanced F1 score (not shown
in Figure 5.2), and accuracy (tied with α = 0.1). For the complete results, please refer to
Table A.6 on page 67.

As for the parameter naug, the results are presented in Figure 5.3 for the TweetSentBR
dataset. We used α = 0.4, according to the previous experiment, and found naug = 3 to
be the best value, producing accuracy of 0.7762 and F1 score of 0.7625. The complete
results can be found in Table A.7 on page 67.

The results of the experiment to determine the best value for naug considering the
2000-tweets-BR dataset are presented in Figure 5.4. We used α = 0.2, according to the
previous experiment. Similar to the results for TweetSentBR, we found naug = 3 to be the
best value for 2000-tweets-BR as well, yielding accuracy of 0.8245 and F1 score of 0.8037.
For the complete results, please refer to Table A.8 on page 68.

Figure 5.3: Data augmentation results for TweetSentBR – parameter naug – validation.

Summarizing the results we obtained in our data augmentation experiments, the best
data augmentation schema for the TweetSentBR dataset is 3 augmented samples per
original sample, with 40% of the words changed. For the 2000-tweets-BR dataset, the
best schema is 3 augmented samples per original sample, with 20% of the words changed.

Having found the best settings for data augmentation, we compared those results with
those obtained without data augmentation to determine whether it is beneficial to the
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Figure 5.4: Data augmentation results for 2000-tweets-BR – parameter naug – validation.

method or not. Table 5.3 shows this comparison for the TweetSentBR dataset. “Bal.
Acc.” and “Bal. F1” stand for balanced accuracy and balanced F1 score, respectively.
From the table, we can see that the classifier using data augmentation yielded better
results for all the metrics considered.

Table 5.3: Data augmentation experiment results for TweetSentBR – validation.

Aug. Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
No 0.7751 0.7648 0.7611 0.7776 0.7591 0.7648
Yes 0.7762 0.7657 0.7625 0.7792 0.7602 0.7657

Table 5.4: Data augmentation experiment results for 2000-tweets-BR – validation.

Aug. Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
No 0.8213 0.7856 0.8049 0.8186 0.8353 0.7856
Yes 0.8245 0.7851 0.8037 0.8212 0.8346 0.7851

Table 5.4 shows the comparison for the 2000-tweets-BR dataset. The best option is not
evident since the results do not differ much from each other. We performed the Wilcoxon
signed-rank test [78] for all six metrics and found no statistical difference between the
augmented and non-augmented classifiers. We also performed the same test with respect
to the TweetSentBR dataset (cf. Table 5.3), which yielded a similar result. Since, for both
datasets, we did not perceive statistically meaningful differences between the augmented
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and non-augmented classifiers and the augmented version produced numerically superior
results for TweetSentBR, we opted to adopt data augmentation for the 2000-tweets-BR
dataset as well.

5.4 Fine-Tuning Results
Table 5.5 lists the experimental results for the TweetSentBR dataset. Note that the values
for precision and recall are the arithmetic means of their per-class values, so as not to
clutter the table with one entry for each class.

Brum and Nunes [10], who introduced the TweetSentBR dataset, used the Naïve
Bayes [60] and Support Vector Machine (SVM) [27] classifiers to classify the sentiment
of the tweets. The best results were obtained with the Naïve Bayes classifier, so we
consider these to be the baseline results. Brum and Nunes [9], in a subsequent work, used
Naïve Bayes, SVM, Logistic Regression (LR), Multi-Layer Perceptron (MLP), Decision
Trees, and Random Forest classifiers. In this case, Multi-Layer Perceptron was the best-
performing classifier, as listed in the table.

Sakiyama et al. [61] developed a breaking news event detector based on the time se-
ries of the number of positive, neutral, and negative tweets obtained from a Sentiment
Analysis classifier, which was based on a Convolutional Neural Network (CNN) [34].
Nascimento [47] employed ensembles of classifiers in his work. The best-performing en-
semble is composed of Multi-Layer Perceptron, Logistic Regression, and Gaussian Naïve
Bayes classifiers.

When building the model, we used the same size parameters as BERTBASE (L = 12,
H = 768, and A = 12), enabling us to make a fair comparison against it. The entry
“Our model” shows the results obtained when using only our model (cf. Figure 4.2) in
fine-tuning, while the entry “Our model + PT + DA” shows the results obtained when
using our model in tandem with additional pre-training and data augmentation. Our
methodology achieves absolute improvements of 6.6 percentage points (p.p.) in accuracy
over the ensemble classifier and 2.9 p.p. over BERT; and 10.6 p.p. in F1 score over
TextCNN and 3.3 p.p. over BERT.

Regarding the 2000-tweets-BR dataset, the experimental results are presented in Ta-
ble 5.6. Vitório et al. [73], who introduced the dataset, used Support Vector Machines
(SVM) [27] with linear kernel to classify the sentiment of the tweets. Nascimento [47]
obtained the best results using Stochastic Gradient Descent. For the 2000-tweets-BR
dataset, using only our model produced the best results, nonetheless our full methodol-
ogy achieved good results in all metrics, improving the accuracy by 14.5 p.p. over the
Stochastic Gradient Descent classifier and 1.4 p.p. over BERT; and improving the F1 score
by 23.4 p.p. over the Stochastic Gradient Descent classifier and 1.0 p.p. over BERT.

Since our approach focuses on emoji, we tested on a subset of tweets that have one
or more emoji, which are about 20% of the TweetSentBR dataset, as seen in Table 3.3.
With this subset, we can compare the effectiveness of BERTBASE and our model when
dealing with emoji-occurring tweets. As can be seen in Table 5.7, in this scenario, our
model excelled BERTBASE by 4.9 p.p. in accuracy and by 17.9 p.p. in F1 score, indicating
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that our model can actually extract more information from emoji and use that to perform
a better sentiment classification.

Table 5.7: Fine-tuning results for TweetSentBR – emoji subset – test.

Classifier Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
BERTBASE 0.7724 0.5747 0.5631 0.7170 0.8342 0.5747
Our model 0.8208 0.7607 0.7425 0.8193 0.7311 0.7607

Table 5.8: Fine-tuning results for 2000-tweets-BR – emoji subset – test.

Classifier Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
BERTBASE 0.7073 0.6587 0.6779 0.7045 0.7146 0.6587
Our model 0.7317 0.6270 0.6652 0.7162 0.8323 0.6270

For the 2000-tweets-BR dataset, tweets that have one or more emoji represent about
15% of the dataset, as can be seen in Table 3.7. Considering the subset formed by such
tweets, the results are listed in Table 5.8. We can see that our model outperforms BERT
in the accuracy metric by 2.4 p.p., but is surpassed in the F1 score by 1.3 p.p., since the
lower recall value pulls the F1 score down, even though the precision is high. It may be
caused by having emoji which contradict the text in tweet or even by inconsistent labels
in the dataset.

Interestingly, the balanced metrics gave opposing results with relation to their non-
balanced counterparts and the comparison between the two classifiers. Since we have six
metrics and each classifier performed best in three of them, one could say that they are
equally competent in this scenario. We performed the Wilcoxon signed-rank test [78] for
all six metrics and found no statistical difference between the two classifiers, so we can
consider that they performed equally well.
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Chapter 6

Conclusion and Future Work

Sentiment Analysis is currently a relevant research field within Natural Language Pro-
cessing and likely to increase in importance as more and more user-generated content is
created and becomes available. In our competitive society, having a better understand-
ing of what people think can represent a huge advantage for established companies and
startups alike, for instance evaluating user reception of a proposed new product.

Deep Learning methods usually produce competitive results but often require copious
amounts of labeled data, which, for many languages, are hard to acquire because it is
very time-consuming to build a large manually-annotated dataset – the gold standard in
Machine Learning. Unsupervised language representation learning methods alleviate this
issue by means of Transfer Learning, pre-training a language representation model using
a large amount of unlabeled data and then fine-tuning it on a labeled dataset, which does
not need to be too large.

One prominent such model is the Bidirectional Encoder Representations from Trans-
formers (BERT) [16], used as a basis to develop our method. We focused on extracting
information not only from text but also from emoji, which frequently are used in the
social media environment to add expressiveness and set the tone of a message. We ex-
tract emoji from the input text and process them through the Transformer [72] encoder
independently, then combine the hidden states corresponding to the text and emoji before
sending them to the classification layer of the model.

Our experiments with two datasets of tweets in Brazilian Portuguese – TweetSentBR
(TTsBR) [10] and 2000-tweets-BR [73] – produced compelling results, surpassing the
previously published results for both datasets and establishing new state-of-the-art results
on TweetSentBR with accuracy of 0.7761 (improvement of 6.6 percentage points (p.p.))
and F1 score of 0.7626 (improvement of 10.6 p.p.); and on 2000-tweets-BR with accuracy
of 0.8247 (improvement of 14.5 p.p.) and F1 score of 0.8035 (improvement of 23.4 p.p.).
It is possible to use a previously pre-trained BERTBASE model to warm start ours, greatly
reducing the total training time.

We also present a study of emoji occurrence and distribution for the most frequent
emoji in the TweetSentBR and 2000-tweets-BR datasets, and compare the results with
general emoji usage in Twitter obtained via Emojitracker. We found that, in general,
emoji occurrence in these datasets is similar to the overall emoji occurrence in Twitter,
although we observed fluctuations when the number of samples is small, because tweets
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with many occurrences of the same emoji can distort the results. Also, we found that
emoji are more frequent in positive contexts.

Regarding the research questions we posed in Section 1.3, we found that emoji, consid-
ered alongside their corresponding texts, can improve the sentiment classification. Also,
additional pre-training using in-domain data improved the results for the TweetSentBR
dataset but not for the 2000-tweets-BR dataset. Considering that the latter is a multi-
domain dataset – so it is not trivial to obtain great quantity of similar data – and the
additional pre-training was performed using data similar to TweetSentBR, we think that
further research on this topic may improve the outcome. Finally, data augmentation pro-
duced marginally better results for the TweetSentBR dataset but not for 2000-tweets-BR,
and in both cases the difference was not statistically significant.

As future work, we intend to investigate the use of a more sophisticated method of
data augmentation, such as the one proposed by Kumar et al. [38]. Additionally, we would
like to apply our methodology to datasets in other languages, in particular English, since
resources in this language are more plentiful. We also plan to evaluate the application of
other Transformer models other than BERT as the basis for our approach. In addition, we
intend to evaluate the model using positional data for emoji according to the original text,
instead of the positional data obtained after the split. Finally, we think that exploring
different forms of text preprocessing may yield further gains.
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Appendix A

Additional Results

In this chapter, we include graphs and tables with all the numeric results that do not
appear on the main text. “Bal. Acc.” and “Bal. F1” stand for balanced accuracy and
balanced F1 score, respectively. The definition of every evaluation metric used can be
found in Section 5.1. Entries highlighted in bold face in the tables are the best values for
the corresponding evaluation metrics.

A.1 Pre-Training Experiments
Figure A.1 shows the F1 score per pre-training epoch for the TweetSentBR dataset using
the Masked Language Modeling configuration. It was used to determine the number of
pre-training epochs for the additional pre-training.

Figure A.1: F1 score per pre-training epoch for TweetSentBR – validation.
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A.2 Dropout Experiments
Figure A.2 and Table A.1 present the results of general dropout for the TweetSentBR
dataset.

Figure A.2: Dropout experiments results for TweetSentBR – validation.

Table A.1: Dropout experiments results for TweetSentBR – validation.

Rate Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
0.00 0.7602 0.7500 0.7458 0.7635 0.7441 0.7500
0.05 0.7493 0.7430 0.7371 0.7538 0.7371 0.7430
0.10 0.7637 0.7530 0.7493 0.7668 0.7495 0.7530
0.15 0.7602 0.7492 0.7459 0.7629 0.7450 0.7492
0.20 0.7642 0.7581 0.7515 0.7687 0.7506 0.7581
0.25 0.7662 0.7554 0.7517 0.7694 0.7517 0.7554
0.30 0.7692 0.7589 0.7550 0.7719 0.7526 0.7589
0.35 0.7726 0.7642 0.7594 0.7757 0.7573 0.7642
0.40 0.7597 0.7467 0.7440 0.7618 0.7417 0.7467
0.45 0.7587 0.7465 0.7427 0.7605 0.7389 0.7465
0.50 0.7587 0.7433 0.7399 0.7596 0.7363 0.7433

For all metrics considered, the best values were obtained with 35% of general dropout.
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Figure A.3 and Table A.2 present the results of general dropout for the 2000-tweets-BR
dataset.

Figure A.3: Dropout experiments results for 2000-tweets-BR – validation.

Table A.2: Dropout experiments results for 2000-tweets-BR – validation.

Rate Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
0.00 0.7869 0.7315 0.7654 0.7816 0.8303 0.7315
0.05 0.8144 0.7792 0.7975 0.8118 0.8257 0.7792
0.10 0.8110 0.7657 0.7908 0.8075 0.8322 0.7657
0.15 0.7938 0.7595 0.7746 0.7906 0.8009 0.7595
0.20 0.8007 0.7656 0.7815 0.7978 0.8069 0.7656
0.25 0.8041 0.7729 0.7852 0.8012 0.8069 0.7729
0.30 0.7904 0.7696 0.7741 0.7895 0.7845 0.7696
0.35 0.7697 0.7529 0.7542 0.7691 0.7620 0.7529
0.40 0.7594 0.7638 0.7495 0.7598 0.7507 0.7638
0.45 0.7491 0.7633 0.7421 0.7490 0.7430 0.7633
0.50 0.7182 0.7428 0.7126 0.7189 0.7187 0.7428

Apart from precision, the best results were obtained with 5% of general dropout.
The best value for precision was obtained with 10% of general dropout, and it was 0.65

percentage point better than the value obtained with 5% of general dropout.
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Figure A.4 and Table A.3 present the results of self-attention computation dropout
for the TweetSentBR dataset.

Figure A.4: Dropout experiments results for TweetSentBR – self-attention – validation.

Table A.3: Dropout experiments results for TweetSentBR – self-attention – validation.

Rate Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
0.00 0.7672 0.7564 0.7524 0.7696 0.7495 0.7564
0.05 0.7751 0.7648 0.7611 0.7776 0.7591 0.7648
0.10 0.7726 0.7642 0.7594 0.7757 0.7573 0.7642
0.15 0.7746 0.7650 0.7600 0.7769 0.7559 0.7650
0.20 0.7716 0.7640 0.7581 0.7746 0.7544 0.7640
0.25 0.7677 0.7590 0.7537 0.7707 0.7506 0.7590
0.30 0.7647 0.7526 0.7487 0.7667 0.7450 0.7526
0.35 0.7642 0.7523 0.7479 0.7663 0.7440 0.7523
0.40 0.7562 0.7460 0.7405 0.7593 0.7369 0.7460
0.45 0.7507 0.7368 0.7330 0.7528 0.7293 0.7368
0.50 0.7547 0.7412 0.7373 0.7558 0.7334 0.7412

Barring balanced accuracy and recall, all other metrics achieved their best values with
5% of self-attention dropout. As for the balanced accuracy and recall, the best value
was 0.7650, obtained with 15% of self-attention dropout, but it was very close to 0.7648,
obtained with 5% of self-attention dropout.
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Figure A.5 and Table A.4 present the results of self-attention computation dropout
for the 2000-tweets-BR dataset.

Figure A.5: Dropout experiments results for 2000-tweets-BR – self-attention – validation.

Table A.4: Dropout experiments results for 2000-tweets-BR – self-attention – validation.

Rate Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
0.00 0.7972 0.7610 0.7815 0.7947 0.8142 0.7610
0.05 0.7972 0.7760 0.7851 0.7957 0.8013 0.7760
0.10 0.8144 0.7792 0.7975 0.8118 0.8257 0.7792
0.15 0.8213 0.7856 0.8049 0.8186 0.8353 0.7856
0.20 0.8110 0.7672 0.7923 0.8074 0.8337 0.7672
0.25 0.8110 0.7754 0.7928 0.8083 0.8196 0.7754
0.30 0.8007 0.7654 0.7829 0.7979 0.8110 0.7654
0.35 0.7938 0.7612 0.7732 0.7907 0.7945 0.7612
0.40 0.8007 0.7573 0.7776 0.7973 0.8098 0.7573
0.45 0.7835 0.7665 0.7694 0.7832 0.7798 0.7665
0.50 0.7904 0.7795 0.7767 0.7901 0.7817 0.7795

All the metrics considered peaked at 15% of self-attention dropout, as can be seen in
the graph and in the table.
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A.3 Data Augmentation Experiments
Tables A.5 and A.6 present the results of the experiments on data augmentation regarding
parameter α for the TweetSentBR and 2000-tweets-BR datasets, respectively. For more
information about the data augmentation approach employed, please refer to Section 4.2.

Table A.5: Data augmentation results for TweetSentBR – parameter α – validation.

α Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
0.1 0.7632 0.7440 0.7452 0.7638 0.7463 0.7440
0.2 0.7692 0.7573 0.7553 0.7713 0.7537 0.7573
0.3 0.7697 0.7523 0.7521 0.7699 0.7536 0.7523
0.4 0.7756 0.7610 0.7607 0.7772 0.7602 0.7610
0.5 0.7692 0.7499 0.7509 0.7692 0.7530 0.7499
0.6 0.7687 0.7555 0.7536 0.7701 0.7531 0.7555

Table A.6: Data augmentation results for 2000-tweets-BR – parameter α – validation.

α Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
0.1 0.8110 0.7706 0.7918 0.8077 0.8259 0.7706
0.2 0.8110 0.7756 0.7931 0.8081 0.8211 0.7756
0.3 0.7972 0.7760 0.7852 0.7957 0.8009 0.7760
0.4 0.7904 0.7657 0.7738 0.7873 0.7995 0.7657
0.5 0.8075 0.7681 0.7891 0.8044 0.8223 0.7681
0.6 0.7972 0.7665 0.7814 0.7947 0.8066 0.7665

Tables A.7 and A.8 present the results of the experiments on data augmentation
regarding parameter naug for the TweetSentBR and 2000-tweets-BR datasets, respectively.

Table A.7: Data augmentation results for TweetSentBR – parameter naug – validation.

naug Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
1 0.7756 0.7610 0.7607 0.7772 0.7602 0.7610
2 0.7702 0.7636 0.7597 0.7742 0.7559 0.7636
3 0.7762 0.7657 0.7625 0.7792 0.7602 0.7657
4 0.7707 0.7555 0.7544 0.7717 0.7542 0.7555
5 0.7742 0.7570 0.7583 0.7751 0.7591 0.7570
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Table A.8: Data augmentation results for 2000-tweets-BR – parameter naug – validation.

naug Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall
1 0.8110 0.7756 0.7931 0.8081 0.8211 0.7756
2 0.8041 0.7563 0.7823 0.7999 0.8265 0.7563
3 0.8245 0.7851 0.8037 0.8212 0.8346 0.7851
4 0.7938 0.7479 0.7706 0.7895 0.8095 0.7479
5 0.8041 0.7759 0.7874 0.8020 0.8076 0.7759
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Appendix B

Overfitting

During our research, we noticed that the models we obtained were consistently producing
better results on the training sets than on the evaluation sets, suggesting that overfitting
was occurring.

Figure B.1: Training and evaluation losses for TweetSentBR – validation
.

Figure B.1 illustrates the behavior of the training and evaluation losses for the Tweet-
SentBR dataset during all the training epochs. It was obtained with the best-performing
model for this dataset. As expected, the training loss maintains a downwards trajectory.
The evaluation loss also drops for the first few epochs, then it stabilizes and, from the
10th epoch, starts to rise, until it stabilizes again.

One measure to try to overcome the overfitting is using dropout. However, despite the
results having improved, the values obtained for the training sets were still considerably
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better than the ones for the evaluation sets. We then experimented with other possible
strategies: layer normalization and evaluation of different values of weight decay and
learning rate.

B.1 Layer Normalization
Layer Normalization (LN) [2] is similar to Batch Normalization (BN) [32] in that they both
are techniques to normalize activations in intermediate layers of deep neural networks,
leading to faster and more stable training. While batch normalization makes use of batch
statistics to compute the mean and variance which are then used to normalize the summed
input to a neuron on each training sample, layer normalization uses all of the summed
inputs to the neurons in a layer on a single training sample to compute the mean and
variance used for normalization, according to the formula:

y =
x− E[x]√
V ar[x] + ε

× γ + β (B.1)

where γ and β are learnable affine transform parameters, and ε is a value added to the
denominator for numerical stability.

Layer normalization is utilized in the embedding layer, in the encoder, and in the
Masked Language Modeling head during pre-training.

All of our experiments on overfitting were performed using the TweetSentBR dataset.
Table B.1 presents the results of our experiments on layer normalization, varying the
ε parameter. Unlike the tables from other sections, here we include the results for the
training set to show how the models perform in each set.

Table B.1: Layer normalization experiment results for TweetSentBR.

Set ε Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall

Train

10−12 0.8391 0.8335 0.8294 0.8408 0.8270 0.8335
10−09 0.8301 0.8246 0.8205 0.8318 0.8181 0.8246
10−07 0.8293 0.8239 0.8198 0.8311 0.8174 0.8239
10−05 0.8504 0.8477 0.8428 0.8523 0.8404 0.8477
10−03 0.8297 0.8240 0.8202 0.8314 0.8181 0.8240
10−01 0.7548 0.7405 0.7373 0.7546 0.7385 0.7405

Eval

10−12 0.7752 0.7630 0.7604 0.7775 0.7590 0.7630
10−09 0.7746 0.7621 0.7595 0.7768 0.7582 0.7621
10−07 0.7746 0.7622 0.7596 0.7769 0.7584 0.7622
10−05 0.7728 0.7621 0.7590 0.7758 0.7582 0.7621
10−03 0.7741 0.7614 0.7590 0.7762 0.7577 0.7614
10−01 0.7440 0.7253 0.7229 0.7442 0.7239 0.7253

Since BERTimbau [62] was pre-trained using ε = 10−12, we consider this value as the
baseline. Also, we used weight decay of 10−02 and learning rate of 10−05. In Table B.1,
we can see that the best value for ε, when considering the training set, is 10−05, but if
we consider the evaluation set, ε = 10−12 yielded the best results. For ε = 10−05, the
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difference between the results of the training and evaluation sets is around 8.2 percentage
points (p.p.), considering the metrics presented; for ε = 10−12, this difference is around
6.8 p.p. So, the baseline not only yielded the best results for the evaluation set but also
resulted in less overfitting than ε = 10−05.

Another experiment we performed was to add an extra layer normalization just before
the final linear layer (cf. Figure 4.2 on page 40) to check its impact on overfitting.
Table B.2 presents the results obtained. The “No Extra” entry represents the same
baseline as the previous experiment: no additional layer normalization and ε = 10−12.

Table B.2: Layer normalization additional layer experiment results for TweetSentBR.

Set ε Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall

Train

No Extra 0.8391 0.8335 0.8294 0.8408 0.8270 0.8335
10−12 0.8534 0.8504 0.8466 0.8557 0.8407 0.8504
10−09 0.8613 0.8590 0.8548 0.8632 0.8483 0.8590
10−07 0.8434 0.8396 0.8359 0.8460 0.8303 0.8396
10−05 0.8578 0.8546 0.8513 0.8601 0.8459 0.8546
10−03 0.8552 0.8510 0.8479 0.8573 0.8421 0.8510
10−01 0.6901 0.6556 0.6414 0.6723 0.6762 0.6556

Eval

No Extra 0.7752 0.7630 0.7604 0.7775 0.7590 0.7630
10−12 0.7675 0.7598 0.7551 0.7724 0.7513 0.7598
10−09 0.7684 0.7611 0.7561 0.7730 0.7514 0.7611
10−07 0.7660 0.7584 0.7542 0.7704 0.7503 0.7584
10−05 0.7689 0.7614 0.7571 0.7737 0.7538 0.7614
10−03 0.7699 0.7616 0.7572 0.7749 0.7537 0.7616
10−01 0.6824 0.6459 0.6348 0.6671 0.6623 0.6459

The results show that the extra layer normalization did not improve the values for
the evaluation set, for every ε we tested. For the training set, ε = 10−09 did improve the
metrics, but also increased the overfitting, with the difference between the results of the
training and evaluation sets being around 9.6 p.p.

B.2 Weight Decay
Another approach we experimented with was evaluating different values of weight de-
cay [42] for the Adam optimizer. The results are presented in Table B.3.

For both the training and evaluation sets, the best values were obtained with a weight
decay of 10−02. The difference between the results of the training and evaluation sets is
around 6.8 p.p. Interestingly, the smaller decay values yielded exactly the same results,
suggesting that some kind of saturation is occurring.

B.3 Learning Rate
The last strategy we evaluated to cope with overfitting is experimenting with different
learning rates.
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Table B.3: Weight decay experiment results for TweetSentBR.

Set Decay Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall

Train

10−05 0.8301 0.8247 0.8205 0.8318 0.8180 0.8247
10−04 0.8301 0.8247 0.8205 0.8318 0.8180 0.8247
10−03 0.8301 0.8247 0.8205 0.8318 0.8180 0.8247
10−02 0.8391 0.8335 0.8294 0.8408 0.8270 0.8335
10−01 0.8297 0.8244 0.8202 0.8314 0.8177 0.8244

Eval

10−05 0.7710 0.7590 0.7562 0.7731 0.7547 0.7590
10−04 0.7710 0.7590 0.7562 0.7731 0.7547 0.7590
10−03 0.7710 0.7590 0.7562 0.7731 0.7547 0.7590
10−02 0.7752 0.7630 0.7604 0.7775 0.7590 0.7630
10−01 0.7702 0.7585 0.7556 0.7724 0.7541 0.7585

Table B.4: Learning rate experiment results for TweetSentBR.

Set Rate Accuracy Bal. Acc. F1 score Bal. F1 Precision Recall

Train

10−07 0.4267 0.4354 0.4223 0.4330 0.4596 0.4354
10−06 0.7077 0.6923 0.6874 0.7072 0.6879 0.6923
10−05 0.8391 0.8335 0.8294 0.8408 0.8270 0.8335
10−04 0.8965 0.8861 0.8879 0.8950 0.8939 0.8861
10−03 0.4420 0.3333 0.2043 0.2709 0.1473 0.3333

Eval

10−07 0.4825 0.4914 0.4786 0.4890 0.5142 0.4914
10−06 0.7363 0.7214 0.7166 0.7362 0.7172 0.7214
10−05 0.7752 0.7630 0.7604 0.7775 0.7590 0.7630
10−04 0.7540 0.7288 0.7275 0.7493 0.7322 0.7288
10−03 0.4921 0.3833 0.2544 0.3210 0.1974 0.3833

As Table B.4 shows, a learning rate of 10−04 produced the best results on the training
set. The difference between the results of the training and evaluation sets for this value of
learning rate is around 15.4 p.p. Considering now the evaluation set, the best results were
obtained with a learning rate of 10−05. In this case, the difference between the results of
the training and evaluation sets is around 6.8 p.p. We can see that using a learning rate
of 10−04 substantially increases the overfitting.

Considering everything we tried, unfortunately we were not able to eliminate the
overfitting.
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