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Abstract

Over the years, many weakly supervised strategies have been devised to mitigate the

necessity for large amounts of supervised annotation in segmentation tasks. As classi-

fication models can be conjointly employed with explaining methods to produce noisy

segmentation proposals, weakly supervised strategies often rely on complex regulariza-

tion techniques to instigate the development of useful properties (e.g., completeness,

fidelity to semantic boundaries). In this work, we divide our contributions in two

stages. In the former, we evaluate the e�cacy of CAM-based techniques over distinct

multi-label sets. We find that techniques that were created with single-label classifica-

tion in mind (such as Grad-CAM, Grad-CAM++ and Score-CAM) will often produce

di↵use visualization maps in multi-label scenarios, overstepping the boundaries of their

explaining objects of interest onto objects of di↵erent classes. We propose a generaliza-

tion of the Grad-CAM technique, namely MinMax-CAM, for the multi-label scenario

that produces more focused explaining maps by maximizing the activation of a class of

interest while minimizing the activation of the remaining classes present in the sample.

We then propose a regularization strategy that encourages sparse positive weights in

the last classifying, while penalizing the association between the classification of a class

and the occurrence of correlated patterns, resulting in cleaner activation maps. Finally,

we investigate complementary Weakly Supervised Semantic Segmentation techniques

and regularizing strategies, discussing their strengths and limitations, and proposing

direct extensions. Our preliminary results indicate MinMax-CAM produces more fo-

cused explaining maps over di↵erent network architectures and datasets, while our

proposed approach to semantic segmentation substantially improves the e↵ectiveness

of three baselines without using additional training information or supervision.

1 Introduction

The adoption of Convolutional Neural Networks (CNNs) in the solution of a broad set of

modern Machine Learning (ML) problems is unquestionable [44]. Today, we can easily find

such models being employed to image classification [58], object detection [19] and localiza-

tion [93], image segmentation [50], pose estimation [81] and even non-imagery domains, such
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as audio processing [57], text classification [87] and text-to-speech [72].

In spite of their unquestionable e�cacy, the extensive composition of complex operations

in CNNs diminishes their overall interpretability, rendering “black box” models. As they

gradually permeate into many real-world systems, impacting di↵erent demographics, the

necessity for explaining and accountability becomes urgent. Scientists and engineers working

with ML have since pushed towards the creation of explaining methods that could shed light

into their inner workings [1, 9, 18,41,77,90,98].

Explaining the reasoning of an autonomous systems is challenging task, and yet

paramount in increasing reliability of ML agents. While the construction of interpretable

models is desirable as a general rule, as it facilitates the identification of failure modes while

hinting strategies to fix them [62], it is also an essential component in building trust from

the general public towards this technology [31].

In the context of Computer Vision (CV) and image classification problems, Explainable

AI (XAI) can be employed to infer coarse localization cues that indicate the relative position

of salient or class-specific visual patterns with respect to the visual receptive field. This

property is frequently explored in the solution of Weakly Supervised Semantic Segmentation

(WSSS) problems, making XAI methods a fundamental component in many WSSS methods.

Semantic Segmentation consists in correctly associating each pixel of an image or a video

to a specific class from a predefined set, and is, to this day, one of the most prominent top-

ics of study in CV [51]. Notwithstanding its complexity, it is a paramount component in

any autonomous imagery reading system [6], such as self-driving vehicles [48], autonomous

environment surveillance [26, 27], satellite imaging [91] and medical imagery [38, 83]. Rep-

resentation Learning [5] solutions stand out in this task by consistently outscoring classic

techniques across di↵erent areas, datasets and tasks [13]. However, these strategies of-

ten require massive amounts of densely annotated information (e.g., segmentation maps),

obtained by extensive supervision. Considering limited time and cost constraints, these

solutions remain inaccessible to many.

To circumvent these limitations, scientists and engineers often recur to Weakly Super-

vised Semantic Segmentation (WSSS) [55], where “weakly” refers to partially supervised
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information, or lack thereof. Recent work investigated deriving semantic segmentation

maps from saliency maps [32, 39, 43], bounding boxes [36, 40, 54], scribes and points [55],

and even image-level labeled annotations [34,37,92]. Given it’s similarity and shared goals,

weakly supervised solutions are often compared to fully supervised ones, and while signif-

icant progress has been made so far, models trained in an weakly supervised setting often

score significantly lower than the ones trained in a fully supervised manner.

1.1 Research Goals

We set forth the goal of studying Class-Specific explaining methods proposed so far in the

multi-label setting, as well as developing a visualization technique which takes into account

the expanded information available in multi-label problems. This study is important, from

a scientific and engineering perspective, as it provides a comparison benchmark over more

realistic scenarios, in which the capturing conditions are less controlled and more hetero-

geneous. Additionally, we remark the constantly increasing interest in Weakly Supervised

Semantic Segmentation [7] and Localization [93] problems, in which XAI methods are fre-

quently employed to extract localization cues, and class-specific precision is essential.

Subsequently, we aim to study promising weakly supervised regularization strategies

(considering aspects such as e�cacy, performance, applicability, and cross-influence) and to

propose new extensions capable of further improving their individual and collective e�cacy.

Finally, we intend to investigate the behavior of WSSS solutions to more complex bound-

ary cases, such as long-tail and ambiguous functional segmentation problems. This inves-

tigation comprises a significant contribution to the understanding of weakly supervised

problems, since many approaches proposed thus far focus on the concept of spatial visual

a�nity are strongly dependent on class frequency distribution and visual similarity.

1.2 Research Questions

In this section, we enumerate the questions that drive our research project. They are sorted

according to the (expected) order in which they will be researched, and are further detailed

in Section 4.
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1. How do Explainable AI methods behave in multi-label scenarios, where metrics are

computed for all occurring labels?

2. Can cross-contributions (non-discriminative contributions towards two or more classes)

be erased from the Class Activation Maps produced by Grad-CAM?

3. What is the e↵ect of context-decoupling methods over Semantic Segmentation of clut-

tered and dense scenes, where objects of distinct classes are presented close together?

4. How is overall e�cacy of a WSSS system a↵ected when complementary regularization

strategies are conjointly employed? Can adversarial training improve the quality of

the segmentation priors?

5. Can prediction ensembles from multiple WSSS strategies improve noisy segmentation

priors? Can an ensemble policy for the selective employment of di↵erent strategies

(conditioned to the problem and characteristics of the at hand), be learned to further

improve overall e↵ectiveness?

6. Can regularization strategies — originally proposed to reinforce segmentation-related

properties in CNNs — be employed in the training of Transformer models with few

or no modifications?

7. Can Visual Transformers be employed towards the improvement of fine-grain segmen-

tation of small objects, containing complex non-convex semantic boundaries?

8. Can data balancing methods and long-tail learning be employed to further improve

the e�cacy of WSSS systems in extreme data unbalance settings?

9. How do modern WSSS methods — often relying on concepts such as pixel neigh-

borhood similarity — fare on functional segmentation problems, in which semantic

boundaries may not be clearly represented by visual cues?

10. Can the tasks of Saliency Detection and Semantic Segmentation be conjointly learned

in a Weakly Supervised setting, promoting the improvement of overall e�cacy by the

use of mutual information between these tasks?
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2 Theoretical Background

In this section, we enumerate and describe concepts that are essential to the understanding

of our work.

Representation Learning A branch of Machine Learning concerned in learning useful

data representations (along with the solution itself) for problems represented by un-

structured samples or signals [5].

Semantic Segmentation A task that aims to obtain a segmentation of the elements in a

signal with respect to their semantics. In Computer Vision, Semantic Segmentation

often relates to associate each pixel to an element in a predefined set of classes [50].

Functional Segmentation The segmentation of elements composing a signal by their as-

sociated function or behavior, which may not be necessarily distinguishable by visual

patterns or cues [7, 14].

Weakly Supervised Problems A ML paradigm that attempts to learn patterns from

data with incomplete supervision or lack thereof, characterizing tasks or problems

with noisy annotation and low human intervention [7]. Within the context of Seman-

tic Segmentation, Weak Supervision often refers to the lack of manually constructed

Semantic Segmentation annotation [55].

Long-Tail Class Distribution An extreme manifestation of class unbalance, in which

classes are assigned to either head or tail sets. The head set has low cardinality,

but contains classes that are well represented in the original set. Conversely, the tail

set contains many classes that are sparsely represented [61]. Approaches to long-tail

recognition vary from data re-sampling and re-weighting to the adoption of robust

architectures [78, 97] and representation learning losses [96].

Convolutional Networks An ML learning model comprising convolution (or cross-

correlation) operations, commonly employed in the task of Representation Learning

(or Dimensionality Reduction) of Computer Vision problems represented by unstruc-

tured samples [29, 44,90].
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Striding and Dilation Properties that characterize the application of the discrete convo-

lution over the spatial signal x 2 RCHW . Stride refers to the sampling factor s of

the passing signal [49] (i.e., the number of elements shifted when “sliding” the kernel

during the convolution operation), implying in a reduction in the spatial dimensions

of input signal. Dilation refers to the idea of convolving the original signal with a

“spaced” kernel, containing “gaps” of size d between each element in its characteristic

matrix [88]. The employment of either strategy entails in the convolution operation be-

ing applied over regions of gradually-increasing sizes, resulting in the expected stacking

of patterns [5]. Dilation, however, has the advantage of maintaining the original reso-

lution of the input signal (and the disadvantage of higher computational cost), being

therefore frequently employed in networks devised for segmentation tasks [12, 82,95].

Attention The means or capacity of a model to direct its focus towards the most infor-

mative portions of the data stream [30]. The “attention” provided by the model can

segment the signal with respect to its spatial dimensions, its channels, or a combina-

tion thereof. The application of the first, spatial attention, creates a locally-connected

(and spatially independent) system, whereas channel attention often results in the

internalization of more robust set of data patterns [95].

Transformers A family of architectures based on attention and self-attention mecha-

nisms [45]. Among them, Vision Transformers [21] (ViT) have been successfully ap-

plied to a broad range of weakly supervised visual tasks [25, 59,60,86].

3 Related Work

In this section, we discuss important landmarks reached in both XAI and WSSS literatures.

3.1 Explainable Artificial Intelligence in Computer Vision

Visual explanation techniques are frequently employed to describe or indicate, with a certain

degree of certainty, salient cues that might have contributed to the decision process of
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CNNs [85]. These techniques often times produce visual explaining maps: a signal with the

same spatial format as the input sample, highlighting regions that most contribute to the

answer provided by the model [75].

Gradient-based saliency methods [64] are early examples of this line of work. They

produce saliency maps that highlight pixels with most overall contribution towards the

score estimated during the decision process of a model, which is accomplished by back-

propagating the gradient information from the units of interest, contained in the last layer,

onto the input signal. Instances of these methods are Guided Backpropagation [66], which

filters out the negative backpropagated gradients; SmoothGrad [65], which averages gradient

maps obtained from multiple noisy copies of a single input image; and FullGrad [67], which

combines the biases with the saliency information in order to create the “full gradient”.

Notwithstanding their precision on locating salient regions and objects, gradient-based

methods will ultimately fail to identify objects or regions associated with a specific class of

interest. In fact, “sanity checks” have been proposed to test the resulting explaining maps

from these methods when class-specific patterns are erased from the model. As examples,

we remark the two experiments proposed by Adebayo et al. [1]: Model Parameter Random-

ization and Data Randomization. In the former, weights from layers would be progressively

(or individually) randomized, from top to bottom, and the e↵ect over the saliency map

produced by each method would be observed. In the latter, labels would be permuted in

the training set, forcing the network to memorize the noisy annotation. Some techniques,

such as the Guided Backpropagation and Guided-CAM methods, were una↵ected by the

randomization of labels and weights of the top layers, demonstrating their invariance to-

wards class information and high dependence on low-level features. These results lead the

authors to conclude that those methods approximated the behavior of edge detectors.

Di↵erently from gradient-based saliency methods, Class Activation Mapping (CAM) can

be used to circumvent the lack of sensibility to class [98]. This technique consists in feed-

forwarding an input image x over all convolutional layers of a CNN f and obtaining the

positional activation signal Ak = [ak
ij
]H⇥W for the k-th kernel in the last convolutional layer.

If W = [wc

k
] is the weight matrix of the last dense layer in f , then the importance of each
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positional unit aij for the classification of label c is summarized as:

L
c

CAM(f, x) = ReLU(
X

k

w
c

k
A

k) (1)

Naturally, CAMs are not without shortcomings. Significant challenges ensue with the

employment of CAMs: Firstly, only simple convolutional architectures can be explained

through CAM, as it assumes a direct association between the activation convolutional signal

and the classification signal. Additionally, when considering the later convolutional layers in

the model, CAM will produce activation maps of considerably smaller size when compared

to the input images. Hence, they must be upsampled (i.e., interpolated) to match their

original counterparts, resulting in explaining maps with fairly imprecise object boundaries

localization and highlighting. Furthermore, as the model focus on a few discriminative

regions to predict a class for a given sample, the highlighted regions in the visualization

map might not completely cover the salient objects associated with that specific class, being

strongly a↵ected by local patterns, the explaining method employed [9] and even the model’s

architecture [62]. In the context of visual explaining maps, this problem is strongly related

to the concept of prediction completeness [74].

A broad spectrum of CAM-based methods have been developed in an attempt to to

address the aforementioned problems and improve the quality of the explanations. Gradient

signals were leveraged to extend CAM to Grad-CAM [62], in order to explain more complex

network architectures, not limited to convolutional networks ending in simple layers such as

Softmax classifiers and linear regression models. Let Sc = f(x)c be the score attributed by

the network for class c with respect to the input image x, and @Sc

@A
k
ij

be the partial derivative

of the score Sc with respect to the pixel (i, j) in the activation map A
k, then:

L
c

Grad-CAM(f, x) = ReLU
⇣X

k

X

ij

@Sc

@Ak

ij

A
k

⌘
(2)

Chattopadhay et al. [9] then proposed Grad-CAM++ as an extension of Grad-CAM,

in which each positional unit in A
k was weighted by leveling factors to produce maps that
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evenly highlighted di↵erent parts of the image that positively contributed to the classification

of class c, providing higher completeness for classes associated with large objects and mul-

tiple instances of the same object in the image [9]. Similarly to Grad-CAM, Grad-CAM++

is defined as:

L
c

Grad-CAM++(f, x) = ReLU
⇣X

k

X

ij

↵
kc

ij
ReLU

⇣
@Sc

@Ak

ij

⌘
A

k

⌘
(3)

where

↵
kc

ij
=

@
2
Sc

(@Ak
ij)

2

2 @2Sc

(@Ak
ij)

2
+
P

ab
Ak

ab

@3Sc

(@Ak
ij)

3

The authors also proposed two new metrics: Increase of Confidence (%IC) and Aver-

age Drop (%AD), which have since been constantly employed in the evaluation of visual

explaining methods.

Another visualization technique worth remarking is Score-CAM [77]. In it, visualization

maps are defined as the sum of the activation signals Ak, weighted by factors Ck, that are

directly proportional to the classification score obtained when the image pixels are masked

by the normalized signal Ak. Formally:

L
c

Score-CAM(f, x) = ReLU
⇣X

k

f(x � A
k

maxAk
)cA

k

⌘
(4)

More recently, an ever-growing interest in developing even more accurate visualiza-

tion methods is noticeable. Among many, we remark SS-CAM [76], Ablation-CAM [18],

Relevance-CAM [41], LayerCAM [33] and F-CAM [4]. Similarly to Score-CAM, Ablation-

CAM is defined as the sum of feature maps Ak, where each map is weighted by the propor-

tional drop in classification score when A
k is set to zero. Relevance-CAM combines the ideas

of Grad-CAM with Contrastive Layer-wise Relevance Propagation (CLRP) to obtain a high

resolution explaining map that is sensitive to the target class, while LayerCAM incorporates

the signals advent from intermediate convolutional layers to increase the quality of explain-

ing maps. Finally, F-CAM replaces the usual upscaling of the CAM by a parameterized

reconstruction operation based on local statistics with respect to the objects of interest.
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Notwithstanding the consistent progression towards the improvement of visualization

results, the aforementioned methods entail significant computing footprint. We further note

that much of the work conducted thus far have focused on evaluations over single-label

multi-class datasets, such as localization task over ImageNet [62], and little investigation

has been conducted over the e↵ectiveness of these visualization techniques in multi-label

scenarios. Additionally, studies that used multi-label datasets [9] often focus on single-label

explanation (usually considering the highest scoring class as unit of interest).

As motivation, we present the visualization maps of classes of interest over a few samples

from the Pascal VOC 2007 (VOC07) dataset [23] in Figure 1. In it, we observe a tendency

of CAM-based methods (specially the most recent versions which attempt to expand the

map to cover all parts of the classified object) to overflow the boundaries of the object of

interest, even expanding over other objects of di↵erent classes.

3.2 Weakly Supervised Semantic Segmentation

WSSS is often approached as a two-stage process, in which the missing segmentation maps

are derived from a weakly supervised dataset, and subsequently used as pseudo maps to

train fully-supervised semantic segmentation models. Researchers in this area have focused

on strategies comprising in (a) devising class-specific hints from coarse localization methods,

such as Class Activation Mapping (CAM) [98], (b) encouraging coverage completeness by

transferring label information from confident regions to a similar neighborhood; and (c)

constraining segmentation proposals to boundaries of their associated objects [37].

The coarse maps can be refined by Random Walk (RW) [3] or Fully Connected Condi-

tional Random Fields (CRF) [35]. In the former, the a�nity values between pixel pairs that

reside within a neighborhood are calculated, and used in a random walk procedure to extend

labels from confident regions to uncertain ones. The authors later propose the addition of

displacement fields in order to perform instance segmentation [2]. In the latter, unary and

pairwise Gaussian potentials are used to model energy levels of each pixel, representing the

confidence in its original label and its visual similarity to its neighborhood, respectively.

Labels are reassigned to low confidence pixels with a high similarity to their neighborhood.
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Figure 1: Explaining maps resulted from the application of various CAM-based visualization
techniques over samples in the VOC07 dataset [23]. Source: David et al. [16]

Naturally, refinement methods are strongly a↵ected by the prior seeds. Thus, many

authors have focused on the development of strategies resulting in more accurate priors. In

this vein, Jo and Yu proposed Puzzle-CAM [34] to reinforce prediction completeness. This

is achieved by separating the input image according to its four quadrants, forwarding the

four parts and reconstructing the output activation signal, resulting in a “local” information
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stream. The model is trained to predict multi-label class occurrence within a sample via

both main and local streams. The reconstructed signal, in turn, is used to regularize the

main activation signal, resulting in CAMs with higher coverage over salient objects.

Let xi be the i-th sample image in the training set, associated with the one-hot encoded

vector yi 2 {0, 1}c, indicating the occurrence of at least one object associated with each

one of the c existing classes in the set. At the same time, let f be a CNN such that

f
c(xi) = A

c

i
2 RHW is the spatial activation map with respect to sample xi and class c,

Â
c

i
= merge(f c(tile(xi))) the reconstruction of the tiled maps produced by separating xi into

four quadrants and forwarding them individually through f , and p
c(Ai) = �(GAP(Ac

i
)) 2

[0, 1] the estimated posterior probability of sample xi containing objects of class c. In

these conditions, training ensures with the conjoint optimization of the following objective

function:

Lpuzzle(xi) = Lcls + Lp-cls + ↵Lre (5)

where Lcls is the multi-label soft margin loss between p(Ai) and yi, Lp-cls is the multi-label

soft margin loss between p(Âi) and yi, Lre = kAi � Âik1 is the mean absolute error loss

between the main and (reconstructed) activation maps, and ↵ is a scheduling coe�cient

that linearly increases as training progresses.

Notwithstanding its simplicity, Puzzle-CAM is reportedly associated with significantly

high mIoU results over VOC12 dataset [34]. When employing their most successful model

(using the split-attention architecture ResNeSt269 [95]), the authors obtained 71.9% and

72.2% mIoU over the validation and test subsets, respectively. However, upon closer inspec-

tion over the training loop, it becomes evident the existence of an early stopping mechanism

that persists the weights of the model as training progresses, conditioned to the improvement

of the metric of interest (mIoU)1. Hence, privileged and fully-supervised information (advent

from the ground-truth maps) is being incorporated in the training procedure, further for-

tifying it against overfit, albeit mischaracterizing a supposedly weakly-supervised problem.

It is also worth remarking that many of the WSSS studies conducted so far [2, 3, 37, 39, 43]

1
Training procedures were made available by the authors on GitHub (accessed on Jan.,

2023): (1) github.com/shjo-april/PuzzleCAM/train classification with puzzle.py#L444-L448;

(2) github.com/shjo-april/PuzzleCAM/train segmentation.py#L333-L336
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have not employed similar early stopping or weight persistence mechanisms, implying that

these results cannot be directly compared.

Another interesting approach devised to generate better segmentation priors is Class-

specific Adversarial Erasing (CSE) [37]. It consists of an assisted training setup, in which

a class ri is randomly drawn from the set of labels associated with the i-th sample, and a

CAM Generating model f (namely CGNet) is fitted to produce activation maps that, when

masking the input images, minimize the classification output signal advent from a fixed

auxiliary ordinary classifier (OC), while maintaining the original output for the remaining

classes. In practice, CAMs learned in this setup become su�ciently accurate to insulate

objects of distinct classes, increasing coverage over their objects while maintaining coarse

fidelity to semantic boundaries.

Let f be the CAM proposal (main) network such that f
c(xi) = A

c

i
2 RHW and oc be

the ordinary, fixed, classifying network. For each pair (xi, yi) in the training set, a class d

is randomly sampled from yi. In these conditions, Class-specific Adversarial Erasing [37] is

defined as the minimization of the function:

Lcse(xi) = Lcls + ↵Lcae

= `bce(GAP(Ai), yi)

+ ↵`bce(oc(xi � (1�A
d

i
)), yi \ {d})

(6)

where `bce is the binary cross-entropy loss function.

Once trained, f can be used to devise segmentation priors, which are refined with Ran-

dom Walk [3] and CRF [35], resulting in pseudo segmentation maps. A DeepLab model [11],

trained over these same maps, obtains 68.4% and 68.2% mIoU over Pascal VOC 2012 vali-

dation and testing sets, respectively, and 36.4% over the MS COCO 2014 validation set [46].

Notwithstanding the noticeable improvement in class separation and fidelity to the se-

mantic boundaries, priors from OC-CSE still display a low coverage over salient objects.

This drawback is mitigated by the authors with the employment of Random Walk. Nat-

urally, the e↵ectiveness of CSE is strongly dependent on the capacity of oc to recognize

13



class-specific objects (and parts thereof), and it can be potentially diminished when as-

sisted by a classifier biased towards (only) the most discriminative regions. It stands to

reason that the concurrent training of oc could prove itself useful to the CSE method, in

which the ordinary classifier would gradually learn to redirect its attention to class-specific

regions ignored currently by f , and thus providing better assistance in its training.

Going in a di↵erent direction, Xie et al. proposed C²AM: an unsupervised strategy for

learning saliency detection [84]. It attempts to find a bi-partition of the spatial field contain-

ing the image such that salient objects and the background would be perfectly separated. It

does so by extracting both low and high level features Ak 2 RHW from a pretrained back-

bone model, and feeding them to a disentangling branch, a function d : RK ! [0, 1], such

that d(A)A would represent the foreground features while (1�d(A))A represented the back-

ground ones. Training ensues by optimizing the model to approximate the feature vectors

representing the most similar patches, while increasing the distance between the foreground

and background feature vectors. Saliency maps produced by C²AM can be combined with

various WSSS strategies, notably improving their e↵ectiveness.

Let P
hw : Rhw ! [0, 1]chw be a function mapping each region in the embedded spatial

signal A
hw

i
to the probability value p

hw

i
of said region belonging to the first partition.

Moreover, let vf
i
= Pi�Ai and v

b

i
= (1�Pi)�Ai be two extracted feature vectors, representing

the spatial foreground (fg) and background (bg) features, respectively. Considering a batch

of n images B = {xb, xb+1, . . . , xb+n�1}, three cosine similarity matrices are calculated: (a)

the fg features (sf
ij
), (b) the bg features (sb

ij
); and (c) between the fg and bg (sneg

ij
) features.

In these conditions, C²AM is defined as the minimization of the following objectives:

LB
C²AM = LB

pos-f + LB
pos-b + LB

neg

=
1

n(n� 1)

nX

i

nX

j

1[i 6=j](w
f

ij
log sf

ij
)

+
1

n(n� 1)

nX

i

nX

j

1[i 6=j](w
b

ij
log sb

ij
)

� 1

n2

X

i

X

j

log(1� s
neg
ij

)

(7)
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where the wf

ij
and w

b

ij
factors are exponentially proportional to the similarity rank between

the regions (i, j), considering all possible pairs available in Ab:

wij = e
�↵rank(sij), w 2 {wf

, w
b}

Once trained, pseudo saliency maps are inferred from the training set, and used to train

a fully-supervised saliency detection model [47]. The model, in turn, is used to generate

the saliency proposal maps, which tend to be more robust to noise than the pseudo maps.

Concatenating said maps to their respective CAMs comprises a way to perform pixel-wise

thresholding, which tends to point out background regions more precisely than establishing

a global threshold value. For instance, the combination of C²AMs to CAMs produced by

ResNet50 Puzzle resulted in a 65.5% mIoU over the VOC12 training set (an increase of 14.1

percent points), and in 66.0% mIoU when combined with priors produced by a model when

employing SC-CAM [8]. Results over the validation set were not provided.

C²AM is not without shortcomings. With careful inspection of Eq. (7), it is noticeable

the absence of an “anchor”: similar pixels representative of salient objects (relative to the

dataset of interest) can either be associated with low or high values in P
hw. I.e., C²AM

establishes a saliency bi-partition of the visual receptive field, without specifying which of

the partitions contains the salient objects. Moreover, no explicit reinforcement is made

towards the construction of a bi-partition that aggregates all salient classes in one side.

Instead, similar regions are simply drawn together, implying in the risk of salient objects,

associated with di↵erent classes, to be projected onto di↵erent partitions. For example,

in problems where objects of two classes never directly co-occur (spatially close in a same

image), or indirectly (through a third intermediate class that frequently co-occurs with each

of the aforementioned classes).

4 Research Methodology, Materials and Contributions

In this section, we describe our proposed research approach, as well as the contributions

achieved thus far.
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4.1 Proposed Approach

In the following, we enumerate the di↵erent stages of our proposed approach, sorted by the

order in which they will be studied and researched.

4.1.1 Exploration of Explainable AI Methods in Multi-Label Problems

We propose to start our project by conducting a throughout evaluation of the main CAM-

based visual explaining techniques and methods, considering the neglected aspects of multi-

label problems and scenarios, in which analysis can be considerably more challenging [73].

We will extend the well established XAI metrics defined by Chattopadhay et al. [9] to

consider the multiple class occurrences in each sample. In this benchmark, the explaining

methods should not only be evaluated with respect to their capacity of explaining a single

class of interest, but to with respect to its capacity of explaining all salient elements currently

present in samples.

Moreover, we will include additional problem sets in the evaluation procedure, repre-

senting more complex and realistic scenarios not currently covered by the well-established

(and well curated) Pascal VOC and MS COCO datasets. We argue that the evaluation over

those is paramount to better estimate the e↵ectiveness of XAI methods over more realistic

scenarios, containing degeneration cases, such as when the classes are sparsely represented,

class distribution is strongly unbalanced or with extreme class co-occurrence [7].

Finally, we will devise a new CAM-based visual explaining method that takes into con-

sideration the various classes present in a sample to retrieve the kernel regions (i.e., regions

that contribute to the recognition of one, and only one, class of interest) in that same sam-

ple. This will be achieved through the contrasting the contributions of the model for the

prediction of each class. For fairness, the devised method will be compared against the

literature using the aforementioned comprehensive evaluation loop.

4.1.2 Complementary Regularization Strategies in WSSS

In this research stage, we will evaluate the e�cacy of complementary regularization strate-

gies, devised in the context of noisy or weak supervision (e.g., Puzzle-CAM, OC-CSE, C²AM,
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label smoothing, etc.), and strong augmentation strategies devised to internalization of more

robust data patterns in an uncertain and noisy environment (e.g., CowMix, ClassMix, Cer-

tainMix). We expect that revisiting these individual solutions may prove itself useful in

the understanding and development of new techniques that retain their individual strengths

without su↵ering from their shortcomings.

Finally, we will devise a new WSSS strategy that utilizes an adversarial training setup

of two CAM-proposing networks to produce more accurate pseudo semantic segmentation

priors, further improving the overall e�cacy of WSSS solutions.

4.1.3 Exploration of Transformers and Spatial Attention for Highly-Detailed

Segmentation

Modern WSSS solutions are often based on CNNs, comprising convolution and down-

sampling operations that compress the original spatial dimensions of the input signal, result-

ing in low-resolution semantic segmentation priors. While some work has been conducted

to mitigate this flaw, such as the proposal of wide networks [82] and the introduction of

dilation [12,88], the segmentation of small objects with highly detailed non-convex semantic

boundaries is still challenging.

Alternatively to CNNs, Vision Transformers [21] can also be employment in the solution

of various Computer Vision tasks, achieving or surpassing the state of the art in many of

them. Concomitantly, spatial attention can be used to maintain a higher fidelity to the

original resolution of the analyzed sample, resulting in more accurate segmentation priors.

Early work in this vein have inferred class a�nity from patch tokens advent from Transform-

ers [86], employed linear search to assign image-level class information to patches [59], or

combined CNNs and Transformers into single-stage multi-branch model with classification,

spatial a�nity prediction and segmentation capabilities [60].

In this research stage, we will analyze the e↵ectiveness of modern Vision Transform-

ers architectures over Weakly Supervised Semantic Segmentation problems. More specif-

ically, we will investigate if modern regularization strategies, originally devised to insti-

gate segmentation-prone properties in CNNs (e.g., completeness, local attention, activation
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consistency, semantic boundaries), can be extended and adapted to improve the semantic

segmentation capabilities of Transformer models, without the overhead of adjacent convo-

lutional layers/models that would inevitably lead to complex architecture topologies.

4.1.4 Weak Supervision in Boundary and Di�cult Scenarios: Class Unbalance,

Long-tail and Functional Segmentation

In this phase, we will investigate the behavior of WSSS strategies in boundary and di�cult

scenarios, such as in datasets with unbalanced or long-tail class distributions. We expect

the segmentation capacity of a model to deteriorate in poorly represented scenarios, leading

to a significant di↵erence in segmentation e↵ectiveness across the di↵erent class groups.

We will study ways to mitigate this problem by leveraging re-balancing and class-

influence adjustment techniques — originally devised with classification and recognition

tasks in mind — and evaluating their influence on the quality of the semantic segmentation

priors produced in a weakly supervised environment. More specifically, we intent to adapt

the distribution alignment [96] and the Bilateral-branch [97] methods to the WSSS scenario,

producing high-quality semantic segmentation priors for both head and tail classes.

Subsequently, we will investigate the e↵ectiveness of weakly supervised techniques when

applied to functional and morphological segmentation tasks. We expect solutions based on

pixel-wise visual a�nity to present considerably lower performance in scenarios containing

visually ambiguous patterns, in which the fully-supervised information cannot be solely

inferred from local features. Finally, we will attempt to mitigate these scenarios using more

interventionist instances of weakly supervised annotation (e.g., scribes, bounding boxes, and

saliency), or by adapting semi-supervised learning methods to this problem domain.

4.1.5 Ensemble of Weakly Supervised Semantic Segmentation Systems

While many WSSS solutions have similar overall e�cacy (mIoU), their fundamentally dif-

ferent architectures and training objectives culminate in models with di↵erent segmentation

capacity with respect to di↵erent groups of classes, as well as a diverse set of failure cases.

In this scenario, it is unlikely for a single model to have the highest segmentation capability
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among all groups, contexts and problems.

Inspired by the continuous success of prediction ensembling in various tasks and compe-

titions [20], as well as the recent adoption of model and weight ensembling [79], we intent to

analyze the e�cacy of ensembling predictions advent from various WSSS methods towards

the solution of semantic segmentation tasks.

Finally, we will devise a meta learning strategy that combines di↵erent WSSS methods

and techniques based on any contextual and/or weakly supervised information available,

favoring methods that better perform considering the current context being inferred. We

expect an organized composition of predictions to produce more robust semantic segmenta-

tion results in all scenarios, including boundary and exceptional cases.

4.2 Experimental Environment and Materials

In this section, we detail the experimental setup employed in our work.

4.2.1 Datasets

We list and briefly describe the datasets considered for this work. The first five datasets have

been employed in the experiments and are thus discussed in more depth in Appendix A.1.1.

Pascal VOC 2007 comprises 2,501 training samples, 2,510 validation samples and 4,952

test samples representing various objects from 20 classes in their usual context [23].

Pascal VOC 2012 extends the 2007 version to include 5,717 training samples, 5,823 vali-

dation samples and 10,991 unlabeled test samples [22].

MS COCO 2017 contains 118,287 training samples, 5,000 validation samples and 40,670

unlabeled test samples. This set represents distinct scenarios containing various ob-

jects associated to 80 distinct classes [46].

Planet: Understanding the Amazon from Space is a satellite imagery dataset of the

Amazon rainforest, containing 40,479 training samples annotated according to their

natural features [63].
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Human Protein Atlas Image Classification (HPA) is a microscopic imagery dataset

representing cellular bodies and proteins of interest. Containing 31,072 training sam-

ples associated with one or more of the 21 classes, this set presents a strongly unbal-

anced class distribution [56].

Functional Map of the World (fMoW) is a satellite imagery dataset 1,047,691 images

associated with 61 categories [14]. Samples comprise temporal sequences of images,

annotated by bounding boxes associated with 61 distinct categories that describe the

functional purpose and/or contextual information of the scenarios.

Atlas of Digital Pathology (ADP) is a histopathology dataset containing 17,668 im-

ages, captured from histological tissue slides [28]. Images are annotated according

to 28 morphological types and 4 functional types. Moreover, a small subset (of 50

images) presents fully-supervised pixel-level annotations.

4.2.2 Metrics and Evaluation Protocols

To evaluate Explainable AI methods, we extend the well known Increase in Confidence and

Average Drop metrics to a multi-label scenario by computing them individually, for each

label present in each sample, followed by macro-averaging the individual results. We then

devise two new metrics, namely Average Drop of Others and Average Retention, to measure

the inadvertent class-agnostic highlighting of co-occurring classes in CAMs. Finally, we

summarize the devised metrics into the harmonic means F1+ and F1�.

In conformity with literature, we employ mean Intersection over Union (mIoU) as main

evaluation metric when comparing Weakly Supervised Semantic Segmentation solutions.

Each of the aforementioned metrics are described in detail in Appendix A.1.3.

4.2.3 Computational Environment

Training of classification models, as well as the experiments and benchmarks of Explainable

Artificial Intelligence methods are conducted in a local environment, consisting of a single

node with 16 GB RAM and a NVIDIA T4 GPU.
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We leverage the infrastructure of the Santos Dumont (SDumont) super-computer for the

execution of the experiments associated with WSSS problems. Most experiments occur in

single-node machines with 128 GB RAM and 4 NVIDIA V100 GPUs.

Training protocols for XAI and WSSS methods are described in detail in Appendix A.1.2

and Appendix A.2, respectively.

4.3 Work Schedule

We enumerate in this section the di↵erent research stages of our project, and present the

execution scheduling for the planned activities in Table 1.

1. Class attendance and completion of required credits.

2. Exploration of Explainable AI methods in multi-label problems.

3. Complementary regularization strategies in WSSS.

4. Doctoral Qualifying Exam (EQE).

5. Participation in “Programa de Estágio Docente” (PED).

6. Exploration of Transformers and Spatial Attention for highly-detailed segmentation.

7. Weak supervision in boundary and di�cult scenarios.

8. Ensemble of weakly supervised semantic segmentation systems.

9. Writing and presentation of Doctoral thesis.

Table 1: Expected scheduling of planned activities.

Activities
1st year 2nd year 3rd year 4th year

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 • • • •
2 • • • •
3 • • • •
4 •
5 • •
6 • • •
7 • • • •
8 • • •
9 •
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5 Preliminary Results

Our main contributions, achieved thus far, are summarized by the following:

1. We propose a thoroughly analysis of popular visualization techniques in the litera-

ture over a distinct set of multi-label problems, evaluating their results according to

the o↵ered coverage over objects belonging to the label of interest, as well as the

containment within objects of said label.

2. We propose a modification to CAM-based methods that combines gradient information

from multiple labels within a single input image. We demonstrate that our approach

presents better scores and cleaner visualization maps than other methods over distinct

datasets and architectures. Subsequently, we present a regularization strategy that

encourages networks to associate each learned class with a distinct set of patterns,

resulting in better separation of concepts and cleaner CAM visualizations.

3. We propose a training procedure regularized by both Puzzle-CAM [34] and OC-

CSE [37] to generate attention maps that comprehensively cover large objects while

respecting their semantic boundaries. Sub-sequentially, we extend OC-CSE into a fully

adversarial training setup, in which the ordinary classifier is also gradually refined to

provider better information to the main network.

4. We propose an extension of C²AM [84] that incorporates hints of positive regions in

its training procedure, and empirically demonstrate the superiority of the generated

saliency maps with respect to the ones obtained from C²AM vanilla. We leverage

the obtained pseudo saliency maps to infer background regions and better guide the

random walk process [3], resulting in superior mean Intersection over Union (mIoU)

results over the Pascal VOC 2012 (VOC12) dataset [22].

5.1 Explainable Artificial Intelligence

We devise a new CAM-based visual explaining method, namely MinMax-CAM, that pro-

duces more focused explaining maps by contrasting the contributions to the classification of
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all classes contained in a given sample. Next, we briefly describe the method, and present

a more detailed explanation of its intuition and formulation in Appendix B.1.

Formally, let f be a fully convolutional network, x 2 X be a given sample from the

dataset X , c 2 Cx a class of interest present in the label set Cx, and Nx = Cx \{c}. In these

conditions, Sc = f(x)c =
P

k
w

c

k

1
hw

(Ak) is the prediction score for sample x with respect to

class c, estimated by f , and MinMax-Grad-CAM is defined as the combination of activation

signals Ak, weighted by their respective contributions to the objective function Jc:

L
c

MinMax-Grad-CAM(f, x) = ReLU
⇣X

k

X

i

@Jc

@Ak

ij

A
k

⌘
(8)

where

Jc = Sc �
1

|Nx|
X

n2Nx

Sn (9)

An alternative form (D-MinMax-Grad-CAM), that factors positive, negative and back-

ground contributions is also devised:
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Qualitative results can be inspected in Figure 2, in which CAMs devised from MinMax-

CAM and D-MinMax-CAM are illustrated in the fifth and sixth columns, respectively.

By suppressing the activation of regions that positively contribute to the classification of

adjacent classes, MinMax-CAM produces more precise and class-specific activation maps,

in which fewer pixels (associated with a certain class) are incorrectly highlighted (when

explaining another class).

More qualitative and quantitative results are presented in detail in Appendix B.1.2.

23



Figure 2: CAMs produced by various XAI methods. Classes being explained are (from top
to bottom): bicycle, person, motorbike, person, table, chair, tv, person, and sofa.
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5.2 Weakly Supervised Semantic Segmentation

In order to foment semantic segmentation-like properties in models trained in a WSSS

setup, such as prediction completeness, semantic boundary awareness and robustness against

noisy labels, we propose the combination of the Puzzle-CAM, OC-CSE and label smoothing

strategies into a single training setup, namely P-OC.

Furthermore, we propose a novel adversarial training setup (namely, P-NOC), in which

the Ordinary Classifier is gradually refined to shift its attention to regions being currently

ignored by the main network, maximizing the utility in the regularization of the latter.

Finally, we propose the utilization of saliency hints, extracted from models trained in the

weakly supervised scheme, to further regularize the training of C²AM. This is accomplished

by extracting high-confidence salient regions from the semantic segmentation priors and

utilizing them to “anchor” the disentangling branch in the C²AM model.

Table 2 displays the comparison with the state of the art for our two best strategies

(P-OC and P-NOC). P-NOC obtains 72.7% mIoU over Pascal VOC 2012 test dataset,

outscoring the unfair version of Puzzle-CAM by 0.5 p.p., and the remaining approaches by

a considerable margin. Figure 3 and Figure 3 illustrate a few examples of predictions made

by the P-OC and P-NOC strategies, respectively.

Figure 3: Examples of predictions made by a DeepLabV3+ model trained with pseudo
semantic segmentation masks devised from P-OC and refined with random walk.

Implementation details for both P-OC, P-NOC and C²AM-H are available in Ap-

pendix B.2, and quantitative results and ablation studies are described in Appendix B.2.3.
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Figure 4: Examples of predictions made by a DeepLabV3+ model trained with pseudo
semantic segmentation masks devised from P-NOC and refined with random walk.

Table 2: Comparison with other SOTA methods. mIoU (%) scores are reported for both
Pascal VOC 2012 validation and testing sets. Puzzle-CAM: potential e↵ectiveness reported
(see Section 3.2).

Method Backbone Val Test

A�nityNet [3] Wide-ResNet-38 61.7 63.7
IRNet [2] ResNet-50 63.5 64.8
ICD [24] ResNet-101 64.1 64.3
SEAM [80] Wide-ResNet-38 64.5 65.7
OC-CSE [37] Wide-ResNet-38 68.4 68.2
Puzzle-CAM [34] ResNeSt-269 71.9 72.2
RIB [39] ResNet-101 68.3 68.6
EPS [43] ResNet-101 70.9 70.8
AMN [42] ResNet-101 69.5 69.6
ViT-PCM [59] ViT-B/16 70.3 70.9
MCTformer [86] Wide-ResNet-38 71.9 71.6
P-OC+C²AM-H (ours) ResNeSt-269 71.4 72.4
P-NOC+LS+C²AM-H (ours) ResNeSt-269 71.5 72.7

5.3 Scientific Production

1. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Improving focus of CAM-based

visualization techniques in multi-label problems. In 17th International Joint Confer-

ence on Computer Vision, Imaging and Computer Graphics Theory and Applications

(VISAPP), pages 106–117. INSTICC, SciTePress, 2022.

2. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Increasing Precision of Explaining

Maps by Contrasting Gradient Signals and Regularizing Kernel Usage (Springer).
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In 17th International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications (VISAPP), CCIS Series, 2023.

3. L. David, H. Pedrini, and Z. Dias. Not so Ordinary Classifier: Revisiting Complemen-

tary Regularizing Strategies for More Robust Priors in Weakly Supervised Semantic

Segmentation.

5.4 Technical Contributions

1. Implement pixel ignoring functionality in the cross-entropy loss in Keras, for semantic

segmentation problems2.

2. Ported the Wide ResNet38-d and ResNeSt architectures, originally trained in PyTorch,

to TensorFlow3.

3. Created the keras-explainable library, containing out-of-the box implementations

of many Explainable AI algorithms4.

4. Various fixes in Keras and TensorFlow-Addons, often related to the optimizer, mixed-

precision when training in a Multi-Worker-Mirrored-Strategy environment5.
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Supplementary Materials

A Additional Details to Experimental Setup

In this section, we provide additional details over the experimental settings adopted in the

experiments conducted thus far.

A.1 Explainable Artificial Intelligence

In this section, we detail the experimental procedures employed to evaluate the proposed ex-

plaining techniques with respect to the most popular alternatives found in current literature,

considering multiple architectures and datasets.

A.1.1 Evaluations over Architectures and Problem Domains

In conformity with literature, we evaluate the e↵ect of architectural change over the ex-

planations produced from various visualization techniques by employing multiple popular

alternatives of Convolutional Neural Network architectures. More specifically, we train and

evaluate three architectures over Pascal VOC 2007: VGG16-GAP (VGG16), ResNet101

(RN101) and E�cientNet-B6 (EN6). We approximate the evaluation conditions of previous

works [9, 62, 77] by warm-starting from weights pre-trained over the ILSVRC 2012 dataset,

and fine tuning the networks over the Pascal VOC 2007 dataset [23].

We further evaluate the di↵erent visualization techniques considering five image-related

problem sets, resulting in measurements and insights about the behavior and e�cacy of

these techniques over various scenarios. In these, it is expected that data patterns, class

co-occurring groups and semantic contexts greatly di↵er, providing a more comprehensive

understanding of these techniques. A brief summary of the employed datasets, representing

the di↵erent problem sets, is provided as follows.

Pascal VOC 2007 (VOC07) The Pascal VOC 2007 dataset [23] is a well established

dataset in Computer Vision and Machine Learning literature, being frequently employed

in the evaluation of AI explaining methods and techniques. Comprising of 2,501 training

34



samples, 2,510 validation samples and 4,952 test samples, this set contains images with

multiple objects belonging to 20 distinct classes.

Pascal VOC 2012 (VOC12) This dataset extends the Pascal VOC 2007 dataset to

5,717 training samples, 5,823 validation samples and 10,991 unlabeled test samples [22],

while sharing the same classes with its previous version [23].

Microsoft Common Objects in Context 2017 (COCO17) The COCO 2017

dataset [46] contains 118,287 training samples, 5,000 validation samples and 40,670 un-

labeled test samples. Images in this set are richly annotated with respect to various objects

belonging to 80 distinct classes (classification, detection and segmentation annotations are

available). Furthermore, this set respects contextual information of classes, by presenting

objects in the usual environments and scenarios.

Planet: Understanding the Amazon from Space (P:UAS) This satellite imagery

dataset was originally provided by Planet for a competition in the Kaggle platform, and

comprises 40,479 training samples and 61,191 test samples [63]. Samples correspond to

“chips” of satellite photographs of the Amazon rainforest, and are annotated with respect

to their natural features (e.g., primary forest, water, cloudy, haze) one the observed human

intervention in the area (e.g., agriculture, road, selective logging, mining).

Human Protein Atlas Image Classification (HPA) Firstly introduced in a Kaggle

competition of same name, this set comprises 31,072 training samples and 11,702 test sam-

ples [56]. Each sample is represented by a microscopic image framing cellular bodies and

proteins of interest, as well as a label set from the set of 28 available classes (e.g., Nucleo-

plasm, Cytosol, Plasma membrane, Nucleoli). This dataset represent many computational

challenges, and it is used to measure the behavior of explaining techniques over ill-distributed

datasets, recurrently found in real-case scenarios. Besides the natural di�culty of learning

core visual patterns of intrinsically associated and frequently co-occurring cellular compo-

nents, we observe an overwhelming class imbalanced in the training set, as well a class
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distribution shift in the test set, resulting in relative low scores for all competitors in the

original Kaggle challenge6.

A.1.2 Training Procedure

Firstly, images in all datasets and experiments are resized with the preservation of their

original aspect ratio, in which their shortest dimension (height or width) is matched the

expected size of the visual receptive field. They are then centrally cropped along their

largest dimension to the exact size of the aforementioned field (224 ⇥ 224 for VGG-GAP

and 512⇥ 512 for ResNet101 and E�cientNetB6). In conformity with literature, we report

the visualization results over the validation subset of each dataset.

Before the training procedure, weights of the convolutional pipeline are initialized with

the set of weights pre-trained over ImageNet. A Global Average Pooling (GAP) layer and a

sigmoid dense layer (with the number of units equal to the number of labels in the dataset)

are then appended to the pipeline, forming the entire multi-label classification model.

Training ensues in two stages. In the first, the classification head is trained for 30 epochs

with learning rate = 0.1. In the second stage, 60% of the layers of the backbone are unfrozen

and the model is once again trained for 80 epochs using Stochastic Gradient Descent with

learning rate = 0.01 and Nesterov momentum [70] equals to 0.9. Learning rate is reduced

by a factor of 0.5 after every 3 epochs without decrease in validation loss. Training is halted

if no improvements are observed after 20 epochs.

A.1.3 Evaluation Metrics

In order to compare our explaining techniques to current literature in a multi-label setting,

we employ slightly modified versions of the metrics defined by Chattopadhay et al. [9].

Specifically, the Increase in Confidence (Eq. (12)) and Average Drop (Eq. (13)) metrics

are extended to take into consideration the classification units associated with each classes

present in each sample, in opposite of only considering the most intensively activating unit.

Furthermore, three new metrics were designed to better evaluate the inadvertent activation

6
Human Protein Atlas. Human Protein Atlas Image Classification. In: Kaggle.

kaggle.com/competitions/human-protein-atlas-image-classification (Jan 2019). Accessed on Aug 2022.
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of the produced class-specific explanation maps over objects associated with co-occurring

classes. We remark that the metrics considered in this work will reduce to their conventional

form, as commonly employed in literature, in single-label classification problems.

Next, we provide the formal definition of the aforementioned metrics. We remark that

while themicro-average form was used in their respective equations for simplicity, it does not

capture well the unbalanced nature of multi-label problems [73]. Hence, we report metrics in

their macro-averaged form (or class-frequency balanced) in Appendix B.1.2, in which metric

results are computed separately for each class and averaged, removing the impact of label

frequency in the overall result.

Increase in Confidence (%IC) The rate in which masking the input image xi by the

visualization mask M
c

i
has produced a higher classification score O

c

ic
= f(M c

i
� xi)c than

the baseline Y
c

i
= f(xi)c:

1P
i
|Ci|

NX

i

X

c2Ci

[Y c

i
< O

c

ic
] (12)

This metric measures scenarios where removing background noise must improve classifi-

cation confidence. We report results for this metric in compliance with literature, but raise

the following question regarding the consistency of this metric: the classifying units of a

sigmoid classifier are not in direct competition with each other for total activation energy,

as it happens with units in softmax classifiers. For an ideal classifier, in which concepts are

perfectly separated and no false correlation exist, one could argue that the removal of an

object from an image should not a↵ect the classification score of another object.

Average Drop (%AD) The rate of drop in the confidence of a model for a particular

image xi and label c, when only the highlighted region M
c

i
� xi is fed to the network:

1P
i
|Ci|

NX

i

X

c2Ci

max(0, Y c

i
�O

c

ic
)

Y c

i

(13)

Average Drop expresses the idea that masking the image with an accurate mask should

not decrease confidence in the label of interest, that is, it measures if your mask is correctly

37



positioned on top of the important regions that determine the label of interest.

Average Drop of Others (%ADO) The rate of drop in the confidence of a model for a

particular image xi and labels n 2 Ni = Ci \ {c}, when only the highlighted region M
c

i
� xi

is fed to the network:

1P
i
|Ci|

NX

i

X

c2Ci

1

|Ni|
X

n2Ni

max(0, Y n

i
�O

n

ic
)

Y n

i

(14)

This metric captures the e↵ect of a mask M
c

i
over objects of other labels Ni present in

xi, in which the masking of the input xi for a given class c should cause the confidence in

other labels to drop. One expects an ideal mask to not retain any objects of other classes,

that is, f(M c

i
� xi)n ⇡ 0, 8n 2 Ni.

Average Retention (%AR) The rate of retention of confidence of a model for a partic-

ular image xi and label c, when the region highlighted by the visualization map for label c

is occluded:
1P
i
|Ci|

NX

i

X

c2Ci

max(0, Y c

i
� Ō

c

ic
)

Y c

i

(15)

where Ō
c

ic
= f((1�M

c

i
) � xi)c.

While Average Drop measures if the map M
c

i
is correctly positioned over an object of

label c, Average Retention attempts to capture if M c

i
covers all regions occupied by objects

of label c, that is, masking the input with an accurate complement mask (1 �M
c

i
) should

decrease confidence in class c.

Average Retention of Others (%ARO) The rate of retention of confidence of a model

for a particular image xi and labels n 2 Ni, when the region highlighted by the visualization

map for label c is occluded:

1P
i
|Ci|

NX

i

X

c2Ci

1

|Ni|
X

n2Ni

max(0, Y n

i
� Ō

n

ic
)

Y n

i

(16)

This metric evaluates if the masking of input xi for all labels but c retains the confidence
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of the model in detecting these same labels. An ideal mask complement for class c should

cover all objects of the other classes, that is, f((1�M
c

i
) � xi)n ⇡ f(xi)n, 8n 2 Ni.

F1� and F1+ Scores Although the considered metrics cover the various facets of the

evaluation of AI explaining methods over multi-label scenarios, it may create di�culties

in the analysis or interpretation of the results, requiring a high degree of attention and

memorization from readers. Therefore, we opted to combine similar measurements using a

harmonic mean (F1 score). More specifically, we consider (a) F1� as the harmonic mean

between %AD and %ARO, both error measures; and (b) F1+: the harmonic mean between

%AR and %ADO, both utility functions (higher is better).

A.2 Weakly Supervised Semantic Segmentation

In accordance with literature [3,34,37], CAM-generating models are trained with Stochastic

Gradient Descent (SGD) for 15 epochs with linearly decaying learning rates of 0.1 and 0.01

(for randomly initialized weights and pre-trained weights, respectively), and 1e-4 weight

decay. Furthermore, samples are augmented with random resizing/cropping, while label

smoothing [52,71] is applied. To improve classification robustness, we employ RandAugment

(RA) [15] when training Ordinary Classifiers. Conversely, we observed a marginal decrease

in mIoU when training Puzzle and OC-CSE models with RA, and thus opted to train them

with simple color augmentation (variation of contrast, brightness, saturation and hue).

When training P-OC, the coe�cients �re and �cse are kept as originally proposed: �re

increases linearly from 0 to 4 during the first half epochs, while �cse increases linearly from

0.3 to 1 throughout training. For P-NOC, �noc increases from 0 to 1, while learning rate

decreases from its initial value to 0. These settings constraint oc to change more significantly

in the intermediate epochs, and, thus, to recognize prominent regions of objects in the first

stages of training, while preventing it from learning incorrect features later on.

C²AM and C²AM-H are trained with the same hyper-parameters as Xie et al. [84], with

the exception of the batch size, which is set to 32 for the ResNeSt269 architecture due to

hardware limitations. When training C²AM-H, we set �fg and �h to 0.4 and 1, respectively.
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These values are defined after the inspection of samples of each class, confirming a low false

positive rate for foreground regions in the limited inspection subset. We leave the search

for their optimal values as future work.

B Detailed Discussions of Preliminary Results

In this section, we describe our preliminary results in detail. We divide them into two

groups. In the first, we discuss Explainable AI methods, their performance over multi-label

problems and forms to improve class-specific precision in CAMs. In the latter, we evaluate

the employment of complementary strategies in WSSS problems, and derive a new method

to produce more robust segmentation priors, based on the adversarial training of a strongly

regularized CAM proposal network and an ordinary classifier.

B.1 Contributions for Explainable Artificial Intelligence

We list in this section our contributions towards Explainable AI.

B.1.1 Contrasting Class Gradient Information

In this section, we describe our CAM-based technique, namely MinMax-CAM, which gen-

erates visualization maps by contrasting region contributions for di↵erent classes, and thus

better incorporating multi-label information into the resulting map.

Intuition Containing multiple co-occurring salient objects interacting in di↵erent con-

texts and obtained from various capturing conditions and settings, Multi-label problems are

intrinsically more complex than the ones represented in single-label, multi-class datasets.

The visual patterns associated with a given class are not necessarily the most prominent

visual cue contained in their samples, while statistical artifacts, such as label co-occurrence

and context, have great impact on the training and, therefore, the generalization capacity

of the model. An example of such problem is remarked by Chan et al. [7]: In the extreme

case in which two classes always appear together, no visual cue that e↵ectively distinguishes
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them can be learned, implying in the internalization of contextual information or correlated

patterns, in opposite of the expected visual evidence for individual classes. While one can

argue that the occurrence correlation of 100% between two or more classes is not a realistic

scenario, fitting a classifier over frequently co-occurring classes (e.g., dining table and chair

in Pascal VOC 2012 dataset [23]) might result in a significant decrease of generalization e�-

cacy and confusing CAMs, as correlating patterns are inadvertently internalized as evidence

of occurrence, thus forming false association rules.

We propose a visualization method that attempts to identify the kernel contributing

regions for each label c in the input image x by averaging the signals in A
k, weighted by

a combination of their direct contributions to the score of c and negative contributions to

the remaining labels present in x, that is, finding regions that maximize the score of the

label c and minimize the score of the remaining adjacent labels. To achieve this, we modify

the gain function used by Grad-CAM to accommodate both maximizing and minimizing

label groups, redefining it as the gradient of an optimization function Jc with respect to the

activating signal Ak

ij
, where Jc is the subtraction between the positive score for label c and

the scores of the remaining labels represented within sample x.

Definition Let x be a sample from a dataset associated with the set of classes Cx, c 2 Cx

a class of interest and Nx = Cx \ {c}. At the same time, let f be a trained convolutional

network such that Ak = [ak
ij
]H⇥W is the activation map for the k-th kernel in the last con-

volutional layer, W = [wc

k
] is the weight matrix of the sigmoid classifying layer, containing

synaptic values that linearly associate the positional signal Ak to the classification signal

for class c. In these conditions, the classification score for c is given by:

Sc = f(x)c =
X

k

w
c

k

1

hw
(Ak) (17)

We consider the focused score for label c as the subtraction between the score Sc and
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the average score of the remaining classes present in Nx:

Jc = Sc �
1

|Nx|
X

n2Nx

Sn (18)

Finally, MinMax-Grad-CAM is defined as the combination of activation signals A
k,

weighted by their respective contributions to the objective function Jc:

L
c

MinMax-Grad-CAM(f, x) = ReLU
⇣X

k

X

ij

@Jc

@Ak

ij

A
k

⌘
(19)

On the other hand, we remark that Jc is a linear function with respect to Sk, 8k 2 Cx:

@Jc

@Ak

ij

=
@Sc

@Ak

ij

� 1

|Nx|
X

n2Nx

@Sn

@Ak

ij

(20)

Hence, MinMax-Grad-CAM can be rewritten in its more e�cient and direct “CAM form”

(as demonstrated by Selvaraju et al. [62]), for convolutional networks where the last layer

is a linear classifier. In this form, Equation (19) simplifies to:

L
c

MinMax-CAM = ReLU
⇣X

k

⇥
w

c

k
� 1

|Nx|
X

n2Nx

w
n

k

⇤
A

k

⌘
(21)

In conformity with the literature, we employ the ReLU function in both forms, only

retaining regions that positively contribute to the maximization of function Jc.

Reducing Noise by Removing Negative Contributions Let g
k = GAP(Ak

ij
) be a

positional-invariant signal describing the evidence of occurrence for a given data pattern

k. If the ReLU activation function (or any other non-negative function) is used in the last

convolutional layer, then g
k is positive, and w

c

k
> 0 invariably associate the classification of

class c to kernels that positively contribute to it. Conversely, wc

k
< 0 indicate kernels that

negatively contribute to the classification of c.

When the contributions for classes n 2 Nx are naively subtracted in Equations (18)

and (21), negative weights (or gradients) become positive, producing inadvertently a resid-
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ual highlighting over regions that negatively contribute for the classification of n. We can

mitigate this noise by decomposing the contribution factors a
c

k
into (a) positive, that pos-

itively contribute for the classification of c, (b) negative, that positively contribute for the

classification of n 2 Nx, and (c) overall negative, that negatively contribute for the classifi-

cation of all classes, frequently overlapping background regions in our experiments.

An alternative form (which we denote as D-MinMax-Grad-CAM, for the remaining of

this work) can then be formally defined as:

L
c

D-MinMax-Grad-CAM = ReLU
⇣X

k

↵
c

k
A

k

⌘
(22)

where

↵
c

k
=

X

ij


ReLU

⇣
@Sc

@Ak

ij

⌘
� 1

|Nx|
ReLU

⇣ X

n2Nx

@Sn

@Ak

ij

⌘
+

1

|Cx|
min

⇣
0,

X

n2Cx

@Sn

@Ak

ij

⌘�
(23)

Finally, a CAM derivation is also possible:

↵
c

k
=

h
ReLU(wc

k
)� 1

|Nx|
ReLU(

X

n2Nx

w
n

k
) +

1

|Cx|
min(0,

X

n2Cx

w
n

k
)
i

(24)

Figures 5 and 6 exemplify visualization maps obtained from the application of various

techniques over a few samples in the Pascal VOC 2012 and VOC 2007 datasets, respectively.

While Grad-CAM++ and Score-CAM generated confusing maps, in which the explaining

signal overflow the boundaries of the object of interest and even cover large portions of

the scenario, MinMax-CAM produced more focused activation maps, where class-specific

highlighting avoided objects of di↵erent classes. Meanwhile, D-MinMax-CAM has e↵ectively

reduced the residual activation over non-salient objects and background regions.

B.1.2 Quantitative Results

In this section, we report the evaluation results for well-established CAM-based tech-

niques (CAM, Grad-CAM++, Score-CAM), while comparing them to MinMax-CAM and

D-MinMax-CAM. We then discuss the properties and limitations of our technique.
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Figure 5: CAMs produced by various CAM-based methods over Pascal VOC 2012 dataset.
Predictions are, from top to bottom: bicycle, person, motorbike, person, dining table, chair,
tv, person and sofa. Source: David et al. [16].

Evaluation Over Distinct Architectures Table 3 enumerates these results over VOC07

validation set, considering the E�cientNet-B6 (Eb6), ResNet-101 (RN101) and VGG16-

GAP (VGG16) architectures. We observe that Grad-CAM++ and Score-CAM result in the

highest %IC for most architectures (two out of three). For E�cientNet-B6, CAM obtained

the highest value for this metric (39.67%), closely followed by D-MinMax-CAM (39.49%).

44



Figure 6: Attention maps produced by various CAM-based methods over Pascal VOC 2007
dataset. Predictions are, from top to bottom: person, train, motorbike, person, chair, and
dining table. Source: David et al. [16].

For the remaining architectures, MinMax-CAM and D-MinMax-CAM present slightly lower

%IC than CAM, while always losing to Grad-CAM++ and Score-CAM.

CAM, Grad-CAM++ and Score-CAM obtain the best %AD and %AR scores, as these

metrics favor methods producing di↵use activation maps. Grad-CAM++ and Score-CAM

obtained a significantly lower %AD compared to the remaining techniques, while CAM
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Table 3: Score report for multiple architectures over the VOC07 dataset. Source: David et
al. [16]

Metric Model CAM Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

%IC
Eb6 39.67% 25.13% 30.50% 34.23% 39.49%
RN101 27.68% 31.03% 40.76% 26.61% 23.83%
VGG16 5.65% 8.27% 12.78% 4.18% 3.76%

%AD
Eb6 22.94% 36.87% 22.10% 28.09% 23.71%
RN101 25.24% 17.90% 10.79% 32.58% 39.25%
VGG16 39.34% 29.22% 19.27% 46.78% 50.34%

%ADO
Eb6 29.43% 19.35% 20.17% 39.82% 31.99%
RN101 32.73% 12.48% 14.72% 44.03% 46.49%
VGG16 29.61% 18.52% 15.74% 39.33% 39.50%

%AR
Eb6 11.74% 8.40% 9.92% 10.50% 9.10%
RN101 16.54% 14.04% 14.94% 14.27% 12.00%
VGG16 40.38% 39.04% 42.70% 33.82% 31.00%

%ARO
Eb6 1.61% 2.53% 2.28% 0.99% 1.47%
RN101 2.44% 3.94% 3.43% 1.28% 1.16%
VGG16 8.84% 12.10% 12.96% 3.47% 3.34%

F1�
Eb6 2.82% 4.54% 1.91% 1.86% 2.64%
RN101 4.05% 5.62% 2.20% 2.38% 2.21%
VGG16 13.52% 15.39% 13.42% 6.23% 6.00%

F1+
Eb6 15.79% 10.14% 5.96% 15.40% 12.96%
RN101 20.84% 11.97% 6.89% 19.85% 17.13%
VGG16 31.70% 23.50% 22.19% 32.16% 29.94%

obtained marginally higher %AR scores than both MinMax alternatives, indicating that

Grad-CAM++ and Score-CAM are better at covering the characteristic sections of objects,

while CAM and MinMax produce activation maps with lower relative coverage.

Conversely, MinMax consistently achieves better results for %ADO and %ARO, as these

metrics favor methods that produce more focused class-specific maps. When considering the

F1� metric, MinMax result in the best scores for two out of the three architecture, scoring

significantly lower than CAM and Grad-CAM++, which further indicates that they are

quite successful at removing regions containing objects associated to the classes Nx, while

still focusing on determinant regions for the classification of c. Finally, while Score-CAM

presents the best F1� score for the RN101 architecture (2.20%), MinMax and D-MinMax-

CAM closely approximate this result (2.38% and 2.21%, respectively).

CAM and MinMax-CAM present the highest F1+ score, closely followed by D-MinMax-

CAM. Moreover, the Grad-CAM++ and Score-CAM techniques present noticeably lower
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scores for this metric, indicating that CAM, MinMax-CAM and D-MinMax-CAM are more

successful in covering large portions of objects associated with class c without spreading

over objects of adjacent classes.

Evaluation Over Distinct Problem Domains Table 4 displays results for the vari-

ous explaining methods and datasets. Once again, CAM, Grad-CAM++ and Score-CAM

produce the best %IC, %AD and %AR values. We attribute this to the proclivity of these

techniques to retain large portions of the image, maintaining contextual information of the

sample. Conversely, D-MinMax-CAM wins against the literature techniques by a large mar-

gin when considering %ADO, %ARO and F1� score. Finally, CAM and MinMax-CAM

present similar results for F1+ score, consistently ahead of Grad-CAM++ and Score-CAM.

CAM, Grad-CAM++, MinMax-CAM and D-MinMax-CAM were evaluated in under 30

minutes, when considering the Pascal VOC 2007, VOC 2012 and MS COCO 2017 datasets,

with no significant di↵erence in performance being observed between them. Conversely,

Score-CAM entailed a considerable higher execution time, considering its high computa-

tional footprint, taking approximately 16 hours and 29 hours to complete over VOC07 and

P:UAS, respectively, and over 59 hours to complete over COCO17 and HPA.

B.1.3 Reducing Shared Information between Classifiers

MinMax-CAM works under the assumption that two distinct classes are not associated

with the same set of visual cues present in a single region in the input image. Hence,

the contributions being subtracted are associated with di↵erent parts of the spatial signal

A
k, and the resulting map is more focused than its counterpart generated by CAM. This

assumption does not hold when a network has not learned su�ciently discriminative patterns

for both labels, which can be caused by an unbalanced set or a subset of frequently co-

occurring labels [7]. For instance, tvs frequently co-occur with chairs, which may induce

the model to correlate the occurrence of the latter with the classification of a former, hence

degenerating CAMs (Figure 7a).

Although class co-occurrence and contextual information might present useful informa-

47



Table 4: Report of metric scores over multiple datasets. Results expanded from David et
al. [16]

Metric Dataset CAM Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

%IC

P:UAS 6.09% 7.05% 11.59% 6.22% 6.27%
COCO17 30.21% 32.98% 44.69% 23.12% 19.20%
VOC07 27.68% 31.03% 40.76% 26.61% 23.83%
VOC12 27.75% 25.40% 35.10% 24.70% 21.66%
HPA 8.64% 9.29% 11.27% 7.63% 5.89%

%AD
P:UAS 55.25% 49.00% 43.37% 64.24% 66.88%
COCO17 27.42% 17.56% 9.62% 40.22% 47.43%
VOC07 25.24% 17.90% 10.79% 32.58% 39.25%
VOC12 24.47% 18.69% 10.60% 29.17% 34.22%
HPA 49.78% 47.02% 41.50% 54.16% 64.21%

%ADO
P:UAS 43.61% 33.67% 34.06% 60.04% 60.62%
COCO17 51.49% 20.59% 24.45% 68.04% 71.90%
VOC07 32.73% 12.48% 14.72% 44.03% 46.49%
VOC12 36.44% 14.92% 18.46% 43.65% 45.02%
HPA 24.01% 18.95% 17.07% 29.46% 39.50%

%AR
P:UAS 46.42% 49.45% 48.01% 37.16% 32.74%
COCO17 27.70% 25.60% 26.64% 24.44% 22.79%
VOC07 16.54% 14.04% 14.94% 14.27% 12.00%
VOC12 16.23% 14.71% 16.22% 14.60% 13.06%
HPA 29.15% 28.49% 30.59% 25.60% 15.44%

%ARO
P:UAS 25.48% 29.46% 28.13% 20.84% 18.55%
COCO17 5.26% 7.92% 7.71% 3.31% 3.13%
VOC07 2.44% 3.94% 3.43% 1.28% 1.16%
VOC12 2.29% 3.76% 3.32% 1.21% 1.14%
HPA 6.69% 9.32% 10.56% 3.60% 1.32%

F1�

P:UAS 30.68% 32.07% 28.46% 28.35% 26.42%
COCO17 8.23% 9.94% 7.39% 5.82% 5.64%
VOC07 4.05% 5.62% 2.20% 2.38% 2.21%
VOC12 3.89% 5.70% 4.30% 2.26% 2.17%
HPA 10.89% 14.26% 15.10% 6.45% 2.54%

F1+

P:UAS 39.54% 35.11% 35.41% 41.00% 37.01%
COCO17 34.05% 21.45% 23.82% 34.07% 32.44%
VOC07 20.84% 11.97% 6.89% 19.85% 17.13%
VOC12 21.25% 13.87% 16.39% 20.25% 18.60%
HPA 22.85% 18.30% 18.29% 22.71% 18.79%

tion towards the improvement of classification e�cacy, these artifacts tend to cause unex-

pected highlighting in regions that do not contain the objects associated with classes of

interest. Hence, they may also imply in the diminishing the precision of localization cues

provided by CAMs, increasing the number of false positive pixels [7].
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(a)

(b)

Figure 7: (a) Failure example in VOC07: contributing regions for chair collide with the
ones for tv. (b) CAMs from a model trained with KUR. Source: David et al. [16].

Imprecise CAMs are mitigated by solutions that reinforce the learning of patterns that

exclusively describe one or few classes, while penalizing the internalization of contextual

patterns, which describe more than a single class at the same time. Examples are the

various augmentation strategies based on sample combination, such as MixUp [94] and

CutMix [89]); the context decoupling strategy proposed by Su et al. [68], in which objects

are pasted outside their usual context; and the experiments conducted by Chan et al. [7],

which evaluated the e↵ect of “balancing” the class distribution — by removing samples

containing highly correlating labels — over the DeepGlobe segmentation task [17].

Conversely to the aforementioned data-based strategies, we propose an architectural
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change that reinforces positive and sparse values in the weight matrix W , while striving for

mutually exclusive usage of the visual signals gk. These properties are simple and intuitive:

The occurrence of visual evidence associated with classes in Cx \ {c} should not a↵ect the

classification score of a given class c. At the same time, invariance between classification

score and the absence of evidence of other classes can be reinforced by discouraging the

formation of negative associations (weights).

Let K be the number of kernels in the last convolutional layer, C be the number of

classes in the dataset, g = [gk]K be the feature vector obtained from the pooling of last

convolutional layer, W = [wc

k
]K⇥C and b = [bc]C the weights from the last dense layer and

� the sigmoid function. We define the regularization of the weights of the sigmoid classifier,

namely Kernel Usage Regularization (KUR), as follows:

W
r = W � softmax(W )

y = �(g ·W r + b)
(25)

When softmax is applied over each vector Wk, high values w
c

k
— implying a strong

association between g
k and Sc — will induce softmax(wk)c ⇡ 1, and thus w

c
r

k
⇡ w

c

k
. As

the softmax function quickly saturates over a few large values, the remaining associations

quickly tend to 0, erasing the influence of the activation signals Ak over Sn, 8n 2 [0, C] \ c).

Finally, negative values wc

k
should have low softmax(wk)c, hence w

c
r

i
⇡ 0.

Figure 7b illustrates CAMs learned by a model trained with KUR. As the simultaneous

usage of same kernels for distinct classification units have been regularized, subtracting

contributions no longer distort the maps for any of the labels. Activations for the class chair,

in special, are no longer shifted onto the floor. Moreover, Figure 8 illustrates the correlation

between the weight classifying vectors, for both vanilla and KUR models. Classifying vectors

are much less correlated for the model trained with KUR, indicating they are now e↵ectively

using distinct activation signals in their decision process.
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(a) (b)

Figure 8: Correlation between weight vectors of sigmoid classifying layers of (a) an unreg-
ularized model, and (b) a model whose training was regularized with KUR.

B.1.4 Counterbalancing Activation Vanishing

In spite of the observed e↵ectiveness in separating the available kernels between the classi-

fying units for the VOC 2007, VOC 2012 and P:UAS datasets, its decrease in F1 score over

the COCO 2017 dataset is troublesome. Upon closer inspection of this particular model, we

observed that kernel usage regularization inadvertently causes the weights to vanish when

the number of classifying units is high. This is due to the softmax function being initially

evenly-distributed, with softmaxc(x) ⇡ 1
c
. Hence, for a large number of classes c, the ini-

tial weights are aggressively pushed towards zero, which obstructs the training process and

severely compromises the solution candidate found.

However, we can counter-balancing the e↵ect of the initial configuration of the softmax

function over the signal distribution by simply multiplying the regularized weights by a

scaling factor ↵, resulting in the restoration of signal’s variance. For ↵ = C (the number of

classes), we expect weights to sustain their original variance, as c⇥ softmaxc(w) ⇡ c
1
c
= 1.

Figure 9 illustrates the weight distribution for the baseline, KUR and KUR-↵, for ↵ = C.
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Figure 9: Weight distribution for vanilla and (kernel usage) regularized weights, for multiple
output units.

Table 5: Multi-label classification score over multiple datasets, considering the baseline and
regularized (KUR) models. Results expanded from David et al. [16]

Metric Dataset Baseline KUR
F1 VOC07 Test 84.26% 85.85%
F1 VOC12 Val 85.05% 85.90%
F2 P:UAS Val 87.80% 88.24%
F2 P:UAS Private Test 89.22% 89.81%
F2 P:UAS Public Test 89.62% 90.10%
F1 COCO17 Val 75.64% 74.23%
F1 HPA Private Test 36.05% 35.54%
F1 HPA Public Test 39.72% 39.46%

B.1.5 Results

Table 5 reports the F1 and F2 scores over validation and test sets (when available) for

both baseline and regularized models. We see a slight increase in F1 and F2 score in

most cases, indicating that this regularization has positive impact on overall score of the

classifier. Conversely, a noticeable decrease in score can be observed for the COCO17

dataset, which is associated with the high number of classes present in this set, implying an

aggressively regularized training. By retraining the RN101 architecture over the COCO17

dataset, regularized with KUR-↵ s.t. ↵ = 80, we obtain a F1 score of 75.55%. Finally, a

decrease in F1 score when evaluated the vanilla and KUR models over the HPA private and

public test subsets is also noticeable, although small. We hypothesize that better results

can be achieved with a careful finetune of hyperparameters (such as learning rate and ↵).

Examples of Class-specific Activation Maps extracted from COCO17 dataset by various
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Figure 10: CAMs generated for the MS COCO dataset.

visualization techniques are illustrated in Figure 10. Once again, we observe more focused

visualization maps for MinMax-CAM and D-MinMax-CAM: the persons next to the buses

(first two rows) and the tennis racket (third and forth rows), as well as the multiple objects
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Figure 11: CAMs generated for the HPA dataset.

in the street scenario (last four rows). On the other hand, examples of visualization maps

extracted from the HPA dataset are presented in Figure 11. We observe Grad-CAM++,

Score-CAM, and CAM, but to a lower extent, producing similar explaining maps for many
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of the examples of this set, which is also supported by their close score results reported

in Table 4. Maps for di↵erent classes in the same sample seem to frequently highlight the

same salient regions, indicating these are, indeed, not class-specific. At the same time,

MinMax-CAM presents distinct class-specific maps in a single sample, for most examples.

Table 6 displays the results over multiple datasets, employing a RN101 network trained

with KUR. Score-CAM score the highest for %IC on all but one set, while Grad-CAM++

obtains the second place among most evaluations. CAM closely follows the two best-placed

techniques, while achieving the best score over the P:UAS dataset. D-MinMax-CAM shows

the best F1� scores in all datasets but one, staying in third place with a di↵erence of 0.53

percent points from the winner (Score-CAM). Finally, MinMax-CAM and D-MinMax-CAM

showed the best results in 3 out of 5 tests for the F1+ score, while achieving a similar score

to the winner (CAM) over VOC07, and the worst results when evaluated over HPA.

When comparing the results from regularized models to the ones obtained from their

unregularized counterparts, we observe an overall increase in both %IC and F1+ score for

most CAM techniques and datasets. Notwithstanding, F1� score results improved for 9 out

of 25 tests, while staying relatively similar over VOC07 and VOC12. Finally, it is noticeable

the decrease in di↵erence between the results from MinMax-CAM and D-MinMax-CAM,

across all metrics and datasets. This can be attributed to the regularization factor, which

penalizes the existence of negative weights, approximating max(0, wc

k
) to w

c

k
and, thus,

D-MinMax-CAM to MinMax-CAM.

B.2 Contributions on Weakly Supervised Segmentation

In this section, we discuss forms to combine and extend WSSS methods. In order to provide

a fairer comparison with literature and more reliable estimation of the e↵ectiveness of the

approach over truly WSSS problems, we re-evaluate Puzzle without the aforementioned

early stopping mechanism in Table 7. For the remaining of this work, we denote this “fair”

alternative as Puzzlef (or Pf).
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Table 6: Report of metric scores per visualization technique, over multiple datasets. Classi-
fication models were regularized with KUR during training. Results expanded from David
et al. [16]

Metric Dataset CAM Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

%IC

P:UAS 15.60% 14.39% 14.13% 11.43% 11.54%
COCO17 34.43% 36.81% 37.87% 21.47% 21.49%
VOC07 28.71% 28.07% 34.93% 23.90% 24.99%
VOC12 33.32% 34.90% 37.30% 29.54% 29.36%
HPA 11.19% 15.73% 17.55% 10.31% 5.79%

%AD
P:UAS 42.51% 42.67% 39.50% 51.96% 52.53%
COCO17 22.52% 19.86% 13.91% 41.29% 41.39%
VOC07 22.89% 18.65% 11.69% 29.80% 34.19%
VOC12 16.09% 15.32% 10.46% 22.22% 22.85%
HPA 46.41% 42.61% 39.81% 49.92% 59.99%

%ADO
P:UAS 38.34% 35.46% 35.21% 49.58% 49.51%
COCO17 46.97% 37.63% 25.57% 69.17% 69.28%
VOC07 37.30% 20.06% 17.27% 47.16% 48.60%
VOC12 29.66% 21.89% 15.95% 42.07% 42.46%
HPA 27.23% 21.51% 20.76% 32.38% 33.43%

%AR
P:UAS 47.28% 46.50% 43.61% 43.17% 43.01%
COCO17 34.40% 34.21% 28.13% 30.05% 30.04%
VOC07 18.64% 17.35% 16.91% 16.02% 14.72%
VOC12 18.66% 18.37% 17.72% 17.10% 16.99%
HPA 26.49% 26.52% 25.73% 23.91% 13.57%

%ARO
P:UAS 25.43% 26.35% 26.80% 20.79% 20.72%
COCO17 7.14% 7.85% 11.36% 4.24% 4.23%
VOC07 2.44% 3.45% 3.95% 1.35% 1.22%
VOC12 2.59% 2.89% 4.00% 1.22% 1.20%
HPA 7.62% 10.12% 10.24% 5.00% 1.53%

F1�

P:UAS 27.02% 27.68% 26.62% 26.86% 27.15%
COCO17 10.08% 10.38% 11.15% 7.33% 7.33%
VOC07 4.12% 5.41% 2.69% 2.47% 2.28%
VOC12 3.97% 4.30% 4.96% 2.24% 2.21%
HPA 11.86% 14.03% 13.48% 8.49% 2.92%

F1+

P:UAS 36.53% 35.05% 34.46% 39.15% 39.03%
COCO17 38.08% 34.42% 25.19% 40.64% 40.65%
VOC07 23.89% 17.87% 8.10% 22.38% 20.97%
VOC12 21.99% 19.28% 16.24% 22.84% 22.78%
HPA 23.52% 20.56% 19.96% 23.38% 15.65%

B.2.1 Combining Regularizing Strategies

While Puzzle expands the spatial activation signal onto all parts of salient objects, OC-

CSE regularizes the contours and boundaries of the produced activations, resulting in a

better separation between objects of di↵erent classes. Thus, we remark these two tech-
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niques as complementary, and we raise the hypothesis that combining them can mitigate

the class-specificity problem found in Puzzle, while maintaining a high completeness and,

thus, implying on more precise semantic segmentation proposals. Formally, we define the

P-OC training strategy as the optimization of the following objective functions:

LP-OC = Lcls + Lre-cls + Lre + �cseLcse

= `bce(pi, yi) + `bce(p
re
i
, yi) + �rekAi �A

re
i
k1 + �cse`bce(p̂i, ŷi)

(26)

where yi and pi are the target and estimated posterior probabilities associated with sample

xi, respectively; and p̂i is the posterior probability vector predicted by the oc, when presented

with the xi masked by the activation mask of ck, and ŷi = yi \ {ck}.

Figure 12: Overview of our adversarial training setup, in which f is optimized considering
both Puzzle module and the ordinary classifier oc. f is sub-sequentially fixed and oc is
updated to shift its attention towards regions currently ignored by f .

Subsequently, we consider an adversarial training setup where oc is gradually fine-tuned

to associate images containing partially masked objects to their original classes, making oc

a “not so ordinary” classifier. This strategy (namely P-NOC), illustrated in Figure 12 and

detailed in Algorithm 1.

In summary, P-NOC is trained by alternatively optimizing two objectives:

Lf = E(x,y)⇠D,r⇠y[LP + �cse`cls(p
oc
, y \ {r})] (27)

Lnoc = E(x,y)⇠D,r⇠y[�noc`cls(p
noc

, y)] (28)
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where p
noc = oc(x � (1�  (Ar) > �noc)).

By refining noc to match the masked image to the label vector y, in which y
r = 1,

we expect it to gradually shift its attention towards secondary (and yet discriminative)

regions, and, thus, to provide more useful regularization to the training of the generator.

Concomitantly, we expect f to not forget the class discriminative regions learned so far,

considering (a) its learning rate is linearly decaying towards 0; and (b) the degeneration of

the masks would result in an increase of Lcse.

Algorithm 1 Proposed P-NOC algorithm

Require: Training set D = {X ,Y}, CAM generating networks f and noc, knoc 2 N, �noc 2
(0, 1)

1: i 0
2: while not done do
3: Sample a batch (xi, yi) from D, and r from yi

4: // Fix noc and train f

5: Compute A
c

i
= f(xi), Arec

i
= merge(f(tile(xi)))

6: Compute LP-OC loss from Eq. (26)
7: Update weights of f by rLP-OC

8: i i+ 1
9: if i mod knoc = 0 then

10: // Fix f and train noc

11: x̂i = xi � (1�  (Ar

i
) > �noc)

12: Compute Lnoc from Eq. (27)
13: Update weights of noc by rLnoc

14: end if
15: end while

B.2.2 Deriving Saliency Information

The considerable improvements obtained by C²AM [84], as well as various works in re-

lated literature [10, 32,39,43,53,69], indicate that the utilization of saliency information as

complementary information is advantageous for the solution of WSSS tasks. We are thus

encouraged to expand upon C²AM.

We propose to utilize saliency hints extracted from models trained in the weakly super-

vised scheme. Our approach is inspired by recently obtained results in the task of Semi-

Supervised Semantic Segmentation, in which a teacher network is used to provide additional
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annotation for the training of a student network [79]. More specifically, we leverage the seg-

mentation prior generating models previously trained to extract the spatial Class-Specific

Activation Maps Ak

i
(CAMs), for every image xi in the dataset. The maps are interpolated

to match the spatial sizes of xi, and sub-sequentially reduced, where the max pooling op-

eration is applied onto k, resulting in maps that hint (most likely) salient regions. Given

the previously observed lack of completeness in CAMs, only regions associated with a high

activation intensity are considered as fg hints, and thus used to reinforce a strong output

classification value for the disentangling branch.

We define C²AM-H as an extension of C²AM, in which fg hints are employed to guide

training towards a solution in which salient regions are associated with high prediction

values from d (anchored), and all salient objects are contained within the same partition.

In practice, this implies in the addition of a new objective function in Eq. (7): the cross-

entropy loss term between the collected hints ŷi, for i 2 [b, b+n) and the posterior probability

predicted by d. C²AM-H is trained with the following loss function:

LB
C²AM-H = LB

pos-f + LB
pos-b + LB

neg + �h

X

i2b

X

h,w

1[Ahw
i >�fg]`bce(ŷ

hw

i
, p

hw

i
) (29)

where 1[Ahw
i >�fg] is a mask applied to ensure only regions associated with a normalized

activation intensity higher than �fg are considered as foreground hints.

Figure 14 illustrates a few examples of saliency maps produced by the saliency detec-

tion model trained with C²AM-H. An increase in quality of the maps is noticeable, when

compared to the ones obtained by applying the maximum operation over CAMs.

Guiding Random Walk using Saliency Maps Originally, a�nity maps — used in the

training of the A�nityNet model [3] — are devised by applying the �bg and �fg thresholds

over CAMs to determine core regions (likely depicting bg or fg regions, respectively). Going

in a di↵erent direction, we propose a slight modification to this procedure that incorporates

the saliency maps obtained from C²AM-H: we leverage the saliency maps to more accurately

determine bg regions in an image, and combine them with the confident fg regions to produce
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Figure 13: Comparison between the di↵erent a�nity maps obtained from RS269 trained
with P-OC+LS. From left to right: (a) images and ground-truth segmentation; (b) a�nity
labels devised from priors; (c) a�nity labels refined with dCRF; and (d) a�nity labels
obtained using both C²AM-H and dCRF.

the a�nity maps.

Figure 13 illustrates a�nity maps produced by both conventional and modified ap-

proaches (3rd and 4th columns, respectively): Many of the background regions, previously
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Figure 14: Saliency maps generated by the PoolNet model, trained over saliency priors from
C²AM-H (hints from Pf-NOC+LS).

marked as unknown when considering CAMs, are now correctly assigned to bg. An increase

in fidelity to semantic boundaries is also noticeable.

B.2.3 Quantitative Results

Table 7 illustrates mIoU measured at the end of each training epoch, considering various

architectures and training strategies. For performance purposes, samples are resized to a

common frame, and Test-Time Augmentation (TTA) is not employed. Hence, the interme-

diate measurements are estimations of the true scores (represented in the last column).

Table 7: The mIoU (%) values measured in each epoch over Pascal VOC 2012 train set,
for each architecture (ResNeSt101 (RS101) and ResNeSt269 (RS269)) and training strategy
(RandAugment (RA), Puzzle (P), and Puzzle-OC (P-OC)). Scores for Pfand P-OC were
averaged among three distinct runs for increased stability.

Strategy E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 Max TTA

RS101 RA 48.7 48.2 50.5 50.4 49.1 49.5 49.2 49.8 41.0 48.9 48.7 49.4 48.9 49.2 49.2 50.5 54.8
RS269 RA 47.3 49.0 49.3 49.2 49.2 48.8 48.7 48.7 48.6 48.7 48.7 48.2 48.0 48.1 48.1 49.3 53.9
RS101 P 50.2 51.7 53.0 53.3 55.0 53.8 54.5 54.7 54.0 55.0 54.6 55.1 55.6 55.0 55.4 55.6 61.9
RS269 P 50.7 53.0 53.9 56.0 55.0 56.3 54.7 55.1 56.8 57.6 56.1 56.0 57.0 55.6 56.8 57.6 62.0
RS101 Pf 50.4 51.4 53.2 53.4 52.5 52.9 54.0 54.7 54.2 51.8 53.8 54.7 54.2 54.6 54.9 54.9 59.4
RS269 Pf 50.4 52.5 54.3 53.9 55.5 55.9 55.4 56.1 56.3 57.0 55.6 56.7 55.2 56.7 56.2 57.0 60.9
RS101 P-OC 49.6 50.3 51.5 51.8 52.5 51.5 49.0 49.9 53.2 52.5 53.4 54.2 54.9 55.5 56.0 56.0 59.1
RS269 P-OC 49.0 51.1 52.6 53.6 54.1 53.8 51.9 54.8 55.2 55.7 54.1 55.6 57.0 57.0 57.4 57.4 61.4
RS269 P-OC+LS 50.6 52.5 53.5 54.3 53.9 55.0 55.2 55.3 56.4 56.1 55.8 56.2 55.9 57.5 58.5 58.5 61.8
RS269 P-NOC+LS 50.6 52.2 53.5 55.6 56.3 56.5 57.2 55.8 57.1 57.6 58.7 58.7 58.6 58.6 58.5 58.7 62.7

RandAugment (RA) and Puzzle (Pf) present saturation on early epochs, and a significant
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deterioration in mIoU for the following ones. On the other hand, Combining Puzzle and

OC-CSE (P-OC) induces a notable increase in mIoU for all architectures, with performance

peaking on the last epochs. On average, P-OC obtains 61.44% mIoU when TTA is used,

lower than the original Puzzle (62.04%), but 0.55 p.p. above its fair counterpart (60.89%).

Adding label smoothing to P-OC (P-OC+LS) improves TTA score by 0.34 p.p. (61.77%).

Finally, training OC (P-NOC+LS) results in 62.67% mIoU (0.90 p.p. improvement).

Figure 15 displays the variance in overall mIoU of priors when the fg threshold is changed.

P
f is only marginally better than the baseline, while P-OC and P-NOC display higher area

under the curve, indicating that they are more robust to variations in the threshold.

Figure 15: Curve of mIoU measured over Pascal VOC 2012 training set, considering multiple
choices of threshold.

Table 8 contains the mIoU scores per class, for each one of the aforementioned models.

Class and group statistics are also displayed for comparison purposes. Puzzle shows the

best score for singleton and large classes, while adding OC-CSE induces a considerable score

increase for small and mid-sized classes, as well as classes occurring in the room group.

Table 9 displays the mIoU results for saliency detection models trained from pseudo

saliency maps produced by the baseline [84] (C²AM) and C²AM-H models, trained with

additional fg hints. The combination of C²AM with priors from RS269 Pf induces a score

decrease when compared to the baseline RN50 P (0.23 p.p.) and RS269 P (1.18 p.p.).

Conversely, RS101 RA and RS269 P-OC improve mIoU, with the latter achieving the highest

mIoU observed (67.31%, 1.81 p.p. above the baseline).
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Table 8: Scores (in IoU) measured over the Pascal VOC 2012 train set, per method. Class-
specific properties, such as the avg. relative size (%S), class co-occurrence rate (%C) and
avg. label set cardinality (L) are listed for inspection purposes.

Class Group Size %S %C L RA P Pf P-OC P-OC+LS P-NOC+LS

bg - - 69.5 - - 81.0 85.6 86.0 86.1 85.6 86.1

a.plane singleton mid 11.8 9.1 1.1 47.5 60.9 61.4 62.1 62.3 59.8

bicycle tra�c small 6.4 76.9 2.2 32.2 41.2 38.6 44.6 45.0 39.9

bird singleton mid 11.8 11.4 1.2 49.5 69.7 71.4 63.6 62.8 68.6

boat p-rel small 10.8 32.1 1.4 40.8 45.2 51.3 50.9 43.9 48.5

bottle bottle small 9.5 70.1 2.3 49.0 56.9 56.0 59.2 65.9 65.9

bus tra�c large 31.5 51.3 1.7 72.1 79.6 78.4 78.8 75.1 79.9

car tra�c mid 15.5 61.7 1.9 62.6 74.2 70.4 72.5 74.6 75.9

cat singleton large 28.6 26.0 1.3 54.8 82.6 83.7 80.8 79.8 83.1

chair room small 10.6 87.8 2.4 30.7 28.9 27.2 21.6 23.1 27.0

cow p-rel mid 18.0 29.7 1.4 55.1 71.5 73.6 70.1 70.6 71.6

table room large 22.5 95.1 2.6 52.5 49.6 39.2 44.4 51.0 50.9

dog p-rel large 19.8 38.0 1.5 61.3 78.8 80.8 80.9 76.9 77.9

horse p-rel large 19.1 47.1 1.6 55.9 67.7 69.0 69.6 69.8 70.1

m.bike tra�c large 19.6 56.8 1.7 67.8 74.4 73.2 78.2 76.6 73.7

person person mid 15.2 83.0 2.1 63.6 57.0 50.3 67.1 70.2 54.4

p.plant room small 11.2 63.4 2.1 46.8 57.8 56.3 45.1 57.2 57.2

sheep p-rel large 19.7 19.0 1.3 55.3 75.0 75.9 78.2 73.9 72.2

sofa room large 21.6 80.6 2.4 50.0 40.9 35.5 40.1 34.8 44.4

train p-rel large 26.6 20.5 1.2 63.9 68.9 68.2 63.4 50.9 68.1

tv room mid 15.5 65.1 2.1 38.6 36.5 33.8 43.6 49.8 42.0

overall 19.8 51.2 1.8 53.9 62.0 61.0 61.9 61.9 62.7

small 9.7 66.1 2.1 39.9 46.0 45.9 44.3 47.0 47.7

mid 14.6 43.3 1.6 52.8 61.6 60.1 63.2 65.1 62.0

large 23.2 48.3 1.7 59.3 68.6 67.1 68.3 65.4 68.9

singleton 17.4 15.5 1.2 50.6 71.1 72.2 68.8 68.3 70.5

p-rel 19.0 31.1 1.4 55.4 67.8 69.8 68.8 64.3 68.1

room 16.3 78.4 2.3 43.7 42.7 38.4 38.9 43.2 44.3

tra�c 18.3 61.7 1.9 58.7 67.3 65.1 68.5 67.8 67.4

⇢ %S 100.0 -18.0 -23.4 70.3 55.6 48.4 50.7 38.3 55.5

⇢ %C -18.0 100.0 97.6 -22.9 -60.6 -71.0 -57.3 -42.9 -58.0

⇢ L -23.4 97.6 100.0 -32.9 -66.0 -75.8 -65.4 -49.7 -61.9

To isolate the contribution of the saliency maps over the result, we also evaluate models

using the ground-truth (supervised) segmentation annotations (GT) as priors. I.e., the

prediction for a given pixel in the image is considered correct if that pixel was predicted as
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salient and it is annotated with class c. Conversely, a pixel annotated with c and predicted

as non-salient (or annotated as bg and predicted as salient) counts as a miss.

In this evaluation setup, the baseline (C²AM RN50) scored 65.03% mIoU, while the

best strategy (C²AM-H, using hints from RS269 P-OC+LS) achieves 71.70% mIoU (a 6.67

p.p. increase). Replacing the architecture of C²AM (C²AM RS269), or using hints to

train the RN50 architecture (C²AM-H RN50) produced mixed results: a 2.02 p.p. score

reduction for the former, and a 1.39 p.p. score increase for the latter. We hypothesize this

has occurred due a representation deficit created when training with a reduced batch size,

and to an inability of the RN50 architecture to produce more detailed maps. Finally, the

best strategy (P-OC) achieves 69.22% mIoU when combined with real priors, with only a

marginal di↵erence to P-NOC.

Table 9: The ablation study for C²AM-H over VOC12 training set. Scores are reported in
mIoU (%), considering both priors (P%) and maps refined with PoolNet (R%).

Method B.bone Hints CAM P% R%

C²AM RN50 - RN50 P 56.6 65.5
C²AM RN50 - RS101 RA 61.2 66.2
C²AM RN50 - RS101 P-OC 60.4 66.6
C²AM RN50 - RS269 P 60.3 66.5
C²AM RN50 - RS269 Pf 59.1 65.3
C²AM RN50 - RS269 P-OC 60.8 67.3
C²AM RN50 - RS269 P-OC+LS 61.2 67.2
C²AM RN50 - GT 63.4 65.0
C²AM RS269 - GT 61.4 -
C²AM-H RN50 RS269 P-OC GT 64.8 -
C²AM-H RS101 RS269 P-OC GT 69.6 -
C²AM-H RS269 RS269 P-OC GT 69.9 70.9
C²AM-H RS269 RS269 P-OC+LS GT 70.3 71.7
C²AM-H RS269 RS269 P-NOC+LS GT 70.2 71.3
C²AM-H RS269 RS269 P-OC RS101 RA 66.5 66.2
C²AM-H RS269 RS269 P-OC RS101 P-OC 66.7 67.9
C²AM-H RS269 RS269 P-OC RS269 P-OC 66.8 68.6
C²AM-H RS269 RS269 P-OC RS269 P-OC+LS 67.3 68.8
C²AM-H RS269 RS269 P-OC+LS RS269 P-OC+LS 67.3 69.2
C²AM-H RS269 RS269 P-OC+LS RS269 P-NOC+LS 67.2 69.1
C²AM-H RS269 RS269 P-NOC+LS RS269 P-NOC+LS 67.2 68.4

Table 10 describes the scores obtained throughout the di↵erent stages of training. The

utilization of saliency maps (P-OC C²AM-H) increases the mIoU of the pseudo segmentation
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Table 10: Ablation studies of pseudo segmentation masks, measured in mIoU (%) over
VOC12 training and validation sets.

Method +LS +C²AM-H +NOC train (%) val (%)

P 73.74 72.31
Pf 71.35 70.67
P-OC 73.50 72.08
P-OC X 71.45 70.15
P-OC X 73.90 72.53
P-OC X X 73.07 72.14
P-OC X X 73.31 72.83
P-OC X X X 73.59 73.37

masks by 0.40 p.p., and a DeepLabV3+ [12] model trained over those result in 74.34% and

71.38% mIoU over the VOC12 training and validation sets, respectively. Finally, training

the Ordinary Classifier (+NOC) results in a 0.31 p.p. decrease in mIoU over the training

subset, while increasing validation mIoU by 0.84 p.p..

Examples of segmentation maps predicted by the DeepLabV3+ model are illustrated in

Figure 16. High coverage and sensitivity to the semantic boundaries of objects is noticeable

for the classes person, dog, cat, horse, and car. Conversely, we observe failure segmentation

cases for the classes table and chair (with low coverage), and classes train and sofa, in which

their respective segmentation maps extrapolate their boundaries onto the background.

Table 11 shows IoU scores (per-class) obtained by the DeepLabV3+ model, when trained

with pseudo segmentation masks created from P-OC and P-NOC. Classes associated with (i)

small objects, (ii) complex and highly-detailed semantic boundaries, and (iii) often appearing

in cluttered scenarios often present lower than average mIoU scores (e.g., bycicle, chair).

Conversely, classes associated with (i) large objects and singletones and (ii) simple convex

semantic boundaries often present high IoU scores (e.g., airplane, bird, bus, cat, dog, sheep).

65



Figure 16: Segmentation results by DeepLabV3+, trained with priors obtained from P-OC and refined with C²AM-H and RW.

Table 11: Intersection over Union (IoU %) for each class in the Pascal VOC 2012 testing dataset.

bg plane bike bird boat bottle bus car cat chair cow table dog horse mbk. person plant sheep sofa train tv avg.

A�nityNet 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
OC-CSE 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4
AMN 90.7 82.8 32.4 84.8 59.4 70.0 86.7 83.0 86.9 30.1 79.2 56.6 83.0 81.9 78.3 72.7 52.9 81.4 59.8 53.1 56.4 69.6
ViT-PCM 91.1 88.9 39.0 87.0 58.8 69.4 89.4 85.4 89.9 30.7 82.6 62.2 85.7 83.6 79.7 81.6 52.1 82.0 26.5 80.3 42.4 70.9
MCT-Former 92.3 84.4 37.2 82.8 60.0 72.8 78.0 79.0 89.4 31.7 84.5 59.1 85.3 83.8 79.2 81.0 53.9 85.3 60.5 65.7 57.7 71.6
P-OC (ours) 91.6 86.7 38.3 89.3 61.1 74.8 92.0 86.6 89.9 20.5 85.8 57.0 90.2 83.5 83.4 80.8 68.0 87.0 47.1 62.8 43.1 72.4
P-NOC (ours) 91.4 86.7 35.2 87.8 62.9 71.6 93.0 86.3 92.3 30.4 85.8 60.7 91.7 81.7 82.7 66.3 65.9 88.8 48.7 72.5 44.5 72.7

66


