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Repl‘ esentatlon Le ar nlng Introduction

3 o 28
Figure 1: Samples in the ImageNet 2012 dataset.

R

Source: cs.stanford.edu/ people/karpathy / cnnembed.

1 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein and A.C. Berg. Imagenet Large Scale Visual Recognition Challenge.
In International Journal of Computer Vision, 115, pp.211-252, 2015.
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Representation Learning mtoduction
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Figure 2: VGG-19, 34Plain and ResNet34 Figure 3: DeepLabV3+ architecture?. Figure 4: Split-Attention Block in the ResNeSt architecture.?
architectures!.

1 Source: K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778. 2016.
2Source: L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with Atrous Separable Convolution for Semantic Image Segmentation. In European Conference on Computer Vision (ECCV), pp. 801-818. 2018.
3 Source: H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun et al. ResNeSt: Split-Attention Networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2736-2746. 2022.
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Models with millions of parameters
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Figure 5: Models of various architectures, pre-trained over
ImageNet. Source: Tan and Le2.

I N. Burkart, and ML.E. Huber. A survey on the explainability of supervised machine learning. In Journal of Artificial Intelligence Research, 70, pp.245-317., 73, pp.1-15. 2018.
2M. Tan, and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning. PMLR. 2019.
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Explaining and Interpreting Models moduction
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Figure 6: [llustration of Activation Maximization? applied to finding
the prototypes for each class in the MNIST dataset. Source: Montavon et al.!

"An interpretation is the mapping of an abstract concept (e.g., a
predicted class) into a domain that the human can make sense _\>

Oflll

simple AM

DNN

"An explanation is the collection of features of the interpretable
domain, that have contributed for a given example to produce a
decision (e.g., classification or regression).t”

—> output flx)
} | (evidence for "boat")

explanation R(x)

Figure 7: Example of the LRP method being applied to explain the
prediction of class boat, given the image x. Source: Montavon et al.!

1 G. Montavon, W. Samek, and K.R. Miiller. Methods for Interpreting and Understanding Deep Neural Networks. In Digital Signal Processing, 73, pp.1-15. 2018.
2M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Conference on Computer Vision (ECCV), pages 818-833. Springer, 2014.



In Computer Vision expinable r

Explainability and explainable predictions:
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Figure 8: Sensitivity maps produced by Vanilla Gradient! (second row) and
Smooth-Grad? (third row), when employed to explain the predictions made
by a Xception model. Source: keras-explainable /methods/ saliency / smoothgrad.

1 K. Simonyan, A. Vedaldi, A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. 2013.
2D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg. SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825. 2017.
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In ComPUter VlSlOIl Explainable Al

Explainability and explainable predictions:
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Figure 8: Sensitivity maps produced by Vanilla Gradient! (second row) and Intel‘ esting Properties:

Smooth-Grad? (third row), when employed to explain the predictions made
by a Xception model. Source: keras-explainable /methods/ saliency / smoothgrad.

1. Completeness
2. Weak dependence

3. Class-specificity

1K. Simonyan, A. Vedaldi, A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. 2013.

2D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg. SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825. 2017. 10.2
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In ComPUter VlSlOn Explainable Al

Leveraging internalized knowledge

to solve different tasks: @F U

Flgure 9: Sens1t1v1ty maps produced by Smooth-Grad.
explainable / methods/saliency / smoothgrad.
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Semantic (and others) Segmentation ioduction

30.2 FPS

(Ia) Image (b) Baseline S (d) Ground true
Figure 10: Samples, proposals! and ground- Figure 11: Example of samples and ground-truth panoptic =~ Figure 12: Example of semantic segmentation produced by ICNet for a video sample
truth segmentation annotation from the segmentation annotation from the MS COCO 2017 dataset.  in the Cityscapes dataset. Source: https:/ /gitplanet.com/project/ fast-semantic-segmentation.
Pascal VOC 2012 dataset. Source: https:/ / cocodataset.org/ # panoptic-2020.

1 H. Xiao, D. Li, H. Xu, S. Fu, D. Yan, K. Song, and C. Peng. Semi-Supervised Semantic Segmentation with Cross Teacher Training. Neurocomputing, 508, pp.36-46. 2022.
2H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In European Conference on Computer Vision (ECCV), pp. 405-420. 2018.
3 L. Chan, M.S. Hosseini. and K.N. Plataniotis. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. In International Journal of Computer Vision, 129, pp.361-384. 2021.
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Semantic (and others) Segmentation ioduction
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Figure 13: Example of road segmentation in SpaceNet Figure 14: Example of (a) morphological and (b) Figure 15: Example of annotated CT Scan image.
dataset. Source: https:/ /www.v7labs.com/open-datasets / spacenet functional segmentation of samples in the Atlas of
Digital Pathology dataset. Source: L. Chan et al.

Source: https:/ /radiopaedia.()rg/Cases/1iver-segments-annotated—ct-l

1 H. Xiao, D. Li, H. Xu, S. Fu, D. Yan, K. Song, and C. Peng. Semi-Supervised Semantic Segmentation with Cross Teacher Training. Neurocomputing, 508, pp.36-46. 2022.
2H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In European Conference on Computer Vision (ECCV), pp. 405-420. 2018.
3 L. Chan, M.S. Hosseini. and K.N. Plataniotis. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. In International Journal of Computer Vision, 129, pp.361-384. 2021. 131
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HOW It IS DOne7 Semantic Segmentation

forward /inference
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Figure 16: Fully Convolutional Network (FCN) architecture!, mapping image
samples to their respective semantic segmentation maps.

1]. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440. 2015. 14



HOW It IS DOne7 Semantic Segmentation

This information needs the be known
and available at training time.

forward/inference

backward/learning

o6 o 21
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CE(pz'a yz) — = Zi\il Yic 10g(pz'c)

Equation 1: The (naive) categorical cross-entropy loss function.

21
Figure 16: Fully Convolutional Network (FCN) architecture!, mapping image
samples to their respective semantic segmentation maps.

1]. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440. 2015.
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(FU]IY) Super VISQ d Lear nlng Semantic Segmentation
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Figure 17: Segmentation annotation example using RoboFlow. Figure 18: Segmentation annotation example using Dataloop. Figure 19: Segmentation annotation example using
Source: https:/ /blog.roboflow.com/semantic-segmentation-roboflow. Source: https:/ / dataloop.ai/docs. LabelStudio. source: https:/ /labelstud.io/blog / perform-interactive-

ml-assisted-labeling-with-label-studio-1-3-0.

Coarse annotations are quickly drawn, but lack quality (e.g., precision);

Detailed annotations take time, patience, people and resources;
Assisting labeling tools can speed up this task.



https://blog.roboflow.com/semantic-segmentation-roboflow/
https://dataloop.ai/docs/create-semantic-segmentation
https://s3.amazonaws.com/media-p.slid.es/videos/419736/mxz9BY0f/smart-polygon-sidebyside--2--1.mp4
https://labelstud.io/blog/perform-interactive-ml-assisted-labeling-with-label-studio-1-3-0/

(We akIY) Supe r Vlsed Lear nlng Semantic Segmentation
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Figré 20: Samples in the ImagNet
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1 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein and A.C. Berg. Imagenet Large Scale Visual Recognition Challenge.
In International Journal of Computer Vision, 115, pp.211-252, 2015.
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Research Goals moduction

1. To study Class-Specific XAl methods in the multi-label scenarios
2. To study promising weakly supervised strategies and to propose new ones

3. To investigate the behavior of WSSS solutions to more complex boundary cases, such as
long-tail and ambiguous functional segmentation problems

18
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EXplalnable AI Related Work
If f, ~ wTl + b,

S; (I) = (%
f c 0 ol |], 0
Equation 2: Saliency map for the concept c of a model S

with respect to an input image x, generated by the (Vanilla)
Gradients method™.

S1.(Io) = $(Vif(I) o Iy) + D icp pec, ¥(f5 (2))

Equation 3: Saliency map for the concept c of a model S with respect
to an input image x, generated by the Full-Gradient method?

Figure 21: Sensitivity maps produced by Vanilla Gradient!
(2nd col) and Full-Grad? (3rd col), when employed to
explain the predictions made by a ResNet50 model.

Source: keras-explainable.

1 K. Simonyan, A. Vedaldi, A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. 2013.

2. Srinivas and F. Fleuret. Full-gradient representation for neural network visualization. In Advances in neural information processing systems, 32. 2019.
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Lack class-sensibility

Expensive to compute

Figure 21: Sensitivity maps produced by Vanilla Gradient!
(2nd col) and Full-Grad? (3rd col), when employed to
explain the predictions made by a ResNet50 model.

Source: keras-explainable.

1 K. Simonyan, A. Vedaldi, A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. 2013.

2S. Srinivas and F. Fleuret. Full-gradient representation for neural network visualization. In Advances in neural information processing systems, 32. 2019. 211
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flz) =2 EZGAP(A’“) >k Whie i A
flz) = ﬁ Zij Dk wlcc ij GAP(w" 'A)

Equation 4: Feed-Forward for a for Convolutional Networks containing GAP layers and the formulation for CAM™.

1B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921-2929. 2016. 20
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flz) =2 EZGAP(A’“) Dk Whie i A
flz) = ﬁ Zij Dk wlcc ij GAP(w" 'A)

Equation 4: Feed-Forward for a for Convolutional Networks containing GAP layers and the formulation for CAM™.

— Lgay(frz) = kalccAk

1B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921-2929. 2016. 20 1




ClaSS ACtlvatIOIl Mapplng Explainable Al

White Pelican Scissor tailed Flycatcher

Figure 22: Examples of CAMs and approximate bounding boxes found for different birds in the CUB200
dataset. Source: Zhou et al.1

1B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921-2929. 2016. o3



EXtenSIOnS and Altel‘ natlve S CAM-Based Explaining Methods

Grad-CAM

Goal: to explain more complex networks, with non-linear (and yet smooth) operations after the GAP layer.

(érad-CAM(ﬁ T) = RGLU(Zk aZAk)

ac 1 8]%(513)
k'~ hw 17 8Afj

Equation 5: Definition for Grad-CAM visual explaining method, for an arbitrary convolutional network f.

IR. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In International Conference on Computer Vision, pp. 618-626. 2017.

24



EXtQHSlonS and Alter natlve S CAM-Based Explaining Methods

Grad-CAM

Goal: to explain more complex networks, with non-linear (and yet smooth) operations after the GAP layer.

What is the man doing? Baseball bat ;

What is the she holding?

What is that? Elephant What is that? Zebra

Figure 23: Examples of Grad-CAM being utilized to explaing a Visual Questioning Network based on convolutional layers and
LSTM Iayers. Source: Selvaraju et al.!

IR. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In International Conference on Computer Vision, pp. 618-626. 2017. 24 1



EXtenSIOnS and Alter natlve S CAM-Based Explaining Methods

Grad-CAM++

Goal: to activate homogeneously over all instances of the explained concept lying the the visual receptive field.

arad-CAM—l——F(f’ CE) ReLU S‘k S‘ cheLU gjﬁ

528,
(aAf.)Z
al?.c —

1] 8285, Ak 038,
2(3Ak)2‘%§:ab cw(aAk)

Equation 6: Definition of Grad- CAM++ visual explaining method.

T A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks.
In Winter Conference on Applications of Computer Vision (WACV), pp. 839-847. IEEE, 2018.

Ak
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Extensions and Alternatives cam-pased Explaining Methods

Grad-CAM++

Goal: to activate homogeneously over all instances of the explained concept lying the the visual receptive field.

Original Image Guided Grad-CAM  Guided Grad-CAM++ Grad-CAM Grad-CAM++

Figure 24: Grad-CAM and Grad-CAM++ being applied to samples in the
ImageNet dataset. Source: Chatopadhay et al.!

T A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks.
In Winter Conference on Applications of Computer Vision (WACV), pp. 839-847. IEEE, 2018.
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EXtenSIOHS and Alter natlve S CAM-Based Explaining Methods

Score-CAM

Goal: to combine the many activation maps, weighted by their contribution towards the Average Drop % metric.

k
gcore—CAM(f7 213) = ReLU Zk fc($ © mgf;l;Ak )Ak

Equation 7: Definition of the Score-CAM visual explaining method?.

1H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPR), pp. 24-25. 2020.
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EXtenSIOHS and AlteI‘ natlve S CAM-Based Explaining Methods

Score-CAM

Goal: to combine the many activation maps, weighted by their contribution towards the Average Drop % metric.

Input Grad-CAM Grad-CAM++ Score-CAM

Source: Wang et al.!

1H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPR), pp. 24-25. 2020. 26.1
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Weakly Supervised Semantic Segmentation related work
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Weakly Supervised Semantic Segmentation related work
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Coarse Semantic Segmentation Priors wsss

Figure 26: Semantic Segmentation Priors produced by thresholding CAMs devised from a ResNet101 model trained over MS COCO 2017 dataset.




Refinement of Segmentation Masks wsss

1. Architectural

2. Pixel neighborhood affinity and similarity

3. Many other strategies: Seed-Expand-Constrain; region semantic-based
clustering; token-based similarity matching, etc.

30



Refinement of Segmentation Masks wsss

1. Architectural

) M
(3, 512, 512) (2048, 16, 16)
(3, 512, 512) (4096, 64, 64)

1Z.Wu, C. Shen, and A. Van Den Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. In Pattern Recognition, 90, pp.119-133. 2019.
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Refinement of Segmentation Masks wsss

1. Architectural

L 7

(3,512, 512) (2048, 16, 16) Fewer layers, more units
"Bottleneck" blocks

Strong dropout

=T - ()

(3, 512, 512) (4096, 64, 64)

1 Z.Wu, C. Shen, and A. Van Den Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. In Pattern Recognition, 90, pp.119-133. 2019.
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FC C()ndltl()nal RandOm FleldS Refinement of Segmentation Masks

E(z) = > Yul®mi) + Zz’<j Vp(Ti, Tj)

unary pairwise
2 2 2
) — e Y (D) ( _ pi=pi|" L= ) o (2) ( _ |pi—py]
¢p(33z, 33]) o /’L(wza w]) [w exXp 202 29% - W exXp 293
label compatibility l'/ \é appearance kernel smoothness kernel J

function (learnable)

1 P. Krghenbiihl, and V. Koltun. Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in Neural Information Processing Systems, 24. 2011.

)
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FC COndlthnal RandOm FleldS Refinement of Segmentation Masks

Image Grid CRF Our approach Accurate ground truth

Figure 27: Qualitative results of dCRF. Source: Kréhenbiihl and Koltun'.

1 P. Krghenbiihl, and V. Koltun. Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in Neural Information Processing Systems, 24. 2011. 321



Plxel Semanth Afﬁnlty Refinement of Segmentation Masks

Qcat
conv

=
=
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Backbone

Figure 5: AffinityNet architecture. Source: Ahn and Kwak!.

1]. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018.

Pairs extraction

—

@
Positive (1)
o0
Negative (0)
o
Don’t care

Figure 5: Illustration of pairs of pixels selected for affinity evaluation.
Source: Ahn and Kwak.
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Plxel Semantlc Afﬁnlty Refinement of Segmentation Masks

cloxnlv @
concat .
g \ . ) Positive (1)
: x Pairs extraction o—b
Tt o :‘ —
cony| / It Negative (0)

o
Don’t care

Figure 5:_Afﬁr;ity;etk:;ciqi_téc_tl;r_e._ Source: Ahn and Kwak W Figure 5 llustration of pairs of pixels selected for affinity evaluation.
Wi; = eXP{—Hf(sz',yz') — fzj,9;) 11}
_ 1
L= TP Zijepf; log Wi
1
— W Zij€P+ log Wij
|P—| ZZjEP_ ]'Og( M/’LJ)

1]. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018.
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PIXEI Semantlc Afﬁnlty Refinement of Segmentation Masks

STTTTTTTTYTTTTT \Qmat
conv _ Pairs extraction

"1 faff
i Backbone f 2 0\0%
Figure 5: AffinityNet architecture. Source: Ahn and Kwak!. «‘6

Wij = eXP{—Hf(wz-,yi) — f(=5,95)ll1}

L = —@ ZijEPf; log Wij

- PL*I 2_ijepy log Wi T'=D"'W*,D
vec(M?*) = T" - vec(M,.),ve e C U {bg}

|’P | Zz]E’P_ log( Wz])

1]. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018.
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o0
Negative (0)

o
Don’t care

Inference

Figure 5: Illustration of pairs of pixels selected for affinity evaluation.
Source: Ahn and Kwak.
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Plxel Semantlc Afﬁnlty Refinement of Segmentation Masks

Figure 28: Qualitative results of random walk using Affinity Network.
Source: Ahn and Kwak®.

1]. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018. 333



PUZZIQ'CAM Better Segmentation Priors

Backbone

Backbone
Network

— PuzzleModule — — — — — — — — — — — — — — —
Figure 29: Puzzle-CAM architecture: the input image is forwarded into the model, producing the global stream. Concomitantly, the input is also
cut into four "puzzle" pieces and forward separately, which compose the "local" stream when merged. source: Jo and Yu'.

1S.Jo, and I. Yu. Puzzle-CAM: Improved localization via matching partial and full features. In IEEE International Conference on Image Processing (ICIP), pp. 639-643. IEEE, 2021.
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OC'CSE Better Segmentation Priors

Class Activation Maps (4;)

Ground Truth
Image-level label (t;)

CGNet
(To-be-trained)

0
[ Classification loss ] — [.] Cat

[1]]| Chair
[1]]| Person

Mask of Class k (M;*)

A 4

Random selection
among ground truth classes

cx= Person
. [0]]| cat Remained
. Class-Specific
Classifier : -
) Erasing loss ]“ : _ lelage level label
(Pretrained) [1]| Chair & = t; — {cx))
[0] | Person

Remain-region
Image (1)

Figure 30: OC-CSE architecture: the input image is forwarded into the CGNet, producing a mask for a random class k. The mask is then
used to erase objects of k in the image and fed to a OC (fixed) model. Weights are adjusted so the mask provides a comprehensive erasure
of the objects. Source: Jo and Yu'.

1 H. Kweon, S. H. Yoon, H. Kim, D. Park, and K. J. Yoon. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation. In IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6994-7003. 2021.



CZAM Better Segmentation Priors
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Figure 31: C2AM processing pipeline. Source: Xie et al.1

1]. Xie, J. Xiang, J. Chen, X. Hou, X. Zhao, and L. Shen. Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation. arXiv preprint arXiv:2203.13505. 2022.
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MOtlvathn Research Proposal

Grad-CAM Grad-CAM++ Score-CAM Grad-CAM Grad-CAM++ Score-CAM

’;\

ctions being

-

e

o+ 4 S eI
Figure 32: Examples of sensitivity maps obtained from Grad-CAM, Grad-CAM++ and Score-CAM over samples in the Pascal VOC 2007 dataset. Predi
explained are: person, train, person, sofa, dog, person, motorcycle, and person. Source: David et al.

1 L. David., H. Pedrini., and Z. Dias. MinMax-CAM: Improving focus of CAM-based visualization techniques in multi-label problems. In 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 4: VISAPP, pages 106-117. INSTICC, SciTePress, 2022.
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MOtivatiOH Research Proposal

Figure 33: Semantic Segmentation priors produced by a ResNet38d model trained with OC-CSE. CAMs were generated using Grad-CAM and Test-Time
Augmentation (TTA) Source: keras-explainable / wsol.

1W. Sun, J. Zhang, Z. Liu, Y. Zhong, N. Barnes. GETAM: Gradient-weighted element-wise transformer attention map for weakly-supervised semantic segmentation. arXiv preprint arXiv:2112.02841. 2021 Dec 6.
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https://lucasdavid.github.io/keras-explainable/wsol.html

MOtlvathn Research Proposal

Method Backbone Sup. val test

SEAM [66] (CVPR2020) ResNet38 I 64.5 65.7

SC-CAM [=] (CVPR2020) ResNet101 I 66.1 659

CONTA [ 73] (NeurIPS2020) ResNet38 I 66.1 66.7

CDA [56] (ICCV2021) ResNet101 I 661 668

MCS [55] (ECCV2020) ResNet101 I+S 66.2 66.9

‘ DeepLabv3+ (Xception-65-JFT): 89.000 3 ECS-Net [56] (ICCV2021) ResNet38 I+S 66.6 67.6

e = EME [20] (ECCV2020) ResNet101 I+S 67.2 66.7

w)fep Gon-oo- 1) Z  1CD[19] (CVPR2020) ResNet101 +S 678 680

Multipath-RefineNet = CPN [ /6] (ICCV2021) ResNet101 I 67.8 68.5

CentraleSupelec Deep-G:GFFE’ = CGNet [32] (ICCV2021) ResNet38 I 684 682
AuxSegNet [ 0] (ICCV2021) ResNet101 I+S 69.0 68.6

SID PMM [29] (ICCV2021) ResNet101 I 70.0 70.5
/‘ RIB [*3](NeurlPS2021) ResNet101 I+S 70.2 70.0
NSRM [ 1] (CVPR2021) ResNet101 I+S 704 70.2

DRS [0] (AAAI2021) ResNet101 I 70.4 70.7

VWL-L [51] (JCV2022) ResNet101 I 70.6 70.7

EDAM [69] (CVPR2021) ResNet101 I+S 70.9 70.6

EPS [ 7](CVPR2021) ResNet101 I+S 71.0 71.8

URN [ 5] (AAAI2022) ResNet101 I 71.2 71.5

EM [17] (ICCV2015) VGG16 I 38.2 39.6

. TransferNet [25] (CVPR2016) VGG16 +COCO 52.1 51.2

20 CRF-RNN [50] (CVPR2017) VGG16 I 52.8 53.7

s “01d “0ia 2015 ;3’ RRM [74] (AAAI2020) ResNet38 I 626 629
Figure 34: mIoU measured over Pascal VOC 2012 testing @  1-stage-wseg [3] (CVPR2020) ResNet38 I 627 643
dataset. Source: https:/ / theod Isota) e tionon. . P JointSaliency [ 73] (ICCV2019) DenseNet169 1+S 63.3 64.3
. . pS. paperSWI coae.com/ sota/ semantic Segmen ation-on: paSCa AALR [ .\I (ACMMMZOzI) Re,\NC[38 [ 63.9 64.8

voc-2012. GETAM(ours) ViT-Hybrid +S 717 723

Table 5. Comparison with the state-of-the-art methods on PAS-
CAL VOC 2012 val and test sets. Different supervision is used: I:
image-level label. COCO: MS-COCO [+1], S: saliency.source: Sun etal:

1W. Sun, J. Zhang, Z. Liu, Y. Zhong, N. Barnes. GETAM: Gradient-weighted element-wise transformer attention map for weakly-supervised semantic segmentation. arXiv preprint arXiv:2112.02841. 2021 Dec 6. 401


https://lucasdavid.github.io/keras-explainable/wsol.html
https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012
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PI‘OpOSGd ApprOaCh Research Proposal

1. Exploration of Explainable Al Methods in Multi-Label Problems

1. How do Explainable AI methods behave in multi-label scenarios?
2. Can cross-contributions be erased from the CAMs produced by Grad-CAM?

42



PI‘OpOSQd ApprOaCh Research Proposal

2. Complementary Regularization Strategies in WSSS

« Can complementary strategies be conjointly employed to improve WSSS?
o Is adversarial CAM generation beneficial to WSSS solutions?
« Can context-decoupling help WSSS methods to segment cluttered scenes?

43



PI‘OpOSGd ApprOaCh Research Proposal

3. Exploration of Transformers and Spatial Attention for Highly-Detailed
Segmentation

« Can Visual Transformers improve fine-grain WSSS?
« Can WSSS methods be adapted to Vision Transformers?

44



PI‘OpOSGd ApprOaCh Research Proposal

4. Weak Supervision in Boundary and Difficult Scenarios: Class
Unbalance, Long-tail and Functional Segmentation

e Can long-tail learning improve WSSS in boundary cases?
« Which features can be drawn from functional segmentation problems to replace
visual similarity, a fundamental aspect of WSSS methods?
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PI‘OpOSGd ApprOaCh Research Proposal

5. Ensemble of Weakly Supervised Semantic Segmentation Systems

« Can WSSS ensembles improve noisy segmentation priors?
e Is contextual information useful when combining predictions?
« Which tasks share mutual information with Semantic Segmentation?

= Saliency Detection
= Edge Detection
= Instance Segmentation
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WOI' k SCthUle Research Proposal

Activities

1st year

1

213

4

Class attendance and completion of required credits
Exploration of XAI methods in multi-label scenarios
Adversarial and complementary strategies in WSSS
Doctoral Qualifying Exam (EQE)

Participation in "Programa de Estdgio Docente" (PED)
Exploration of Transformers and Spatial Attention
Boundary and difficult scenarios

Ensemble of solutions for WSSS

Writing and presentation of Doctoral thesis

47
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EXpeI' lmental Setup Research Proposal

Environment

Google Colab
« NVIDIA Tesla K80

SDumont Supercomputer:

« 4x NVIDIA Volta V100 (training)
o 2x NVIDIA K40 (inference)

Tools

e Tensorflow and PyTorch

49



EXpel‘ lmental Setup Research Proposal

Metrics

XAI

1. Increase in Confidence

2. Average Drop %

3. Average Drop of Others %

4. Average Retention % Proposed by us.
5. Average Retention of Others %

WS555

1. mean Intersection over Union (mloU)
2. Pixel Accuracy
3. F1 Score

50



Schedule

1.
2.

3. Research Proposal

Introduction
Related Work

4. Preliminary Results

5. Final Considerations




Schedule

1. Introduction

2. Related Work

3. Research Proposal

4. Preliminary Results
4.1. Contributions for Explainable Al
4.2. Contributions for WSSS

5. Final Considerations




MinMaX'CAM Contributions for Explainable Al

CAM( T) = Zk w,@A’“
C 8 c
L oan(Fr2) = 300 X0, Ao Ak
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MlnMaX'CAM Contributions for Explainable Al
.
for conciseness

cam(frz) = Zk%

%rrad—CAM(f ) Yk S:Zj oAk A

Contribution towards the
k/ classification of class c.
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MlnMaX'CAM Contributions for Explainable Al

%AM(f: CI)) —

Grad-CAM (f,z) =

7

J. — Regions that contribute t.t.c. of
c

¢, and do not contribute t.t.c. of
the adjacent classes.
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MlnMaX'CAM Contributions for Explainable Al
.
for conciseness

cam(frx) = Zk%

k
arad—CAM (f ) Y k S:z i 9 Ak A Contribution towards the
‘\—/ classification of class c.
7

J . S 1 Z S Regions that contribute t.t.c. of
¢ ¥ | N, | I\ et (V4 ¢, and do not contribute t.t.c. of
the adjacent classes.

MlnMaX—Grad CAM( ) Zk ZZJ P Ak Ak

Zk [wk |Nw| ZnENm w}ﬂ

MlnMaX-CAM ( )
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MinMaX'CAM Contributions for Explainable Al

%—MinMax—Grad—CAM (f7 CB) — RGLU( Zk ai Ak)

)

Oéz — Zij [RGLU(gj,ﬁ) — ﬁReLU(ZnENw gTSg) +

1
Cs|

min (O, >

oS,
neCy 0A[;j

)
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MinMaX'CAM Contributions for Explainable Al

%—MinMax—Grad—CAM (f7 CB) — RGLU( Zk ai Ak)

o =Y, [ReLU(aAk) AReLU( Y, g%) + ymin (0,50, 2 )]

—_

Positive contributions t.t.c. of ¢
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MinMaX'CAM Contributions for Explainable Al

%—MinMax—Grad—CAM (f) CB) — RGLU( Zk ai Ak)

o =Y, [ReLU( g’j) ~ B ReLU( X, 3%) + min (0,5, ., 3%)]
\f—'—/ — o~ ~/

Positive contributions t.t.c. of ¢

Positive contributions t.t.c. of n
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MinMaX'CAM Contributions for Explainable Al

%—MinMax—Grad—CAM (f) CB) — RGLU( Zk ai Ak)

o =Y, [ReLU( g’j) ~ B ReLU( X, 3%) + min (0,5, ., 3%)]
——— e —~— - - o

Positive contributions t.t.c. of ¢

Positive contributions t.t.c. of n

Negative contributions t.t.c. of all.
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Qualitative Results over VOC wminvax-cam

Input CAM Grad-CAM++ Score-CAM MinMax-CAM D MinMax-CAM

Flgure 35 Comparison of CAMs obtained from various XAI methods. Predictions being explained are: person, train,
motorcycle, person, chair, and table. Source: David et al.t

Input CAM Grad-CAM=++ Score-CAM MinMax-CAM D-MinMax-CAM

Figure 36: Comparison of sensitivity maps from various XAI methods. source: David et al.!
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Qualitative Results over COCO 2017 wminvax-cam

v

methods over the MS COCO 2017 dataset. Source: David et al.t
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Qualitative Results over HPA vinvax-cam

Figure 38: Comparison of sensitivity maps obtained from various XAI methods over the Human Protein Atlas Image Classification dataset. Source: David etal.!




Quantitative Results vinvax-cam

Metric Dataset

CAM Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

P:UAS
COCO17
VOCo07
VOC12
HPA
P:UAS
%AD COCO17
VOCO07
VOC12
HPA
P:UAS
%ADO COCO17
VOCO07
VOC12
HPA
P:UAS
%AR  COCO17
VOCo07
VOC12
HPA
P:UAS
%ARO COCO17
VOCO07
VOC12
HPA
P:UAS
COCO17
VOCO07
VOC12
HPA
P:UAS
COCO17
VOCo07
VOC12
HPA

%lIC

6.09% 7.05%
30.21% 32.98%
27.68% 31.03%
27.75% 25.40%

8.64% 9.29%
55.25% 49.00%
27.42% 17.56%
25.24% 17.90%
24.47% 18.69%
49.78% 47.02%
43.61% 33.67%
51.49% 20.59%
32.73% 12.48%
36.44% 14.92%
24.01% 18.95%
46.42% 49.45%
27.70% 25.60%
16.54% 14.04%
16.23% 14.711%
29.15% 28.49%
25.48% 29.46%

5.26% 7.92%

2.44% 3.94%

2.29% 3.76%

6.69% 9.32%
30.68% 32.07%

8.23% 9.94%

4.05% 5.62%

3.80% 5.70%
10.89% 14.26%
39.54% 35.11%
34.05% 21.45%
20.84% 11.97%
21.25% 13.87%
22.85% 18.30%

11.59% 6.22%
44.69% 23.12%
40.76% 26.61%
35.10% 24.70%
11.27% 7.63%
43.37% 64.24%

9.62% 40.22%
10.79% 32.58%
10.60% 29.17%
41.50% 54.16%
34.06% 60.04%
24.45% 68.04%
14.72% 44.03%
18.46% 43.65%
17.07% 29.46%
48.01% 37.16%
26.64% 24.44%
14.94% 14.27%
16.22% 14.60%
30.59% 25.60%
28.13% 20.84%

7.71% 3.31%

3.43% 1.28%

3.32% 1.21%
10.56% 3.60%
28.46% 28.35%

7.39% 5.82%

2.20% 2.38%

4.30% 2.26%
15.10% 6.45%
35.41% 41.00%
23.82% 34.07%

6.89% 19.85%
16.39% 20.25%
18.29% 22.71%

6.27%
19.20%
23.83%
21.66%

5.80%
66.88%
47.43%
39.25%
34.22%
60.62%
71.90%
46.49%
45.02%
32.74%
22.79%
12.00%
13.06%

37.01%
32.44%
17.13%
18.60%
18.79%

Table 2: Report of metric scores over multiple datasets.
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Ker Ilel Usage Re glﬂar iZ atIOIl Contributions for Explainable Al
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Kernel Usage Re

glﬂar iZ atlon Contributions for Explainable Al

aeroplane aeroplane
bicycle 16% bicycle 4%
bird 3% 7% bird 3% 4%
boat 7% 23% 7% boat 6% -1% 2%
bottle 14% 31% 11% 27% bottle 7% 3% 6% 5%
bus 10% 32% 5% 25% 21% bus 3% 2% 5% 1% 5%
car 10% 36% -1% 32% 31% 42% ar 1% 4% 6% 1% 6% 17%
@t 0% 19% 14% 17% 23% 17% 24% @t 5% 6% 5% 6% 6% 6% 9%
chair 13% 29% 13% 31% 42% 24% 42% 31% chair 9% 2% -7% 6% 11% -7% 9% -2%
cow 15% 28% 8% 29% 30% 26% 34% 22% 30% ow 6% 4% 3% 2% 8% 5% 5% 4% 9%
diningtable 13% 25% 15% 26% 48% 26% 33% 31%@ 31% diningtable -7% 4% 6% 5% 25% 6% 9% 5% 44% 8%
dog 7% 5% -1% 11% 10% 3% 12% -1% 16% 5% 7% dog 6% 6% 5% 5% 5% 5% 6% 4% 3% 1% 6%
horse 8% 24% 8% 26% 24% 23% 32% 25% 27% 29% 25% 5% horse 2% -2% 2% -3% 5% -3% 4% 6% 6% 25% 6% -1%
motorbike 15% 27% 8% 26% 28% 31% 33% 23% 32% 24% 31% 10% 25% motorbike 0% 6% 5% 4% 3% 2% 7% 1% 7% 6% 4% 5% 2%
person 4% 25% 0% 26% 30% 28% 40% 14% 32% 22% 35% 7% 29% 28% person 5% 3% 8% 3% 5% 5% 3% 9% 3% 7% 3% 7% 1% 7%
pottedplant 11% 32% 12% 29% 41% 28% 41% 31% 48% 33% 46% 10% 30% 32% 29% pottedplant 8% 2% -2% 4% 6% -3% 4% -3% 19% -7% 23% 4% 5% 2% 4%
sheep 13% 27% 10% 23% 29% 24% 37% 30% 31% 33% 31% 10% 29% 23% 30% 30% sheep 3% 4% 0% 3% 5% 4% 5% 2% 6% 14% 5% 2% 3% 3% 5% 6%
sofa 12% 23% 17% 27% 36% 22% 32% 30% 47% 28% 38% 21% 24% 27% 22% 49% 30% sofa 8% 7% 7% 1% 2% 7% -11% 4% 2% 7% 11% 3% 6% 9% -1% 11% 5%
train 10% 24% 4% 25% 19% 20% 23% 19% 22% 25% 22% 0% 24% 22% 27% 30% 23% 21% train 2% 1% 4% 2% 4% 7% -1% 6% 7% 5% 6% 6% 0% 2% 1% 3% 2% 7%
tvmonitor 12% 24% 9% 26% 37% 26% 27% 17% 39% 24% 30% 11% 21% 26% 23% 39% 21% 41% 16% tvmonitor 5% 4% 5% 4% 6% 2% 4% -1% 14% 8% 4% 4% 6% 6% 2% 6% 5% 10% 5%
¥ @ p B L v 5 &£ = T 0o o 0 U c £ & @© £ § ¥ @ P B L v B &£ = zT o o oy Y c £ & ®m £ F
génﬁgﬂﬂsgsgsgégggagé §§n3§33938§8§§§§39g§
8 5 g g 2 8 = g g 5

Figure 39: Correlation between different weight vectors in a vanilla
(unregularized) sigmoid FC layer. Source: David et al.!

Figure 40: Correlation between different weight vectors in a sigmoid FC layer
trained with Kernel Usage Regularization. Source: David et al.!



Ker nel Usage Re glﬂar iZ atlon Contributions for Explainable Al

Metric Dataset Baseline KUR
Fy VOCO07 Test 84.26% 85.85%
F VOC12 Val 85.06% 85.90%
F,  P:UAS Val - 87.80%  88.24%
F, P:UAS Private Test  89.22% 89.81%
Fy P:UAS Public Test 89.62%  90.10%
F COCO17 Val 75.64%  74.23%
F,  HPA Private Test  36.05% 35.54%
F HPA Public Test 39.72%  39.46%

Table 3: Report of classification scores over multiple datasets,
considering a baseline classifier the model trained with Kernel Usage
Regularization (KUR).
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Exploration of Complementary WSSS Strategies

Contributions for WSSS

LP-OC — Lcls +- Lre-cls + Ere + )‘cseﬁcse
— gbce (pz'7 ti) + zbce (pgea ti)
_I_)\reHAz' T AffeHl + )\csegbce (ﬁza ti)



Exploration of Complementary WSSS Strategies

Contributions for WSSS

Vanilla OC-CSE Puzzle P-OC Vanilla OC-CSE Puzzle P-OC

Figure 41: Priors obtained by (from left to right): Vanilla (Rand Augment), OC-CSE, Puzzle, P-OC.
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P'NOC Contributions for WSSS

—p forward
-4 - - backward

/ training (oc fixed)

oc training (f fixed)

Figure 42: Overview of our adversarial training setup, in which fis optimized considering both Puzzle module and the ordinary classifier oc. fis sub-sequentially
fixed and oc is updated to shift its attention towards regions currently ignored by f.
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P'NOC Contributions for WSSS

Algorithm 1 Proposed P-NOC algorithm

Require: Training set D = {X, Y}, CAM networks f, oc¢; knoc € N, dnoc € [0, 1]

1: 1+ 0
2: while not done do

3: Sample a batch (z,y) from D

4: // Fixz oc and train f

5: Compute A¢ = f(z;), AS = merge(f(tile(z;)))
6: Compute Lp_oc loss from Eq. (26)
7: Update weights of f by VLp.oc

8: 11+ 1

9: if ¢ mod k,,. = 0 then
10: // Fiz f and train oc
11: T=x0(M < dyoc)
12: Compute L,,,. from Eq. (27)
13: Update weights of oc by VL, e
14: end if

15: end while

Lr.oc = loee(Dis i) + loee (D5, Ti)
‘|_)\re”Ai - A?Hl + )\csegbce (ﬁza fz)

L

noc —

Anocfbce (OC(ZUz' O (MZCk < 51100))7 tz’)
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CZAM'H Contributions for WSSS

Figure 43: CAMs produced by a network trained with P-OC, when Figure 44: Hints obtained by binarizing the CAMs, using a threshold of 0.4.
presented with samples from the Pascal VOC 2012 train set.

J

EgZAM-H — Ll:l?os-f + L]_:l?os-b + Lfeg + An Zz’Eb Zh,w 1[A?w>5fg]£bce (g?w,piz'w)
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CzAM'H Contributions for WSSS

Figure 45: Saliency proposals obtained from a PoolNet model, after being trained with
C2AM-H pseudo saliency maps.
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CZAM'H Contributions for WSSS

» = P -y
e gt "

Figure 45: Saliency proposals obtained from a PoolNet model, after being trained with

C2AM-H pseudo saliency maps. [

Figure 46: Affinity labels. From left to right: (a) ground-truth maps, (b) coarse priors, (c)
priors +dCRF, and (d) priors +C?2AM-H +dCRF.
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AblathIl StUdleS Contributions for WSSS

Method +LS +C2AM-H +NOC train (%) wval (%)
P 73.74 72.31
pf 71.35 70.67
BrGy(y Ao g o
P-OC v 71.45 70.15
P-OC v 73.90 72.53
P-OC v v 73.07 72.14
P-OC v v 73.31 72.83
P-OC v v v 73.59 73.37

Table 4: Ablation studies of pseudo segmentation masks, measured in mIoU (%) over

Pascal VOC 2012 training and validation sets.
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(Refined) Pseudo Segmentation Maps r-~oc rczants

Figure 47: Pseudo segmentation maps obtained by random walking over segmentation priors generated by a model trained with P-NOC proposals. The Affinity Network was trained over
labels refined with saliency maps devised from C2AM-H.




Qualitative Results over VOC 2012 rnoc «coamen

Figure 48: Qualitative results over Pascal VOC 2012 datasets. Segmentation proposals obtained by a DeepLabV3+ model trained with pseudo labels
devised from P-NOC +C2AM-H.
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Quantitative Results over VOC 2012 r-noc +c2amm

Method Backbone Val Test
AffinityNet [3] Wide-ResNet-38  61.7  63.7
IRNet [] ResNet-50 63.5 64.8
ICD [21] ResNet-101 64.1 643
SEAM [0] Wide-ResNet-38  64.5  65.7
OC-CSE [37] Wide-ResNet-38  68.4  68.2
Puzzle-CAM | ResNeSt-269 71.9 72.2
RIB [39] ResNet-101 68.3  68.6
EPS [ 1] ResNet-101 70.9  70.8
AMN [12] ResNet-101 69.5  69.6
ViT-PCM [59)] ViT-B/16 703 70.9
MCTformer [30] Wide-ResNet-38  71.9  71.6
P-OCc2amn (Olll'S) ResNeSt-269 71.4 72.4
P-NOCvistc=amn (ours) ResNeSt-269 715 T2.7

Table 5: Comparison with other methods in literature.
mloU (%) scores are reported for both Pascal VOC
2012 validation and testing sets.
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Quantitative Results over COCO 2014 rnoc +c2amn

Method Backbone Val
IRNet [Ahn et al., 2019] ResNet-50 32.6
IRN+CONTA [Zhang et al.,2020]  ResNet-50 334
OC-CSE [Kweon et al., 2021] Wide-ResNet-38  36.4
PPM [Li et al., 2021] ScaleNet 40.2
RIB [Lee et al., 2021a] ResNet-101 43.8
EPS' [Lee et al., 2021d] ResNet-101 35.7
URN [Li et al., 2022] ResNet-101 40.7
IRN+AMN [Lee et al., 2022] ResNet-101 447
ViT-PCM [Rossetti et al., 2022] ViT-B/16 45.0
MCTformer [Xu et al., 2022] Wide-ResNet-38  42.0
P-OCsc2am-H (ours)* ResNeSt-269 39.8
P-NOC:1s+c2am-H (ours)* ResNeSt-269 412

Table 5: Comparison with other methods in literature.
mloU (%) scores are reported for MS COCO 2014
validation set. P-NOC and OC-CSE: priors employed,
no refinement conducted.
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Final Considerations

We conducted studies over:

e XAl in broader (multi-label) scenarios
= MinMax-CAM
« Complementary Regularization Strategies in WSSS

= Adversarial CAM generation for more robust priors

As future work, we propose to:

 Transformers in WSSS
« WSSS in Boundary and Difficult Scenarios
« Ensemble and meta-learning strategies in WSSS
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SClentlﬁC PI‘ O du CthIl Final Considerations

1. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Improving focus of CAM-based visualization techniques in multi-
label problems. In 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISAPP), pages 106-117. INSTICC, SciTePress, 2022.

2. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Increasing Precision of Explaining Maps by Contrasting Gradient
Signals and Regularizing Kernel Usage (Springer). In 17th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISAPP), CCIS Series, 2023.

3. L. David, H. Pedrini, and Z. Dias. Not so Ordinary Classifier: Revisiting Complementary Regularizing Strategies for
More Robust Priors in Weakly Supervised Semantic Segmentation.
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TeChnlcal COH’[I‘ lbUthnS Final Considerations

1. Implement pixel ignoring functionality in the cross-entropy loss in Keras, for semantic segmentation problems?.
2. Ported the Wide ResNet38-d and ResNeSt architectures, originally trained in PyTorch, to TensorFlow.
3. Created the keras-explainable library, containing out-of-the box implementations of many Explainable Al algorithms.

4. Various fixes in Keras and TensorFlow-Addons, often related to the optimizer, mixed-precision when training in a
Multi-Worker-Mirrored-Strategy environment.
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