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Figure 1: Samples in the ImageNet 2012 dataset¹.
Source: .cs.stanford.edu/people/karpathy/cnnembed

5
¹ O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein and A.C. Berg. Imagenet Large Scale Visual Recognition Challenge.
In International Journal of Computer Vision, 115, pp.211-252, 2015.

Representation Learning Introduction
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Figure 2: VGG-19, 34Plain and ResNet34
architectures¹.

Figure 3: DeepLabV3+ architecture². Figure 4: Split-Attention Block in the ResNeSt architecture.³

¹ Source: K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778. 2016.
² Source: L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with Atrous Separable Convolution for Semantic Image Segmentation. In European Conference on Computer Vision (ECCV), pp. 801-818. 2018.
³ Source: H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun et al. ResNeSt: Split-Attention Networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2736-2746. 2022.

Representation Learning Introduction
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Complex Architectures Representation Learning

¹ N. Burkart, and M.F. Huber. A survey on the explainability of supervised machine learning. In Journal of Artificial Intelligence Research, 70, pp.245-317., 73, pp.1-15. 2018.
² M. Tan, and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning. PMLR. 2019.

Figure 5: Models of various architectures, pre-trained over
ImageNet. Source: Tan and Le².

Models with millions of parameters
are now the standard.
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But can we thrust their predictions?
And why do we have to?¹

Critical operations
Medical diagnostics
Finance systems
Accountability and failure mitigation

Complex Architectures Representation Learning

¹ N. Burkart, and M.F. Huber. A survey on the explainability of supervised machine learning. In Journal of Artificial Intelligence Research, 70, pp.245-317., 73, pp.1-15. 2018.
² M. Tan, and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning. PMLR. 2019.

Figure 5: Models of various architectures, pre-trained over
ImageNet. Source: Tan and Le².

Models with millions of parameters
are now the standard.
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Explaining and Interpreting Models Introduction

"An explanation is the collection of features of the interpretable
domain, that have contributed for a given example to produce a
decision (e.g., classification or regression).¹"

¹ G. Montavon, W. Samek, and K.R. Müller. Methods for Interpreting and Understanding Deep Neural Networks. In Digital Signal Processing, 73, pp.1-15. 2018.
² M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Conference on Computer Vision (ECCV), pages 818–833. Springer, 2014.

"An interpretation is the mapping of an abstract concept (e.g., a
predicted class) into a domain that the human can make sense
of.¹"

Figure 6: Illustration of Activation Maximization² applied to finding
the prototypes for each class in the MNIST dataset. Source: Montavon et al.¹

Figure 7: Example of the LRP method being applied to explain the
prediction of class boat, given the image x. Source: Montavon et al.¹
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In Computer Vision Explainable AI

Explainability and explainable predictions:

¹ K. Simonyan, A. Vedaldi, A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. 2013.
² D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg. SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825. 2017.

Figure 8: Sensitivity maps produced by Vanilla Gradient¹ (second row) and
Smooth-Grad² (third row), when employed to explain the predictions made
by a Xception model. Source: .keras-explainable/methods/saliency/smoothgrad
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Interesting Properties:

1. Completeness
2. Weak dependence
3. Class-specificity

https://lucasdavid.github.io/keras-explainable/methods/saliency/smoothgrad.html


In Computer Vision Explainable AI
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Leveraging internalized knowledge
to solve different tasks:

Figure 9: Sensitivity maps produced by Smooth-Grad.
Source: .keras-explainable/methods/saliency/smoothgrad

https://lucasdavid.github.io/keras-explainable/methods/saliency/smoothgrad.html
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Semantic (and others) Segmentation Introduction

¹ H. Xiao, D. Li, H. Xu, S. Fu, D. Yan, K. Song, and C. Peng. Semi-Supervised Semantic Segmentation with Cross Teacher Training. Neurocomputing, 508, pp.36-46. 2022.
² H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In European Conference on Computer Vision (ECCV), pp. 405-420. 2018.
³ L. Chan, M.S. Hosseini. and K.N. Plataniotis. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. In International Journal of Computer Vision, 129, pp.361-384. 2021.

Figure 10: Samples, proposals¹ and ground-
truth segmentation annotation from the
Pascal VOC 2012 dataset.

Figure 12: Example of semantic segmentation produced by ICNet for a video sample
in the Cityscapes dataset. Source: .https://gitplanet.com/project/fast-semantic-segmentation

Figure 11: Example of samples and ground-truth panoptic
segmentation annotation from the MS COCO 2017 dataset.
Source: .https://cocodataset.org/#panoptic-2020
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Figure 15: Example of annotated CT Scan image.
Source: https://radiopaedia.org/cases/liver-segments-annotated-ct-1

Figure 13: Example of road segmentation in SpaceNet
dataset. Source: https://www.v7labs.com/open-datasets/spacenet

Figure 14: Example of (a) morphological and (b)
functional segmentation of samples in the Atlas of
Digital Pathology dataset. Source: L. Chan et al.

Semantic (and others) Segmentation Introduction

¹ H. Xiao, D. Li, H. Xu, S. Fu, D. Yan, K. Song, and C. Peng. Semi-Supervised Semantic Segmentation with Cross Teacher Training. Neurocomputing, 508, pp.36-46. 2022.
² H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In European Conference on Computer Vision (ECCV), pp. 405-420. 2018.
³ L. Chan, M.S. Hosseini. and K.N. Plataniotis. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. In International Journal of Computer Vision, 129, pp.361-384. 2021. 13.1

https://radiopaedia.org/cases/liver-segments-annotated-ct-1
https://www.v7labs.com/open-datasets/spacenet
https://www.v7labs.com/open-datasets/spacenet


How It is Done? Semantic Segmentation

¹ J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440. 2015.

Figure 16: Fully Convolutional Network (FCN) architecture¹, mapping image
samples to their respective semantic segmentation maps.
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¹ J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440. 2015.

Figure 16: Fully Convolutional Network (FCN) architecture¹, mapping image
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This information needs the be known
and available at training time.

CE(p , y ) =i i − y log(p )∑c=1
M

ic ic
Equation 1: The (naive) categorical cross-entropy loss function.

14.1



Figure 17: Segmentation annotation example using RoboFlow.
Source: .https://blog.roboflow.com/semantic-segmentation-roboflow

Figure 18: Segmentation annotation example using Dataloop.
Source: .https://dataloop.ai/docs

Figure 19: Segmentation annotation example using
LabelStudio. Source: 

.

https://labelstud.io/blog/perform-interactive-

ml-assisted-labeling-with-label-studio-1-3-0

(Fully) Supervised Learning Semantic Segmentation

Coarse annotations are quickly drawn, but lack quality (e.g., precision);
Detailed annotations take time, patience, people and resources;
Assisting labeling tools can speed up this task.
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(Weakly) Supervised Learning Semantic Segmentation

¹ O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein and A.C. Berg. Imagenet Large Scale Visual Recognition Challenge.
In International Journal of Computer Vision, 115, pp.211-252, 2015.

Figure 20: Samples in the ImageNet
2012 dataset¹. Source:

.cs.stanford.edu/people/karpathy/cnnembed
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Research Goals Introduction

1. To study Class-Specific XAI methods in the multi-label scenarios
 

2. To study promising weakly supervised strategies and to propose new ones
 

3. To investigate the behavior of WSSS solutions to more complex boundary cases, such as
long-tail and ambiguous functional segmentation problems
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Explainable AI Related Work

Equation 2: Saliency map for the concept c of a model S
with respect to an input image x, generated by the (Vanilla)
Gradients method¹.

If f ≈c w I +⊺ b,
S (I ) =fc 0 ψ( )∂I

∂fc
∣∣
∣
I0

¹ K. Simonyan, A. Vedaldi, A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. 2013.
² S. Srinivas and F. Fleuret. Full-gradient representation for neural network visualization. In Advances in neural information processing systems, 32. 2019.

Figure 21: Sensitivity maps produced by Vanilla Gradient¹
(2nd col) and Full-Grad² (3rd col), when employed to
explain the predictions made by a ResNet50 model.
Source: .keras-explainable

Equation 3: Saliency map for the concept c of a model S with respect
to an input image x, generated by the Full-Gradient method².

S (I ) =fc 0 ψ(∇ f(I) ∘I I ) +0 ψ(f (x))∑l∈L,k∈Cl b
k
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Class Activation Mapping Explainable AI

¹ B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921-2929. 2016. 22

Equation 4: Feed-Forward for a for Convolutional Networks containing GAP layers and the formulation for CAM¹.

f(x) = w GAP(A ) =∑k k
c k w A∑k k

c
hw
1 ∑ij ij

k

f(x) = w A =
hw
1 ∑ij ∑k k

c
ij
k GAP(w ⋅c A)
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¹ B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921-2929. 2016. 22.1
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⟹ L (f ,x) =CAM
c w A∑k k

c k



Class Activation Mapping Explainable AI

¹ B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921-2929. 2016.

Figure 22: Examples of CAMs and approximate bounding boxes found for different birds in the CUB200
dataset. Source: Zhou et al.¹
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Extensions and Alternatives CAM-Based Explaining Methods

¹ R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In International Conference on Computer Vision, pp. 618-626. 2017.

L (f ,x) =Grad-CAM
c ReLU( α A )∑k k

c k

α =k
c

hw
1 ∑ij ∂Aij

k

∂f (x)c

Equation 5: Definition for Grad-CAM visual explaining method, for an arbitrary convolutional network f.

Grad-CAM
Goal: to explain more complex networks, with non-linear (and yet smooth) operations after the GAP layer.

24



Extensions and Alternatives CAM-Based Explaining Methods

¹ R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In International Conference on Computer Vision, pp. 618-626. 2017.

L (f ,x) =Grad-CAM
c ReLU( α A )∑k k
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α =k
c
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∂f (x)c

Equation 5: Definition for Grad-CAM visual explaining method, for an arbitrary convolutional network f.

Grad-CAM
Goal: to explain more complex networks, with non-linear (and yet smooth) operations after the GAP layer.

Figure 23: Examples of Grad-CAM being utilized to explaing a Visual Questioning Network based on convolutional layers and
LSTM layers. Source: Selvaraju et al.¹
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L (f ,x) =Grad-CAM++
c ReLU( α ReLU( )A )∑k ∑ij ij

kc
∂A

ij
k

∂Sc k

α =ij
kc

2 + A
(∂A )

ij
k 2

∂ S2 c ∑ab ab
k

(∂A )
ij
k 3

∂ S3 c

(∂A )
ij
k 2

∂ S2 c

Equation 6: Definition of Grad-CAM++ visual explaining method.

¹ A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks.
In Winter Conference on Applications of Computer Vision (WACV), pp. 839-847. IEEE, 2018.

Grad-CAM++
Goal: to activate homogeneously over all instances of the explained concept lying the the visual receptive field.

Extensions and Alternatives CAM-Based Explaining Methods
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¹ A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks.
In Winter Conference on Applications of Computer Vision (WACV), pp. 839-847. IEEE, 2018.

Grad-CAM++
Goal: to activate homogeneously over all instances of the explained concept lying the the visual receptive field.

Extensions and Alternatives CAM-Based Explaining Methods

Figure 24: Grad-CAM and Grad-CAM++ being applied to samples in the
ImageNet dataset. Source: Chatopadhay et al.¹
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L (f ,x) =Score-CAM
c ReLU( f (x ∘∑k c )A )maxAk

Ak k

Equation 7: Definition of the Score-CAM visual explaining method¹.

¹ H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPR), pp. 24-25. 2020.

Score-CAM
Goal: to combine the many activation maps, weighted by their contribution towards the Average Drop % metric.

Extensions and Alternatives CAM-Based Explaining Methods
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L (f ,x) =Score-CAM
c ReLU( f (x ∘∑k c )A )maxAk
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Equation 7: Definition of the Score-CAM visual explaining method¹.

¹ H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPR), pp. 24-25. 2020.

Score-CAM
Goal: to combine the many activation maps, weighted by their contribution towards the Average Drop % metric.

Extensions and Alternatives CAM-Based Explaining Methods

Figure 25: Examples of sensitivity maps obtained from Grad-CAM, Grad-CAM++ and Score-CAM.
Source: Wang et al.¹
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Weakly Supervised Semantic Segmentation Related Work
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Coarse Semantic Segmentation Priors WSSS

Figure 26: Semantic Segmentation Priors produced by thresholding CAMs devised from a ResNet101 model trained over MS COCO 2017 dataset.
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Refinement of Segmentation Masks WSSS

1. Architectural
2. Pixel neighborhood affinity and similarity
3. Many other strategies: Seed-Expand-Constrain; region semantic-based

clustering; token-based similarity matching, etc.
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Refinement of Segmentation Masks WSSS

¹ Z. Wu, C. Shen, and A. Van Den Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. In Pattern Recognition, 90, pp.119-133. 2019.

1. Architectural
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1. Architectural
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(2048, 16, 16)

(3, 512, 512) (4096, 64, 64)

(3, 512, 512) Fewer layers, more units
"Bottleneck" blocks
Strong dropout
Dilation



E(x) = ψ (x ) +∑i u i ψ (x ,x )∑i<j p i j

pairwiseunary

ψ (x ,x ) =p i j μ(x ,x )[w exp (−i j
(1) −2θα2

∣p −p ∣i j
2

)+2θ
β
2

∣I −I ∣i j
2

w exp (−(2) )]2θγ2
∣p −p ∣i j

2

appearance kernellabel compatibility
function (learnable)

smoothness kernel
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¹ P. Krähenbühl, and V. Koltun. Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in Neural Information Processing Systems, 24. 2011.
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FC Conditional Random Fields Refinement of Segmentation Masks

¹ P. Krähenbühl, and V. Koltun. Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in Neural Information Processing Systems, 24. 2011.

Figure 27: Qualitative results of dCRF. Source: Krähenbühl and Koltun¹.
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Pairs extraction

Figure 5: AffinityNet architecture. Source: Ahn and Kwak¹. Figure 5: Illustration of pairs of pixels selected for affinity evaluation.
Source: Ahn and Kwak¹.

Pixel Semantic Affinity Refinement of Segmentation Masks

¹ J. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018.
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Pairs extraction

Figure 5: AffinityNet architecture. Source: Ahn and Kwak¹. Figure 5: Illustration of pairs of pixels selected for affinity evaluation.
Source: Ahn and Kwak¹.

Pixel Semantic Affinity Refinement of Segmentation Masks

¹ J. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018.
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Pairs extraction

Figure 5: AffinityNet architecture. Source: Ahn and Kwak¹. Figure 5: Illustration of pairs of pixels selected for affinity evaluation.
Source: Ahn and Kwak¹.

Pixel Semantic Affinity Refinement of Segmentation Masks

¹ J. Ahn, and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4981-4990. 2018.

Figure 28: Qualitative results of random walk using Affinity Network.
Source: Ahn and Kwak¹.



Puzzle-CAM Better Segmentation Priors

Figure 29: Puzzle-CAM architecture: the input image is forwarded into the model, producing the global stream. Concomitantly, the input is also
cut into four "puzzle" pieces and forward separately, which compose the "local" stream when merged. Source: Jo and Yu¹.

¹ S. Jo, and I. Yu. Puzzle-CAM: Improved localization via matching partial and full features. In IEEE International Conference on Image Processing (ICIP), pp. 639-643. IEEE, 2021. 34



Figure 30: OC-CSE architecture: the input image is forwarded into the CGNet, producing a mask for a random class k. The mask is then
used to erase objects of k in the image and fed to a OC (fixed) model. Weights are adjusted so the mask provides a comprehensive erasure
of the objects. Source: Jo and Yu¹.

¹ H. Kweon, S. H. Yoon, H. Kim, D. Park, and K. J. Yoon. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation. In IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6994-7003. 2021.

OC-CSE Better Segmentation Priors
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C²AM Better Segmentation Priors

Training

Inference

Re
fin

ed

Figure 31: C²AM processing pipeline. Source: Xie et al.¹

36¹ J. Xie, J. Xiang, J. Chen, X. Hou, X. Zhao, and L. Shen. Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation. arXiv preprint arXiv:2203.13505. 2022.
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Figure 32: Examples of sensitivity maps obtained from Grad-CAM, Grad-CAM++ and Score-CAM over samples in the Pascal VOC 2007 dataset. Predictions being
explained are: person, train, person, sofa, dog, person, motorcycle, and person. Source: David et al.¹

¹ L. David., H. Pedrini., and Z. Dias. MinMax-CAM: Improving focus of CAM-based visualization techniques in multi-label problems. In 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 4: VISAPP, pages 106–117. INSTICC, SciTePress, 2022.

Motivation Research Proposal
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Figure 33: Semantic Segmentation priors produced by a ResNet38d model trained with OC-CSE. CAMs were generated using Grad-CAM and Test-Time
Augmentation (TTA). Source: .keras-explainable/wsol

Motivation Research Proposal

¹ W. Sun, J. Zhang, Z. Liu, Y. Zhong, N. Barnes. GETAM: Gradient-weighted element-wise transformer attention map for weakly-supervised semantic segmentation. arXiv preprint arXiv:2112.02841. 2021 Dec 6. 40

https://lucasdavid.github.io/keras-explainable/wsol.html


Figure 33: Semantic Segmentation priors produced by a ResNet38d model trained with OC-CSE. CAMs were generated using Grad-CAM and Test-Time
Augmentation (TTA). Source: .keras-explainable/wsol

Motivation Research Proposal

¹ W. Sun, J. Zhang, Z. Liu, Y. Zhong, N. Barnes. GETAM: Gradient-weighted element-wise transformer attention map for weakly-supervised semantic segmentation. arXiv preprint arXiv:2112.02841. 2021 Dec 6.

Figure 34: mIoU measured over Pascal VOC 2012 testing
dataset. Source: 

.

https://paperswithcode.com/sota/semantic-segmentation-on-pascal-

voc-2012

Source: Sun et al.¹
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1. How do Explainable AI methods behave in multi-label scenarios?
2. Can cross-contributions be erased from the CAMs produced by Grad-CAM?

1. Exploration of Explainable AI Methods in Multi-Label Problems

Proposed Approach Research Proposal
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Can complementary strategies be conjointly employed to improve WSSS?
Is adversarial CAM generation beneficial to WSSS solutions?
Can context-decoupling help WSSS methods to segment cluttered scenes?

2. Complementary Regularization Strategies in WSSS

Proposed Approach Research Proposal
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Can Visual Transformers improve fine-grain WSSS?
Can WSSS methods be adapted to Vision Transformers?

3. Exploration of Transformers and Spatial Attention for Highly-Detailed
Segmentation

Proposed Approach Research Proposal
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Can long-tail learning improve WSSS in boundary cases?
Which features can be drawn from functional segmentation problems to replace
visual similarity, a fundamental aspect of WSSS methods?

4. Weak Supervision in Boundary and Difficult Scenarios: Class
Unbalance, Long-tail and Functional Segmentation

Proposed Approach Research Proposal
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Can WSSS ensembles improve noisy segmentation priors?
Is contextual information useful when combining predictions?
Which tasks share mutual information with Semantic Segmentation?

Saliency Detection
Edge Detection
Instance Segmentation

5. Ensemble of Weakly Supervised Semantic Segmentation Systems

Proposed Approach Research Proposal
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Work Schedule Research Proposal

Class attendance and completion of required credits
Exploration of XAI methods in multi-label scenarios
Adversarial and complementary strategies in WSSS

Doctoral Qualifying Exam (EQE)
Participation in "Programa de Estágio Docente" (PED)

Exploration of Transformers and Spatial Attention
Boundary and difficult scenarios
Ensemble of solutions for WSSS

Writing and presentation of Doctoral thesis

Activities
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Experimental Setup Research Proposal

Environment

SDumont Supercomputer:
4x NVIDIA Volta V100 (training)
2x NVIDIA K40 (inference)

Google Colab
NVIDIA Tesla K80

Tools

Tensorflow and PyTorch
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1. mean Intersection over Union (mIoU)
2. Pixel Accuracy
3. F1 Score

XAI

WSSS

1. Increase in Confidence
2. Average Drop %
3. Average Drop of Others %
4. Average Retention %
5. Average Retention of Others %

Experimental Setup Research Proposal

Proposed by us.

Metrics
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MinMax-CAM Contributions for Explainable AI
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Figure 35: Comparison of CAMs obtained from various XAI methods. Predictions being explained are: person, train,
motorcycle, person, chair, and table. Source: David et al.¹

Figure 36: Comparison of sensitivity maps from various XAI methods. Source: David et al.¹

Qualitative Results over VOC MinMax-CAM
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Qualitative Results over COCO 2017 MinMax-CAM

Figure 37: Comparison of sensitivity maps obtained from various XAI
methods over the MS COCO 2017 dataset. Source: David et al.¹ 56



Qualitative Results over HPA MinMax-CAM

Figure 38: Comparison of sensitivity maps obtained from various XAI methods over the Human Protein Atlas Image Classification dataset. Source: David et al.¹
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Quantitative Results MinMax-CAM

Table 2: Report of metric scores over multiple datasets. 58
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Figure 39: Correlation between different weight vectors in a vanilla
(unregularized) sigmoid FC layer. Source: David et al.¹

Figure 40: Correlation between different weight vectors in a sigmoid FC layer
trained with Kernel Usage Regularization. Source: David et al.¹

Kernel Usage Regularization Contributions for Explainable AI
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Kernel Usage Regularization Contributions for Explainable AI

Table 3: Report of classification scores over multiple datasets,
considering a baseline classifier the model trained with Kernel Usage
Regularization (KUR).
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Exploration of Complementary WSSS Strategies
Contributions for WSSS
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Exploration of Complementary WSSS Strategies
Contributions for WSSS

Figure 41: Priors obtained by (from left to right): Vanilla (RandAugment), OC-CSE, Puzzle, P-OC.

Vanilla OC-CSE Puzzle P-OC Vanilla OC-CSE Puzzle P-OC
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P-NOC Contributions for WSSS

Figure 42: Overview of our adversarial training setup, in which f is optimized considering both Puzzle module and the ordinary classifier oc. f is sub-sequentially
fixed and oc is updated to shift its attention towards regions currently ignored by f.
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P-NOC Contributions for WSSSP-NOC Contributions for WSSS
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C²AM-H Contributions for WSSS

L =C²AM-H
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Figure 43: CAMs produced by a network trained with P-OC, when
presented with samples from the Pascal VOC 2012 train set.

Figure 44: Hints obtained by binarizing the CAMs, using a threshold of 0.4.
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C²AM-H Contributions for WSSS

Figure 45: Saliency proposals obtained from a PoolNet model, after being trained with
C²AM-H pseudo saliency maps.
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C²AM-H Contributions for WSSS

Figure 45: Saliency proposals obtained from a PoolNet model, after being trained with
C²AM-H pseudo saliency maps.

Figure 46: Affinity labels. From left to right: (a) ground-truth maps, (b) coarse priors, (c)
priors +dCRF, and (d) priors +C²AM-H +dCRF. 67.1



Ablation Studies Contributions for WSSS

Table 4: Ablation studies of pseudo segmentation masks, measured in mIoU (%) over
Pascal VOC 2012 training and validation sets.
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(Refined) Pseudo Segmentation Maps P-NOC +C²AM-H

Figure 47: Pseudo segmentation maps obtained by random walking over segmentation priors generated by a model trained with P-NOC proposals. The Affinity Network was trained over
labels refined with saliency maps devised from C²AM-H.
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Qualitative Results over VOC 2012 P-NOC +C²AM-H

Figure 48: Qualitative results over Pascal VOC 2012 datasets. Segmentation proposals obtained by a DeepLabV3+ model trained with pseudo labels
devised from P-NOC +C²AM-H.
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Quantitative Results over VOC 2012 P-NOC +C²AM-H

Table 5: Comparison with other methods in literature.
mIoU (%) scores are reported for both Pascal VOC
2012 validation and testing sets.
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Quantitative Results over COCO 2014 P-NOC +C²AM-H

Table 5: Comparison with other methods in literature.
mIoU (%) scores are reported for MS COCO 2014
validation set. P-NOC and OC-CSE: priors employed,
no refinement conducted.
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Final Considerations

We conducted studies over:

XAI in broader (multi-label) scenarios
MinMax-CAM

Complementary Regularization Strategies in WSSS
Adversarial CAM generation for more robust priors

 

As future work, we propose to:

Transformers in WSSS
WSSS in Boundary and Difficult Scenarios
Ensemble and meta-learning strategies in WSSS
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Scientific Production Final Considerations

1. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Improving focus of CAM-based visualization techniques in multi-
label problems. In 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISAPP), pages 106–117. INSTICC, SciTePress, 2022.
 

2. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Increasing Precision of Explaining Maps by Contrasting Gradient
Signals and Regularizing Kernel Usage (Springer). In 17th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISAPP), CCIS Series, 2023.
 

3. L. David, H. Pedrini, and Z. Dias. Not so Ordinary Classifier: Revisiting Complementary Regularizing Strategies for
More Robust Priors in Weakly Supervised Semantic Segmentation.

75



Technical Contributions Final Considerations

1. Implement pixel ignoring functionality in the cross-entropy loss in Keras, for semantic segmentation problems².
 

2. Ported the Wide ResNet38-d and ResNeSt architectures, originally trained in PyTorch, to TensorFlow.
 

3. Created the keras-explainable library, containing out-of-the box implementations of many Explainable AI algorithms.
 

4. Various fixes in Keras and TensorFlow-Addons, often related to the optimizer, mixed-precision when training in a
Multi-Worker-Mirrored-Strategy environment.
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