Sentiment Classification of Short Texts Using Artificial Neural Networks Master's Qualifying Exam

> Tiago Martinho de Barros Prof. Dr. Hélio Pedrini Prof. Dr. Zanoni Dias

> > University of Campinas Institute of Computing

October 3, 2019

28

Table of Contents

Introduction

- Problem Description
- Objectives

2 Background

- Concepts and Techniques
- Related Work

3 Material and Methods

- Methodology
- Evaluation Metrics
- Datasets
- Baseline Results
- Computational Resources

Work Plan and Schedule

Table of Contents

Introduction

- Problem Description
- Objectives
- 2 Background
 - Concepts and Techniques
 - Related Work

3 Material and Methods

- Methodology
- Evaluation Metrics
- Datasets
- Baseline Results
- Computational Resources

Work Plan and Schedule

- Widespread Internet access.
- Opinion of end users and customers.
- Every day, 2.5 quintillion bytes of data are generated¹.
- Shifts in sentiment on social media have been shown to correlate with shifts in the stock market².
- Sentiment Analysis to gauge public opinion was an important factor in the 2012 presidential election in the USA³.

Tiago M. Barros (Unicamp)

Master's Qualifying Exam

¹Domo, "Data Never Sleeps 5.0", 2017

²Ingle et al., "Sentiment Analysis of Twitter Data Using Hadoop", 2015

³Contently, "Social Media Sentiment Becomes Factor in Presidential Campaigns", 2012

Chirley Bednar @Fluffv299

Replying to @Samsung

All the sudden the camera on the s10 is horrible. If light comes into contact with the lens, it becomes blurry and you can't get it clear

♡ 11 7:42 AM - Sep 24, 2019

Purgatory @Purgato88778310

Replying to @Pokemon @playpokemon

No because I won't buy it and the game is most likely going to be an unbalanced mess of a game. But hopefully for the people that do buy it hope it is fun. #BringBackNationalDex pic.twitter.com/66k7eOpfmM

○ 29 5:42 PM - Sep 25, 2019

A

θ

Lee T. @69destinychoice

Replying to @realDonaldTrump

@realDonaldTrump It's lovely and inspiring to see a brilliant, passionate 16 year old young woman speak more coherently and intelligently than the current American president.

① 1,487 4:35 PM - Sep 24, 2019 · Little Rock, AR

θ

- Rule-based approach
- Lexicon-based approach
- Machine Learning approach

Introduction

Unsupervised Language Representation Learning

Embeddings from Language Models (ELMo): an example of unsupervised language representation learning method $^{\rm 1}$

¹Analytics Vidhya, "Learn ELMo for Extracting Features from Text", 2019

Tiago M. Barros (Unicamp)

Master's Qualifying Exam

- **General objective**: Research and study state-of-the-art Sentiment Analysis techniques, and contribute to the field.
- **Contribution**: Propose and implement a competitive methodology to address the problem.

- Gain a deeper knowledge about pre-training unsupervised language representation learning methods.
- Evaluate different options of further unsupervised pre-training and supplementary supervised training.
- Experiment with and assess the different possibilities and combinations of preprocessing of the input text.
- Propose a fine-tuning methodology that produces the competitive results in the considered scenarios.

- Gain a deeper knowledge about pre-training unsupervised language representation learning methods.
- Evaluate different options of further unsupervised pre-training and supplementary supervised training.
- Experiment with and assess the different possibilities and combinations of preprocessing of the input text.
- Propose a fine-tuning methodology that produces the competitive results in the considered scenarios.

- Gain a deeper knowledge about pre-training unsupervised language representation learning methods.
- Evaluate different options of further unsupervised pre-training and supplementary supervised training.
- Experiment with and assess the different possibilities and combinations of preprocessing of the input text.
- Propose a fine-tuning methodology that produces the competitive results in the considered scenarios.

- Gain a deeper knowledge about pre-training unsupervised language representation learning methods.
- Evaluate different options of further unsupervised pre-training and supplementary supervised training.
- Experiment with and assess the different possibilities and combinations of preprocessing of the input text.
- Propose a fine-tuning methodology that produces the competitive results in the considered scenarios.

- Gain a deeper knowledge about pre-training unsupervised language representation learning methods.
- Evaluate different options of further unsupervised pre-training and supplementary supervised training.
- Experiment with and assess the different possibilities and combinations of preprocessing of the input text.
- Propose a fine-tuning methodology that produces the competitive results in the considered scenarios.

Table of Contents

Introduction

- Problem Description
- Objectives

2 Background

- Concepts and Techniques
- Related Work

3 Material and Methods

- Methodology
- Evaluation Metrics
- Datasets
- Baseline Results
- Computational Resources

Work Plan and Schedule

- Document-level sentiment classification
- Sentence-level sentiment classification
- Aspect-level sentiment classification
 - "The art direction of 'Star Wars: The Force Awakens' was amazing, but the plot was uninteresting, to say the least"

- Document-level sentiment classification
- Sentence-level sentiment classification
- Aspect-level sentiment classification
 - "The art direction of 'Star Wars: The Force Awakens' was amazing, but the plot was uninteresting, to say the least"

- Language Modeling technique
- Transforms words into vectors of continuous real numbers
- Words with similar meanings tend to occur in similar contexts

¹Young et al., "Recent Trends in Deep Learning Based Natural Language Processing", 2018

Tiago M. Barros (Unicamp) Master's Qualifying Exam Sentiment Analysis I	l Tiago M. Barros (Unicamp)	lt Analysis 13/28
---	-----------------------------	-------------------

- Class of Machine Learning algorithms used in the learning of multiple levels of representation and abstraction, making it possible to model complex data relationships¹.
- They make use of several layers of non-linear processing units to extract and transform features.
- Each sucessive layer uses the output of the previous one as its input.
- Examples: LSTM², CNN³, and Transformer⁴.

Tiago M. Barros (Unicamp)

¹Goodfellow, Bengio, and Courville, "Deep Learning", 2016

²Hochreiter and Schmidhuber, "Long Short-Term Memory", 1997

³Kim, "Convolutional Neural Networks for Sentence Classification", 2014

⁴Vaswani et al., "Attention is All You Need", 2017

An illustration of Transfer Learning¹

¹Anchit Jain, "Improve Your Model Accuracy by Transfer Learning", 2018

Master's Qualifying Exam

- Dai and Le¹ proposed the supervised fine-tuning step after the unsupervised pre-training. Parameters obtained from the pre-training as a starting point for the supervised training model.
- Embeddings from Language Models (ELMo)²: contextualized word embedding.
- Universal Language Model Fine-Tuning (ULMFiT)³: addressing issues of over-fitting and catastrophic forgetting.

Tiago M. Barros (Unicamp)

Master's Qualifying Exam

¹Dai and Le, "Semi-Supervised Sequence Learning", 2015

²Peters et al., "Deep Contextualized Word Representations", 2018

³Howard and Ruder, "Universal Language Model Fine-Tuning for Text Classification", 2018

- Generative Pre-trained Transformer (GPT)¹: combines unsupervised pre-training with Transformers, as opposed to LSTMs.
- Bidirectional Encoder Representations from Transformers (BERT)²: different training objective (masked language modeling).
- XLNet³: generalized auto-regressive pre-training method.
- Supplementary Training on Intermediate Labeled-data Tasks (STILTs)⁴: supplementary supervised training step between the unsupervised pre-training and the fine-tuning on the target task.

Tiago M. Barros (Unicamp)

¹ Radford et al., "Improving Language Understanding by Generative Pre-Training", 2018

² Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2019

³Yang et al., "XLNet: Generalized Autoregressive Pretraining for Language Understanding", 2019

⁴Phang, Févry, and Bowman, "Sentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks", 2018

Table of Contents

Introduction

- Problem Description
- Objectives

2 Background

- Concepts and Techniques
- Related Work

3 Material and Methods

- Methodology
- Evaluation Metrics
- Datasets
- Baseline Results
- Computational Resources

Work Plan and Schedule

Methodology

Proposed architecture for Sentiment Analysis

Evaluation Metrics

• Accuracy:
Accuracy =
$$\frac{TP + TN}{TP + FP + TN + FN}$$

• Precision:
Precision = $\frac{TP}{TP + FP}$
• Recall:
Recall = $\frac{TP}{TP + FN}$
• F1 score:
F₁ score = 2 × $\frac{Precision × Recall}{Precision + Recall}$

- Movie Reviews (MR)¹: short movie reviews dataset built using data from the review-aggregation website Rotten Tomatoes.
- **Customer Reviews (CR)**²: reviews for 14 products from Amazon.com and from CNET.
- Multi-Perspective Question Answering (MPQA) Opinion Corpus³: opinion polarity detection subtask of this question answering dataset.
- Yelp Reviews Polarity (Yelp)⁴: subset of the 2015 version of the Yelp dataset; 1 or 2 stars are negative, and 4 or 5 stars are positive.

Tiago M. Barros (Unicamp)

¹ http://www.cs.cornell.edu/people/pabo/movie-review-data

²http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

³http://mpqa.cs.pitt.edu/corpora/mpqa_corpus

⁴http://www.yelp.com/dataset

Datasets

Dataset	Year	N	N^+	N^-	w	V
MR	2005	10662	5331	5331	21.01	18324
CR	2008	3746	2385	1361	18.38	5476
MPQA	2005	10514	3177	7337	3.04	5924
Yelp	2015	598000	299000	299000	134.04	214908

Comparative summary of datasets for sentiment classification

Movie Reviews (MR)								
Mathad	Accuracy (%)							
Methou	Α	В	С	D	Е			
Logistic Regression	78.4	78.5	78.9	78.0	78.6			
Linear SVM	78.0	78.1	78.4	77.6	78.3			
SVM with RBF kernel	78.7	79.2	78.6	78.9	79.6			
Bernoulli Naïve Bayes	77.6	78.6	77.8	78.3	77.6			
Multinomial Naïve Bayes	77.0	78.4	77.7	77.3	77.7			
Random Forest	78.7	77.1	78.2	76.1	78.5			

A No preprocessing

B | Removing stop words (full list)

- C | Removing stop words (minimal list)
- D Expanding contractions and removing stop words (full list)
- E | Expanding contractions and removing stop words (minimal list)

Customer Reviews (CR)								
Mathad	Accuracy (%)							
Methou	Α	В	С	D	Е			
Logistic Regression	80.5	77.3	81.1	78.1	81.3			
Linear SVM	78.7	79.5	77.1	77.1	79.2			
SVM with RBF kernel	78.9	77.1	77.6	76.0	78.1			
Bernoulli Naïve Bayes	77.6	78.1	77.9	77.6	77.1			
Multinomial Naïve Bayes	79.5	75.7	78.7	75.5	78.7			
Random Forest	79.2	77.6	78.1	76.8	75.7			

A No preprocessing

B | Removing stop words (full list)

- C | Removing stop words (minimal list)
- D Expanding contractions and removing stop words (full list)
- E | Expanding contractions and removing stop words (minimal list)

Multi-Perspective Question Answering (MPQA)									
Mathad	Accuracy (%)								
	Α	В	С	D	Ε				
Logistic Regression	90.0	89.5	89.4	89.4	89.4				
Linear SVM	89.4	88.4	89.6	88.7	89.5				
SVM with RBF kernel	91.2	89.8	90.6	89.9	90.5				
Bernoulli Naïve Bayes	87.2	85.6	86.7	85.5	86.7				
Multinomial Naïve Bayes	86.8	86.2	86.7	86.2	86.4				
Random Forest	88.4	89.6	89.2	89.5	89.4				

A No preprocessing

B | Removing stop words (full list)

- C | Removing stop words (minimal list)
- D Expanding contractions and removing stop words (full list)
- E Expanding contractions and removing stop words (minimal list)

Computational Resources

Hardware:

- Processor: 3.5 GHz Intel i7-3770
- Main Memory: 32 GB of RAM
- Graphics Card: NVidia GeForce GTX TITAN Black
 - 2880 CUDA cores
 - Default memory DDR5 of 6 GB and 7 Gbps clock

Software:

- Python
- NumPy
- SciPy
- scikit-learn
- PyTorch
- TensorFlow
- Keras
- Sonnet

Table of Contents

Introduction

- Problem Description
- Objectives
- 2 Background
 - Concepts and Techniques
 - Related Work

3 Material and Methods

- Methodology
- Evaluation Metrics
- Datasets
- Baseline Results
- Computational Resources

Work Plan and Schedule

Work Plan and Schedule

Activities		1 st year				2 nd year			
		2	3	4	1	2	3	4	
Stage 1									
Literature review	•	•	•	•	•	•			
Data preparation		•	•	•					
Stage 2							•		
Selection of baseline neural network			•	•	•				
Development of the new model				•	•	•			
Experiments on the proposed methodology				•	•	•			
Stage 3									
Architecture refinement					•	•			
Result analysis					•	•	•		
Stage 4									
Result publication						•	•	•	
Dissertation writing						•	•	•	

Activity list for two-year Master's degree divided into trimesters