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Abstract

Over the years, many weakly supervised strategies have been devised to mitigate the
necessity for large amounts of supervised annotation in segmentation tasks. As classi-
fication models can be conjointly employed with explaining methods to produce noisy
segmentation proposals, weakly supervised strategies often rely on complex regulariza-
tion techniques to instigate the development of useful properties (e.g., completeness,
fidelity to semantic boundaries). In this work, we divide our contributions in two
stages. In the former, we evaluate the efficacy of CAM-based techniques over distinct
multi-label sets. We find that techniques that were created with single-label classifica-
tion in mind (such as Grad-CAM, Grad-CAM++ and Score-CAM) will often produce
diffuse visualization maps in multi-label scenarios, overstepping the boundaries of their
explaining objects of interest onto objects of different classes. We propose a generaliza-
tion of the Grad-CAM technique, namely MinMax-CAM, for the multi-label scenario
that produces more focused explaining maps by maximizing the activation of a class of
interest while minimizing the activation of the remaining classes present in the sample.
We then propose a regularization strategy that encourages sparse positive weights in
the last classifying, while penalizing the association between the classification of a class
and the occurrence of correlated patterns, resulting in cleaner activation maps. Finally,
we investigate complementary Weakly Supervised Semantic Segmentation techniques
and regularizing strategies, discussing their strengths and limitations, and proposing
direct extensions. Our preliminary results indicate MinMax-CAM produces more fo-
cused explaining maps over different network architectures and datasets, while our
proposed approach to semantic segmentation substantially improves the effectiveness

of three baselines without using additional training information or supervision.

1 Introduction

The adoption of Convolutional Neural Networks (CNNs) in the solution of a broad set of

modern Machine Learning (ML) problems is unquestionable [44]. Today, we can easily find
such models being employed to image classification [58], object detection [19] and localiza-
tion [93], image segmentation [50], pose estimation [31] and even non-imagery domains, such



as audio processing [57], text classification [87] and text-to-speech [72].

In spite of their unquestionable efficacy, the extensive composition of complex operations
in CNNs diminishes their overall interpretability, rendering “black box” models. As they
gradually permeate into many real-world systems, impacting different demographics, the
necessity for explaining and accountability becomes urgent. Scientists and engineers working
with ML have since pushed towards the creation of explaining methods that could shed light
into their inner workings [1,9,18,41,77,90,98].

Explaining the reasoning of an autonomous systems is challenging task, and yet
paramount in increasing reliability of ML agents. While the construction of interpretable
models is desirable as a general rule, as it facilitates the identification of failure modes while
hinting strategies to fix them [62], it is also an essential component in building trust from
the general public towards this technology [31].

In the context of Computer Vision (CV) and image classification problems, Explainable
AT (XAI) can be employed to infer coarse localization cues that indicate the relative position
of salient or class-specific visual patterns with respect to the visual receptive field. This
property is frequently explored in the solution of Weakly Supervised Semantic Segmentation
(WSSS) problems, making XAI methods a fundamental component in many WSSS methods.

Semantic Segmentation consists in correctly associating each pixel of an image or a video

to a specific class from a predefined set, and is, to this day, one of the most prominent top-

ics of study in CV [51]. Notwithstanding its complexity, it is a paramount component in
any autonomous imagery reading system [6], such as self-driving vehicles [418], autonomous
environment surveillance [26,27], satellite imaging [91] and medical imagery [38, 83]. Rep-

resentation Learning [5] solutions stand out in this task by consistently outscoring classic
techniques across different areas, datasets and tasks [13]. However, these strategies of-
ten require massive amounts of densely annotated information (e.g., segmentation maps),
obtained by extensive supervision. Considering limited time and cost constraints, these
solutions remain inaccessible to many.

To circumvent these limitations, scientists and engineers often recur to Weakly Super-

vised Semantic Segmentation (WSSS) [55], where “weakly” refers to partially supervised



information, or lack thereof. Recent work investigated deriving semantic segmentation
maps from saliency maps [32, 39, 43], bounding boxes [36,40, 54], scribes and points [55],
and even image-level labeled annotations [34,37,92]. Given it’s similarity and shared goals,
weakly supervised solutions are often compared to fully supervised ones, and while signif-
icant progress has been made so far, models trained in an weakly supervised setting often

score significantly lower than the ones trained in a fully supervised manner.

1.1 Research Goals

We set forth the goal of studying Class-Specific explaining methods proposed so far in the
multi-label setting, as well as developing a visualization technique which takes into account
the expanded information available in multi-label problems. This study is important, from
a scientific and engineering perspective, as it provides a comparison benchmark over more
realistic scenarios, in which the capturing conditions are less controlled and more hetero-
geneous. Additionally, we remark the constantly increasing interest in Weakly Supervised
Semantic Segmentation [7] and Localization [93] problems, in which XAI methods are fre-
quently employed to extract localization cues, and class-specific precision is essential.
Subsequently, we aim to study promising weakly supervised regularization strategies
(considering aspects such as efficacy, performance, applicability, and cross-influence) and to
propose new extensions capable of further improving their individual and collective efficacy.
Finally, we intend to investigate the behavior of WSSS solutions to more complex bound-
ary cases, such as long-tail and ambiguous functional segmentation problems. This inves-
tigation comprises a significant contribution to the understanding of weakly supervised
problems, since many approaches proposed thus far focus on the concept of spatial visual

affinity are strongly dependent on class frequency distribution and visual similarity.

1.2 Research Questions

In this section, we enumerate the questions that drive our research project. They are sorted
according to the (expected) order in which they will be researched, and are further detailed

in Section 4.



10.

. How do Explainable AT methods behave in multi-label scenarios, where metrics are

computed for all occurring labels?

. Can cross-contributions (non-discriminative contributions towards two or more classes)

be erased from the Class Activation Maps produced by Grad-CAM?

What is the effect of context-decoupling methods over Semantic Segmentation of clut-

tered and dense scenes, where objects of distinct classes are presented close together?

How is overall efficacy of a WSSS system affected when complementary regularization
strategies are conjointly employed? Can adversarial training improve the quality of

the segmentation priors?

Can prediction ensembles from multiple WSSS strategies improve noisy segmentation
priors? Can an ensemble policy for the selective employment of different strategies
(conditioned to the problem and characteristics of the at hand), be learned to further

improve overall effectiveness?

Can regularization strategies — originally proposed to reinforce segmentation-related
properties in CNNs — be employed in the training of Transformer models with few

or no modifications?

Can Visual Transformers be employed towards the improvement of fine-grain segmen-

tation of small objects, containing complex non-convex semantic boundaries?

Can data balancing methods and long-tail learning be employed to further improve

the efficacy of WSSS systems in extreme data unbalance settings?

How do modern WSSS methods — often relying on concepts such as pixel neigh-
borhood similarity — fare on functional segmentation problems, in which semantic

boundaries may not be clearly represented by visual cues?

Can the tasks of Saliency Detection and Semantic Segmentation be conjointly learned
in a Weakly Supervised setting, promoting the improvement of overall efficacy by the

use of mutual information between these tasks?



2 Theoretical Background

In this section, we enumerate and describe concepts that are essential to the understanding

of our work.

Representation Learning A branch of Machine Learning concerned in learning useful
data representations (along with the solution itself) for problems represented by un-

structured samples or signals [5].

Semantic Segmentation A task that aims to obtain a segmentation of the elements in a
signal with respect to their semantics. In Computer Vision, Semantic Segmentation

often relates to associate each pixel to an element in a predefined set of classes [50].

Functional Segmentation The segmentation of elements composing a signal by their as-
sociated function or behavior, which may not be necessarily distinguishable by visual

patterns or cues [7, 14].

Weakly Supervised Problems A ML paradigm that attempts to learn patterns from
data with incomplete supervision or lack thereof, characterizing tasks or problems
with noisy annotation and low human intervention [7]. Within the context of Seman-
tic Segmentation, Weak Supervision often refers to the lack of manually constructed

Semantic Segmentation annotation [55].

Long-Tail Class Distribution An extreme manifestation of class unbalance, in which
classes are assigned to either head or tail sets. The head set has low cardinality,
but contains classes that are well represented in the original set. Conversely, the tail
set contains many classes that are sparsely represented [61]. Approaches to long-tail
recognition vary from data re-sampling and re-weighting to the adoption of robust

architectures [78,97] and representation learning losses [90].

Convolutional Networks An ML learning model comprising convolution (or cross-
correlation) operations, commonly employed in the task of Representation Learning
(or Dimensionality Reduction) of Computer Vision problems represented by unstruc-

tured samples [29, 44, 90].



Striding and Dilation Properties that characterize the application of the discrete convo-
lution over the spatial signal x € REHW . Stride refers to the sampling factor s of
the passing signal [19] (i.e., the number of elements shifted when “sliding” the kernel
during the convolution operation), implying in a reduction in the spatial dimensions
of input signal. Dilation refers to the idea of convolving the original signal with a
“spaced” kernel, containing “gaps” of size d between each element in its characteristic
matrix [38]. The employment of either strategy entails in the convolution operation be-
ing applied over regions of gradually-increasing sizes, resulting in the expected stacking
of patterns [5]. Dilation, however, has the advantage of maintaining the original reso-
lution of the input signal (and the disadvantage of higher computational cost), being

therefore frequently employed in networks devised for segmentation tasks [12,82,95].

Attention The means or capacity of a model to direct its focus towards the most infor-
mative portions of the data stream [30]. The “attention” provided by the model can
segment the signal with respect to its spatial dimensions, its channels, or a combina-
tion thereof. The application of the first, spatial attention, creates a locally-connected
(and spatially independent) system, whereas channel attention often results in the

internalization of more robust set of data patterns [95].

Transformers A family of architectures based on attention and self-attention mecha-
nisms [15]. Among them, Vision Transformers [21] (ViT) have been successfully ap-

plied to a broad range of weakly supervised visual tasks [25,59,60,36].

3 Related Work

In this section, we discuss important landmarks reached in both XAT and WSSS literatures.

3.1 Explainable Artificial Intelligence in Computer Vision

Visual explanation techniques are frequently employed to describe or indicate, with a certain

degree of certainty, salient cues that might have contributed to the decision process of



CNNs [85]. These techniques often times produce visual explaining maps: a signal with the
same spatial format as the input sample, highlighting regions that most contribute to the
answer provided by the model [75].

Gradient-based saliency methods [64] are early examples of this line of work. They
produce saliency maps that highlight pixels with most overall contribution towards the
score estimated during the decision process of a model, which is accomplished by back-
propagating the gradient information from the units of interest, contained in the last layer,
onto the input signal. Instances of these methods are Guided Backpropagation [66], which
filters out the negative backpropagated gradients; SmoothGrad [65], which averages gradient
maps obtained from multiple noisy copies of a single input image; and FullGrad [67], which
combines the biases with the saliency information in order to create the “full gradient”.

Notwithstanding their precision on locating salient regions and objects, gradient-based
methods will ultimately fail to identify objects or regions associated with a specific class of
interest. In fact, “sanity checks” have been proposed to test the resulting explaining maps
from these methods when class-specific patterns are erased from the model. As examples,
we remark the two experiments proposed by Adebayo et al. [1]: Model Parameter Random-
ization and Data Randomization. In the former, weights from layers would be progressively
(or individually) randomized, from top to bottom, and the effect over the saliency map
produced by each method would be observed. In the latter, labels would be permuted in
the training set, forcing the network to memorize the noisy annotation. Some techniques,
such as the Guided Backpropagation and Guided-CAM methods, were unaffected by the
randomization of labels and weights of the top layers, demonstrating their invariance to-
wards class information and high dependence on low-level features. These results lead the
authors to conclude that those methods approximated the behavior of edge detectors.

Differently from gradient-based saliency methods, Class Activation Mapping (CAM) can
be used to circumvent the lack of sensibility to class [98]. This technique consists in feed-
forwarding an input image x over all convolutional layers of a CNN f and obtaining the
positional activation signal A% = [afj] axw for the k-th kernel in the last convolutional layer.

If W = [wf] is the weight matrix of the last dense layer in f, then the importance of each



positional unit a;; for the classification of label c is summarized as:

Léam(f, ) = ReLU(Y  wiA¥) (1)
k

Naturally, CAMs are not without shortcomings. Significant challenges ensue with the
employment of CAMs: Firstly, only simple convolutional architectures can be explained
through CAM, as it assumes a direct association between the activation convolutional signal
and the classification signal. Additionally, when considering the later convolutional layers in
the model, CAM will produce activation maps of considerably smaller size when compared
to the input images. Hence, they must be upsampled (i.e., interpolated) to match their
original counterparts, resulting in explaining maps with fairly imprecise object boundaries
localization and highlighting. Furthermore, as the model focus on a few discriminative
regions to predict a class for a given sample, the highlighted regions in the visualization
map might not completely cover the salient objects associated with that specific class, being
strongly affected by local patterns, the explaining method employed [9] and even the model’s
architecture [62]. In the context of visual explaining maps, this problem is strongly related
to the concept of prediction completeness [74].

A broad spectrum of CAM-based methods have been developed in an attempt to to
address the aforementioned problems and improve the quality of the explanations. Gradient
signals were leveraged to extend CAM to Grad-CAM [62], in order to explain more complex
network architectures, not limited to convolutional networks ending in simple layers such as

Softmax classifiers and linear regression models. Let S. = f(z). be the score attributed by

98,

the network for class ¢ with respect to the input image x, and Sak
ij

be the partial derivative

of the score S, with respect to the pixel (4,7) in the activation map A*, then:

Léraa-cam(f, z) = ReLU ( Z Z ;j; Ak) (2)
ki O

Chattopadhay et al. [9] then proposed Grad-CAM++ as an extension of Grad-CAM,

in which each positional unit in A* was weighted by leveling factors to produce maps that



evenly highlighted different parts of the image that positively contributed to the classification
of class ¢, providing higher completeness for classes associated with large objects and mul-
tiple instances of the same object in the image [9]. Similarly to Grad-CAM, Grad-CAM++

is defined as:

oS,
c kc k
Léraa-cams+ (f> ) ReLU( Z Z «; ReLU(aAk )A ) (3)
where
d%s,
ke (0AF))?
Qij = o%s, 255,
(aAk )2 + Zab Al;b (g)Ak )3

The authors also proposed two new metrics: Increase of Confidence (%IC) and Aver-
age Drop (%AD), which have since been constantly employed in the evaluation of visual
explaining methods.

Another visualization technique worth remarking is Score-CAM [77]. In it, visualization
maps are defined as the sum of the activation signals A*, weighted by factors C*, that are
directly proportional to the classification score obtained when the image pixels are masked

by the normalized signal A¥. Formally:

k
Lgcore—CAM(f? {E) = R‘ELU( Z f((E o Ai)CAk) (4)

p max Ak

More recently, an ever-growing interest in developing even more accurate visualiza-
tion methods is noticeable. Among many, we remark SS-CAM [76], Ablation-CAM [18],
Relevance-CAM [11], LayerCAM [33] and F-CAM [4]. Similarly to Score-CAM, Ablation-
CAM is defined as the sum of feature maps A*, where each map is weighted by the propor-
tional drop in classification score when A* is set to zero. Relevance-CAM combines the ideas
of Grad-CAM with Contrastive Layer-wise Relevance Propagation (CLRP) to obtain a high
resolution explaining map that is sensitive to the target class, while LayerCAM incorporates
the signals advent from intermediate convolutional layers to increase the quality of explain-
ing maps. Finally, F-CAM replaces the usual upscaling of the CAM by a parameterized

reconstruction operation based on local statistics with respect to the objects of interest.



Notwithstanding the consistent progression towards the improvement of visualization
results, the aforementioned methods entail significant computing footprint. We further note
that much of the work conducted thus far have focused on evaluations over single-label
multi-class datasets, such as localization task over ImageNet [62], and little investigation
has been conducted over the effectiveness of these visualization techniques in multi-label
scenarios. Additionally, studies that used multi-label datasets [9] often focus on single-label
explanation (usually considering the highest scoring class as unit of interest).

As motivation, we present the visualization maps of classes of interest over a few samples
from the Pascal VOC 2007 (VOCO07) dataset [23] in Figure 1. In it, we observe a tendency
of CAM-based methods (specially the most recent versions which attempt to expand the
map to cover all parts of the classified object) to overflow the boundaries of the object of

interest, even expanding over other objects of different classes.

3.2 Weakly Supervised Semantic Segmentation

WSSS is often approached as a two-stage process, in which the missing segmentation maps
are derived from a weakly supervised dataset, and subsequently used as pseudo maps to
train fully-supervised semantic segmentation models. Researchers in this area have focused
on strategies comprising in (a) devising class-specific hints from coarse localization methods,
such as Class Activation Mapping (CAM) [98], (b) encouraging coverage completeness by
transferring label information from confident regions to a similar neighborhood; and (c)
constraining segmentation proposals to boundaries of their associated objects [37].

The coarse maps can be refined by Random Walk (RW) [3] or Fully Connected Condi-
tional Random Fields (CRF) [35]. In the former, the affinity values between pixel pairs that
reside within a neighborhood are calculated, and used in a random walk procedure to extend
labels from confident regions to uncertain ones. The authors later propose the addition of
displacement fields in order to perform instance segmentation [2]. In the latter, unary and
pairwise Gaussian potentials are used to model energy levels of each pixel, representing the
confidence in its original label and its visual similarity to its neighborhood, respectively.

Labels are reassigned to low confidence pixels with a high similarity to their neighborhood.

10



Grad-CAM Grad-CAM++ Score-CAM

Figure 1: Explaining maps resulted from the application of various CAM-based visualization
techniques over samples in the VOC07 dataset [23]. Source: David et al. [10]

Naturally, refinement methods are strongly affected by the prior seeds. Thus, many
authors have focused on the development of strategies resulting in more accurate priors. In
this vein, Jo and Yu proposed Puzzle-CAM [31] to reinforce prediction completeness. This
is achieved by separating the input image according to its four quadrants, forwarding the

four parts and reconstructing the output activation signal, resulting in a “local” information
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stream. The model is trained to predict multi-label class occurrence within a sample via
both main and local streams. The reconstructed signal, in turn, is used to regularize the
main activation signal, resulting in CAMs with higher coverage over salient objects.

Let x; be the i-th sample image in the training set, associated with the one-hot encoded
vector y; € {0,1}¢, indicating the occurrence of at least one object associated with each
one of the ¢ existing classes in the set. At the same time, let f be a CNN such that
fé(z;) = AS € REW s the spatial activation map with respect to sample x; and class c,
Af = merge( f°(tile(z;))) the reconstruction of the tiled maps produced by separating z; into
four quadrants and forwarding them individually through f, and p®(A4;) = o(GAP(A$%)) €
[0,1] the estimated posterior probability of sample x; containing objects of class ¢. In
these conditions, training ensures with the conjoint optimization of the following objective
function:

L:puzzle(xi) = Los + L:p—cls + ol (5)

where L5 is the multi-label soft margin loss between p(A;) and y;, Lp-qls is the multi-label
soft margin loss between p(/ll) and y;, Lo = ||A; — Az||1 is the mean absolute error loss
between the main and (reconstructed) activation maps, and « is a scheduling coefficient
that linearly increases as training progresses.

Notwithstanding its simplicity, Puzzle-CAM is reportedly associated with significantly
high mIoU results over VOC12 dataset [34]. When employing their most successful model
(using the split-attention architecture ResNeSt269 [95]), the authors obtained 71.9% and
72.2% mloU over the validation and test subsets, respectively. However, upon closer inspec-
tion over the training loop, it becomes evident the existence of an early stopping mechanism
that persists the weights of the model as training progresses, conditioned to the improvement
of the metric of interest (mIoU)!. Hence, privileged and fully-supervised information (advent
from the ground-truth maps) is being incorporated in the training procedure, further for-
tifying it against overfit, albeit mischaracterizing a supposedly weakly-supervised problem.

It is also worth remarking that many of the WSSS studies conducted so far [2,3,37,39, 43]

ITraining procedures were made available by the authors on GitHub (accessed on Jan.,
2023): (1) github.com/shjo-april/PuzzleCAM /train_classification_with_puzzle.py#L444-1.448;
2) github.com/shjo-april /Puzzle CAM /train_segmentation.py#1.333-1.336

g JO-af g Py
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have not employed similar early stopping or weight persistence mechanisms, implying that
these results cannot be directly compared.

Another interesting approach devised to generate better segmentation priors is Class-
specific Adversarial Erasing (CSE) [37]. It consists of an assisted training setup, in which
a class r; is randomly drawn from the set of labels associated with the i-th sample, and a
CAM Generating model f (namely CGNet) is fitted to produce activation maps that, when
masking the input images, minimize the classification output signal advent from a fixed
auxiliary ordinary classifier (OC), while maintaining the original output for the remaining
classes. In practice, CAMs learned in this setup become sufficiently accurate to insulate
objects of distinct classes, increasing coverage over their objects while maintaining coarse
fidelity to semantic boundaries.

Let f be the CAM proposal (main) network such that f¢(z;) = A¢ € REW and oc be
the ordinary, fixed, classifying network. For each pair (z;,y;) in the training set, a class d
is randomly sampled from y;. In these conditions, Class-specific Adversarial Erasing [37] is

defined as the minimization of the function:

£cse (-T'L) = £cls + aEcae
= loee(GAP(A;),4:) (6)

+ alyee(oc(z; o (1= AD)), i \ {d})

where f},cc is the binary cross-entropy loss function.

Once trained, f can be used to devise segmentation priors, which are refined with Ran-
dom Walk [3] and CRF [35], resulting in pseudo segmentation maps. A DeepLab model [11],
trained over these same maps, obtains 68.4% and 68.2% mloU over Pascal VOC 2012 vali-
dation and testing sets, respectively, and 36.4% over the MS COCO 2014 validation set [416].

Notwithstanding the noticeable improvement in class separation and fidelity to the se-
mantic boundaries, priors from OC-CSE still display a low coverage over salient objects.
This drawback is mitigated by the authors with the employment of Random Walk. Nat-

urally, the effectiveness of CSE is strongly dependent on the capacity of oc to recognize
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class-specific objects (and parts thereof), and it can be potentially diminished when as-
sisted by a classifier biased towards (only) the most discriminative regions. It stands to
reason that the concurrent training of oc could prove itself useful to the CSE method, in
which the ordinary classifier would gradually learn to redirect its attention to class-specific
regions ignored currently by f, and thus providing better assistance in its training.

Going in a different direction, Xie et al. proposed C2AM: an unsupervised strategy for
learning saliency detection [34]. It attempts to find a bi-partition of the spatial field contain-
ing the image such that salient objects and the background would be perfectly separated. It
does so by extracting both low and high level features A¥ € REW from a pretrained back-
bone model, and feeding them to a disentangling branch, a function d : R¥ — [0,1], such
that d(A)A would represent the foreground features while (1 —d(A))A represented the back-
ground ones. Training ensues by optimizing the model to approximate the feature vectors
representing the most similar patches, while increasing the distance between the foreground
and background feature vectors. Saliency maps produced by C2AM can be combined with
various WSSS strategies, notably improving their effectiveness.

Let Phv : R" — [0,1]"* be a function mapping each region in the embedded spatial
signal A" to the probability value p/* of said region belonging to the first partition.
Moreover, let vif = P;oA; and vf = (1—P;)oA; be two extracted feature vectors, representing
the spatial foreground (fg) and background (bg) features, respectively. Considering a batch
of n images B = {4, Tp41,- - -, Torn—1}, three cosine similarity matrices are calculated: (a)

the fg features (s7.), (b) the bg features (s

i ?;); and (c) between the fg and by (s};®) features.

In these conditions, C2AM is defined as the minimization of the following objectives:

B _ pB B B
‘CCZAM - ‘Cpos—f + Epos—b + ﬁneg

1 n n
_ f f
" n(n—1) XZ: ; Lpizgy (wij log Sij)
+ m ; ; ]l[iaéj] (wij log Sij)

- % Z Z log(1 — s?;g)
i g
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where the wf; and wfj factors are exponentially proportional to the similarity rank between

the regions (4, j), considering all possible pairs available in Ay:
Wi = €7arank(8ij),w c {wf,wb}

Once trained, pseudo saliency maps are inferred from the training set, and used to train
a fully-supervised saliency detection model [17]. The model, in turn, is used to generate
the saliency proposal maps, which tend to be more robust to noise than the pseudo maps.
Concatenating said maps to their respective CAMs comprises a way to perform pixel-wise
thresholding, which tends to point out background regions more precisely than establishing
a global threshold value. For instance, the combination of C2AMs to CAMs produced by
ResNet50 Puzzle resulted in a 65.5% mloU over the VOC12 training set (an increase of 14.1
percent points), and in 66.0% mIoU when combined with priors produced by a model when
employing SC-CAM [8]. Results over the validation set were not provided.

C2AM is not without shortcomings. With careful inspection of Eq. (7), it is noticeable
the absence of an “anchor”: similar pixels representative of salient objects (relative to the
dataset of interest) can either be associated with low or high values in P"". I.e., C2AM
establishes a saliency bi-partition of the visual receptive field, without specifying which of
the partitions contains the salient objects. Moreover, no explicit reinforcement is made
towards the construction of a bi-partition that aggregates all salient classes in one side.
Instead, similar regions are simply drawn together, implying in the risk of salient objects,
associated with different classes, to be projected onto different partitions. For example,
in problems where objects of two classes never directly co-occur (spatially close in a same
image), or indirectly (through a third intermediate class that frequently co-occurs with each

of the aforementioned classes).

4 Research Methodology, Materials and Contributions

In this section, we describe our proposed research approach, as well as the contributions

achieved thus far.
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4.1 Proposed Approach

In the following, we enumerate the different stages of our proposed approach, sorted by the

order in which they will be studied and researched.

4.1.1 Exploration of Explainable AT Methods in Multi-Label Problems

We propose to start our project by conducting a throughout evaluation of the main CAM-
based visual explaining techniques and methods, considering the neglected aspects of multi-
label problems and scenarios, in which analysis can be considerably more challenging [73].

We will extend the well established XAI metrics defined by Chattopadhay et al. [9] to
consider the multiple class occurrences in each sample. In this benchmark, the explaining
methods should not only be evaluated with respect to their capacity of explaining a single
class of interest, but to with respect to its capacity of explaining all salient elements currently
present in samples.

Moreover, we will include additional problem sets in the evaluation procedure, repre-
senting more complex and realistic scenarios not currently covered by the well-established
(and well curated) Pascal VOC and MS COCO datasets. We argue that the evaluation over
those is paramount to better estimate the effectiveness of XAI methods over more realistic
scenarios, containing degeneration cases, such as when the classes are sparsely represented,
class distribution is strongly unbalanced or with extreme class co-occurrence [7].

Finally, we will devise a new CAM-based visual explaining method that takes into con-
sideration the various classes present in a sample to retrieve the kernel regions (i.e., regions
that contribute to the recognition of one, and only one, class of interest) in that same sam-
ple. This will be achieved through the contrasting the contributions of the model for the
prediction of each class. For fairness, the devised method will be compared against the

literature using the aforementioned comprehensive evaluation loop.

4.1.2 Complementary Regularization Strategies in WSSS

In this research stage, we will evaluate the efficacy of complementary regularization strate-

gies, devised in the context of noisy or weak supervision (e.g., Puzzle-CAM, OC-CSE, C2AM,
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label smoothing, etc.), and strong augmentation strategies devised to internalization of more
robust data patterns in an uncertain and noisy environment (e.g., CowMix, ClassMix, Cer-
tainMix). We expect that revisiting these individual solutions may prove itself useful in
the understanding and development of new techniques that retain their individual strengths
without suffering from their shortcomings.

Finally, we will devise a new WSSS strategy that utilizes an adversarial training setup
of two CAM-proposing networks to produce more accurate pseudo semantic segmentation

priors, further improving the overall efficacy of WSSS solutions.

4.1.3 Exploration of Transformers and Spatial Attention for Highly-Detailed

Segmentation

Modern WSSS solutions are often based on CNNs, comprising convolution and down-
sampling operations that compress the original spatial dimensions of the input signal, result-
ing in low-resolution semantic segmentation priors. While some work has been conducted
to mitigate this flaw, such as the proposal of wide networks [82] and the introduction of
dilation [12,88], the segmentation of small objects with highly detailed non-convex semantic
boundaries is still challenging.

Alternatively to CNNs, Vision Transformers [21] can also be employment in the solution
of various Computer Vision tasks, achieving or surpassing the state of the art in many of
them. Concomitantly, spatial attention can be used to maintain a higher fidelity to the
original resolution of the analyzed sample, resulting in more accurate segmentation priors.
Early work in this vein have inferred class affinity from patch tokens advent from Transform-
ers [36], employed linear search to assign image-level class information to patches [59], or
combined CNNs and Transformers into single-stage multi-branch model with classification,
spatial affinity prediction and segmentation capabilities [60].

In this research stage, we will analyze the effectiveness of modern Vision Transform-
ers architectures over Weakly Supervised Semantic Segmentation problems. More specif-
ically, we will investigate if modern regularization strategies, originally devised to insti-

gate segmentation-prone properties in CNNs (e.g., completeness, local attention, activation
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consistency, semantic boundaries), can be extended and adapted to improve the semantic
segmentation capabilities of Transformer models, without the overhead of adjacent convo-

lutional layers/models that would inevitably lead to complex architecture topologies.

4.1.4 Weak Supervision in Boundary and Difficult Scenarios: Class Unbalance,

Long-tail and Functional Segmentation

In this phase, we will investigate the behavior of WSSS strategies in boundary and difficult
scenarios, such as in datasets with unbalanced or long-tail class distributions. We expect
the segmentation capacity of a model to deteriorate in poorly represented scenarios, leading
to a significant difference in segmentation effectiveness across the different class groups.
We will study ways to mitigate this problem by leveraging re-balancing and class-
influence adjustment techniques — originally devised with classification and recognition
tasks in mind — and evaluating their influence on the quality of the semantic segmentation
priors produced in a weakly supervised environment. More specifically, we intent to adapt
the distribution alignment [96] and the Bilateral-branch [97] methods to the WSSS scenario,
producing high-quality semantic segmentation priors for both head and tail classes.
Subsequently, we will investigate the effectiveness of weakly supervised techniques when
applied to functional and morphological segmentation tasks. We expect solutions based on
pixel-wise visual affinity to present considerably lower performance in scenarios containing
visually ambiguous patterns, in which the fully-supervised information cannot be solely
inferred from local features. Finally, we will attempt to mitigate these scenarios using more
interventionist instances of weakly supervised annotation (e.g., scribes, bounding boxes, and

saliency), or by adapting semi-supervised learning methods to this problem domain.

4.1.5 Ensemble of Weakly Supervised Semantic Segmentation Systems

While many WSSS solutions have similar overall efficacy (mIoU), their fundamentally dif-
ferent architectures and training objectives culminate in models with different segmentation
capacity with respect to different groups of classes, as well as a diverse set of failure cases.

In this scenario, it is unlikely for a single model to have the highest segmentation capability
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among all groups, contexts and problems.

Inspired by the continuous success of prediction ensembling in various tasks and compe-
titions [20], as well as the recent adoption of model and weight ensembling [79], we intent to
analyze the efficacy of ensembling predictions advent from various WSSS methods towards
the solution of semantic segmentation tasks.

Finally, we will devise a meta learning strategy that combines different WSSS methods
and techniques based on any contextual and/or weakly supervised information available,
favoring methods that better perform considering the current context being inferred. We
expect an organized composition of predictions to produce more robust semantic segmenta-

tion results in all scenarios, including boundary and exceptional cases.

4.2 Experimental Environment and Materials

In this section, we detail the experimental setup employed in our work.

4.2.1 Datasets

We list and briefly describe the datasets considered for this work. The first five datasets have

been employed in the experiments and are thus discussed in more depth in Appendix A.1.1.

Pascal VOC 2007 comprises 2,501 training samples, 2,510 validation samples and 4,952

test samples representing various objects from 20 classes in their usual context [23].

Pascal VOC 2012 extends the 2007 version to include 5,717 training samples, 5,823 vali-

dation samples and 10,991 unlabeled test samples [22].

MS COCO 2017 contains 118,287 training samples, 5,000 validation samples and 40,670
unlabeled test samples. This set represents distinct scenarios containing various ob-

jects associated to 80 distinct classes [16].

Planet: Understanding the Amazon from Space is a satellite imagery dataset of the
Amazon rainforest, containing 40,479 training samples annotated according to their

natural features [63].
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Human Protein Atlas Image Classification (HPA) is a microscopic imagery dataset
representing cellular bodies and proteins of interest. Containing 31,072 training sam-
ples associated with one or more of the 21 classes, this set presents a strongly unbal-

anced class distribution [56].

Functional Map of the World (fMoW) is a satellite imagery dataset 1,047,691 images
associated with 61 categories [14]. Samples comprise temporal sequences of images,
annotated by bounding boxes associated with 61 distinct categories that describe the

functional purpose and/or contextual information of the scenarios.

Atlas of Digital Pathology (ADP) is a histopathology dataset containing 17,668 im-
ages, captured from histological tissue slides [28]. Images are annotated according
to 28 morphological types and 4 functional types. Moreover, a small subset (of 50

images) presents fully-supervised pixel-level annotations.

4.2.2 Metrics and Evaluation Protocols

To evaluate Explainable Al methods, we extend the well known Increase in Confidence and
Average Drop metrics to a multi-label scenario by computing them individually, for each
label present in each sample, followed by macro-averaging the individual results. We then
devise two new metrics, namely Average Drop of Others and Average Retention, to measure
the inadvertent class-agnostic highlighting of co-occurring classes in CAMs. Finally, we
summarize the devised metrics into the harmonic means F;+ and F}—.

In conformity with literature, we employ mean Intersection over Union (mloU) as main
evaluation metric when comparing Weakly Supervised Semantic Segmentation solutions.

Each of the aforementioned metrics are described in detail in Appendix A.1.3.

4.2.3 Computational Environment

Training of classification models, as well as the experiments and benchmarks of Explainable
Artificial Intelligence methods are conducted in a local environment, consisting of a single

node with 16 GB RAM and a NVIDIA T4 GPU.
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We leverage the infrastructure of the Santos Dumont (SDumont) super-computer for the
execution of the experiments associated with WSSS problems. Most experiments occur in
single-node machines with 128 GB RAM and 4 NVIDIA V100 GPUs.

Training protocols for XAI and WSSS methods are described in detail in Appendix A.1.2

and Appendix A.2, respectively.

4.3 Work Schedule

We enumerate in this section the different research stages of our project, and present the

execution scheduling for the planned activities in Table 1.

—_

Class attendance and completion of required credits.

Exploration of Explainable AI methods in multi-label problems.

Complementary regularization strategies in WSSS.

Doctoral Qualifying Exam (EQE).

Participation in “Programa de Estdgio Docente” (PED).

Exploration of Transformers and Spatial Attention for highly-detailed segmentation.
Weak supervision in boundary and difficult scenarios.

Ensemble of weakly supervised semantic segmentation systems.

© ® N o ok WD

Writing and presentation of Doctoral thesis.

Table 1: Expected scheduling of planned activities.

Activities 1st year 2nd year 3rd year 4th year

1[2][3]4]1]2]3]4[1]2[3[4[1]2[3]4

1 o | o | o |0

2 o | o | o o0

3 o | o | o |0

4 °

5 e | e

6 o | o | o

7 o | o | o | @

8 oo | o

9 .
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5 Preliminary Results
Our main contributions, achieved thus far, are summarized by the following;:

1. We propose a thoroughly analysis of popular visualization techniques in the litera-
ture over a distinct set of multi-label problems, evaluating their results according to
the offered coverage over objects belonging to the label of interest, as well as the

containment within objects of said label.

2. We propose a modification to CAM-based methods that combines gradient information
from multiple labels within a single input image. We demonstrate that our approach
presents better scores and cleaner visualization maps than other methods over distinct
datasets and architectures. Subsequently, we present a regularization strategy that
encourages networks to associate each learned class with a distinct set of patterns,

resulting in better separation of concepts and cleaner CAM visualizations.

3. We propose a training procedure regularized by both Puzzle-CAM [34] and OC-
CSE [37] to generate attention maps that comprehensively cover large objects while
respecting their semantic boundaries. Sub-sequentially, we extend OC-CSE into a fully
adversarial training setup, in which the ordinary classifier is also gradually refined to

provider better information to the main network.

4. We propose an extension of C2AM [84] that incorporates hints of positive regions in
its training procedure, and empirically demonstrate the superiority of the generated
saliency maps with respect to the ones obtained from CZAM vanilla. We leverage
the obtained pseudo saliency maps to infer background regions and better guide the
random walk process [3], resulting in superior mean Intersection over Union (mloU)

results over the Pascal VOC 2012 (VOC12) dataset [22].

5.1 Explainable Artificial Intelligence

We devise a new CAM-based visual explaining method, namely MinMax-CAM, that pro-

duces more focused explaining maps by contrasting the contributions to the classification of
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all classes contained in a given sample. Next, we briefly describe the method, and present
a more detailed explanation of its intuition and formulation in Appendix B.1.

Formally, let f be a fully convolutional network, x € X be a given sample from the
dataset X, ¢ € C, a class of interest present in the label set C,,, and N, = C,\ {c}. In these
conditions, S, = f(z). = >, w§ 7= (AF) is the prediction score for sample z with respect to
class ¢, estimated by f, and MinMax-Grad-CAM is defined as the combination of activation

signals A®, weighted by their respective contributions to the objective function J,:

i/[inMax—Grad—CAM(fv RG‘LU( Z Z 8A’“ ) (8)

where

Jc: c

> S, 9)

$| neEN,

An alternative form (D-MinMax-Grad-CAM), that factors positive, negative and back-

ground contributions is also devised:

CD—MimMax—Grad—CAM = ReLU( Z aZAk> (10)
k

where

af =3 {R LU(aAk )- mR eLu( gj;) + ﬁmin (0.3 gjg')] (11)
ij neEN, L neCy, vy

Qualitative results can be inspected in Figure 2, in which CAMs devised from MinMax-
CAM and D-MinMax-CAM are illustrated in the fifth and sixth columns, respectively.
By suppressing the activation of regions that positively contribute to the classification of
adjacent classes, MinMax-CAM produces more precise and class-specific activation maps,
in which fewer pixels (associated with a certain class) are incorrectly highlighted (when
explaining another class).

More qualitative and quantitative results are presented in detail in Appendix B.1.2.
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Input Ccam Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

Figure 2: CAMs produced by various XAI methods. Classes being explained are (from top
to bottom): bicycle, person, motorbike, person, table, chair, tv, person, and sofa.
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5.2 Weakly Supervised Semantic Segmentation

In order to foment semantic segmentation-like properties in models trained in a WSSS
setup, such as prediction completeness, semantic boundary awareness and robustness against
noisy labels, we propose the combination of the Puzzle-CAM, OC-CSE and label smoothing
strategies into a single training setup, namely P-OC.

Furthermore, we propose a novel adversarial training setup (namely, P-NOC), in which
the Ordinary Classifier is gradually refined to shift its attention to regions being currently
ignored by the main network, maximizing the utility in the regularization of the latter.

Finally, we propose the utilization of saliency hints, extracted from models trained in the
weakly supervised scheme, to further regularize the training of C2AM. This is accomplished
by extracting high-confidence salient regions from the semantic segmentation priors and
utilizing them to “anchor” the disentangling branch in the C2AM model.

Table 2 displays the comparison with the state of the art for our two best strategies
(P-OC and P-NOC). P-NOC obtains 72.7% mlIoU over Pascal VOC 2012 test dataset,
outscoring the unfair version of Puzzle-CAM by 0.5 p.p., and the remaining approaches by
a considerable margin. Figure 3 and Figure 3 illustrate a few examples of predictions made

by the P-OC and P-NOC strategies, respectively.

Figure 3: Examples of predictions made by a DeepLabV3+ model trained with pseudo
semantic segmentation masks devised from P-OC and refined with random walk.

Implementation details for both P-OC, P-NOC and C2AM-H are available in Ap-

pendix B.2; and quantitative results and ablation studies are described in Appendix B.2.3.
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Figure 4: Examples of predictions made by a DeepLabV3+ model trained with pseudo
semantic segmentation masks devised from P-NOC and refined with random walk.

Table 2: Comparison with other SOTA methods. mIoU (%) scores are reported for both
Pascal VOC 2012 validation and testing sets. Puzzle-CAM: potential effectiveness reported

(see Section 3.2).

Method Backbone Val Test
AffinityNet [3] Wide-ResNet-38  61.7  63.7
IRNet [2] ResNet-50 63.5 64.8
ICD [21] ResNet-101 64.1 643
SEAM [380] Wide-ResNet-38  64.5  65.7
OC-CSE [37] Wide-ResNet-38 68.4  68.2
Puzzle-CAM [34] ResNeSt-269 71.9 722
RIB [3] ResNet-101 68.3 68.6
EPS [13] ResNet-101 70.9 708
AMN [12] ResNet-101 69.5 69.6
ViT-PCM [5] ViT-B/16 703 709
MCTformer [36] Wide-ResNet-38 71.9  71.6
P-OC+c2avu (ours) ResNeSt-269 1.4 724
P-NOC:tst+c2amu (ours) ResNeSt-269 71.5 727

5.3 Scientific Production

1. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Improving focus of CAM-based
visualization techniques in multi-label problems. In 17th International Joint Confer-

ence on Computer Vision, Imaging and Computer Graphics Theory and Applications

(VISAPP), pages 106-117. INSTICC, SciTePress, 2022.

2. L. David, H. Pedrini, and Z. Dias. MinMax-CAM: Increasing Precision of Explaining

Maps by Contrasting Gradient Signals and Regularizing Kernel Usage (Springer).
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5.4

In 17th International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications (VISAPP), CCIS Series, 2023.

L. David, H. Pedrini, and Z. Dias. Not so Ordinary Classifier: Revisiting Complemen-
tary Regularizing Strategies for More Robust Priors in Weakly Supervised Semantic

Segmentation.

Technical Contributions

Implement pixel ignoring functionality in the cross-entropy loss in Keras, for semantic

segmentation problems?.

Ported the Wide ResNet38-d and ResNeSt architectures, originally trained in PyTorch,

to TensorFlow?.

Created the keras-explainable library, containing out-of-the box implementations

of many Explainable AI algorithms®.

Various fixes in Keras and TensorFlow-Addons, often related to the optimizer, mixed-

precision when training in a Multi-Worker-Mirrored-Strategy environment®.
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Supplementary Materials

A Additional Details to Experimental Setup

In this section, we provide additional details over the experimental settings adopted in the

experiments conducted thus far.

A.1 Explainable Artificial Intelligence

In this section, we detail the experimental procedures employed to evaluate the proposed ex-
plaining techniques with respect to the most popular alternatives found in current literature,

considering multiple architectures and datasets.

A.1.1 Evaluations over Architectures and Problem Domains

In conformity with literature, we evaluate the effect of architectural change over the ex-
planations produced from various visualization techniques by employing multiple popular
alternatives of Convolutional Neural Network architectures. More specifically, we train and
evaluate three architectures over Pascal VOC 2007: VGG16-GAP (VGG16), ResNetl101
(RN101) and EfficientNet-B6 (ENG). We approximate the evaluation conditions of previous
works [9,62,77] by warm-starting from weights pre-trained over the ILSVRC 2012 dataset,
and fine tuning the networks over the Pascal VOC 2007 dataset [23].

We further evaluate the different visualization techniques considering five image-related
problem sets, resulting in measurements and insights about the behavior and efficacy of
these techniques over various scenarios. In these, it is expected that data patterns, class
co-occurring groups and semantic contexts greatly differ, providing a more comprehensive
understanding of these techniques. A brief summary of the employed datasets, representing

the different problem sets, is provided as follows.

Pascal VOC 2007 (VOCO07) The Pascal VOC 2007 dataset [23] is a well established
dataset in Computer Vision and Machine Learning literature, being frequently employed

in the evaluation of Al explaining methods and techniques. Comprising of 2,501 training
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samples, 2,510 validation samples and 4,952 test samples, this set contains images with

multiple objects belonging to 20 distinct classes.

Pascal VOC 2012 (VOC12) This dataset extends the Pascal VOC 2007 dataset to
5,717 training samples, 5,823 validation samples and 10,991 unlabeled test samples [22],

while sharing the same classes with its previous version [23].

Microsoft Common Objects in Context 2017 (COCO17) The COCO 2017
dataset [46] contains 118,287 training samples, 5,000 validation samples and 40,670 un-
labeled test samples. Images in this set are richly annotated with respect to various objects
belonging to 80 distinct classes (classification, detection and segmentation annotations are
available). Furthermore, this set respects contextual information of classes, by presenting

objects in the usual environments and scenarios.

Planet: Understanding the Amazon from Space (P:UAS) This satellite imagery
dataset was originally provided by Planet for a competition in the Kaggle platform, and
comprises 40,479 training samples and 61,191 test samples [63]. Samples correspond to
“chips” of satellite photographs of the Amazon rainforest, and are annotated with respect
to their natural features (e.g., primary forest, water, cloudy, haze) one the observed human

intervention in the area (e.g., agriculture, road, selective logging, mining).

Human Protein Atlas Image Classification (HPA) Firstly introduced in a Kaggle
competition of same name, this set comprises 31,072 training samples and 11,702 test sam-
ples [56]. Each sample is represented by a microscopic image framing cellular bodies and
proteins of interest, as well as a label set from the set of 28 available classes (e.g., Nucleo-
plasm, Cytosol, Plasma membrane, Nucleoli). This dataset represent many computational
challenges, and it is used to measure the behavior of explaining techniques over ill-distributed
datasets, recurrently found in real-case scenarios. Besides the natural difficulty of learning
core visual patterns of intrinsically associated and frequently co-occurring cellular compo-

nents, we observe an overwhelming class imbalanced in the training set, as well a class
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distribution shift in the test set, resulting in relative low scores for all competitors in the

original Kaggle challenge®.

A.1.2 Training Procedure

Firstly, images in all datasets and experiments are resized with the preservation of their
original aspect ratio, in which their shortest dimension (height or width) is matched the
expected size of the visual receptive field. They are then centrally cropped along their
largest dimension to the exact size of the aforementioned field (224 x 224 for VGG-GAP
and 512 x 512 for ResNet101 and EfficientNetB6). In conformity with literature, we report
the visualization results over the validation subset of each dataset.

Before the training procedure, weights of the convolutional pipeline are initialized with
the set of weights pre-trained over ImageNet. A Global Average Pooling (GAP) layer and a
sigmoid dense layer (with the number of units equal to the number of labels in the dataset)
are then appended to the pipeline, forming the entire multi-label classification model.

Training ensues in two stages. In the first, the classification head is trained for 30 epochs
with learning rate = 0.1. In the second stage, 60% of the layers of the backbone are unfrozen
and the model is once again trained for 80 epochs using Stochastic Gradient Descent with
learning rate = 0.01 and Nesterov momentum [70] equals to 0.9. Learning rate is reduced
by a factor of 0.5 after every 3 epochs without decrease in validation loss. Training is halted

if no improvements are observed after 20 epochs.

A.1.3 Evaluation Metrics

In order to compare our explaining techniques to current literature in a multi-label setting,
we employ slightly modified versions of the metrics defined by Chattopadhay et al. [9].
Specifically, the Increase in Confidence (Eq. (12)) and Average Drop (Eq. (13)) metrics
are extended to take into consideration the classification units associated with each classes
present in each sample, in opposite of only considering the most intensively activating unit.

Furthermore, three new metrics were designed to better evaluate the inadvertent activation

6Human Protein Atlas. Human Protein Atlas Image Classification. In: Kaggle.
kaggle.com/competitions/human-protein-atlas-image-classification (Jan 2019). Accessed on Aug 2022.
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of the produced class-specific explanation maps over objects associated with co-occurring
classes. We remark that the metrics considered in this work will reduce to their conventional
form, as commonly employed in literature, in single-label classification problems.

Next, we provide the formal definition of the aforementioned metrics. We remark that
while the micro-average form was used in their respective equations for simplicity, it does not
capture well the unbalanced nature of multi-label problems [73]. Hence, we report metrics in
their macro-averaged form (or class-frequency balanced) in Appendix B.1.2; in which metric
results are computed separately for each class and averaged, removing the impact of label

frequency in the overall result.

Increase in Confidence (%IC) The rate in which masking the input image z; by the
visualization mask M has produced a higher classification score Of, = f(M{ o x;)° than

the baseline Y© = f(x;)%:

Z¢1|Ci| Z > e <05 (12)

i ceCy
This metric measures scenarios where removing background noise must improve classifi-
cation confidence. We report results for this metric in compliance with literature, but raise
the following question regarding the consistency of this metric: the classifying units of a
sigmoid classifier are not in direct competition with each other for total activation energy,
as it happens with units in softmax classifiers. For an ideal classifier, in which concepts are
perfectly separated and no false correlation exist, one could argue that the removal of an

object from an image should not affect the classification score of another object.

Average Drop (%AD) The rate of drop in the confidence of a model for a particular

image z; and label ¢, when only the highlighted region MY o z; is fed to the network:

|C|Z mauxOY.C 05.) (13)

i ceC; Z

Average Drop expresses the idea that masking the image with an accurate mask should

not decrease confidence in the label of interest, that is, it measures if your mask is correctly
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positioned on top of the important regions that determine the label of interest.

Average Drop of Others (%ADO) The rate of drop in the confidence of a model for a
particular image z; and labels n € N; = C; \ {¢}, when only the highlighted region Mf o z;

is fed to the network:

max(0,Y;” — OL)
|c | )Y |N\ v (14)

i ceC; neN; g

This metric captures the effect of a mask M over objects of other labels N; present in
x;, in which the masking of the input z; for a given class ¢ should cause the confidence in
other labels to drop. One expects an ideal mask to not retain any objects of other classes,

that is, f(Mfox;)™ =~ 0,Yn € N;.

Average Retention (%AR) The rate of retention of confidence of a model for a partic-
ular image x; and label ¢, when the region highlighted by the visualization map for label ¢

is occluded:

max(0, Y OC
sa >y : (13)

i ceC;
where Of, = f((1 — Mf) o z;)°.

While Average Drop measures if the map M? is correctly positioned over an object of
label ¢, Average Retention attempts to capture if M covers all regions occupied by objects
of label ¢, that is, masking the input with an accurate complement mask (1 — M¢) should

decrease confidence in class c.

Average Retention of Others (%ARO) The rate of retention of confidence of a model
for a particular image z; and labels n € IN;, when the region highlighted by the visualization

map for label ¢ is occluded:

Z max(0, Y —0on)

1
e Z Z (16)

l neN;

This metric evaluates if the masking of input z; for all labels but ¢ retains the confidence
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of the model in detecting these same labels. An ideal mask complement for class ¢ should

cover all objects of the other classes, that is, f((1 — Mf)ox;)" ~ f(z;)",Vn € N;.

Fy— and F}+ Scores Although the considered metrics cover the various facets of the
evaluation of AI explaining methods over multi-label scenarios, it may create difficulties
in the analysis or interpretation of the results, requiring a high degree of attention and
memorization from readers. Therefore, we opted to combine similar measurements using a
harmonic mean (F; score). More specifically, we consider (a) F;— as the harmonic mean
between %AD and %ARO, both error measures; and (b) Fy+: the harmonic mean between

%AR and %ADO, both utility functions (higher is better).

A.2 Weakly Supervised Semantic Segmentation

In accordance with literature [3,34,37], CAM-generating models are trained with Stochastic
Gradient Descent (SGD) for 15 epochs with linearly decaying learning rates of 0.1 and 0.01
(for randomly initialized weights and pre-trained weights, respectively), and le-4 weight
decay. Furthermore, samples are augmented with random resizing/cropping, while label
smoothing [52,71] is applied. To improve classification robustness, we employ Rand Augment
(RA) [15] when training Ordinary Classifiers. Conversely, we observed a marginal decrease
in mIoU when training Puzzle and OC-CSE models with RA, and thus opted to train them
with simple color augmentation (variation of contrast, brightness, saturation and hue).

When training P-OC, the coefficients A, and M. are kept as originally proposed: Ao
increases linearly from 0 to 4 during the first half epochs, while A. increases linearly from
0.3 to 1 throughout training. For P-NOC, A\, increases from 0 to 1, while learning rate
decreases from its initial value to 0. These settings constraint oc to change more significantly
in the intermediate epochs, and, thus, to recognize prominent regions of objects in the first
stages of training, while preventing it from learning incorrect features later on.

C2AM and C?AM-H are trained with the same hyper-parameters as Xie et al. [31], with
the exception of the batch size, which is set to 32 for the ResNeSt269 architecture due to

hardware limitations. When training C2AM-H, we set dg; and A, to 0.4 and 1, respectively.
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These values are defined after the inspection of samples of each class, confirming a low false
positive rate for foreground regions in the limited inspection subset. We leave the search

for their optimal values as future work.

B Detailed Discussions of Preliminary Results

In this section, we describe our preliminary results in detail. We divide them into two
groups. In the first, we discuss Explainable Al methods, their performance over multi-label
problems and forms to improve class-specific precision in CAMs. In the latter, we evaluate
the employment of complementary strategies in WSSS problems, and derive a new method
to produce more robust segmentation priors, based on the adversarial training of a strongly

regularized CAM proposal network and an ordinary classifier.

B.1 Contributions for Explainable Artificial Intelligence

We list in this section our contributions towards Explainable Al.

B.1.1 Contrasting Class Gradient Information

In this section, we describe our CAM-based technique, namely MinMax-CAM, which gen-
erates visualization maps by contrasting region contributions for different classes, and thus

better incorporating multi-label information into the resulting map.

Intuition Containing multiple co-occurring salient objects interacting in different con-
texts and obtained from various capturing conditions and settings, Multi-label problems are
intrinsically more complex than the ones represented in single-label, multi-class datasets.
The visual patterns associated with a given class are not necessarily the most prominent
visual cue contained in their samples, while statistical artifacts, such as label co-occurrence
and context, have great impact on the training and, therefore, the generalization capacity
of the model. An example of such problem is remarked by Chan et al. [7]: In the extreme

case in which two classes always appear together, no visual cue that effectively distinguishes
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them can be learned, implying in the internalization of contextual information or correlated
patterns, in opposite of the expected visual evidence for individual classes. While one can
argue that the occurrence correlation of 100% between two or more classes is not a realistic
scenario, fitting a classifier over frequently co-occurring classes (e.g., dining table and chair
in Pascal VOC 2012 dataset [23]) might result in a significant decrease of generalization effi-
cacy and confusing CAMs, as correlating patterns are inadvertently internalized as evidence
of occurrence, thus forming false association rules.

We propose a visualization method that attempts to identify the kernel contributing
regions for each label ¢ in the input image = by averaging the signals in A*, weighted by
a combination of their direct contributions to the score of ¢ and negative contributions to
the remaining labels present in x, that is, finding regions that mazimize the score of the
label ¢ and minimize the score of the remaining adjacent labels. To achieve this, we modify
the gain function used by Grad-CAM to accommodate both maximizing and minimizing

label groups, redefining it as the gradient of an optimization function J, with respect to the

k

activating signal A;;, where J. is the subtraction between the positive score for label ¢ and

the scores of the remaining labels represented within sample x.

Definition Let x be a sample from a dataset associated with the set of classes C, c € C,,
a class of interest and N, = C,; \ {c}. At the same time, let f be a trained convolutional
network such that A¥ = [af]] mxw is the activation map for the k-th kernel in the last con-
volutional layer, W = [w{] is the weight matrix of the sigmoid classifying layer, containing
synaptic values that linearly associate the positional signal A* to the classification signal

for class c. In these conditions, the classification score for ¢ is given by:

S = f()e = Y upy - (41 (17)

k

We consider the focused score for label ¢ as the subtraction between the score S, and
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the average score of the remaining classes present in N,:

J. = Z S, (18)

rLEN

Finally, MinMax-Grad-CAM is defined as the combination of activation signals A*,

weighted by their respective contributions to the objective function J,:

. 0.,
MinMax-Grad-CAM(f7 (E) = ReLU( k Ak) (19)
ij

On the other hand, we remark that J. is a linear function with respect to Sy, Vk € C,:

aJ.
0AL, aAk B Z (20)

Hence, MinMax-Grad-CAM can be rewritten in its more efficient and direct “CAM form”
(as demonstrated by Selvaraju et al. [62]), for convolutional networks where the last layer

is a linear classifier. In this form, Equation (19) simplifies to:

MinMax-CAM —ReLU(Z wy; — \N | Z wy; Ak) (21)

k nEN,

In conformity with the literature, we employ the ReLU function in both forms, only

retaining regions that positively contribute to the maximization of function .J..

Reducing Noise by Removing Negative Contributions Let ¢* = GAP(AZ) be a
positional-invariant signal describing the evidence of occurrence for a given data pattern
k. If the ReLU activation function (or any other non-negative function) is used in the last
convolutional layer, then ¢* is positive, and wj > 0 invariably associate the classification of
class c to kernels that positively contribute to it. Conversely, wj < 0 indicate kernels that
negatively contribute to the classification of c.

When the contributions for classes n € N, are naively subtracted in Equations (18)

and (21), negative weights (or gradients) become positive, producing inadvertently a resid-
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ual highlighting over regions that negatively contribute for the classification of n. We can
mitigate this noise by decomposing the contribution factors af, into (a) positive, that pos-
itively contribute for the classification of ¢, (b) negative, that positively contribute for the
classification of n € N,, and (c) overall negative, that negatively contribute for the classifi-
cation of all classes, frequently overlapping background regions in our experiments.

An alternative form (which we denote as D-MinMax-Grad-CAM, for the remaining of

this work) can then be formally defined as:

L MinMax-Grad-CAM = ReLU( Z QZAk) (22)

where

ag=%" {ReLU(aAk) ke eLU( ez; gj%) —I—ﬁmin(& > gjﬁ )] (23)
ij n T K - n

Finally, a CAM derivation is also possible:

1
aj = |ReLU(wy) — mReLU( E wy) + mm (0, E wy } (24)
i neEN, neCy

Figures 5 and 6 exemplify visualization maps obtained from the application of various
techniques over a few samples in the Pascal VOC 2012 and VOC 2007 datasets, respectively.
While Grad-CAM++ and Score-CAM generated confusing maps, in which the explaining
signal overflow the boundaries of the object of interest and even cover large portions of
the scenario, MinMax-CAM produced more focused activation maps, where class-specific
highlighting avoided objects of different classes. Meanwhile, D-MinMax-CAM has effectively

reduced the residual activation over non-salient objects and background regions.

B.1.2 Quantitative Results

In this section, we report the evaluation results for well-established CAM-based tech-
niques (CAM, Grad-CAM++, Score-CAM), while comparing them to MinMax-CAM and

D-MinMax-CAM. We then discuss the properties and limitations of our technique.
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Input CAM Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

Figure 5: CAMs produced by various CAM-based methods over Pascal VOC 2012 dataset.
Predictions are, from top to bottom: bicycle, person, motorbike, person, dining table, chair,
tv, person and sofa. Source: David et al. [16].

Evaluation Over Distinct Architectures Table 3 enumerates these results over VOC07
validation set, considering the EfficientNet-B6 (Eb6), ResNet-101 (RN101) and VGG16-
GAP (VGG16) architectures. We observe that Grad-CAM++ and Score-CAM result in the
highest %IC for most architectures (two out of three). For EfficientNet-B6, CAM obtained

the highest value for this metric (39.67%), closely followed by D-MinMax-CAM (39.49%).
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Input CAM Grad-CAM++ Score-CAM MinMax-CAM D MinMax-CAM

Figure 6: Attention maps produced by various CAM-based methods over Pascal VOC 2007
dataset. Predictions are, from top to bottom: person, train, motorbike, person, chair, and
dining table. Source: David et al. [10].

For the remaining architectures, MinMax-CAM and D-MinMax-CAM present slightly lower
%IC than CAM, while always losing to Grad-CAM++ and Score-CAM.

CAM, Grad-CAM++ and Score-CAM obtain the best %AD and %AR scores, as these
metrics favor methods producing diffuse activation maps. Grad-CAM++ and Score-CAM

obtained a significantly lower %AD compared to the remaining techniques, while CAM
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Table 3: Score report for multiple architectures over the VOCO07 dataset. Source: David et
al. [16]

Metric Model CAM Grad-CAM++ Score-CAM MinMax-CAM D-MinMax-CAM

Eb6 39.67% 25.13% 30.50% 34.23% 39.49%
%IC RN101 27.68% 31.03% 40.76% 26.61% 23.83%
VGG16  5.65% 8.27% 12.78% 4.18% 3.76%
Eb6 22.94% 36.87% 22.10% 28.09% 23.71%
%AD  RN101 25.24% 17.90% 10.79% 32.58% 39.25%
VGG16 39.34% 29.22% 19.27% 46.78% 50.34%
Eb6 29.43% 19.35% 20.17% 39.82% 31.99%
%ADO RN101 32.73% 12.48% 14.72% 44.03% 46.49%
VGG16 29.61% 18.52% 15.74% 39.33% 39.50%
Eb6 11.74% 8.40% 9.92% 10.50% 9.10%
%AR RN101 16.54% 14.04% 14.94% 14.27% 12.00%
VGG16 40.38% 39.04% 42.70% 33.82% 31.00%
Eb6 1.61% 2.53% 2.28% 0.99% 1.47%
%ARO RN101  2.44% 3.94% 3.43% 1.28% 1.16%
VGG16  8.84% 12.10% 12.96% 3.47% 3.34%
Eb6 2.82% 4.54% 1.91% 1.86% 2.64%
Fi— RN101  4.05% 5.62% 2.20% 2.38% 2.21%
VGG16 13.52% 15.39% 13.42% 6.23% 6.00%
Eb6 15.79% 10.14% 5.96% 15.40% 12.96%
Fi+ RN101 20.84% 11.97% 6.89% 19.85% 17.13%
VGG16 31.70% 23.50% 22.19% 32.16% 29.94%

obtained marginally higher %AR scores than both MinMax alternatives, indicating that
Grad-CAM-++ and Score-CAM are better at covering the characteristic sections of objects,
while CAM and MinMax produce activation maps with lower relative coverage.

Conversely, MinMax consistently achieves better results for %ADO and %ARO, as these
metrics favor methods that produce more focused class-specific maps. When considering the
F}— metric, MinMax result in the best scores for two out of the three architecture, scoring
significantly lower than CAM and Grad-CAM++-, which further indicates that they are
quite successful at removing regions containing objects associated to the classes N, while
still focusing on determinant regions for the classification of ¢. Finally, while Score-CAM
presents the best F}— score for the RN101 architecture (2.20%), MinMax and D-MinMax-
CAM closely approximate this result (2.38% and 2.21%, respectively).

CAM and MinMax-CAM present the highest F;+ score, closely followed by D-MinMax-

CAM. Moreover, the Grad-CAM++ and Score-CAM techniques present noticeably lower
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scores for this metric, indicating that CAM, MinMax-CAM and D-MinMax-CAM are more
successful in covering large portions of objects associated with class ¢ without spreading

over objects of adjacent classes.

Evaluation Over Distinct Problem Domains Table 4 displays results for the vari-
ous explaining methods and datasets. Once again, CAM, Grad-CAM++ and Score-CAM
produce the best %IC, %AD and %AR values. We attribute this to the proclivity of these
techniques to retain large portions of the image, maintaining contextual information of the
sample. Conversely, D-MinMax-CAM wins against the literature techniques by a large mar-
gin when considering %ADO, %ARO and F;— score. Finally, CAM and MinMax-CAM
present similar results for F}+ score, consistently ahead of Grad-CAM++ and Score-CAM.

CAM, Grad-CAM++, MinMax-CAM and D-MinMax-CAM were evaluated in under 30
minutes, when considering the Pascal VOC 2007, VOC 2012 and MS COCO 2017 datasets,
with no significant difference in performance being observed between them. Conversely,
Score-CAM entailed a considerable higher execution time, considering its high computa-
tional footprint, taking approximately 16 hours and 29 hours to complete over VOC07 and
P:UAS, respectively, and over 59 hours to complete over COCO17 and HPA.

B.1.3 Reducing Shared Information between Classifiers

MinMax-CAM works under the assumption that two distinct classes are not associated
with the same set of visual cues present in a single region in the input image. Hence,
the contributions being subtracted are associated with different parts of the spatial signal
Ak and the resulting map is more focused than its counterpart generated by CAM. This
assumption does not hold when a network has not learned sufficiently discriminative patterns
for both labels, which can be caused by an unbalanced set or a subset of frequently co-
occurring labels [7]. For instance, tvs frequently co-occur with chairs, which may induce
the model to correlate the occurrence of the latter with the classification of a former, hence
degenerating CAMs (Figure 7a).

Although class co-occurrence and contextual information might present useful informa-
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Table 4: Report of metric scores over multiple datasets. Results expanded from David et
al. [16]

Metric Dataset CAM Grad-CAM-++ Score-CAM MinMax-CAM D-MinMax-CAM

P:UAS  6.09% 7.05% 11.59% 6.22% 6.27%
qic  COCO17 30.21% 32.98% 44.69% 23.12% 19.20%
VOC07T  27.68% 31.03% 40.76% 26.61% 23.83%
VOC12 27.75% 25.40% 35.10% 24.70% 21.66%
HPA 8.64% 9.29% 11.27% 7.63% 5.89%
P:UAS  55.25% 49.00% 43.37% 64.24% 66.88%
%AD COCO17 27.42% 17.56% 9.62% 40.22% 47.43%
VOCO07  25.24% 17.90% 10.79% 32.58% 39.25%
VOC12  24.47% 18.69% 10.60% 29.17% 34.22%
HPA 49.78% 47.02% 41.50% 54.16% 64.21%
P:UAS  43.61% 33.67% 34.06% 60.04% 60.62%
%ADO COCO17 51.49% 20.59% 24.45% 68.04% 71.90%
VOC07 32.73% 12.48% 14.72% 44.03% 46.49%
VOC12  36.44% 14.92% 18.46% 43.65% 45.02%
HPA 24.01% 18.95% 17.07% 29.46% 39.50%
P:UAS  46.42% 49.45% 48.01% 37.16% 32.74%
%AR COCO17 27.70% 25.60% 26.64% 24.44% 22.79%
VOC07  16.54% 14.04% 14.94% 14.27% 12.00%
VOC12  16.23% 14.71% 16.22% 14.60% 13.06%
HPA 29.15% 28.49% 30.59% 25.60% 15.44%
P:UAS  25.48% 29.46% 28.13% 20.84% 18.55%
%ARO COCO17 5.26% 7.92% 7.711% 3.31% 3.13%
VOC07T  2.44% 3.94% 3.43% 1.28% 1.16%
VOC12  2.29% 3.76% 3.32% 1.21% 1.14%
HPA 6.69% 9.32% 10.56% 3.60% 1.32%
P:UAS  30.68% 32.07% 28.46% 28.35% 26.42%
g COCO17 8.23% 9.94% 7.39% 5.82% 5.64%
1 VOC07  4.05% 5.62% 2.20% 2.38% 2.21%
VOC12 3.89% 5.70% 4.30% 2.26% 2.17%
HPA 10.89% 14.26% 15.10% 6.45% 2.54%
P:UAS  39.54% 35.11% 35.41% 41.00% 37.01%
Fii COCO17 34.05% 21.45% 23.82% 34.07% 32.44%
1 VOCO07  20.84% 11.97% 6.89% 19.85% 17.13%
VOC12  21.25% 13.87% 16.39% 20.25% 18.60%
HPA 22.85% 18.30% 18.29% 22.71% 18.79%

tion towards the improvement of classification efficacy, these artifacts tend to cause unex-
pected highlighting in regions that do not contain the objects associated with classes of
interest. Hence, they may also imply in the diminishing the precision of localization cues

provided by CAMs, increasing the number of false positive pixels [7].
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Input CAM MinMax-CAM D-MinMax-CAM

Figure 7: (a) Failure example in VOCOT: contributing regions for chair collide with the
ones for tv. (b) CAMs from a model trained with KUR. Source: David et al. [10].

Imprecise CAMs are mitigated by solutions that reinforce the learning of patterns that
exclusively describe one or few classes, while penalizing the internalization of contextual
patterns, which describe more than a single class at the same time. Examples are the
various augmentation strategies based on sample combination, such as MixUp [94] and
CutMix [39]); the context decoupling strategy proposed by Su et al. [68], in which objects
are pasted outside their usual context; and the experiments conducted by Chan et al. [7],
which evaluated the effect of “balancing” the class distribution — by removing samples
containing highly correlating labels — over the DeepGlobe segmentation task [17].

Conversely to the aforementioned data-based strategies, we propose an architectural
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change that reinforces positive and sparse values in the weight matrix W, while striving for
mutually exclusive usage of the visual signals ¢g*. These properties are simple and intuitive:
The occurrence of visual evidence associated with classes in C;, \ {c} should not affect the
classification score of a given class ¢. At the same time, invariance between classification
score and the absence of evidence of other classes can be reinforced by discouraging the
formation of negative associations (weights).

Let K be the number of kernels in the last convolutional layer, C' be the number of
classes in the dataset, g = [¢*]x be the feature vector obtained from the pooling of last
convolutional layer, W = [w§]xxc and b = [b.]c the weights from the last dense layer and
o the sigmoid function. We define the regularization of the weights of the sigmoid classifier,

namely Kernel Usage Regularization (KUR), as follows:

W™ =W o softmax(W) (25)
25

y=o(g-W"+0b)

When softmaz is applied over each vector Wy, high values wj, — implying a strong
association between g* and S. — will induce softmax(wy)® ~ 1, and thus w§ =~ w§. As
the softmazx function quickly saturates over a few large values, the remaining associations
quickly tend to 0, erasing the influence of the activation signals A* over S,,,Vn € [0,C]\ ¢).
Finally, negative values wf, should have low softmaz(wy)¢, hence wfr =~ 0.

Figure 7D illustrates CAMs learned by a model trained with KUR. As the simultaneous
usage of same kernels for distinct classification units have been regularized, subtracting
contributions no longer distort the maps for any of the labels. Activations for the class chair,
in special, are no longer shifted onto the floor. Moreover, Figure 8 illustrates the correlation
between the weight classifying vectors, for both vanilla and KUR models. Classifying vectors
are much less correlated for the model trained with KUR, indicating they are now effectively

using distinct activation signals in their decision process.
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Figure 8: Correlation between weight vectors of sigmoid classifying layers of (a) an unreg-
ularized model, and (b) a model whose training was regularized with KUR.

B.1.4 Counterbalancing Activation Vanishing

In spite of the observed effectiveness in separating the available kernels between the classi-
fying units for the VOC 2007, VOC 2012 and P:UAS datasets, its decrease in F1 score over
the COCO 2017 dataset is troublesome. Upon closer inspection of this particular model, we
observed that kernel usage regularization inadvertently causes the weights to vanish when
the number of classifying units is high. This is due to the softmaz function being initially
evenly-distributed, with softmax.(z) ~ % Hence, for a large number of classes ¢, the ini-
tial weights are aggressively pushed towards zero, which obstructs the training process and
severely compromises the solution candidate found.

However, we can counter-balancing the effect of the initial configuration of the softmaz
function over the signal distribution by simply multiplying the regularized weights by a
scaling factor «, resulting in the restoration of signal’s variance. For a = C' (the number of

1

classes), we expect weights to sustain their original variance, as ¢ x softmax.(w) ~ c; = 1.

Figure 9 illustrates the weight distribution for the baseline, KUR and KUR-«, for a = C.
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Figure 9: Weight distribution for vanilla and (kernel usage) regularized weights, for multiple
output units.

Table 5: Multi-label classification score over multiple datasets, considering the baseline and
regularized (KUR) models. Results expanded from David et al. [10]

Metric Dataset Baseline KUR
F VOCO7 Test 84.26% 85.85%
Fi VOC12 Val 85.05% 85.90%
5 P:UAS Val 87.80% 88.24%
133 P:UAS Private Test  89.22% 89.81%
Fy P:UAS Public Test 89.62% 90.10%
I3 COCO17 Val 75.64% 74.23%
F HPA Private Test 36.05% 35.54%
Fi HPA Public Test 39.72% 39.46%

B.1.5 Results

Table 5 reports the Fy and Fy scores over validation and test sets (when available) for
both baseline and regularized models. We see a slight increase in Fj and Fy score in
most cases, indicating that this regularization has positive impact on overall score of the
classifier. Conversely, a noticeable decrease in score can be observed for the COCO17
dataset, which is associated with the high number of classes present in this set, implying an
aggressively regularized training. By retraining the RN101 architecture over the COCO17
dataset, regularized with KUR-a s.t. a = 80, we obtain a F; score of 75.55%. Finally, a
decrease in I} score when evaluated the vanilla and KUR models over the HPA private and
public test subsets is also noticeable, although small. We hypothesize that better results
can be achieved with a careful finetune of hyperparameters (such as learning rate and «).

Examples of Class-specific Activation Maps extracted from COCO17 dataset by various
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Grad CAM++ Score CAM Minkax CAM D MinMax CAM

Figure 10: CAMSs generated for the MS COCO dataset.

visualization techniques are illustrated in Figure 10. Once again, we observe more focused
visualization maps for MinMax-CAM and D-MinMax-CAM: the persons next to the buses

(first two rows) and the tennis racket (third and forth rows), as well as the multiple objects
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Figure 11: CAMs generated for the HPA dataset.

in the street scenario (last four rows). On the other hand, examples of visualization maps
extracted from the HPA dataset are presented in Figure 11. We observe Grad-CAM-++,

Score-CAM, and CAM, but to a lower extent, producing similar explaining maps for many
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of the examples of this set, which is also supported by their close score results reported
in Table 4. Maps for different classes in the same sample seem to frequently highlight the
same salient regions, indicating these are, indeed, not class-specific. At the same time,
MinMax-CAM presents distinct class-specific maps in a single sample, for most examples.
Table 6 displays the results over multiple datasets, employing a RN101 network trained
with KUR. Score-CAM score the highest for %IC on all but one set, while Grad-CAM++
obtains the second place among most evaluations. CAM closely follows the two best-placed
techniques, while achieving the best score over the P:UAS dataset. D-MinMax-CAM shows
the best F;— scores in all datasets but one, staying in third place with a difference of 0.53
percent points from the winner (Score-CAM). Finally, MinMax-CAM and D-MinMax-CAM
showed the best results in 3 out of 5 tests for the F}+ score, while achieving a similar score
to the winner (CAM) over VOCO07, and the worst results when evaluated over HPA.
When comparing the results from regularized models to the ones obtained from their
unregularized counterparts, we observe an overall increase in both %IC and Fj+ score for
most CAM techniques and datasets. Notwithstanding, F} — score results improved for 9 out
of 25 tests, while staying relatively similar over VOCO07 and VOC12. Finally, it is noticeable
the decrease in difference between the results from MinMax-CAM and D-MinMax-CAM,
across all metrics and datasets. This can be attributed to the regularization factor, which
penalizes the existence of negative weights, approximating max(0,w§) to w§ and, thus,

D-MinMax-CAM to MinMax-CAM.

B.2 Contributions on Weakly Supervised Segmentation

In this section, we discuss forms to combine and extend WSSS methods. In order to provide
a fairer comparison with literature and more reliable estimation of the effectiveness of the
approach over truly WSSS problems, we re-evaluate Puzzle without the aforementioned
early stopping mechanism in Table 7. For the remaining of this work, we denote this “fair”

alternative as Puzzle' (or PY).

55



Table 6: Report of metric scores per visualization technique, over multiple datasets. Classi-
fication models were regularized with KUR, during training. Results expanded from David
et al. [16]

Metric Dataset CAM Grad-CAM-++ Score-CAM MinMax-CAM D-MinMax-CAM

P:UAS 15.60% 14.39% 14.13% 11.43% 11.54%

qic  COCO17 34.43% 36.81% 37.87% 21.47% 21.49%
VOC07 28.71% 28.07% 34.93% 23.90% 24.99%
VOC12  33.32% 34.90% 37.30% 29.54% 29.36%

HPA 11.19% 15.73% 17.55% 10.31% 5.79%
P:UAS  42.51% 42.67% 39.50% 51.96% 52.53%

%AD COCO17 22.52% 19.86% 13.91% 41.29% 41.39%
VOC07  22.89% 18.65% 11.69% 29.80% 34.19%
VOC12  16.09% 15.32% 10.46% 22.22% 22.85%

HPA 46.41% 42.61% 39.81% 49.92% 59.99%

P:UAS  38.31% 35.46% 35.21% 49.58% 49.51%
%ADO COCO17 46.97% 37.63% 25.57% 69.17% 69.28%
VOC07  37.30% 20.06% 17.27% 47.16% 48.60%
VOC12  29.66% 21.89% 15.95% 42.07% 42.46%

HPA 27.23% 21.51% 20.76% 32.38% 33.43%

P:UAS  47.28% 46.50% 43.61% 43.17% 43.01%

%AR  COCO17 34.40% 34.21% 28.13% 30.05% 30.04%
VOC07  18.64% 17.35% 16.91% 16.02% 14.72%
VOC12 18.66% 18.37% 17.72% 17.10% 16.99%

HPA 26.49% 26.52% 25.73% 23.91% 13.57%

P:UAS  25.43% 26.35% 26.80% 20.79% 20.72%

%ARO COCO17 7.14% 7.85% 11.36% 4.24% 4.23%
VOC07  2.44% 3.45% 3.95% 1.35% 1.22%
VOC12 2.59% 2.89% 4.00% 1.22% 1.20%

HPA 7.62% 10.12% 10.24% 5.00% 1.53%

P:UAS  27.02% 27.68% 26.62% 26.86% 27.15%

. COCO17 10.08% 10.38% 11.15% 7.33% 7.33%
1 VOC07  4.12% 5.41% 2.69% 2.47% 2.28%
VOC12  3.97% 4.30% 4.96% 2.24% 2.21%

HPA 11.86% 14.03% 13.48% 8.49% 2.92%

P:UAS  36.53% 35.05% 34.46% 39.15% 39.03%

oy Coconr 38.08% 34.42% 25.19% 40.64% 40.65%
1 VOC07  23.89% 17.87% 8.10% 22.38% 20.97%
VOC12  21.99% 19.28% 16.24% 22.84% 22.78%

HPA 23.52% 20.56% 19.96% 23.38% 15.65%

B.2.1 Combining Regularizing Strategies

While Puzzle expands the spatial activation signal onto all parts of salient objects, OC-
CSE regularizes the contours and boundaries of the produced activations, resulting in a

better separation between objects of different classes. Thus, we remark these two tech-
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niques as complementary, and we raise the hypothesis that combining them can mitigate
the class-specificity problem found in Puzzle, while maintaining a high completeness and,
thus, implying on more precise semantic segmentation proposals. Formally, we define the

P-OC training strategy as the optimization of the following objective functions:

£P—OC = ‘Ccls + Lre—cls + £re + /\cseLcse
(26)

= ebce(pia yz) + gbce(p;?e, yz) + >\re||Ai - A?Hl + )\cseébce(pi, :gz)

where y; and p; are the target and estimated posterior probabilities associated with sample
x;, respectively; and p; is the posterior probability vector predicted by the oc, when presented
with the z; masked by the activation mask of ¢, and g; = y; \ {cx}-

—» forward
GAP re - - backward

£ training (oc fixed)

Fﬂn. ......................

tilin Lo
—_— —_ re-cls
| . T -
['re 4

l(
&

> GaPeay P

oc training (7 fixed) 1'Mf*) > Boc

Figure 12: Overview of our adversarial training setup, in which f is optimized considering
both Puzzle module and the ordinary classifier oc. f is sub-sequentially fixed and oc is
updated to shift its attention towards regions currently ignored by f.

Subsequently, we consider an adversarial training setup where oc is gradually fine-tuned
to associate images containing partially masked objects to their original classes, making oc
a “not so ordinary” classifier. This strategy (namely P-NOC), illustrated in Figure 12 and
detailed in Algorithm 1.

In summary, P-NOC is trained by alternatively optimizing two objectives:

Ly= E(m,y)ND,rw,/[/:P + Acselas (%9, y \ {r})] (27)

Lroc = E(r,y)ND,rwyP\nocgcls(pnoc, y)] (28)
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where p"°® = oc(x o (1 — P(A”) > dnoc))-

By refining noc to match the masked image to the label vector y, in which y" = 1,
we expect it to gradually shift its attention towards secondary (and yet discriminative)
regions, and, thus, to provide more useful regularization to the training of the generator.
Concomitantly, we expect f to not forget the class discriminative regions learned so far,
considering (a) its learning rate is linearly decaying towards 0; and (b) the degeneration of

the masks would result in an increase of L.

Algorithm 1 Proposed P-NOC algorithm

Require: Training set D = {X, )Y}, CAM generating networks f and noc, knoc € N, dpoc €
(0,1)

1: 140
2: while not done do
3: Sample a batch (z;,y;) from D, and r from y;

4: // Fix noc and train f

5: Compute AS = f(z;), A*; = merge(f(tile(x;)))
6: Compute Lp.oc loss from Eq. (26)
7 Update weights of f by VLp.oc

8: 1+—1+1

9: if i« mod k. = 0 then

10 // Fiz f and train noc

11: I; =x;0 (]. — 1/)(14:) > 5n0c)

12: Compute L. from Eq. (27)

13: Update weights of noc by V.L,oc
14: end if

15: end while

B.2.2 Deriving Saliency Information

The considerable improvements obtained by CZAM [34], as well as various works in re-
lated literature [10,32,39,43,53,69], indicate that the utilization of saliency information as
complementary information is advantageous for the solution of WSSS tasks. We are thus
encouraged to expand upon CZAM.

We propose to utilize saliency hints extracted from models trained in the weakly super-
vised scheme. Our approach is inspired by recently obtained results in the task of Semi-

Supervised Semantic Segmentation, in which a teacher network is used to provide additional
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annotation for the training of a student network [79]. More specifically, we leverage the seg-
mentation prior generating models previously trained to extract the spatial Class-Specific
Activation Maps A¥ (CAMs), for every image x; in the dataset. The maps are interpolated
to match the spatial sizes of z;, and sub-sequentially reduced, where the maz pooling op-
eration is applied onto k, resulting in maps that hint (most likely) salient regions. Given
the previously observed lack of completeness in CAMs, only regions associated with a high
activation intensity are considered as fg hints, and thus used to reinforce a strong output
classification value for the disentangling branch.

We define C2AM-H as an extension of C2AM, in which fg hints are employed to guide
training towards a solution in which salient regions are associated with high prediction
values from d (anchored), and all salient objects are contained within the same partition.
In practice, this implies in the addition of a new objective function in Eq. (7): the cross-
entropy loss term between the collected hints g;, for i € [b, b4+n) and the posterior probability

predicted by d. C2AM-H is trained with the following loss function:

‘ngAM—H = ‘Cllasos—f + ‘c}l)sos—b + ‘Crllseg + )‘h Z Z H[A;L“’>6fg]£bCe(?zhw7pzhw) (29)
i€b h,w

where 1 A0S is a mask applied to ensure only regions associated with a normalized
activation intensity higher than d¢, are considered as foreground hints.

Figure 14 illustrates a few examples of saliency maps produced by the saliency detec-
tion model trained with C2AM-H. An increase in quality of the maps is noticeable, when

compared to the ones obtained by applying the mazimum operation over CAMs.

Guiding Random Walk using Saliency Maps Originally, affinity maps — used in the
training of the AffinityNet model [3] — are devised by applying the dpy and d¢, thresholds
over CAMs to determine core regions (likely depicting bg or fg regions, respectively). Going
in a different direction, we propose a slight modification to this procedure that incorporates
the saliency maps obtained from CZAM-H: we leverage the saliency maps to more accurately

determine bg regions in an image, and combine them with the confident fg regions to produce

59



Figure 13: Comparison between the different affinity maps obtained from RS269 trained
with P-OC+ws. From left to right: (a) images and ground-truth segmentation; (b) affinity
labels devised from priors; (c) affinity labels refined with dCRF; and (d) affinity labels
obtained using both C2AM-H and dCRF.

the affinity maps.
Figure 13 illustrates affinity maps produced by both conventional and modified ap-

proaches (3rd and 4th columns, respectively): Many of the background regions, previously
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Figure 14: Saliency maps generated by the PoolNet model, trained over saliency priors from
C2AM-H (hints from P-NOC1s).

marked as unknown when considering CAMs, are now correctly assigned to bg. An increase

in fidelity to semantic boundaries is also noticeable.

B.2.3 Quantitative Results

Table 7 illustrates mloU measured at the end of each training epoch, considering various
architectures and training strategies. For performance purposes, samples are resized to a
common frame, and Test-Time Augmentation (TTA) is not employed. Hence, the interme-

diate measurements are estimations of the true scores (represented in the last column).

Table 7: The mIoU (%) values measured in each epoch over Pascal VOC 2012 train set,
for each architecture (ResNeSt101 (RS101) and ResNeSt269 (RS269)) and training strategy
(RandAugment (RA), Puzzle (P), and Puzzle-OC (P-OC)). Scores for Pfand P-OC were
averaged among three distinct runs for increased stability.

Strategy El1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 Max TTA
RS101 RA 48.7 48.2 50.5 50.4 49.1 49.5 49.2 49.8 41.0 48.9 48.7 49.4 48.9 49.2 49.2 50.5 54.8
RS269 RA 47.3 49.0 49.3 49.2 49.2 48.8 48.7 48.7 48.6 48.7 48.7 48.2 48.0 48.1 48.1 49.3 53.9
RS101 P 50.2 51.7 53.0 53.3 55.0 53.8 54.5 54.7 54.0 55.0 54.6 55.1 55.6 55.0 55.4 55.6 61.9
RS269 P 50.7 53.0 53.9 56.0 55.0 56.3 54.7 55.1 56.8 57.6 56.1 56.0 57.0 55.6 56.8 57.6 62.0
RS101 Pf 50.4 51.4 53.2 53.4 52.5 52.9 54.0 54.7 54.2 51.8 53.8 54.7 54.2 54.6 54.9 54.9 59.4
RS269 P! 50.4 52.5 54.3 53.9 55.5 55.9 55.4 56.1 56.3 57.0 55.6 56.7 55.2 56.7 56.2 57.0 60.9

RS101 P-OC 49.6 50.3 51.5 51.8 52.5 51.5 49.0 49.9 53.2 52.5 53.4 54.2 54.9 55.5 56.0 56.0 59.1
RS269 P-OC 49.0 51.1 52.6 53.6 54.1 53.8 51.9 54.8 55.2 55.7 54.1 55.6 57.0 57.0 57.4 57.4 61.4
RS269 P-OC+1s  50.6 52.5 53.5 54.3 53.9 55.0 55.2 55.3 56.4 56.1 55.8 56.2 55.9 57.5 58.5 58.5 61.8
RS269 P-NOC+Ls 50.6 52.2 53.5 55.6 56.3 56.5 57.2 55.8 57.1 57.6 58.7 58.7 58.6 58.6 58.5 58.7 62.7

RandAugment (RA) and Puzzle (Pf) present saturation on early epochs, and a significant
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deterioration in mIoU for the following ones. On the other hand, Combining Puzzle and
OC-CSE (P-OC) induces a notable increase in mIoU for all architectures, with performance
peaking on the last epochs. On average, P-OC obtains 61.44% mloU when TTA is used,
lower than the original Puzzle (62.04%), but 0.55 p.p. above its fair counterpart (60.89%).
Adding label smoothing to P-OC (P-OCws) improves TTA score by 0.34 p.p. (61.77%).
Finally, training OC (P-NOCws) results in 62.67% mIoU (0.90 p.p. improvement).

Figure 15 displays the variance in overall mIoU of priors when the fg threshold is changed.
P! is only marginally better than the baseline, while P-OC and P-NOC display higher area

under the curve, indicating that they are more robust to variations in the threshold.

mloU
= RA (train) = Pf (train)
P (train, unfair) == P-0C (train)
= P-0C+ls (train) P-NOC+ls (train)
60
50 Z7
40
30
20
10
threshold
0
0.2 0.4 0.6 0.8

Figure 15: Curve of mloU measured over Pascal VOC 2012 training set, considering multiple
choices of threshold.

Table 8 contains the mIoU scores per class, for each one of the aforementioned models.
Class and group statistics are also displayed for comparison purposes. Puzzle shows the
best score for singleton and large classes, while adding OC-CSE induces a considerable score
increase for small and mid-sized classes, as well as classes occurring in the room group.

Table 9 displays the mlIoU results for saliency detection models trained from pseudo
saliency maps produced by the baseline [34] (C2AM) and C?AM-H models, trained with
additional fg hints. The combination of C2AM with priors from RS269 Pf induces a score
decrease when compared to the baseline RN50 P (0.23 p.p.) and RS269 P (1.18 p.p.).
Conversely, RS101 RA and RS269 P-OC improve mloU, with the latter achieving the highest

mloU observed (67.31%, 1.81 p.p. above the baseline).
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Table 8: Scores (in IoU) measured over the Pascal VOC 2012 train set, per method. Class-
specific properties, such as the avg. relative size (%S), class co-occurrence rate (%C) and
avg. label set cardinality (L) are listed for inspection purposes.

Class Group Size %S %C L RA P P/ P-OC P-OC4rs P-NOCirs

bg - - 69.5 - -| 81.0 85.6 86.0 86.1 85.6 86.1
a.plane singleton mid 11.8 9.1 1.1| 47.5 60.9 614 62.1 62.3 59.8
bicycle traffic small| 6.4 769 2.2 322 41.2 386 44.6 45.0 39.9
bird singleton mid 11.8 114 12| 495 69.7 714 63.6 62.8 68.6
boat p-rel small| 10.8 32.1 14| 40.8 45.2 51.3  50.9 43.9 48.5
bottle bottle small| 9.5 70.1 23| 49.0 56.9 56.0 59.2 65.9 65.9
bus traffic large | 31.5 51.3 1.7| 72.1 79.6 784 78.8 75.1 79.9
car traffic mid 15.5 61.7 19| 62.6 74.2 704 72.5 74.6 75.9
cat singleton large | 28.6 26.0 13| 54.8 82.6 83.7 80.8 79.8 83.1
chair  room small | 10.6 87.8 2.4 30.7 289 27.2 21.6 23.1 27.0
cow p-rel mid 18.0 29.7 14| 55.1 71.5 73.6 70.1 70.6 71.6
table  room large | 22.5 95.1 2.6| 52.5 49.6 39.2 44.4 51.0 50.9
dog p-rel large | 19.8 38.0 15| 61.3 78.8 80.8 80.9 76.9 77.9
horse  p-rel large | 19.1 47.1 1.6| 55.9 67.7 69.0 69.6 69.8 70.1
m.bike traffic large | 19.6 56.8 1.7| 67.8 744 73.2 78.2 76.6 73.7
person person  mid 15.2 83.0 21| 63.6 57.0 50.3 67.1 70.2 54.4
p-plant room small| 11.2 63.4 2.1| 46.8 57.8 56.3 45.1 57.2 57.2
sheep  p-rel large | 19.7 19.0 1.3| 55.3 75.0 75.9 78.2 73.9 72.2
sofa room large | 21.6 80.6 2.4| 50.0 40.9 35.5 40.1 34.8 44.4
train  p-rel large | 26.6 20.5 1.2| 63.9 68.9 68.2 63.4 50.9 68.1
tv room mid 15,5 65.1 21| 386 36.5 33.8 43.6 49.8 42.0
overall 19.8 51.2 1.8| 53.9 62.0 61.0 61.9 61.9 62.7
small 9.7 66.1 21| 399 46.0 459 443 47.0 47.7
mid 146 433 16| 52.8 61.6 60.1 63.2 65.1 62.0
large 23.2 483 1.7| 59.3 68.6 67.1 68.3 65.4 68.9
singleton 174 155 1.2| 50.6 71.1 722 68.8 68.3 70.5
p-rel 19.0 31.1 14| 554 67.8 69.8 68.8 64.3 68.1
room 16.3 784 23| 43.7 427 384 389 43.2 44.3
traffic 183 61.7 19| 58.7 67.3 65.1 68.5 67.8 67.4
p %S 100.0 -18.0 -23.4| 70.3 55.6 484  50.7 38.3 55.5
p %C -18.0 100.0 97.6(-22.9 -60.6 -71.0 -57.3 -42.9 -58.0
pL -23.4 97.6 100.0|-32.9 -66.0 -75.8 -65.4 -49.7 -61.9

To isolate the contribution of the saliency maps over the result, we also evaluate models
using the ground-truth (supervised) segmentation annotations (GT) as priors. Le., the

prediction for a given pixel in the image is considered correct if that pixel was predicted as
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salient and it is annotated with class ¢. Conversely, a pixel annotated with ¢ and predicted
as non-salient (or annotated as bg and predicted as salient) counts as a miss.

In this evaluation setup, the baseline (C2AM RN50) scored 65.03% mloU, while the
best strategy (C2AM-H, using hints from RS269 P-OCyw.s) achieves 71.70% mlIoU (a 6.67
p.p. increase). Replacing the architecture of CZAM (C2AM RS269), or using hints to
train the RN50 architecture (C2AM-H RN50) produced mixed results: a 2.02 p.p. score
reduction for the former, and a 1.39 p.p. score increase for the latter. We hypothesize this
has occurred due a representation deficit created when training with a reduced batch size,
and to an inability of the RN50 architecture to produce more detailed maps. Finally, the
best strategy (P-OC) achieves 69.22% mloU when combined with real priors, with only a

marginal difference to P-NOC.

Table 9: The ablation study for CZAM-H over VOC12 training set. Scores are reported in
mloU (%), considering both priors (P%) and maps refined with PoolNet (R%).

Method B.bone Hints CAM P% R%
C2AM RN50 . RN50 P 56.6  65.5
C2AM RN50 - RS101 RA 61.2  66.2
C2AM RN50 . RS101 P-OC 60.4 66.6
C2AM RN50 - RS269 P 60.3 66.5
C2AM RN50 - RS269 Pf 59.1  65.3
C2AM RN50 . RS269 P-OC 60.8 67.3
C2AM RN50 . RS269 P-OC+41s  61.2  67.2
C2AM RN50 - GT 63.4 65.0
C2AM RS269 - GT 61.4 -
C2AM-H RN50 RS269 P-OC GT 64.8 -
C2AM-H RS101 RS269 P-OC GT 69.6 -
C2AM-H RS269  RS269 P-OC GT 69.9 70.9
C2AM-H RS269  RS269 P-OCirs  GT 70.3  71.7
C2AM-H RS269  RS269 P-NOCirs GT 702 713
C2AM-H RS269  RS269 P-OC RS101 RA 66.5 66.2
C2AM-H RS269  RS269 P-OC RS101 P-OC 66.7 67.9
C2AM-H RS269  RS269 P-OC RS269 P-OC 66.8 68.6
C2AM-H RS269  RS269 P-OC RS269 P-OC+Ls  67.3 68.8
C2AM-H RS269  RS269 P-OC4s  RS269 P-OCivs 67.3  69.2
C2AM-H RS269  RS269 P-OCs+ts  RS269 P-NOC4rs 67.2  69.1
C2AM-H RS269  RS269 P-NOCsrs RS269 P-NOCirs 67.2 68.4

Table 10 describes the scores obtained throughout the different stages of training. The

utilization of saliency maps (P-OC C2AM-H) increases the mIoU of the pseudo segmentation
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Table 10: Ablation studies of pseudo segmentation masks, measured in mloU (%) over
VOC12 training and validation sets.

Method +LS +C?AM-H +NOC train (%) val (%)

P 73.74 72.31
pf 71.35 70.67
P-OC 73.50 72.08
P-OC v 71.45 70.15
P-OC v 73.90 72.53
P-OC v v 73.07 72.14
P-OC v v 73.31 72.83
P-OC v v v 73.59 73.37

masks by 0.40 p.p., and a DeepLabV3+ [12] model trained over those result in 74.34% and
71.38% mloU over the VOC12 training and validation sets, respectively. Finally, training
the Ordinary Classifier (+NOC) results in a 0.31 p.p. decrease in mloU over the training
subset, while increasing validation mIoU by 0.84 p.p..

Examples of segmentation maps predicted by the DeepLabV3+ model are illustrated in
Figure 16. High coverage and sensitivity to the semantic boundaries of objects is noticeable
for the classes person, dog, cat, horse, and car. Conversely, we observe failure segmentation
cases for the classes table and chair (with low coverage), and classes train and sofa, in which
their respective segmentation maps extrapolate their boundaries onto the background.

Table 11 shows IoU scores (per-class) obtained by the DeepLabV3+ model, when trained
with pseudo segmentation masks created from P-OC and P-NOC. Classes associated with (i)
small objects, (ii) complex and highly-detailed semantic boundaries, and (iii) often appearing
in cluttered scenarios often present lower than average mloU scores (e.g., bycicle, chair).
Conversely, classes associated with (i) large objects and singletones and (ii) simple convex

semantic boundaries often present high IoU scores (e.g., airplane, bird, bus, cat, dog, sheep).
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Figure 16: Segmentation results by DeepLabV3+, trained with priors obtained from P-OC and refined with C2AM-H and RW.

Table 11: Intersection over Union (IoU %) for each class in the Pascal VOC 2012 testing dataset.

bg plane bike bird boat bottle bus car cat chair cow table dog horse mbk. person plant sheep sofa train tv avg.
AffinityNet  88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.742.6 68.1 51.6 61.7
OC-CSE 90.2 82.9 35.1 86.8 59.4 70.6 82.578.187.4 30.179.4 45.983.1 83.4 757 73.4 48.1 89.3 42.7 60.4 52.3 68.4
AMN 90.7 82.8 32.4 84.8 59.4 70.0 86.7 83.086.9 30.1 79.2 56.6 83.0 81.9 78.3 72.7 52.9 81.459.8 53.1 56.4 69.6
ViT-PCM 91.1 88.9 39.0 87.0 58.8 69.4 89.4 85.4 89.9 30.7 82.6 62.285.7 83.6 79.7 81.6 52.1 82.026.5 80.3 42.4 70.9
MCT-Former 92.3 84.4 37.2 82.8 60.0 72.878.079.089.4 31.784.5 59.1 85.3 83.8 79.2 81.0 53.9 85.3 60.5 65.7 57.7 71.6
P-OC (ours) 91.6 86.7 38.3 89.3 61.1 74.8 92.0 86.6 89.9 20.5 85.8 57.0 90.2 83.5 83.4 80.8 68.0 87.047.1 62.8 43.1 724
P-NOC (ours) 91.4 86.7 35.2 87.8 62.9 71.6 93.0 86.3 92.3 30.4 85.8 60.7 91.7 81.7 82.7 66.3 65.9 88.848.7 72.544.5 72.7




