
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Javier Alvaro Vargas Muñoz

Large-Scale Indexing of High Dimensional Data via
Nearest Neighbor Graphs

Indexação de Grandes Coleções de Dados Altamente
Dimensionais usando Grafos de Vizinhos mais Próximos

CAMPINAS
2020

Javier Alvaro Vargas Muñoz

Large-Scale Indexing of High Dimensional Data via Nearest
Neighbor Graphs

Indexação de Grandes Coleções de Dados Altamente
Dimensionais usando Grafos de Vizinhos mais Próximos

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Ricardo da Silva Torres
Co-supervisor/Coorientador: Prof. Dr. Zanoni Dias

Este exemplar corresponde à versão final da
Tese defendida por Javier Alvaro Vargas
Muñoz e orientada pelo Prof. Dr. Ricardo
da Silva Torres.

CAMPINAS
2020

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Vargas Muñoz, Javier Alvaro, 1993-
 V426L VarLarge-scale indexing of high dimensional data via nearest neighbor graphs /

Javier Alvaro Vargas Muñoz. – Campinas, SP : [s.n.], 2020.

 VarOrientador: Ricardo da Silva Torres.
 VarCoorientador: Zanoni Dias.
 VarTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Var1. Método K-vizinho mais próximo. 2. Teoria dos grafos. 3. Análise por

agrupamento - Processamento de dados. 4. Programação genética
(Computação). I. Torres, Ricardo da Silva, 1977-. II. Dias, Zanoni, 1975-. III.
Universidade Estadual de Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Indexação de grandes coleções de dados altamente dimensionais
usando grafos de vizinhos mais próximos
Palavras-chave em inglês:
K-nearest neighbor
Graph theory
Cluster analysis - Data processing
Genetic programming (Computer science)
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Ricardo da Silva Torres [Orientador]
José Fernando Rodrigues Júnior
Altigran Soares da Silva
Esther Luna Colombini
Hélio Pedrini
Data de defesa: 12-03-2020
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-5809-4228
- Currículo Lattes do autor: http://lattes.cnpq.br/5385182122254592

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Javier Alvaro Vargas Muñoz

Large-Scale Indexing of High Dimensional Data via Nearest
Neighbor Graphs

Indexação de Grandes Coleções de Dados Altamente
Dimensionais usando Grafos de Vizinhos mais Próximos

Banca Examinadora:

• Prof. Dr. Ricardo da Silva Torres
IC – Unicamp

• Prof. Dr. José Fernando Rodrigues Júnior
ICMC – USP

• Prof. Dr. Altigran Soares da Silva
IComp – UFAM

• Profa. Dra. Esther Luna Colombini
IC – Unicamp

• Prof. Dr. Hélio Pedrini
IC – Unicamp

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 12 de março de 2020

Acknowledgements

I am sincerely grateful to Prof. Ricardo Torres and Prof. Zanoni Dias for their orientation
and advices during this research work. Also, I would like to thank to Prof. Marcos André
Gonçalves for his collaboration and contributions to this work.

I thank to my family, especially to my father, mother and brother John, that always
were supporting me.

I thank to my friends, especially to those from the “Rep-Vep” for helping me to reduce
the stress a bit during this doctorate period.

I thank the Prof. Helio Pedrini, Prof. Edleno Silva de Moura, and Dra. Fernanda
Andaló for their valuable comments and critique during the qualification exam process,
which were very important to improve the quality of this work.

I thank to Reasoning for Complex Data (RECOD) Laboratory and Institute of Com-
puting at Unicamp, for providing the infrastructure that make possible this research work.
Also, I would like to thank to the graduate program staff for their excellent work at sup-
porting students.

This work was partially funded by the National Council for Scientific and Technological
Development – CNPq (grant #164726/2018-7) and by the São Paulo Research Foundation
– FAPESP (grants #2014/12236-1, #2015/24494-8, #2016/50250-1, and #2017/20945-
0). I would also like to thank to the FAPESP – Microsoft Virtual Institute (grants
#2013/50155-0 and #2014/50715-9). This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001. I also
thank the Norwegian University of Science and Technology (NTNU) for its support.

Resumo

Uma tarefa comum em muitas tarefas relacionadas às áreas de Recuperação de Informa-
ção, Visão Computacional e Aprendizado de Máquina, que envolvem objetos multimídia
(p.ex., textos, imagens, vídeos), é a Busca dos Vizinhos Mais Próximos. Essa tarefa con-
siste em retornar o subconjunto de objetos de uma coleção que são mais similares a um
objeto de consulta. Objetos multimídia são comummente mapeados para representações
vetoriais altamente dimensionais utilizando técnicas guiadas pelos dados ou soluções ar-
tesanais, com o objetivo de facilitar o processamento desses objetos. Na última década,
muitas dessas coleções de dados altamente dimensionais têm crescido massivamente com
o uso extensivo das mídias sociais, rapidamente alcançando a escala de milhões de itens de
dados, e, em alguns casos, bilhões. Isso tem motivado muitos esforços dedicados ao desen-
volvimento de estruturas de dados para dar suporte a buscas eficientes dos vizinhos mais
próximos em grandes coleções de dados. Recentemente a criação de Grafos de Vizinhos
mais Próximos tem ganhado muita atenção já que essa abordagem tem demonstrado um
desempenho consistentemente melhor que as abordagens clássicas: Árvores de Particio-
namento do Espaço (p.ex., KD-Trees) e Hashing. A ideia principal é criar um grafo onde
cada vértice corresponde a um único objeto da coleção, e cada um deles está conectado
com os outros mais similares na coleção. Motivados pelo sucesso desse grupo de técnicas
em recentes benchmarks, quando avaliados em coleções de milhões de itens de dados, nós
focamos esta tese em pesquisar novas abordagens para a criação de grafos de vizinhos
mais próximos e algoritmos para realizar buscas nessas estruturas, com o objetivo de dar
suporte a buscas mais eficientes e precisas. Além disso, como a maioria das técnicas exis-
tentes para busca de vizinhos mais próximos, incluindo as baseadas em grafos, não são
capazes de escalar até coleções com bilhões de itens de dados, principalmente devido a
problemas relacionados à memória, nós também investigamos técnicas para compressão
de representações vetoriais e estratégias de poda para criação de grafos muito esparsos.
As principais contribuições apresentadas nesta tese são: (i) o desenvolvimento de uma
nova abordagem para criar eficientemente grafos esparsos de vizinhos mais próximos, ba-
seado no resultado de múltiplos agrupamentos hierárquicos; (ii) a introdução de novas
heurísticas que usam KD-Trees para melhorar os resultados das buscas por meio de uma
melhor seleção do vértice inicial e guiando a navegação do grafo; (iii) um novo arcabouço
supervisionado para conduzir a navegação em grafos de vizinhos mais próximos baseada
na informação topológica dos vértices, reduzindo o número de vértices explorados para en-
contrar os vizinhos mais próximos verdadeiros; (iv) a primeira técnica baseada em grafos
de vizinhos mais próximos que suporta buscas eficientes em coleções com bilhões de itens
de dados, usando uma quantidade razoável de recursos computacionais. Os experimentos
realizados para validar nossas propostas evidenciaram ganhos consistentes em relação às
abordagens clássicas e resultados competitivos com o estado da arte em cenários com
milhões e bilhões de itens de dados.

Abstract

A principal routine in many Information Retrieval, Computer Vision, and Machine Learn-
ing tasks involving multimedia objects (e.g., text, image, video) is the Nearest Neighbor
(NN) search. This problem consists in returning a subset of objects from a collection
that is more similar to a query object. Multimedia objects are commonly mapped to a
high dimensional vector representations employing hand-crafted or data-driven descrip-
tors aiming to facilitate their processing. In the last decade, many of these collections
of high dimensional data have grown massively with the extensive use of social media,
quickly reaching the scale of millions and, in some cases, billions. This has motivated a lot
of efforts dedicated in the development of data structures to support efficient NN searches
on large collections. Recently, the creation of Nearest Neighbor Graphs has gained a lot
of attention since they have demonstrated to perform consistently better than classical
approaches, e.g., Space Partitioning Trees (e.g., KD-Trees) and Hashing. The idea is to
create a graph where each vertex corresponds to a unique collection’s object, and each of
them is connected with the other similar ones. Motivated by the success of these groups
of techniques in recent benchmarks, when evaluated on million-size datasets, we focus
on this thesis to investigate novel approaches to creation of nearest neighbor graphs and
algorithms to perform search over them, aiming to support more efficient and accurate
NN searches. Furthermore, since most of existing techniques for NN search, including
state-of-the-art graph-based approaches, are not able to scale up-to billion-size datasets,
this principally caused by memory related issues, we also investigate compression tech-
niques for vector representations and pruning strategies for creation of very sparse graphs.
The principal contributions presented in this thesis are: (i) the development of a novel
approach to create efficiently sparse nearest neighbors graphs, based on the results of
multiple hierarchical clustering executions; (ii) the introduction of novel heuristics that
employ classical KD-Trees to improve graph search results by better selecting the initial
vertex and guiding the graph traversal; (iii) a novel learning framework that supports
the navigation on nearest neighbor graphs based on the topological information of ver-
tices, reducing the number of vertices explored to reach the true nearest neighbors; (iv)
the first nearest neighbor graph-based technique that supports nearest neighbor searches
on billion-size datasets, using a reasonable resource consumption. The experiments con-
duced to validate our proposals evidenced consistent gains over classic approaches and
competitive results with state of the art in both million and billion scale scenarios.

List of Figures

1.1 Research topics covered in this thesis. 15
1.2 Example of two different paths from u to the nearest neighbor to q (v). . . 16

2.1 Example of a KD-Tree in a synthetic 2D dataset. 21
2.2 Example of search using Algorithm 1. 25
2.3 Illustration of Product Quantization-like schemes. 27
2.4 Example of tree representation of a GP individual. 28
2.5 Example of the mutation operator. 29
2.6 Example of the crossover operator. 30

3.1 HCNNG framework for NN graph construction. 32
3.2 Graph structures for connecting vectors in clusters. 33
3.3 Examples of graphs obtained after different clustering executions. (a), (b),

and (c) from isolated executions. (d) from combination of multiple executions. 34
3.4 HCNNG framework for search on NN graphs. 35
3.5 Starting vertex selection example based on a KD-Tree. 36
3.6 Example of directed selection of neighbors. 37
3.7 Example of multiple steps in the guided search. 37
3.8 Recall@10 for different values of clusters’ minimum size and clustering ex-

ecutions. 41
3.9 Recall@1 for different numbers of KD-Tree’s and maximum number of dis-

tance calculations (SIFT dataset). 42
3.10 Different configurations of search (starting vertex + exploration strategy),

on SIFT dataset. 42
3.11 Scan rate needed to reach 99% of recall for different collection sizes. 43
3.12 Speedup vs recall on SIFT, GIST, and GloVe datasets. 45

4.1 Example of individual in the proposed framework. 49
4.2 GP-based scoring function learning for NN search. 50
4.3 Speedup vs recall on GloVe, SIFT, and YFCC datasets. 55

5.1 Search performance on DEEP1M encoding with different numbers of bits
per sub-quantizer. 64

5.2 Search performance on DEEP1M using graphs with different degrees and
scoring functions for neighbors selection. 66

5.3 1-NN search performance on billion-size datasets. 67
5.4 Search time for 10 thousand queries on SIFT1B. Results for the 1-NN (top)

and 100-NN (bottom) searches. 69
5.5 Search time for 10 thousand queries on DEEP1B. 69

List of Tables

3.1 Intrinsic dimensionality of datasets, estimated through Hausdorff dimension. 43
3.2 Total time for 100K queries (in seconds) using classical search approach vs

the guided proposed (without compiler optimizations). 46
3.3 Total time for 100K queries (in seconds) using classical search approach vs

the guided proposed (with -O3 option for compiler optimization). 47

4.1 Statistical paired t-test for 1-NN search, comparing our GP-based approach
vs classical search (“+”: gain, “−”: lost, “=”: tie, H: HCNNG, F: FANNG,
S: SW-graph, K: KGraph). 56

4.2 Statistical paired t-test for 10-NN search, comparing our GP-based ap-
proach vs classical search (“+”: gain, “−”: lost, “=”: tie, H: HCNNG, F:
FANNG, S: SW-graph, K: KGraph). 57

5.1 GP parameter values. 65
5.2 Resources consumption for indexing techniques. 70

List of Abbreviations and Acronyms

ADC Asymmetric Distance Computation

ANNS Approximate Nearest Neighbor Search

AQ Additive Quantization

FLANN Fast Library for Approximate Nearest Neighbors

GIST Global-Invariant Scale Transform

GNO-IMI Generalized Non-Orthogonal Inverted Multi-Index

GP Genetic Programming

HCNNG Hierarchical Clustering-based Nearest Neighbor Graph

HNSW Hierarchical Navigable Small World

IMI Inverted Multi-Index

IVFADC InVerted File with Asymmetric Distance Computation

LSH Locality Sensitive Hashing

NN Nearest Neighbor

OPQ Optimized Product Quantization

PCA Principal Component Analysis

PQ Product Quantization

SD Search Dependent

SDC Symmetric Distance Computation

SI Search Independent

SIFT Scale-Invariant Feature Transform

SW Small World

VLAD Vector of Locally Aggregated Descriptors

Contents

1 Introduction 13
1.1 Motivation . 15

1.1.1 Hierarchical Clustering-Based Nearest Neighbor Graphs 15
1.1.2 Learning to Navigate on Nearest Neighbor Graphs 15
1.1.3 Scaling Nearest Neighbor Graphs to Billion-Size Datasets 16

1.2 Hypotheses and Research Questions . 17
1.3 Key Contributions . 19
1.4 Text Organization . 19

2 Related Work and Related Concepts 20
2.1 Classic Schemes for Nearest Neighbor Search 20

2.1.1 Space Partitioning Trees . 20
2.1.2 Hashing . 21

2.2 Nearest Neighbor Graphs . 22
2.2.1 Creation of NN Graphs . 22
2.2.2 Search in NN Graphs . 24

2.3 Quantization-Based Indexing . 25
2.3.1 Vector Compression . 26
2.3.2 Data Structures for Compressed Vectors 26

2.4 Genetic Programming . 28

3 Hierarchical Clustering-Based Nearest Neighbor Graphs 31
3.1 Graph Construction . 31
3.2 Search on Graphs . 35

3.2.1 Non-randomic Selection for Starting Vertex 35
3.2.2 Pruning Edges to Accelerate Searches 36

3.3 Experiments . 39
3.3.1 Datasets . 39
3.3.2 Evaluation Criteria . 40
3.3.3 Parameter Tuning . 40
3.3.4 Scaling Datasets . 41
3.3.5 Literature Comparison . 43
3.3.6 Experimental results . 44
3.3.7 Overhead of Auxiliary Local KD-Trees 46

4 Learning to Navigate on Nearest Neighbor Graphs 48
4.1 Genetic Programming Framework for Better Graph Navigation 48
4.2 Topological Properties of Vertices . 49
4.3 Fitness Function Computation . 51

4.4 Experiments . 52
4.4.1 Datasets . 52
4.4.2 NN graph baselines . 52
4.4.3 GP set-up . 53
4.4.4 Experimental results . 54

5 Billion-Size Nearest Neighbor Graphs 58
5.1 Graph Construction . 58
5.2 Learning to Select Vertices’ Neighbors at Graph Construction 60
5.3 Search on Billion-Size Graphs . 61
5.4 Experiments . 62

5.4.1 Datasets . 62
5.4.2 NN Graph Parameter Setting . 63
5.4.3 Genetic Programming Set-up for Scoring Function 64
5.4.4 Literature Comparison . 65
5.4.5 Results on Billion-Size Datasets . 66
5.4.6 Resource Consumption . 68

6 Conclusions and Future Work 71
6.1 Summary of Contributions . 71
6.2 Future Work . 74
6.3 Research Outcomes . 75

Bibliography 76

13

Chapter 1

Introduction

A large amount of multimedia content is being generated every second due to the large use
of low-cost portable devices and the growth of internet access in the last decades. This led
to the creation of large collections of multimedia content, and, at the same time, to the
need for mechanisms that, efficiently, support the task of retrieving relevant information
from these collections. Since it is too difficult to process raw multimedia objects (e.g.,
image, text, audio, and video), advances in multimedia representation have allowed the
design of techniques that map multimedia objects into vector spaces (commonly in the
scale of hundreds or thousand of dimensions) fostering the creation of effective search
systems. There are two main aspects to be considered for this kind of data: dimensionality
and size. In this work, we refer as dimensionality to the number of dimensions of vector
representations, and as size to the number of objects in the collection.

In this context, the Nearest Neighbor (NN) search is a problem broadly studied in the
literature. This problem consists in searching for the nearest vectors to a query vector
from a set of vectors with arbitrary dimensionality (that represents multimedia objects),
considering a given distance function. This problem is involved in several applications such
as large-scale image search [43,57], semantic document retrieval [20], global image feature
matching for scene recognition [29], human pose estimation [50,59], 3D reconstruction [15],
and classification with a large number of classes [30]. There are two well-known variants
of this problem: the K-NN and r-NN (or range query). The first consists in searching for
the set of K-vectors that are closer to the query than any other vector in the set. The
second aims to find all vectors that are inside of the hypersphere with the query as center
and radius r. This thesis refers only to the first problem (K-NN).

The naïve solution to this problem is the linear search algorithm, that is, to scan
the entire collection of feature vectors and return those with the lowest distance to the
query vector. However, this solution is not scalable in scenarios with millions or billions
of vectors and high concurrency of queries. Alternative data structures were proposed
for efficient exact searches yielding a logarithmic time complexity (e.g., KD-Tree [11] and
R-Tree [26]) for low dimensional data. However, their efficiency drops dramatically, with
performance similar to linear search, when the data dimensionality increases. Since more
accurate methods for multimedia representation usually employ high dimensional vector
spaces, the use of these data structures for exact search is unpractical. Many Approxi-
mate Nearest Neighbor Search (ANNS) approaches were proposed in the literature, that

14

performs searches efficiently on high dimensional data at the cost of losing precision of
results. Different from other research fields, usually these “approximate” techniques are
not able to guarantee a certain error rate on search results, the accuracy of results will
depend principally on the quantity of objects explored from the collection.

Two classic approaches for the ANNS problem were employed in the literature: tree
indexing schemes and hashing-based solutions. The first presents a widely-used way to
organize data. At each tree level, data are split into subsets, based on some criteria, which
are then recursively applied to each subset until some stop condition is reached. Search
is performed traversing from the root to the leaves. Usually, tree indexing techniques
present cheap costs for index construction. Within this category, popular methods include:
Randomized KD-Trees [61], Hierarchical K-Means [47], FLANN [49], and VP-Tree [70].
On the other hand, hashing-based techniques aim to use a hash function to create binary
signatures of original feature vectors. Those functions map nearest vectors to the same
bucket or the nearest buckets in a hash table. Then, search can be performed around the
query bucket in the hash table. Differently from traditional hash, collisions are intended
to be maximized. The use of multiple hash functions increases the probability of finding
the nearest neighbor, but also increases the storage cost to save the hash tables. Locality
Sensitive Hashing (LSH) [2,10,44] (and their variants) is one of the best-known methods
of this group. Furthermore, the generated binary signatures help to reduce the storage
cost of vectors in memory, which is of paramount importance when the database size
scales up-to billions of vectors. Also, this allows a fast hamming distance computation
between binary signatures.

Recently, the use of nearest-neighbors graphs has attracted a lot of attention since
they have demonstrated in recent works [4, 22, 27, 46] to outperform consistently classic
approaches mentioned above. In NN-graph-based techniques, firstly, all feature vectors of
the collection are indexed by means of a graph, where each feature vector is associated
with a unique vertex and connected to the other closer ones (according to a given distance
function). Then, search of NN is performed by traversing the graph in a greedy way, with
similar strategy to the hill climbing optimization procedure [54]. Search starts in some
vertex, and, in each step, selects the neighbor of current vertex that is closer to the
query as the next vertex to be explored. The traversal stops commonly when a maximum
number of vertices explored is reached.

The only known approach to creation of exact NN graphs relies on employing linear
search to find the k-NN over the entire collection, which is unpractical for large collections
due to its quadratic complexity on the collection size. Thus, all approaches found in the
literature proposed approximate efficient approaches for the creation of NN graphs. In this
thesis, we investigate efficient approaches for creation of NN graphs based on the results
of multiple clustering executions. Furthermore, we expand this algorihtm to be able to
index datasets with billions of vectors, considering the limitations of time and memory.
We also propose some heuristics and a learning framework to improve the navigation
process in greedy search algorithm for NN graphs. The research topics covered by our
work are shown in Figure 1.1.

15

Figure 1.1: Research topics covered in this thesis.

1.1 Motivation

In this section, we present the motivational aspects of our work.

1.1.1 Hierarchical Clustering-Based Nearest Neighbor Graphs

Clustering is among the most important unsupervised learning tasks, which has been
applied successfully in a wide range of domains, such as exploratory data analysis, ma-
chine learning, artificial intelligence, pattern recognition, computer vision, information
retrieval, etc. In the context of the Euclidean space, a clustering procedure aims to group
vectors into clusters with respect to their proximity in the feature space. Since the idea
of nearest neighbor graphs is also similar, to connect vectors with others near to them,
the clusters’ information can be exploited to determine the neighbors of vectors. Cluster-
ing algorithms found in the literature have usually a lower complexity than brute force
approach described above to create exact NN graphs, addressing the time-related scal-
ability issues when working with large collections. Specially, the hierarchical clustering
has a O(N logN) bounded time complexity (being N the dataset size), which makes it
very suitable in scenarios with large datasets. We investigate in this thesis approaches
to exploit the information of hierarchical clustering results to construct efficiently an NN
graph to support more efficient and accurate NN searches. Moreover, along with the NN
graph construction, we introduce two heuristics: one for selection of a non-fully random-
ized starting vertex for search, and the other for pruning edges at search time, avoiding
explore unnecessary vertices.

1.1.2 Learning to Navigate on Nearest Neighbor Graphs

Methods for construction of NN graphs found in the literature differ considerably in their
strategy, but the search algorithms employed do not change significantly from the greedy
approach mentioned before. In any step of the graph traversal, the next vertex is selected

16

Figure 1.2: Example of two different paths from u to the nearest neighbor to q (v).

based only on its distance to the query. The selection of the next vertex to be explored
plays an important role at converging efficiently to the true nearest neighbors. Other
kinds of properties of vertices could help to improve the selection of the next vertex, such
as, the local topological properties of vertices. For example, if one vertex has a very
high degree, then we could avoid exploring it, since it would be very costly to visit all
its neighbors. Figure 1.2 shows a synthetic example of a search on an NN graph. In this
example, if the navigation was only based on the distance to the query, then starting in
vertex u, the next vertex to be visited would be x1, since it is its closest neighbor to the
query q. Following this criterion, the path chosen to reach the nearest neighbor to the
query q would be u→ x1 → x2 → x3 → v. As all neighbors of vertices on this path need
to be visited, all neighbors of x1 (the vertex with higher degree) will be visited, increasing
significantly the cost of this path (totalizing 12 vertices explored). However, if we consider
the degree of vertices in the selection of next vertex, we could follow an alternate path
with a lower cost; in the example, u→ y1 → y2 → v (totalizing 8 vertices explored).

There are many measures that capture different aspects of the local topology of ver-
tices’ neighborhood [16], and all this information can be combined to help in the selection
of next vertex at graph navigation, as seen in the case of the degree of vertices. One focus
of this thesis is on the exploitation of different local topological properties via a Genetic
Programming-based learning framework to improve search result accuracy on NN graphs.
Genetic Programming has been shown to perform well in scenarios like this, combining
successfully different evidences [1, 17,19,39,65].

1.1.3 Scaling Nearest Neighbor Graphs to Billion-Size Datasets

Given the massive growing of multimedia data in the past years, the design of efficient
retrieval mechanisms that support searches over billions of objects has gained a lot of
attention from the information retrieval and computer vision communities. The scale
of data presents some limitations to common approaches for NN search, such as those
based on space partitioning trees [11,47,49,53]. Their main limitation relies on the main

17

memory needed to load all feature vectors in order to support efficient searches, leading to
the acquisition of very costly architectures. For example, a dataset containing one billion
of vectors with 100 dimensions, storing each dimension value as a single-precision float
(4 bytes), would require 372.52 GB of RAM just for load the feature vectors, without
taking into account the memory required for storing the data structure. Furthermore,
this number of dimensions is low compared to some real applications, where vectors with
thousands of dimensions are generated. Hashing approaches can deal with this memory
issues since they produce a binary signature of original vectors, commonly employing just
a couple of dozen of bits per vector. In recent years, a new research line has emerged,
focusing on developing compressing vectors approaches based on quantization [6, 8, 23,
34, 71]. These approaches, as in the case of hashing-based techniques, produce compact
representations of original vectors employing just a couple of dozen of bits. However,
differently from hashing, quantization-based techniques are able to reconstruct original
vectors from their compact representations, with a small error. This is very convenient at
the moment of comparing two vectors, since with hashing-based compact representations
the comparison can be only done in the hamming space, but with the quantization-based
it can be done in the original feature space by reconstructing the vectors. Also, a better
memory-accuracy tradeoff of quantization-based approaches has been shown [23,52] when
compared with hashing-based in the task of ANNS.

On the other hand, as mentioned before, NN graph techniques [22,27,46] have demon-
strated to outperform consistently the classic approaches for ANNS. However, results
reported on those works only employed datasets with at most a dozen of millions of vec-
tors. In the scenario discussed above, with billions of vectors, state-of-the-art NN graph
techniques suffer from the same scalability issues as classical indexing schemes, related
to the memory required to load the whole dataset in memory. Additionaly, NN graphs
carry the cost of storing the graph itself (with billions of vertices and edges). As current
techniques for construction of NN graphs could generate graphs with up to hundred of
neighbors per vertex, it will lead to a similar memory cost as to load the whole dataset
on memory. In this thesis, we investigate the application of quantization-based compres-
sion techniques in the creation of NN graphs to deal with the memory issues related to
the storage of vectors in memory. Also, we investigate heuristics and learning schemes
for pruning edges at graph construction time, aiming to generate sparse NN graphs that
demand a reasonable storage cost.

1.2 Hypotheses and Research Questions

This thesis introduces a novel scheme for efficient construction of NN graphs over large
scale datasets, taking into account computational resources limitations. Also, we in-
troduce new approaches for improving the query time–accuracy tradeoff of NN searches
conduced over NN graphs. The thesis hypotheses are presented in the following, with the
respective research questions that allow us to address our hypotheses:

Hypothesis 1: The use of multiple clustering leads to the construction of NN graphs,
which are faster to traverse at search time.

18

Q1.1 What is the best way to connect points inside clusters?

Q1.2 How can sub-graphs created by clusters be merged?

Q1.3 Which clustering algorithm should be employed?

Hypothesis 2: The use of classical tree structures for indexing improves the NN
search results on NN graphs, with no significant extra cost.

Q2.1 How KD-Trees can be employed to improve the starting vertex selection on NN
graph searches?

Q2.2 How KD-Tree-like structures can be employed to avoid visit unnecessary ver-
tices at graph navigation process?

Hypothesis 3: The use of topological information of vertices (along with the distance
to query) through a learning scheme leads to a better selection of next vertex (in each step
of NN graph search), which fosters the earlier discovering of the true NN.

Q3.1 How to combine the topological properties with the distance?

Q3.2 Which learning technique can be used to find near optimal combinations of
topological properties?

Q3.3 Which topological properties should be considered?

Q3.4 Which function should be optimized in the learning process?

Hypothesis 4: Compressing vectors via quantization schemes and the adoption of
suitable pruning strategies at construction time allow the construction of NN graphs on
billion-size datasets with a reasonable memory consumption and time construction.

Q4.1 Does the compression of original vectors affects to the accuracy of search on
NN graphs?

Q4.2 Which heuristics can be used for pruning edges at graph construction?

Q4.3 Can we obtain search performance improvements by exploiting the topological
properties of vertices for pruning edges at graph construction?

Q4.4 Does our NN graph technique still maintain its top search performance at NN
search when compared to the state-of-the-art schemes for billion-scale ANNS?

Q4.5 How much resources need the proposed NN graph technique in comparison with
the state of the art?

19

1.3 Key Contributions

We envision this research contributing to the areas of Machine Learning, Computer Vision,
and Information Retrieval. We can summarize our key contributions as follows:

1. A novel approach to efficient construction of NN graphs, with comparable search
performance than state-of-the-art techniques for ANNS (Chapter 3).

2. Two novel heuristics to improve search on NN graphs using classical KD-Trees as
auxiliary data structures: one for initial vertex selection, and the other for avoiding
exhaustive exploration of vertices’ neighbors (Chapter 3).

3. A Genetic Programming (GP) framework that aims to discover a near-optimal com-
bination of local topological features of vertices along with the classical distance-to-
the-query, that improves the criterion for selection of the next vertex to be explored
in the search algorithm (Chapter 4).

4. The first reported memory-aware technique for creation of sparse NN graphs on
billion-size datasets (Chapter 5).

5. The extension of the GP framework above applied to the selection of vertices’ neigh-
bors at NN graph construction stage, in scenarios with restricted degree of vertices
(as in the billion-size datasets, Chapter 5).

1.4 Text Organization

This thesis is organized as follows. Chapter 2 describes general related work, including
classic approaches for ANNS, NN graphs, and Quantization-based techniques. In the last
part of that chapter, we also include a detailed description of Genetic Programming-based
learning process, which will be used in Chapter 4 and Chapter 5 to describe our propos-
als. In Chapter 3, we introduce our technique for efficient construction of NN graphs,
and the two heuristics that uses classical KD-Trees for improving search performance on
NN graphs. Chapter 4 introduces the GP-based framework to discover a near-optimal
combination of local topological features of vertices to improve the criterion for selection
of the next vertex. Chapter 5 goes beyond and extend approaches presented in Chapter 3
and Chapter 4, to propose an approach for creation of NN graph on billion-size datasets.
Finally, Chapter 6 summarize the discoveries of this work, presents the conclusions, and
draws future research directions.

20

Chapter 2

Related Work and Related Concepts

We divided the related work and related concepts into four sections. Section 2.1 presents a
revision of the classic approaches in the literature for ANNS. Section 2.2 describes briefly
several state-of-the-art NN graph-based approaches for ANNS, including the description
of the methods for NN graph construction and the search algorithm employed on these
graphs. Section 2.3 presents a literature review of quantization-based method for com-
pression of high dimensional data, and the state-of-the-art data structures, for indexing
these compressed vectors, that support billion scale ANNS. Finally, Section 2.4 introduces
Genetic Programming, a learning technique that will be employed in next chapters.

2.1 Classic Schemes for Nearest Neighbor Search

The problem of NN search has been broadly studied in the literature for many decades.
Two classic schemes were proposed to address this problem: space partitioning trees and
hashing-based schemes. The advantage of these approaches relies on the cheap cost for
index construction. In the following sections, we present a literature review of techniques
proposed in each group of approaches.

2.1.1 Space Partitioning Trees

A strategy broadly studied in the literature for NN search is to organize data in a tree
data structure. Data are partitioned into subsets, based on some criteria, at each tree
level until some stop condition is satisfied, e.g., a minimum size is reached. When a search
is performed, the tree is traversed from the root to the leaves, which probably contain the
closest point. A backtracking approach can be used to further explore other nodes and
increase the probability of finding the most similar objects.

Tree structures for exact search (e.g., KD-Tree [11], Ball Tree [53], and Cover Tree [12])
are very efficient for low dimensional data, but their performance decreases quickly when
dimensionality increases. KD-Tree is one of the most cited tree structures for exact search.
In the algorithm of KD-Tree index construction, at each level and in a sequential order, a
dimension is selected to split the data and a point is used to better balance the division.
Figure 2.1 shows an example of a KD-Tree created over a set of 2D points. At root level
the set of points are split by L1, placing the points located in the negative side of L1 to

21

Figure 2.1: Example of a KD-Tree in a synthetic 2D dataset.

the left sub-tree, and those on the positive to the right sub-tree. This division continues
in each level, alternating the axis, until just one point is left. When the query q is issued,
the tree is traversed starting in the root L1 and, in each level, selecting the sub-tree to
which q corresponds, according to the current line. Thus, the search will traverse the
path L1 → L2 → L5 → p5. A backtracking approach can be used to explore other leafs
and increase the probability of finding the true NN. A well-known variant of KD-Trees
for ANNS is named Randomized KD-Trees [61]. In their construction, several KD-Trees
are created, where the dimension to split the data is selected randomly. Then, at query
time, search is performed on all the trees, and is stopped when a fixed number of leaves is
explored. This method is implemented in the widely used Fast Library for Approximate
Nearest Neighbors (FLANN) [49].

Muja and Lowe [47] proposed the hierarchical k-means tree, where, at each level, the
data are split using the k-means algorithm into K subsets, and then the same algorithm
is applied recursively to the subsets generated. The recursion is stopped when the size of
the subset is less than K. In the traverse from the root, at each level, the branch with
centroid closest to the query is taken. The exploration is stopped when a fixed number
of nodes are visited.

Methods for tree partitioning can be roughly divided into two groups. Techniques
that divide data points with respect to hyperplanes and clustering based. From the first
group, we can mention KD-Tree [11,61], PCA-Tree [62], and Random Projection tree [18].
In the second, we can find hierarchical clustering tree [49], hierarchical k-means tree [47],
Ball tree [53], Cover tree [12], Geometric Near-neighbor Access tree [13], MDF-tree [25],
Lower Bound tree [14], and Vantage Point tree [70].

2.1.2 Hashing

The principle of hashing-based techniques is to use a hash function to generate binary
signatures for original vectors, which are then used as keys for buckets in a hash table.
The hash functions are intended to map nearest vectors to the same bucket, allowing an
efficient search when a query is issued by exploring only the vectors contained on the

22

bucket with nearest key to the query’s key. Differently from conventional hashing where
a minimum of collisions is desired, techniques based on hashing for NN search do the
contrary, aim to maximize the collisions of nearest vectors.

One of the seminal works was presented by Indyk and Motwani [32]. Currently, the
most cited method in this family is probably Locality Sensitive Hashing [2] (LSH). In this
technique, multiple hash tables are created and used at the same time to obtain a reduced
list of candidates for each function. Next, an exhaustive search is performed in all the list
of candidates to find the nearest neighbors. Thus, the more hash tables are created, the
higher the probability to determine the nearest points, but also, this increases linearly the
memory consumption.

Lv et al. proposed Multi-Probe LSH [44], a method that reduces the high storage
requirement by reducing the number of hash tables. The authors’ idea is based on the
supposition that if a nearest neighbor is not in the same bucket as the query, then is highly
probable that it is contained in close buckets. In this way, the algorithm makes a harder
exploration of closest buckets, reducing the number of hash tables needed to achieve high
recall values. Bawa et al. [10] presented a variant of LSH, which self tunes its parameters
to the data. On the other hand, many supervised approaches have been proposed in the
literature [21,40,42,60,66] which aim to learn hash functions that encode original vectors
in such a way that allow effective and efficient search in the coding space. However,
as it is common in supervised approaches, these methods demand a extra learning step
(sometimes very costly), increasing the time for index construction. For a detailed revision
of the literature on supervised approaches, see the survey by Wang et al. [69].

2.2 Nearest Neighbor Graphs

NN graphs present an easy-to-understand scheme for multimedia indexing. Each multi-
media collection object becomes a vertex on the graph, and each of them are connected
to other more similar ones, i.e., to those objects with the lower distance between their
feature vectors. The naïve algorithm for construction of NN graphs consists in, for each
vertex, scanning the whole collection and select the K-nearest vertices as their neighbors.
Therefore, resulting in a quadratic solution at the collection size. In real scenarios with
millions or billions of feature vectors, this naïve algorithm is unpractical. In the following,
we describe some efficient approaches that have been proposed to speed up creation of
approximate NN graphs. Also, details on how searches are performed over those graphs
are provided.

2.2.1 Creation of NN Graphs

Many approaches have been proposed to construct approximate nearest neighbors graphs;
here we briefly describe some of them. Since the idea of construction of NN graphs over
multimedia collections were employed also in other tasks, such as image annotation [31,
41, 63, 64], we only considered those techniques that were employed in the task of NN
search.

23

Harwood and Drummond [27] proposed an incremental algorithm to create an NN
graph, called Fast Approximate Nearest Neighbour Graphs (FANNG). Initially, the set
of vertices of the graph are composed of all objects in the collection (represented by their
feature vectors), and it is fully disconnected (no edges). Then, in each iteration, two
vertices v1 and v2 are selected randomly, and a naïve greedy search is performed using
v1 as starting vertex and v2 as query. If the search fails to arrive at v2, an edge is added
between the last node visited and v2. This process is repeated until enough edges are
created to connect properly the graph, about 50N times in reported results for million-
size datasets. An important strategy employed refers to the deletion of occluding edges.
This makes the graph to preserve the closest and the spreadest neighbors of each vertex,
leading to a more efficient graph traversal.

Malkov et al. [45] introduced the Small World Graphs (SW-graph). Differently from
the strategy of FANNG construction algorithm, initially, it is created an empty graph (no
vertices or edges). Then, at each iteration, a new vertex (object collection) is selected and
a search over the current graph to find a fixed number of its nearest neighbors is performed.
The new vertex is added to the graph and non-directed edges are created between this
vertex and the set of nearest neighbors found. This is repeated until all collection vectors
are included in the graph. Their objective is to create an approximation to the Delaunay
graph [5], and, at the same time, maintain “long” edges to allow logarithmic navigation
on the graph. This property is known as Small World [37]. However, in the final graph,
many vertices end with high degree, increasing the number of distance calculations to
reach the nearest neighbors.

A recent proposed approach, Hierarchical Navigable Small World (HNSW) [46], creates
a hierarchy of NN graphs, in which each collection vector is assigned randomly to a
maximum hierarchy level. Long edges (edges that connect distant vectors) are presented
in top layers, and the short ones in bottom layers (edges that connect nearest vectors).
The construction of graphs is analog to SW-graph. Incrementally, vectors are added into
the graphs, starting in the graph at the vector’s maximum level and descending up to
the graph in the ground layer, linking them to the nearest ones in each level. The search
algorithm proposed by the authors is quite different from search algorithms employed
from most of NN graph-based techniques (which will be described in next section), since
it is created a hierarchy of graphs and not just a global one. At query time, search starts
in some vertex in the top layer’s graph and traverse the graph to find the closest ones to
the query. When a local optimum is reached, one level is descended in the hierarchy, and
search is started using as starting points the nearest vertices found at the above level.
This is repeated until the ground layer is reached. This method showed to be one of the
most competitive baselines in our experiments across all datasets.

Unlike the incremental strategy used by the aforementioned initiatives, the algorithm
for graph construction proposed by Dong et al. [22] (KGraph) initially assumes a random
set of neighbors for every vertex. In each iteration, based on the heuristic – a neighbor of
a neighbor is also likely to be a neighbor –, these sets are updated by selecting the nearest
points from the actual set and the neighbors of neighbors. The process is repeated until
the sets of neighbors of each vertex do not change significantly. Although the construction
algorithm converges fast and approximates with high recall the real nearest neighbors of

24

each vector from the collection, the resulting graph does not present good properties for
search, as it aims to construct an exact NN graph and experimental results showed low
performance for search on these graphs (see Section 3.3.6).

The idea of creating an NN graph using the results of multiple clustering executions
was explored previously by Wang et al. [67]. Their proposed method aims to create
efficiently a near-exact NN graph, maintaining a list of the k-NN for each point. These
lists are updated in each clustering execution by creating a complete subgraph for each
cluster and, then, maintaining for each vertex, those new neighbors that are closer than
any of their previously found k-NN. The execution of clustering procedures is stopped
when there is not a significant modification of k-NN lists in the current iteration. Then,
aiming to discover and include even more true NN on those lists, these are improved
through a neighbor propagation phase. Similar to KGraph, this method also aims to
create an exact NN graph, and, consequently, experimental results showed a poor search
performance compared to the other NN graph-based approaches.

2.2.2 Search in NN Graphs

As seen in previous section, techniques for NN graph construction are based on conceptu-
ally different strategies. However, most of search algorithms used on these NN graphs rely
on roughly the same strategy. This strategy is detailed in Algorithm 1, which considers
a given NN graph G, a query point q, and a maximum number of distance computations
T . The traversing starts by initializing the global minimum (nearest neighbor) at some
vertex on the graph (lines 2-3), and a priority queue to help in selecting the next vertex
to be explored (line 4) at each step (an iteration of loop in line 5). The vertex in the
queue to be selected will be the one with the minimum distance to the query (Euclidean
distance between their corresponding feature vectors). In each step of traversal, after the
next vertex is selected (line 6), the neighbors of this vertex are scanned (line 7). For any
neighbor, if it was not visited previously (line 8), then it is pushed to the queue (lines
9-10). Also, if any neighbor is closer to the query than the global minimum, then it is
updated (lines 12-14). When the maximum number of vertices to be explored is reached,
the global minimum discovered is returned (line 15).

An example is illustrated in Figure 2.2, with starting vertex v0 and query point q (red
point). The first vertex is taken from the queue (v0), then, their neighbors are explored
and pushed to the queue. In the next step, from the vertices on the queue, the closest to
the query is taken and explored (v1), and so on until the maximum number of distance
calculation is reached. Note that, the next vertex to be explored does not depend only
on the neighbors of the current vertex, as all vertices on the queue are candidates (blue
vertices, after the 3rd step).

Malkov et al. [45] presented a slightly variation of this algorithm, changing the stop
condition. According to their proposal, a graph is traversed until a set of K-nearest
neighbors remain unchanged at a given iteration. Also, they proposed to perform multiple
searches, with different starting vertices and then combine the results of such searches to
return the best-k vertices. Harwood and Drummond [27] also proposed to use the nearest
vertex to the data mass center as starting vertex for search.

25

1 Function SearchNN(G, q, T)
Data: NN graph G, query point q
Data: maximum distance calculations T
Result: nearest vertex n, nearest vertex distance d

2 n← some vertex in G
3 d← distance(n, q)
4 Q← initialize priority queue with tuple [n, d]
5 while T > 0 do
6 v ← Q.pop()
7 foreach u ∈ Neighbors(v) do
8 if T > 0 and u not visited then
9 d∗ ← distance(u, q)
10 Q.push([u, d∗])
11 T ← T − 1
12 if d∗ < d then
13 n← u
14 d← d∗

15 return n, d

Algorithm 1: Algorithm for search in NN graphs.

Figure 2.2: Example of search using Algorithm 1.

2.3 Quantization-Based Indexing

Most of techniques for ANNS mentioned before, except for a couple of hashing-based tech-
niques, only reported their experiments on million-size datasets. However, at present there
are already many multimedia collections that reached the scale of billions. The applica-
tion of those techniques for billion-size datasets would require very costly infrastructures,
especially, with hundreds or thousands of gigabytes of RAM to load all feature vectors in
memory. Quantization-based schemes for lossy data compression addressed with success
the memory restrictions presented by most of techniques described before, employing just
a couple of dozens of bits per feature vector. In addition, many quantization-based index-
ing structures were proposed to support efficient searches over the compressed vectors.
We present in the following a literature review of the quantization-based approaches to

26

vector compression and indexing structures.

2.3.1 Vector Compression

Jegou et al. [34] reported one of the first results of NN searches on a billion-scale dataset.
They introduced the Product Quantization (PQ) scheme, in which the original vector
space is partitioned orthogonaly and each partition is quantized independently via the
K-means algorithm. Thus, original vectors are encoded by the tuple of the nearest cen-
troids’ indices in each codebook, using just a couple of dozen of bits. This scheme is
illustrated in Figure 2.3. The orthogonal partition is performed by splitting the orig-
inal vectors dimensions into M -disjoint subsets with equal size. Then, a set of code-
books C = {C1, C2, ..., CM} is learned on the partitions, each one consisting of the
set of K-cluster’s centroids Cm = {cm1 , cm2 , ..., cmK} found by the K-means algorithm in
their respective partition. The compressed representation for given vector x is com-
puted after applying the same space partition to x, and is given by the tuple of values
x̂ = (α(x1, C1), α(x2, C2), ..., α(xM , CM)), where α(xm, Cm) = arg max

i
d(xm, cmi) com-

putes the index of nearest centroid in Cm for the sub-vector xm and a given distance
function d. Therefore, the compressed representations just need M logK bits of storage
per vector. Since PQ [34], many works have dedicated efforts in order to develop tech-
niques that create compact representations that approximate original vectors with less
quantization error. A common approach employed to improve the coding accuracy is to
rotate original vectors by a matrix learned together with codebooks [23, 52], also known
as Optimized Product Quantization (OPQ).

A generalization of PQ with non-orthogonal partitions were proposed in [6, 71], in
which original vectors are approximated through the sum of centroids selected from dif-
ferent codebooks learned on the original vector space. Non-ortogonal partitions showed to
improve consistently coding accuracy, compared to PQ. This is explained by the fact that
non-orthogonal partitions do not assume the independency between the data distribution
of different subspaces (created by the partitions). However, some of these approaches
sacrifice encoding efficiency in favor of this coding accuracy, as in the case of Additive
Quantization (AQ) [6]. Tree Quantization (TQ) [8] presented a slightly non-orthogonal
partition of vector space, since any dimension could be quantized by more than one code-
book, getting a comparable coding accuracy with AQ, but maintaining the low cost for
coding as in PQ. Also, the idea of creating local codebooks was explored in [36], by
clustering original vectors and applying independent OPQ over vectors in each cluster.

2.3.2 Data Structures for Compressed Vectors

Although quantization-based techniques for vector compression deal successfully with the
memory issues presented by classic approaches for NN search on billion-size datasets, it is
still very time consuming to perform an exhaustive exploration to find the NN over these
collections, even more with a high concurrency of queries. Jegou et al. [34] took advantage
of a well-known data structure from the information retrieval field, known as inverted
index, and employed it in their IVFADC system. First, original vectors are clustered to

27

Figure 2.3: Illustration of Product Quantization-like schemes.

find the centroids that will be used as keys for the inverted lists. Database vectors are
indexed by adding them to the list with the nearest key. Only the residuals between the
keys and the original vectors are encoded via PQ. At search time, lists with the closest
keys to the query are scanned first, since they are more likely to contain the true NN. A
scanning rate can be set to avoid exhaustive exploration. Inverted Multi-Index (IMI) was
introduced by Babenko and Lempitsky [7]. This approach led to significant improvements
in terms of search accuracy with respect to IVFADC. IMI also indexes vectors into lists,
but the original space is split orthogonally and each partition is quantized separately,
then, keys for lists are obtained by the cartesian product of codebooks’ centroids. A
recent work [9] introduced GNO-IMI, a generalization of IMI in which lists’ keys are also
composed of the cartesian product of two codebooks. However, differently from IMI,
the first is learned over original vectors and the second over the residuals w.r.t. the
first codebook. This non-orthogonal partition for indexing, as in the case of quantization
techniques for compression, obtained significant improvements in terms of search accuracy,
specially in cases where there is correlation between subspaces.

All above indexing structures could be easily adapted to be used along with almost any
encoding technique. For example, IMI was used previously for indexing vectors encoded
with PQ [7], OPQ [24], and LOPQ [36]. Search on these structures follow roughly the

28

Figure 2.4: Example of tree representation of a GP individual.

same idea. First, the index is used to obtain a small set of candidates by scanning the
lists whose indices are closer to the query. Then, this candidates list is re-ranked by
computing the approximate Euclidean distance to the query, according to the encoding
technique chosen.

Johnson et al. [35] proposed a data structure with different idea than inverted indices,
that also employed quantization-based compressed vectors to deal with memory restric-
tions. First, authors created an IVFADC index as an auxiliary data structure to help in
the construction of an NN graph. Then, for all vertices, to determine their k-neighbors,
a k-NN search was performed over the IVFADC index. To the best of our knowledge,
it is the only technique in the literature based on the NN graph idea that scaled up to
billion-size datasets. However, the NN graphs created by this method were not evaluated
on the NN search task. Also, no comparisons with other indexing structures were pro-
vided. Authors only evaluated how accurate they approximated their graph to an exact
NN graph. Although the reported time for NN graph construction is reasonable, they
employed a costly multi GPU architecture for performing experiments.

2.4 Genetic Programming

Genetic Programming (GP), introduced first by Koza [38], is a problem solving technique
inspired in the biological inheritance and evolution. Each potential solution is called indi-
vidual, and is commonly represented by a tree. Figure 2.4 presents a tree representation
of the mathematical function f(a, b, c) = a × a − ((b × c)/2). The whole GP process to
discovery near-optimal solutions is detailed in the following steps:

1. Create initial population: initially, a population of fixed size is created, where
each tree (individual) is defined randomly. A tree is composed of functions (white
nodes in Figure 2.4) and terminals (gray nodes). Functions are the internal nodes,
employed to combine the terminals, usually mathematical functions. Terminals are
the leaf nodes, employed as inputs of individuals.

2. Evolve population: through a number of generations, individuals are evolved by
employing genetic operators. The following steps are repeated at each generation.

2.1. Compute fitness of individuals: at the beginning of every generation, the
fitness value is computed for all individuals. The fitness value is an indicator

29

Figure 2.5: Example of the mutation operator.

of how well an individual performs in a given task. Therefore, this function is
application dependent.

2.2. Select individuals for genetic operators: an important factor towards the
convergence of the evolution process is the technique employed for selecting
individuals that will be used for genetic operators. There are many techniques
proposed in the literature [33]. Usually, these approaches are based on the
fitness value of individuals or on their relative order in the whole population
(rank-based).

2.3. Apply genetic operators: genetic operators are applied on selected individ-
uals to create individuals for the next generation. The following operators are
commonly used:

i. Reproduction: this operator takes a percentage of the individuals with
best fitness values and copies them directly to the next generation. This
operator guaranties that the best individual of a generation will be at least
as good as best individual of the previous generation.

ii. Mutation: this operator is applied on a individual by taking a randomly
selected subtree and replacing it with a randomly generated tree. Fig-
ure 2.5 illustrates this operator. The purpose of mutation is to add a
minimum of diversity to the population.

iii. Crossover: this operator takes two individuals and exchanges two ran-
domly selected subtrees. An example is shown in Figure 2.6. The objective
of crossover is to create new diverse individuals by exchanging genetic in-
formation from parents.

2.4. Replace old population: the population of the next generation is composed
of individuals created in step 2.3, then, the evolutionary process returns to
step 2.1.

3. Select best individuals: the fitness of individuals of the last generation is com-
puted, and, then, the best individuals are returned.

30

Figure 2.6: Example of the crossover operator.

31

Chapter 3

Hierarchical Clustering-Based Nearest
Neighbor Graphs

This chapter introduces the proposed framework for ANNS, the Hierarchical Clustering-
basedNearestNeighborGraphs, called HCNNG from now on, which constructs efficiently
NN graphs based on the clusters information obtained after performing multiple clustering
procedures (Section 3.1). Also, as a part of this framework, we introduce two novel
techniques that employ classic KD-Tree-like as auxiliary data structures to help on two
different stages of NN graph search: the selection of starting vertex (Section 3.2.1), and
the pruning of unnecessary vertices at each step of navigation (Section 3.2.2). Later in
this chapter, we describe the experiments conduced to validate the proposed HCNNG
framework on million-size datasets (Section 3.3).

3.1 Graph Construction

The graph construction process relies on three steps: the execution of multiple clustering
procedures, the creation of sub-graphs to connect the vectors contained on the clusters,
and finally, the fusion of the sub-graphs to compose a global graph. The objective is to
generate a graph with a good connectivity among data points. Figure 3.1 illustrates the
proposed framework for NN graph construction. We need to create enough connections
among the vertices for supporting effective searches, but, at the same time, without un-
necessary multiple paths, which may lead to inefficient processing time. One important
aspect that we considered at the moment of selecting the clustering technique to be em-
ployed, was the time complexity, since it need to scale to very large collections. Following
this reasoning, we selected the hierarchical clustering, which has a O(N logN) bounded
time complexity. Other clustering approaches may generate clusters that fit better to the
data distribution (quality of clusters), but since we only are interested in knowing which
points are close enough to later create edges between them, we can disregard this aspect.

The hierarchical clustering performed over a set of points defines an implicit relation-
ship of proximity between the points in each cluster. We explore this idea to create an
NN graph. Algorithm 2 describes the hierarchical clustering procedure, returning the set
of edges created over the points. Given a set of points P , a distance function d, and a

32

Figure 3.1: HCNNG framework for NN graph construction.

minimum size of clusters n, if the size of P is less than n, then, points contained in current
P are connected by means of the function CreateSubGraph. Otherwise, two points are
selected randomly (lines 7 and 8) and P is divided into two subsets (P1 and P2) based
on the proximity to the points randomly selected. Then, the hierarchical clustering pro-
cedure is applied recursively over both subsets (lines 9 and 10) to, finally, join the edges
created on each one of the partitions.

There are many ways to connect points inside of clusters (function CreateSubGraph).
We explored four common structures employed in the graph theory field: a Complete
graph, Stars, Hamiltonian paths, and Minimum Spanning Trees (MST). Figure 3.2 illus-
trates these structures using the same 2-dimensional points (assuming that those points
are in the same cluster). The use of complete graphs leads to the construction of dense
graphs, where every vertex ended with high degree. Stars, in the other hand, led to the
constitution of many hubs (vertices with high number of connections) in the resulting
graph, which caused poor search results when the graph navigation reached one or more
of them. Hamiltonian paths presented a clear improvement in the final degree of vertices,
reducing the mean value and the standard deviation. Finally, the use of MST presented a
slightly greater degree of vertices than Hamiltonian paths, but the search results obtained
on these graphs were the best among all explored structures. Since MST algorithms do
not limit the maximum degree of vertices, they could produce vertices with high degree,
specially in high dimensional data. Therefore, we limited the maximum degree of vertices
in MST algorithm to 3 (called MST3 from now on). The maximum degree of 3 was
determined experimentally, we tested with values ranging from 2 to 10, and observed that
search results do not change significantly for values greater than 3, thus, to guarantee
lower vertices degree we used 3 for all the experiments presented in Section 3.3.

By applying the clustering procedure just once, the resulting graph will be highly
disconnected. This is better illustrated in Figure 3.3 ((a), (b), and (c)), using a synthetic
2-Dimensional dataset of points. SinceMST3 just connects points inside the same cluster,
there is no way to reach points from other clusters. Also, results of different clustering
executions (using different seeds for the random number generator) showed that edges
between nearby points that were not found in a given execution could be discovered by
another execution. We address the problem of disconnected graphs by performing multiple
random clustering procedures and combining their resulting graphs. Figure 3.3d shows
an example of the combined graph obtained from the fusion of 15 disconnected graphs

33

Figure 3.2: Graph structures for connecting vectors in clusters.

1 Function HierarchicalClustering(P, n)
Data: data points P , min size of clusters n
Result: graph edges E

2 E ← φ
3 if |P| < n then
4 E ← CreateSubGraph(P)
5 else
6 select randomly x1 and x2 points from P
7 P1 ← {x ∈ P | d(x, x1) < d(x, x2)}
8 P2 ← {x ∈ P | d(x, x1) ≥ d(x, x2)}
9 E1 ← HierarchicalClustering(P1, n)
10 E2 ← HierarchicalClustering(P2, n)
11 E ← E1 ∪ E2

12 return E

Algorithm 2: Hierarchical clustering procedure.

(obtained from 15 different clustering executions), where, it can be observed that the final
graph contains paths from one point to any other. This also solves the problem associated
with points located on the border of two or more clusters, i.e., these points may belong to
different clusters despite being close in the feature space. The process to create the final
proximity graph is outlined in Algorithm 3.

More formally, the graph fusion procedure can be defined as follows. Let C = {c1, c2,
. . . , cS} be a set with S clusters defined after performing multiple hierarchical clustering
procedures. For each cluster ci ∈ C, we can create a proximity graph Gi = (Vi, Ei), where
Vi is a set of vertices defined by the points belonging to ci, and Ei is the set of edges
generated by MST3(Vi) for a given distance function d : Rn × Rn → R+. The fusion

34

(a) 1st execution (b) 2nd execution

(c) 3rd execution (d) Combined graph from 15 executions

Figure 3.3: Examples of graphs obtained after different clustering executions. (a), (b),
and (c) from isolated executions. (d) from combination of multiple executions.

1 Function CreateHCNNG(P, m, n)
Data: data points P , number of random clusterings m, min size of clusters n
Result: graph edges E

2 E ← φ
3 for i← 1 to m do
4 Ei ← HierarchicalClustering(P , n)
5 E ← E ∪ Ei
6 return E

Algorithm 3: Fusion of graphs.

graph G′ is defined as G′ = (V ′, E ′), such that V ′ = ∪ni=1Vi and E ′ = ∪ni=1Ei.
Another reason to choose this hierarchical-clustering-based approach instead of other

methods like k-means, because it is hard to estimate the initial number of clusters and the
number of iterations, without previous knowledge of the data distribution. The expected
time complexity of each clustering execution scales in a logarithmic factor to the collection
size leading to a total of O(ND log(N/n)), plus O(NDn log(n)) to construct MST3’s for
each cluster, where N is the size of the collection, n the estimated size of clusters, and D

35

Figure 3.4: HCNNG framework for search on NN graphs.

represents the cost of each distance calculation (equal to the data dimensionality for the
Euclidean distance). Therefore, for h clustering executions the expected complexity of
graph construction is O(h× (ND log(N/n) +NDn log(n))). With respect to the vertices
degree, as we limited the vertex degree to 3 in each cluster, all vertices will have no more
than 3 × h neighbors in final graph, then the final number of edges complexity will be
O(Nh).

3.2 Search on Graphs

As described in Section 2.2.2, the search strategies for NN graphs proposed in the literature
follow the general idea of Algorithm 1. We also employed a similar search strategy over
the graph constructed by the proposed algorithm described in the previous section, but
differently from this search strategy, we propose two heuristics to accelerate the discovering
o the true NN: one for the selection of the initial vertex, and the other for improving the
navigation on the graph by pruning some edges at search. These heuristics, that are
part of our HCNNG framework, are illustrated in Figure 3.4 and are detailed in the next
sections.

3.2.1 Non-randomic Selection for Starting Vertex

A good non-randomized starting vertex selection for search could help to reduce the num-
ber of distance calculations. We experimented creating a KD-Tree over all the collection
and taking as starting point the leaf that contains the query. This idea was explored in a
previous work [3]. Also, we do not actually perform the search on the KD-Tree, we just
perform a sequence of comparison of values from the root to the leaf that contains the
query, which is limited by the height of the KD-Tree (scales logarithmically with dataset
size), without spending any distance calculation in determining the initial point. Fig-
ure 3.5 shows an example for initial vertex selection based on a KD-Tree using a synthetic
2-dimensional dataset. The paths traversed in the KD-Tree for queries q1, q2 and q3 (per-
forming just one comparison per level) are L1 → L2 → L5 → p5, L1 → L3 → L6 → p8 and
L1 → L3 → L7 → p10, respectively. Similar to the idea of picking multiple random start-
ing points, we decided to create multiple global KD-Tree’s and pick the closest point to

36

Figure 3.5: Starting vertex selection example based on a KD-Tree.

the query among the ones returned by the KD-Tree’s. This value was set experimentally
and is detailed in the next section. At this extra step, we just spend as many distance
calculations as the number of KD-Tree’s created (to determine which one is closer). A
similar idea was explored by Wang and Li [68], to select initial candidates based on mul-
tiple KD-Tree’s for search on NN graphs, but differently from our approach, they actually
perform the search on KD-Tree’s (which involves extra costs), and also employed them
again in the traversal graph process. Finally, the creation of these KD-Tree’s can be done
offline, along with the creation of the NN graph, thus, the unique extra cost at search time
for the proposed approach is the simple traversal on the KD-Tree’s, which is negligible,
as we detailed above.

3.2.2 Pruning Edges to Accelerate Searches

As detailed in Algorithm 1, for searching in NN graphs, when a new vertex is taken from
the queue, all its neighbours are fully explored. This carries the cost of computing the
distance from all neighbors (of current vertex) to the query. When the path followed
by the search algorithm reach some hubs, this fully exploration strategy will increase
significantly the database scan rate to find the nearest neighbors. We propose a simple
heuristic, called guided search from now on, to avoid exhaustively computing the distance
from the query to all neighbors in each step of the search by pruning some edges. Our
objective is to focus the graph traversal process on a reduced set of neighbors that are
probably in the direction to the query. Figure 3.6 illustrates our idea. At any point in
the navigation (say p), we will just compute the distances from the query (q) to those
neighbors (v1 and v2) located at the same quadrant as the query (quadrant highlighted
in the figure), in reference to the actual vertex.

Figure 3.7 shows an example of multiple steps of a guided search from the starting
point (green vertex) to the query point (yellow star), where the vertices explored by guided
search are colored in blue and green (total 5), and vertices explored by classical greedy
approach are those colored in gray in addition to the blue and green ones (total 10). The
guided search starts at vertex 11 and, in the first step, it is computed the distance from
the query to just vertices 6 and 8. Vertex 8 is then selected for the next step. In the

37

Figure 3.6: Example of directed selection of neighbors.

Figure 3.7: Example of multiple steps in the guided search.

second step, it is explored vertex 5, which is selected for the next step, as it is closer
to the query than vertex 8. Finally, vertex 3 is explored, and as it is not closer to the
query than the actual vertex, the search ends. As we can observe, the number of distance
computations is decreased in half compared to classical greedy approach, in this example.

Determining the neighbors located in the same quadrant, at query time, is almost
as expensive as computing all the distances, so we propose a preprocessing stage, to be
applied on each vertex neighborhood Np, with the objective of organizing the neighbors
of each vertex p in quadrants (a subspace), taking as origin the vertex itself. Our idea
is inspired in the space partition procedure used by KD-Trees. We also used a tree-like
structure to store the neighbors in each subspace, where each internal node keeps the
dimension used to partition the space, and two sub-trees to store the neighbors located
in the positive and negative subspaces defined by the dimension chosen and an origin of
reference (the vertex itself p). Leaf nodes contain the neighbors located in the subspace

38

1 Function DivideSubspace(p, Np)
Data: point of graph p, neighbors points Np

Result: space partition tree T
2 dim← select dimension based on Np

3 neg ← {v ∈ Np|v[dim] < p[dim]}
4 pos← {v ∈ Np|v[dim] ≥ p[dim]}
5 if |neg| = 0 or |pos| = 0 then
6 T.points← Np

7 else
8 T.dim← dim
9 T.neg ← DivideSubspace(p, neg)
10 T.pos← DivideSubspace(p, pos)

11 return T

Algorithm 4: Creation of a tree structure to search in subspaces.

determined by the successive space partitions performed since the root up to the leaf.
This process is outlined in Algorithm 4.

For each call to the DivideSubspace function, first a new dimension (dim) is selected to
split the subspace. To maintain the tree balanced, we select the dimension that keeps the
best balance between the number of neighbors in the negative and positive side (line 2).
Then, we divide the neighbors into two subsets (neg and pos), using the dimension chosen.
If one of these sets ends empty after the subspace division (line 5), a leaf is created to
store the actual set of neighbors (Np) (line 6). Otherwise, an internal node is created to
store the dimension used in the division, and then, recursively, two sub-trees (T.neg and
T.pos) are created (lines 9 and 10) to continue the division of the two subsets defined
by neighbors neg and pos. A naïve algorithm for dimension selection costs D × |Np|,
being D the data dimensionality and |Np| the vertex degree. As the height of tree scales
logarithmically to the vertex degree, and the vertex degree scales linearly to the number
of clustering executions (h), then the complexity of Algorithm 4 is O(Dh log(h)) for each
vertex of the graph.

As previously mentioned, the subspace division is applied to every vertex and its
neighborhood in a preprocessing phase, along with the NN graph creation. At query
time, it is enough to traverse from the root towards the leaf that contains the neighbors
located at the same subspace as the query. Algorithm 5 details this traversal procedure.
We start at the tree root. If, at some time, we find a leaf, we return the neighbors
contained in this subspace (line 4). Otherwise, we check whether the query point belongs
to the negative (line 7) or positive (line 9) subspace defined by the dimension stored, and
then continue the traversal process following in the direction of the adequate subspace.

The creation of subspace trees is performed in such a way that the resulting tree is
balanced and, therefore, the expected height of trees is proportional to the logarithm of
the number of neighbors (for a certain vertex). Note, also, that determining the points
at the same query’s subspace takes as many comparisons (of integers) as the tree height,
and, the resulting graph of nearest neighbors remains sparse O(h), as discussed in the
previous section. Therefore, the application of the function GetNeighbors at each step of

39

1 Function GetNeighbors(q, p, node)
Data: query point q, point of graph p, node of space partition tree node
Result: neighbors in query’s subspace Nq

2 Nq ← φ
3 if node is a tree leaf then
4 Nq ← node.points
5 else
6 if q[node.dim] < p[node.dim] then
7 Nq ← GetNeighbors(q, p, node.neg)
8 else
9 Nq ← GetNeighbors(q, p, node.pos)

10 return Nq

Algorithm 5: Identification of neighbors at the same subspace of the query.

the navigation on the graph has a negligible cost.
Finally, for our experiments we employed Algorithm 1 (described in Section 2.2.2)

with a few modifications. We start the search at the multiple KD-Tree based vertex
selection (line 2), and, in each step, instead of exploring all neighbors, we continue the
search through the neighbors returned by the GetNeighbors function (line 7). In any
step of the search, when it had not found a closer point to the query in the selected
subspace, adjacent subspaces are explored, i.e., closer leaves in the subspace partition tree
are traversed. Subspaces are explored until a neighbor closer to the query than current
vertex is found. Finally, if there is no any neighbor closer to the query in any quadrant,
a backtracking strategy is performed using a priority queue similar to Algorithm 1.

3.3 Experiments

This section discusses the performed experiments aimed to validate the proposed method.
All experiments were conduced using the Euclidean distance.

3.3.1 Datasets

We experimented with two databases from BIGANN datasets1 for approximate nearest
neighbor search. One collection is composed of 1 million SIFT feature vectors (128 dimen-
sions) to index construction, and 10 thousand of queries to evaluate performance. The
other collection contains 1 million GIST feature vectors (960 dimensions) and 1 thousand
queries. These datasets were used in previous works [27, 34, 55] to evaluate approximate
nearest neighbors search techniques.

We also tested with a collection of Global Vectors [56] of textual features (GloVe, 100
dimensions) extracted from 2 billion of tweets2. In this dataset, to maintain a similar
size than in previous datasets, we used a randomly selected subset of 1 million vectors to
index construction and 10 thousand queries. For all datasets considered, the groundtruth

1BIGANN: http://corpus-texmex.irisa.fr/ (As of January 2020).
2GloVe: https://nlp.stanford.edu/projects/glove/ (As of January 2020).

http://corpus-texmex.irisa.fr/
https://nlp.stanford.edu/projects/glove/

40

was pre-computed by performing linear search to find the real nearest neighbors on the
whole dataset for each query of the test set.

3.3.2 Evaluation Criteria

We employed a widely-used evaluation metric for ANNS methods, the Speedup × Recall
charts. To keep the speedup independent on architecture where experiments were exe-
cuted, we only consider the number of distance calculations performed by each method.
Thus, speedup is defined as:

Speedup =
Collection size

Number of distance calculations

The Recall is defined by the fraction of true nearest neighbors that are successfully
retrieved. More formally, we used the following expression to evaluate the recall@K of
an ANNS method for a given query q in the K-NN search task:

Recall@K(q) =
GT (q,K) ∩ AM(q,K, T)

K

where the function GT returns the real K-NN for the query q, and AM returns the K-
NN discovered by the approximated method being evaluated, limiting to T the maximum
number of points explored (or distance computations) in the collection. In the rest of
this thesis we report the overall performance of some approximate method as the average
recall on a test set of queries. We conduced three experiments to evaluate the methods’
performance: the first to search for the closest neighbor (1-NN), the second to search the
10 nearest neighbors (10-NN), and the last to search the 100 nearest neighbors (100-NN).

3.3.3 Parameter Tuning

Two parameters are used in the HCNNG construction algorithm: the number of execu-
tions of hierarchical clustering procedures h, and the minimum size of clusters n. We
performed an exhaustive parameter search in a synthetic dataset of 100 thousand uni-
formly sampled random vectors with a dimensionality of 20. We perform this parameter
search in this random data, since it is the hardest scenario, when there is no correlation
between dimensions. Figure 3.8 shows the heat map obtained by evaluating at Recall@10
search results on graphs created for different values assigned to parameters h and n. To
evaluate the recall of each configuration, we fixed the maximum number of distance cal-
culation allowed in search (called as T from now on) to 1000. We can observe in the figure
that the convergence of the recall scores is reached for h ≥ 20 and n ≥ 1000. We set the
number of clustering procedure executions to 20 for all experimental results presented in
the following sections. Even though we can get same recall values with a larger h and
lower n, it is less costly to choose a lower number of clustering executions. In general,
most of our experiments across different datasets suggested an optimal value of

√
N for

the minimum size of clusters, being N the size of the collection, so we use this value in
all our experiments.

41

Min size cluster

500

1000

1500 Nu
m
clu

ste
rs

10
15

20
25

30
35

R
e
ca
ll@

1
0

70

73

76

78

81

84

87

89

92

95

81.0

82.5

84.0

85.5

87.0

88.5

90.0

91.5

93.0

Figure 3.8: Recall@10 for different values of clusters’ minimum size and clustering execu-
tions.

At search time, to determine the starting vertex, we experimented creating different
number of KD-Tree’s, from 1 to 20. To evaluate the impact of this parameter, we per-
formed the search (using the proposed guided strategy) on the graph created over SIFT
dataset with the parameters suggested above, and measured the Recall@1. Also, we ran
different experiments limiting to {100, 200, 300, 500, 1000} the value of T . Results for this
experiments are shown in Figure 3.9. As it can be observed, for lower values of T (greater
speedups), there is a significant gain in recall when the number of KD-Tree’s increases.
Based on these results, we selected the value of 10 (number of KD-Tree’s) for the next
experiments, as we wanted our method to yield results with high values of recall for any
desired speedup.

Figure 3.10 shows results of proposed framework on SIFT dataset using different con-
figurations for search. The same behavior was observed for the other datasets. It can
be observed that the two proposed approaches (initial vertex selection based on multiple
KD-Tree’s, and guided search) obtain significant gains over a classical approach to search
(random initial vertex selection with fully neighbors exploration), and when combined
(KD-Tree + Guided), improve even more the results.

3.3.4 Scaling Datasets

We conduced an experiment to measure the average scan rate performed (proportion of
the elements explored in some dataset) by 10-NN search (find 10 nearest neighbors) to
achieve a 99% of recall in all datasets. We measure this for different dataset sizes and
results are presented in Figure 3.11, with both axes in logarithmic scale. The shapes of the
curves suggest that the search of proposed method scales polylogarithmicly to the dataset

42

Figure 3.9: Recall@1 for different numbers of KD-Tree’s and maximum number of distance
calculations (SIFT dataset).

Figure 3.10: Different configurations of search (starting vertex + exploration strategy),
on SIFT dataset.

size, independently of the dataset. The proposed search method shows to be very efficient
in SIFT dataset by just needing to scan less than 0.4% of all dataset at size 1 million.
The slope of GloVe’s curve shows a slower decreasing of scan rate than in the other
collections. This seems contradictory to the fact that dimensionality in GloVe vectors
is far smaller than GIST vectors and slightly different from SIFT vectors. However an
analysis of the intrinsic dimensionality of the datasets showed that GloVe has the highest

43

Figure 3.11: Scan rate needed to reach 99% of recall for different collection sizes.

Base GloVe GIST SIFT

Dim 15 9 10

Table 3.1: Intrinsic dimensionality of datasets, estimated through Hausdorff dimension.

value of all 3 datasets. To estimate the intrinsic dimensionality we used a method based
on the analysis of fractal dimensions, known as Hausdorff dimension [28]. These values
are shown in Table 3.1.

3.3.5 Literature Comparison

We compared the proposed approach, henceforth called HCNNG, with several well-known
and recent state-of-the-art methods. FLANN library [49] is probably the most known
library for approximate nearest neighbors search. There are three main space partitioning
trees techniques implemented in FLANN: Randomized KD-Trees [61], K-Means Tree [47],
and Hierarchical Clustering Tree [48]. We used the auto-tuned algorithm from FLANN
library in our experiments, which selects the best algorithm (included in FLANN) and
parameter values for each of the data.

Among the NN-graph-based techniques, we compared our HCNNG with a recently
proposed method [27], called FANNG. We used our own implementation, and run the
experiments with parameters reported by authors on the same datasets. Other techniques
included from this family of methods were SW-graph [45] and HNSW [46]. For both, the
experiments were conduced with the implementation found in a recent library called
Non-Metric Space Library (NMSLIB)3. Also, we run the KGraph [22] technique, using

3NMSLIB: https://github.com/searchivarius/nmslib (As of January 2020).

https://github.com/searchivarius/nmslib

44

the implementation provided by authors in their website4. Finally, we implemented the
method introduced by Wang et al. [67] and included it as baseline (denoted asWang2012).

To compare with methods based in Product Quantization, we use a implementation
available of the classic method and two more recent optimized versions5: Product Quanti-
zation (PQ) [34], Optimized Product Quantization (OPQ) [23], and Additive Quantization
(AQ) [6].

3.3.6 Experimental results

Search performance results across SIFT, GIST, and GloVe are shown in Figure 3.12.
Results for 1-NN, 10-NN, and 100-NN searches are presented in the first, second, and
third rows, respectively.

In the case of SW-graph technique, the graph is constructed with the objective of
allowing a logarithmic navigation, but this property is negatively affected by the high de-
gree of many vertices, leading to a slow convergence, which is reflected in the results of all
experiments. As KGraph and Wang2012 aims to approximate an exact KNN graph, thus
its performance should be similar to an exact KNN graph. In all datasets, we added an
extra baseline, with the name of kNN-Graph, that represents the search performed over an
exact KNN graph. As it can be observed, empirical results suggest a considerable margin
of difference of kNN-Graph against methods that optimize graphs for NN search (e.g.,
HCNNG, FANNG, and HNSW). Consequently, KGraph and Wang2012 have a similar
behavior. Is worth it to stress out that, although, Wang2012 [67] employs a similar strat-
egy to construct the NN graph, the selection of MST3 for connecting the points inside
clusters, in our proposed approach, has a great impact on search results, demonstrating
a good balancing between graph sparsity and an easy to traverse NN graph.

On SIFT collection, although FLANN starts with one of the highest recall scores (at
Speedup of 104), it evolves slowly, being quickly outperformed by the proposed method,
HCNNG, and most of baselines, for all the three cut-off points considered (1, 10, and
100). In this dataset, HNSW shows to be the most competitive baseline, and FANNG,
the second best. Even though FANNG starts with low recall values, it quickly evolves
to high scores (> 90%). From the quantization-based techniques, the best method, AQ,
shows to be competitive at high recall values at 1-NN search, but it is outperformed by a
significant margin by HCNNG for 10-NN and 100-NN searches. In this dataset, HCNNG
yielded the best results both in terms of effectiveness and efficiency: it achieves high
recall values quickly and yields good recall scores when the maximum number of distance
calculation is low (higher speedups).

On the GIST dataset, the performance of all methods is clearly affected by its higher
data dimensionality, but, similarly to the SIFT dataset, the relative performance of all
methods does not change. Again, HNSW shows to be competitive, at the three cut-off
points, but for high recall values when compared with FANNG. For high recall values,
FANNG presents similar results as the proposed HCNNG. AQ method shows good per-
formance at first (1-NN search), but it is notably more affected than HCNNG when K

4KGraph: http://www.kgraph.org (As of January 2020).
5Quantizations: https://github.com/arbabenko/Quantizations (As of January 2020).

http://www.kgraph.org
https://github.com/arbabenko/Quantizations

45

0 20 40 60 80 100
Recall@1

102

103

104
Sp
ee
du
p

SIFT

KGraph
kNN-Graph
Wang2012
FLANN
SW-graph
PQ
OPQ
AQ
HNSW
FANNG
HCNNG

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee
du

p

GIST

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee
du

p

GloVe

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee
du

p

SIFT

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee
du

p
GIST

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee
du

p

GloVe

0 20 40 60 80 100
Recall@100

102

103

104

Sp
ee
du

p

SIFT

0 20 40 60 80 100
Recall@100

102

103

104

Sp
ee
du

p

GIST

0 20 40 60 80 100
Recall@100

102

103

104

Sp
ee
du

p

GloVe

Figure 3.12: Speedup vs recall on SIFT, GIST, and GloVe datasets.

(number of NN to search) increases. As in case of SIFT dataset, the curve of the proposed
HCNNG was superior at almost any point for 1-NN, 10-NN, and 100-NN searches on the
GIST dataset.

Results obtained by all evaluated methods on GloVe (for all 1-NN, 10-NN, and 100-NN
searches) were significantly worse than in SIFT and GIST datasets, considering that they
have the same size and GloVe has a lower dimensionality than SIFT and GIST vectors.
This fact is explained by the intrinsic dimensionality of datasets. As seen in Section 3.3.4,
GloVe has the highest intrinsic dimensionality, therefore evolution to get high recall values
will be in fact slower. Although, FLANN and AQ yielded better results than HCNNG
at medium recall values for 1-NN search, their performance is affected dramatically when
the number of NN to search increases, as it can be observed in 10-NN and 100-NN search
results for this dataset.

Summarizing, HNSW and FANNG have shown to be the most competitive methods
in all datasets, obtaining comparable speedups to the proposed HCNNG at high recall
values, but they are outperformed at medium recall values by HCNNG. The FLANN’s

46

Table 3.2: Total time for 100K queries (in seconds) using classical search approach vs the
guided proposed (without compiler optimizations).

SIFT GIST GloVe
Max. Distance
Calculations

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)Classic Guided Classic Guided Classic Guided

100 30.412 37.141 21.37% 87.118 91.605 5.60% 26.438 29.346 6.14%
250 78.675 85.869 27.39% 236.031 227.334 20.92% 68.176 72.196 14.27%
500 161.466 171.058 5.16% 449.054 445.305 11.20% 141.542 145.689 10.56%
750 247.852 260.133 1.77% 679.243 687.949 5.22% 218.889 226.076 6.44%
1000 338.050 348.214 0.76% 910.847 921.767 2.70% 294.816 305.367 3.00%

auto-tuned algorithm starts with good recall values, but, in most experiments, speedup
tends to decrease quickly as the recall increases. In the case of AQ, although it has
some competitive results at 1-NN search, the method performance is very sensitive to
the number of NN to search. The proposed method shows the best behavior across all
datasets, obtaining both good speedups at medium recall and best speedups at high recall
values in the three types of searches performed, demonstrating its applicability in cases
where not only the closest neighbor is required (e.g., local image features matching) but
also when a set of them are requested (e.g., content-based image retrieval).

3.3.7 Overhead of Auxiliary Local KD-Trees

One important aspect to consider in the proposed HCNNG framework, is the overhead of
auxiliary local KD-Trees-like structures employed to improve the search performance of
HCNNG, since the use of them is very recurrent at search. Thus, we measured the real
overhead of using local KD-Trees in our guided approach, by performing 100 thousand 1-
NN searches on each dataset and measured the total time to process these queries using the
classical search (Algorithm 1) and the proposed guided approach, limiting both methods
to different maximum numbers of distance calculations (number of vertices explored). The
resulting times are shown in Table 3.2, which were obtained using a single thread having
both methods a g++ implementation. As it can be observed, the use of local KD-Trees
in our guided approach add an almost constant extra constant time of ≈ 9.5 seconds for
the SIFT dataset. For the GIST dataset, there are two cases (250 and 500) where our
approach is even slightly faster than classical search. Finally, for the GloVe dataset, as in
the case of SIFT, we can observe an almost constant overhead.

Since in our guided approach, at execution time, multiple recursive calls of Algorithm 5
carries their own overhead (considering the large number of queries performed), we ran
again these experiments compiling with the compiler optimization option −O3, that per-
forms optimizations on recursive calls. The times measured are shown in Table 3.3. As
it can be observed, this optimization reduced considerably the execution time of both
methods, and even, it made our approach run slightly faster than classical search (almost
by a constant) in the SIFT and GloVe datasets. In the case of the GIST dataset, the
time required by our approach was almost half of the classical search. In summary, our
guided search approach has demonstrated empirically to have no significantly overhead
and to run even faster than classical search, when subjected to the same limitations, and
at same time obtaining positive recall gains over classical search.

47

Table 3.3: Total time for 100K queries (in seconds) using classical search approach vs the
guided proposed (with -O3 option for compiler optimization).

SIFT GIST GloVe
Max. Distance
Calculations

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)Classic Guided Classic Guided Classic Guided

100 10.969 10.797 21.37% 43.558 25.029 5.60% 9.167 9.659 6.14%
250 28.243 25.617 27.39% 110.971 59.117 20.92% 24.036 22.552 14.27%
500 58.703 50.911 5.16% 226.253 115.686 11.20% 50.594 44.631 10.56%
750 91.684 78.329 1.77% 345.229 176.746 5.22% 78.676 68.131 6.44%
1000 125.634 104.463 0.76% 464.278 234.372 2.70% 110.736 90.916 3.00%

48

Chapter 4

Learning to Navigate on Nearest
Neighbor Graphs

In this chapter, we introduce a supervised framework for learning to navigate on NN
graphs. For this purpose, we investigate the use of different topological properties of
vertices to support the graph navigation through vertices that would lead to an earlier
discovering of the true NN. First, in Section 4.1 we present an overview of the proposed
framework based on Genetic Programming (GP) to automatically discover near-optimal
ways for combining topological properties to conduce the graph navigation. Then, Sec-
tion 4.2 describes the topological properties considered in the proposed framework. Sec-
tion 4.3 describes the fitness function employed in the GP-based learning process.

4.1 Genetic Programming Framework for Better Graph
Navigation

As shown previously in Algorithm 1 (Section 2.2.2), in classical approach for searching on
NN graphs, vertices of graph are scored in the priority queue based only on their distances
to the query, so the vertex with minimum score (minimum distance) is taken from the
queue in each step and its neighbors visited. However, local topological information of
vertices can be used to improve the criterion for selection of the next vertex to be explored
(as seen in example shown in Figure 1.2), by better scoring those vertices that could allow
a faster discovery of the true nearest neighbors. In the context of networks, there are
many metrics [16] broadly studied in the literature that capture different properties of
the topology of vertices’ neighborhood.

In this work, we propose a GP framework to find a near-optimal scoring function
that takes into consideration both the classical distance-to-the-query and local topolog-
ical properties of vertices. The scores obtained by this function will be used to sort the
vertices on the priority queue, aiming to minimize the number of vertices explored to
discover the true nearest neighbors. GP has been shown to perform well in optimization
scenarios like this [1, 17, 19, 39]. In the context of the GP approach explained above, an
individual from the population corresponds to a candidate scoring function. We modeled
this scoring function as a combination of the distance and topological properties through

49

Figure 4.1: Example of individual in the proposed framework.

basic mathematical operators, therefore, we adopted the classical tree representation of
GP individuals for mathematical functions, as detailed in Section 2.4. Figure 4.1 shows
an example of an hypothetical individual that could be created in the proposed GP-based
framework. This tree represents the vertex scoring function f̂(x) = (D×D)

P
− ((N×J)+E)

2
,

that combines the following properties of a given vertex x: distance to the query (D), pref-
erential attachment (P), vertex degree N , Jaccard coefficient (J), and the edge weigh (E).
All these properties are described in the next section.

In Figure 4.2, it is shown an overview of the proposed framework for discovery of a
more adequate scoring function for search on NN graphs. The whole process is analog
to the GP process detailed in Section 2.4. At first, an initial population of candidate
solutions is created randomly employing a set of functions composed of mathematical
operators, and a set of terminals composed of several Search Dependent (SD) and Search
Independent (SI) features – described in the next section. Then, this initial population
is evolved over several generations. At the start of each generation, the fitness of each
individual is evaluated. As the fitness function depends on the application, we defined
the fitness function as the search performance of the scoring functions that represents
the GP individuals. Therefore, given an individual f̂(x), to compute its fitness value,
we average the search performance on a training set of queries obtained by using f̂(x)

function in lines 3 and 9 of Algorithm 1 (replacing the distance function). The exact
computation of this fitness value is detailed in Section 4.3. After the fitness evaluation,
some individuals are selected to be subjected to genetic operators, and, finally, a new
population is created, composed of the individuals produced by the genetic operators. At
the end of this evolutionary process, the most fitted individual (scoring function) seen
through the whole process is selected, and employed in the search algorithm to support
the execution of new queries.

4.2 Topological Properties of Vertices

Let v be the current vertex at search that was popped from queue in line 6 of Algorithm 1,
and u the neighbor of v being explored (line 7). We considered two types of features to

50

Figure 4.2: GP-based scoring function learning for NN search.

be taken into account by the scoring function discovery process: Search Dependent (SD)
and Search Independent (SI).

Features from the first group can only be computed at search time. We included in
our method the following search dependent features:

• Distance (D): this is the traditional distance from vertex u to the query point
(computed in line 9 of Algorithm 1).

• Path length (L): easily, we can adapt Algorithm 1 to keep track of the length of
the path (number of vertices) from the starting vertex to u. In the example shown
in Figure 2.2, L(u) = 3 (path from v0 to u).

On the other hand, search independent features depend on the local topology of NN
graph’s vertices, thus, these features can be pre-computed offline, adding no-extra cost at
search time. We considered the following features from this category, most of them from
the survey presented by Costa et al. [16] about network metrics:

• Edge weight (E): the weight of the edge between v and u. In the example shown
in Figure 2.2, E(v2, u) = dist(v2, u).

51

• Vertex degree (N): the degree of u. N(u) = 5, in the figure.

• Common neighbors (C): the number of common neighbors between vertices v
and u. C(v2, u) = 1, in the figure.

• Jaccard coefficient (J): a broadly used similarity measure commonly employed
in information retrieval tasks, defined as:

Jaccard(v, u) =
|τ(v) ∩ τ(u)|
|τ(v) ∪ τ(u)|

where τ is a function that returns the set of neighbors of a given vertex. For example,
J(v2, u) = 1/8 = 0.125, in Figure 2.2.

• Preferential attachment (P): another well-known metric in networks, which
serves as an indicator that vertices with many neighbors will create more connections
in the future (in dynamic graphs). This metric is given by:

PrefAttach(v, u) = |τ(v)| × |τ(u)|

where τ is the same as in Jaccard coefficient. P (v2, u) = 4× 5 = 20, in the example
(Figure 2.2).

• Adamic Adar (A): a classical metric employed initially in the context of link
prediction that is defined by:

AdamicAdar(v, u) =
∑

x∈τ(v)∩τ(u)

1

log |τ(x)|

thus, in example above, A(v2, u) = 1
log(2)

= 3.32.

• Edge redundancy (R): we introduce this binary property that takes the value of 0
if exist any vertex w (different from v and u) that is neighbor of v and u, otherwise,
this property takes the value of 1. In Figure 2.2, R(v2, u) = 0.

For example, if the best scoring function found through the evolution process was
f̂(x) = (D×D)

P
− ((N×J)+E)

2
, and considering that v2, u, and q in Figure 2.2 represent the

points (4, 4), (5, 3), and (10, 10), respectively. Then, the score that will be associated with
vertex u will be: f̂(u) = (

√
72×
√
72)

20
− ((5×0.125)+

√
2)

2
= 2.58.

We selected this set of features based on their associated low computational cost, an
important requirement, as our method is expected to support searches on large graphs.

4.3 Fitness Function Computation

It is of paramount importance to define an adequate fitness function based on what
we are aiming to optimize. As we intend to discover scoring functions that improve
search performance on NN graphs, we decided to use a conventional metric on information

52

retrieval known as recall to measure the search performance for a given individual f̂ . Also,
in order to have an indicator of the improvement in terms of the recall obtained by using
f̂ instead of the classical approach, we defined the fitness function as the difference of the
recall obtained between the search based on f̂ and the search based only on the distance
to the query. Formally, this fitness function is given by:

fitnessNN (f̂) =
1

|T |
∑
t∈T

(
g(t, f̂)− g(t, L2)

)
(4.1)

where the function g(t, s) computes the average recall@1 obtained on a training set of
queries Q, by using s as scoring function at search, and limiting the number of vertices
explored to t. Also, L2 represents the function that computes the Euclidean distance
between any vertex and a query. The reason why to average the gain obtained for different
values of t is to discover scoring functions that perform well regardless the maximum
number of vertices allowed to explore.

4.4 Experiments

This section presents the the experimental protocol employed to validate the proposed
technique, and our experimental results.

4.4.1 Datasets

We experimented with three different datasets: GloVe, SIFT, and YFCC100M. The GloVe
and SIFT datasets are the same as those employed in experiments conduced to validate the
proposed HCNNG (Chapter 3), described in Section 3.3.1. The new dataset YFCC100M
of visual features vectors is described below:

• YFCC100M:1 the Yahoo-Flickr Creative Commons 100 Million (YFCC100M) con-
tains 99.2 million photos and 0.8 million videos from Flickr (we only considered the
images). We employed the feature vectors provided by Popescu et al. [58], rep-
resenting improved VLAD vectors, in which their initial dimensions (32,768) were
reduced with PCA+whitening, maintaining the 128 most significant dimensions for
our experiments. We selected randomly a subset of 1 million of images (referenced
as YFCC from now on) for graph construction and 10 thousand queries.

4.4.2 NN graph baselines

We considered three of the methods described in Section 2.2.1 for construction of NN
graphs: KGraph [22], SW-graph [45], and FANNG [27]. Also, we experimented with the
NN graph created using the proposed HCNNG, described in Chapter 3. In the case of
KGraph, we performed experiments using the implementation provided by the authors’

1YFCC100M: http://multimedia-commons.s3-website-us-west-2.amazonaws.com (As of Jan-
uary 2020).

http://multimedia-commons.s3-website-us-west-2.amazonaws.com

53

website.2 For the SW-graph method, we used the implementation included in the Non-
Metric Space Library (NMSLIB).3 For FANNG, we performed experiments with our own
implementation. We did not consider the HNSW method, since the search employed by
this technique differs significantly from the approach considered by all three methods, due
to their hierarchical structure of multiple graphs. We leave the investigation of the use of
our method combined with HNSW for future work.

In the case of SW-graph and FANNG, the maximum degree of vertices can not be
delimited by any parameter at graph construction phase, thus, some vertices will probably
end up with a very high number of neighbors, as we observed for the three dataset
considered above. This would affect negatively the convergence on the GP evolution
process, since the vertex degree is considered as input in GP individuals and this value
could change significantly the value returned by the mathematical expressions represented
by individuals. Therefore, we decided to limit the vertices degree in all graphs created.
Selecting a low value for maximum degree could lead to an unconnected graph, so we
tested with many cut-off values near to the average degree and determined the value of
60 as near-optimal cut-off point. To have a fair comparison between the three methods,
we used this value for all of them. Also, we verified that the search performance was not
affected significantly at this cut-off value (for all three methods).

4.4.3 GP set-up

The following GP configuration were used in our experiments. We based our choices on
related work [1, 17,19,39] and empirical results:

• Population: we experimented with different sizes of population, starting with a
big enough value of 1000, and decreasing it while performance of best individuals
were not affected. Thus, for final experiments, we created an initial population of
400 individuals, for all three datasets, using the ramped-half-and-half technique,
restricting the individuals’ tree representation to a maximum depth of 5.

• Functions: we employed the set of classical mathematical operators: {+,−,×, /}.
Additionally, we included the binary operators of max and min.

• Terminals: we included all the search dependent and independent features de-
scribed in Section 4.2: {D,L,E,N,C, J, P,A,R}. Also, to maintain these values
approximately at the same scale, we divided them by their correspondent maximum
feature values. We made this aiming to assign the same importance to all features.
Finally, we included random real values uniformly selected from the range [−1, 1],
as done in other related research initiatives [1, 17, 19, 39], aiming to facilitate the
scaling of some features.

• Genetic operations: in all experiments, we used the classical operators of repro-
duction, mutation, and crossover, employing the tournament selection method, with

2KGraph: https://github.com/aaalgo/kgraph (As of January 2020).
3NMSLIB: https://github.com/nmslib/nmslib (As of January 2020).

https://github.com/aaalgo/kgraph
https://github.com/nmslib/nmslib

54

size 6, as criteria to select the individuals. In all experiments, the reproduction, mu-
tation, and crossover operators were applied at a rate of 5%, 10%, and 85% of the
population, respectively.

• Fitness function: we employed the fitness function given by (4.1). For the set
T , we selected the logarithmic scaled values of {102, 102.1, 102.2, ..., 103.9, 104}, guar-
antying that individuals are optimized for very distinct situations, ranging from a
restricted number of distance calculations to less limited scenarios.

• Stopping criterion: in the parameter exploration phase, we observed that, in
most of experiments, after the 100th generation, the fitness value does not change
significantly.

At fitness evaluation of individuals, a subset of 1,000 queries were selected randomly
from the original test set of 10,000 queries, for each dataset. The remaining 9,000 were
used to test the best individual found through the evolution process.

4.4.4 Experimental results

We employed the same Speed × Recall charts, as in previous chapter, to evaluate the
performance of the proposed search approach. Results for 1-NN search of the proposed
approach on the GloVe, YFCC, and SIFT datasets are presented in first column of Fig-
ure 4.3. Dashed curves (with suffix “GP”) represent the search performance on the corre-
sponding graphs using the GP-based scoring function to score vertices in priority queue.

For the GloVe dataset, as it can be observed, search performance results at 1-NN case
showed a significant gain obtained by using the GP-based scoring function against the
usual distance. This gain is observed for all the four methods considered for NN graph
construction. In case of the YFCC and SIFT datasets, note that, although, the margin
between the two curves (baselines and proposed GP-based search) seems to be small,
figures are shown in logarithmic scale. Also, we run statistical per-query paired t-test
with 95% confidence, over the 9,000 queries employed as test queries, and considering the
same values of speedup used in Figure 4.3. Results of this statistical test are shown in
Table 4.1, where “+” symbols means the statistical superiority of our GP-based search
approach against classical search (Algorithm 1), symbol “−” means the opposite, and “=”
means a statistical tie. The last row of the table presents the results of the statistical tests
done over all queries and speedup values, considering all graph construction methods and
datasets. These results demonstrate the statistical superiority of our approach against
their corresponding baselines.

The following scoring functions were discovered by the proposed GP framework and
employed in the final experiments that led to the results described above:

• GloVe:

– HCNNG: min((E +max(A,C)), (D +D))/(0.68 + E) +min((((D/L)/E)× (D +min(D,L))),

((min(D,P)/0.68) +min(0.68, D)))

– FANNG: min(L,min(D, (L+N)))/((L×min(D,E))× (L+ (−0.94×D))) + ((((D−E)−L)/(D×L)) +
((N − 0.94× J) + (N +min(C,P))))

55

0 20 40 60 80 100
Recall@1

102

103

104
Sp
ee
du
p

GloVe

KGraph
KGraph-GP
SW-graph
SW-graph-GP
FANNG
FANNG-GP
HCNNG
HCNNG-GP

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee
du

p

GloVe

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee
du

p

YFCC

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee
du

p

YFCC

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee
du

p

SIFT

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee
du

p

SIFT

Figure 4.3: Speedup vs recall on GloVe, SIFT, and YFCC datasets.

– SW-graph: min(min(N, (((−0.62/N)/D)/min(N, (D ×D)))),min(max(D, (−0.62/N)/D),max(((−0.62/
N)/D),

min(D, (−0.62×N)))))

– KGraph: (max((N − E) − E,max(D,P) −max(D, J)) ×min(D, (P −max(0.96, D)))) × (max(((0.96 −
E)− E), 0.96− L) + (((R−D)−D)× ((R− E)−max(E,P))))

• YFCC:

– HCNNG: max((max(A,N) × (P + (D/L))), (−0.11 + (L × (E × L)))) + ((−0.11/min(D, (A + D))) +

max((−0.11/min(D,N)),max(E,P)))

– FANNG: max(min(min(C, J),max(0.10, J)×min(L,N)), (N ×min(D,P) + (min(0.61, D) +D))) +

min(min(0.61× E, (D ×N) + (N ×N)),min(min(D,min(D,N)),min(D, (0.61×N))))

– SW-graph: ((max(0.73, N) + (N + (D + N))) × (max(0.73/E,N/L) +max((0.04/0.07),max(E,N)))) +

((max(0.57, (D +N))× ((N +N) + (N +N)))− (0.73/D))

– KGraph: min(((((−0.13+E)/D)− (D+ (−0.52×N)))− (E + (P +0.13))/D), ((min(A,N) + (N −R))−
(min(A,R)/E))− ((E + (P + 0.13))/D))

56

Table 4.1: Statistical paired t-test for 1-NN search, comparing our GP-based approach vs
classical search (“+”: gain, “−”: lost, “=”: tie, H: HCNNG, F: FANNG, S: SW-graph, K:
KGraph).

Speedup GloVe SIFT YFCC
H F S K H F S K H F S K

102.0 + + + + = = = + + = + +
102.1 + + + + = − − + + = + +
102.2 + + + + = − = + + + + +
102.3 + + + + + = + + + + + +
102.4 + + + + = = + + + + + +
102.5 + + + + = = = + + + + +
102.6 + + + + = = = + + + + +
102.7 + + + + + = + + + + + +
102.8 + + + + + + + + + + + +
102.9 + + + + + + + + + + + +
103.0 + + + + + + + + + + + +
103.1 + + + + = + + + + + + +
103.2 + + + + + + + + + + + +
103.3 + + + + + + + + + + + +
103.4 + + + + + + + + + + + +
103.5 + + + + + + + + + + + =
103.6 + + + = + + + + + + + +
103.7 + + + + + + + + + + + +
103.8 + + + − + + + + + + + =
103.9 + + = = + + + + + + + +
104.0 + + = = = + + + + + + =
General + + + + + + + + + + + +

• SIFT:

– HCNNG: min(((min(0.42, P)×(A+D))×(E−(0.42/D))), (N−(0.42/D)))+(((min(0.42, P)×(A+E))×
(min(0.42, D) + (A+D)))− (E +min(D,min(D,P))))

– FANNG: ((((C/L)+min(N,P))− (J −max(E,N)))+ (((−0.64/D)+max(C,N))− (min(P, P)−max(N,
P))))− ((min(P, (C/D))−max(max(N,P),max(C,D)))−max(
(−0.64× (−0.64/D)), ((D/P) +max(L,N))))

– SW-graph: max(((min(D, (E + J)) + ((D +D)−D))− (((D + E)−N)× ((D +D)−min(D,E)))),

((D + ((D +D)− (D × E)))− ((E × P)× ((D + E)−D))))

– KGraph: min((D − (min(D,E)×min(0.41, E))), (max(min(C, J), (E − C)) +min(max(E, J),

max(0.41, E))))− (min(max(min(0.41, J), (E − C)),max((R/E),min(C,D)))× (min(J, (D/R))×
(max(0.41, R) +min(0.41, E))))

From the set of scoring functions above, we could observe that the two features that
have more influence on the final scores were the distance to the query (D) and the edge
weigh (E), since they have higher frequency.

By employing these discovered functions, we also ran experiments for the 10-NN
(search of the 10 nearest points). Results of these experiments are shown in second
column of Figure 4.3, for the GloVe, YFCC, and SIFT datasets. Similarly to the case
of 1-NN search, we also run statistical paired t-tests for 10-NN search. These results are
shown in Table 4.2. As it can be observed, the behavior of all methods did not change
significantly. The proposed approach yielded superior or equivalent results to their coun-
terparts, in almost all points, demonstrating the effectiveness of discovered functions in

57

Table 4.2: Statistical paired t-test for 10-NN search, comparing our GP-based approach
vs classical search (“+”: gain, “−”: lost, “=”: tie, H: HCNNG, F: FANNG, S: SW-graph,
K: KGraph).

Speedup GloVe SIFT YFCC
H F S K H F S K H F S K

102.0 + + + + + = = + + + + +
102.1 + + + + + = = + + + + +
102.2 + + + + + − + + + + + +
102.3 + + + + + = + + + + + +
102.4 + + + + + − + + + + + +
102.5 + + + + + = + + + + + +
102.6 + + + + + = + + + + + +
102.7 + + + + + + + + + + + +
102.8 + + + + + + + + + + + +
102.9 + + + + + + + + + + + +
103.0 + + + + + + + + + + + +
103.1 + + + + + + + + + + + +
103.2 + + + + + + + + + + + +
103.3 + + + + + + + + + + + +
103.4 + + + + + + + + + + + +
103.5 + + + + + + + + + + + +
103.6 + + + = + + + + + + + =
103.7 + + + = + + + + + + + =
103.8 + + + − + + + + + + + =
103.9 + + + = + + + + + + + =
104.0 + + + − + + + + + + + =
General + + + + + + + + + + + +

the scenario of K-NN searches, even though these were trained to optimize the 1-NN
search.

These experimental results showed the robustness of the proposed supervised search
approach, since this can obtain search gains, compared to classical search, independently
of the technique employed to construct the NN graphs. Additionally, the using of the
propose GP-based scoring functions carry no significant extra cost, since all topological
properties considered for vertices can be pre-computed before search.

58

Chapter 5

Billion-Size Nearest Neighbor Graphs

In this chapter, we introduce the extension of our HCNNG framework, introduced in
Chapter 3, to make it scalable to billion-size datasets, employing quantization-based
compression techniques to deal with the memory issues presented for most of existing
techniques for ANNS. First, in Section 5.1, we present the algorithm for construction of
NN graphs using compressed vectors. Next, in Section 5.2, we describe how to adapt the
proposed GP-based supervised framework, introduced in Chapter 4, to pruning edges at
graph construction phase, aiming to generate very sparse graphs and, therefore, leading
to decrease the memory consumption to store the NN graph. Section 5.3 describes the
search algorithm employed on the billion-size graphs created over the compressed vector.
Finally, in Section 5.4, we describe the experimental protocol employed to validate the
proposed techniques and present our results compared with the state-of-the-art techniques
for billion-size ANNS.

5.1 Graph Construction

Existing NN graph techniques require to load all feature vectors to main memory, which
could demand from hundreds gigabytes to terabytes of memory for billions of high-
dimensional vectors, therefore leading to employ very costly architectures to be able to
execute these techniques. Given these restrictions, we propose to compress the original
feature vectors using a quantization technique. In this way, the memory consumption to
load all data in memory scales to no more than a dozen gigabytes (using conventional
parameters for quantization). We will introduce our approach based on the OPQ [23]
technique to create the compact representations of original vectors. However, any other
technique with possibly lower compression error could be used instead. We selected OPQ
given its good trade-off between efficient encoding and coding accuracy [23].

More formally, givenM orthogonal partitions of the D-dimensional vector space of the
original data, the set of codebooks C = {C1, C2, ..., CM} (corresponding to each partition)
and the rotation matrix R are learned through OPQ. Each codebook is composed of
a set of K codewords (centroids) Cm = {cm1 , cm2 , ..., cmK}. Let x be a vector x ∈ RD,
then after applying the rotation xRT , and encode it based on C, x is approximated
by x̂ = [c1i1c

2
i2
...cMiM]. Also, x̂ could be represented by the compact code (i1, i2, ..., iM)

59

1 Function HCG(P̂, f̂ , k, G)
2 if |P̂| < n then
3 T ←MST3(FullGraph(P̂))

4 foreach x̂ ∈ P̂ do
5 Nx̂ ← ϕ(x̂, G) ∪ ϕ(x̂, T)

6 Sx̂ ← AssignScores(Nx̂, f̂)
7 sort Nx̂ with respect to Sx̂

8 ϕ(x̂, G)← Top(Nx̂, k)

9 else
10 select randomly x̂1 and x̂2 from P̂
11 HCG({x̂ ∈ P̂ | d̂(x̂, x̂1) < d̂(x̂, x̂2)}, f̂ , k, G)

12 HCG({x̂ ∈ P̂ | d̂(x̂, x̂1) ≥ d̂(x̂, x̂2)}, f̂ , k, G)

Algorithm 6: Hierarchical clustering procedure for a dataset P̂ with an expected size
of clusters n.

employing just M logK bits.
Another problem with NN graphs approaches is the memory required to store the graph

itself, since most of these approaches commonly generate a few hundreds of neighbors for
each vertex (according to the results reported on million-scale datasets). The use of
adjacency lists, a typical representation, would require storing hundreds of integers for
each vertex, which at scale of billions leads to a very costly and impractical solution. The
graph construction algorithm of the proposed HCNNG limits the number of neighbors
per vertex to just 60. Even with this reduced number of neighbors, HCNNG still would
demands a high amount of memory to store the graph for billion-size datasets (≈ 240

GB). In the following, we will describe the extension of the graph construction algorithm
of HCNNG that scales up to billions of vectors in both time of execution and memory. The
main differences relies on the use of quantization-based compressed vectors, and an edge
pruning stage that aims to limit even more the degree of vertices. The new hierarchical
clustering algorithm is detailed in Algorithm 6.

Let P̂ = {x̂1, x̂2, ..., x̂N} be a set that contains the compact representations of the
original vectors, where N is the size of the dataset. Also, let ϕ(x̂,G) be the function that
returns the set of neighbors of x̂ on graph G. The clustering procedure starts by checking
if the size of P̂ has reached the expected size of clusters (n). In the case that the size of
P̂ is still larger than the expected size, then the vectors of this set are divided into two
subsets, regarding to the distance to two randomly selected vectors in P̂ (line 10). Next,
these subsets are recursively clustered (lines 11-12). Otherwise, a fully connected graph
is created on the current P̂ , where the weight of edges is given by the distance between
the vectors. Then, the MST3 (T) is computed over the full graph (line 3). At this
stage, in the graph construction algorithm of HCNNG, the edges contained in T would
be directly added to the global graph G. Instead, we propose an extra step to select the
best k-neighbors (line 8) for each vector in P̂ , among those neighbors currently in G and
the new ones found in T (line 5), conducing this selection based on a scoring function f̂
(line 6).

60

As in HCNNG, we perform multiple times the hierarchical clustering procedure of
Algorithm 6 in order to discover enough edges and to connect properly all vectors in P̂
through G. Given that in our case the set P̂ only stores the compact codes of original
vectors, then the Euclidean distance computation (lines 3, 11 and 12) can be done of
two forms: reconstructing the original vectors or using lookup tables. The first case
is trivial, and the complexity of Algorithm 6 remains the same as in HCNNG, given
by O(ND log(N/n) + NDn log(n)). For the second case, given two compact vectors
x̂ = (i1, i2, ..., iM) and ŷ = (j1, j2, ..., jM), the squared Euclidean distance is computed
based on the following expression:

d̂(x̂, ŷ) =
M∑
m=1

L2(cmim , c
m
jm)2 (5.1)

thus, if we pre-compute the square Euclidean distance between all the centroids of each
codebook in C, and store them in a lookup table, Equation 5.1 could be evaluated using
just M additions. Therefore, the complexity of Algorithm 6 in this case decreases to
O(NM log(N/n) + NMn log(n)), replacing D by M (M < D). Common values for M
ranges from 8 to 16, while in the case of D from hundreds to thousands, thus, we employed
in our experiments the last approach, since the memory overhead to store the lookup table
O(K2M) is not significant.

5.2 Learning to Select Vertices’ Neighbors at Graph
Construction

For the scoring function, we propose two approaches: a naïve greedy approach and a su-
pervised approach. In the first approach, we simply score the neighbors of a given vertex
x̂ by their square Euclidean distance to x̂. For the supervised approach, we employ a
scoring function discovered by the GP framework proposed in the Chapter 4, that com-
bines the distance (the same as first approach) with topological properties of neighbors.
But differently from our previous GP-based learning approach, we optimize this scoring
function to select better vertices’ neighbors at NN graph construction stage, instead of
optimizing it to select vertices that lead to better graph traversal at search stage (as it
was done previously).

More formally, for a given vertex x̂ ∈ P̂ and ŷ ∈ ϕ(x̂, G), let ȳx̂ = {ȳx̂1, ȳx̂2, ..., ȳx̂F}
be the set of F -properties of ŷ with respect to x̂, which may include the distance d̂(x̂, ŷ)

and some topological properties (e.g., the number of common neighbors between x̂ and
ŷ, the Jaccard coefficient between x̂ and ŷ, and adamic adar metric). We aim to find a
scoring function f̂(ȳx̂) that combines through simple mathematical operators the proper-
ties’ values in ȳx̂ that leads to a better scoring of ŷ with respect to x̂, and, therefore, to
a better selection of the k-neighbors for each vertex on the global graph G.

The GP-based scoring function discovery process is outlined in Algorithm 7. This
starts by creating an initial population composed of randomly generated candidate solu-
tions (line 1), and creating the NN graph using the distance function (Equation 5.1) as
scoring function in Algorithm 6. This initial population is evolved through a number of

61

1 Function LearnScoringFunction(P̂t, k, Q)
2 P ← create initial random population
3 Gd̂ ← HCG(P̂t, d̂, k)
4 for g generations do
5 for f ∈ P do
6 Gf ← HCG(P̂t, f, k)
7 fitness(f)← R@1(Q,Gf)−R@1(Q,Gd̂)

8 S ← select individuals from P based on fitness
9 P ′ ← apply genetic operators on S
10 P ← P ′

11 return f̂ ∈ P with max fitness value
Algorithm 7: Genetic programming-based scoring function learning.

generations. At the start of each generation, all individuals (scoring functions) of current
population are evaluated (lines 5-7) to know how well they perform at constructing NN
graphs (compute their fitness value). To this end, a different NN graph is created using
each scoring function (line 6). Then, as we did it previously in Chapter 4, we evaluated
the performance of each function f based on the recall@1 (R@1) improvements obtained
(on a set of training queries Q) by using f instead of d̂ at graph construction (line 7). Af-
ter fitness evaluation, a subset of the individuals is selected (line 8) based on their fitness
values, to finally apply the genetic operators (e.g., reproduction, mutation and crossover)
over this subset (line 9), which will create the new individuals of the population for the
next generation. At the end of evolution, the best candidate solution (with maximum
fitness value) of last generation is returned (line 11).

This learning process is executed over small subsets (P̂t) of the billion-size datasets,
since it is very costly to create a graph for each individual of the population in each
generation. Just the best scoring functions (f̂) returned by Algorithm 7 are employed to
create the NN graphs on the billion-size datasets.

5.3 Search on Billion-Size Graphs

We adapted the classical algorithm for searching on NN graphs to work with data com-
pressed via OPQ. This is illustrated in Algorithm 8. Assume we have a query q and a
maximum number of distance calculations T (scanning rate). To start a search, as it is
done in other indexing structures [7, 34], a lookup table is pre-computed (line 2) to store
the square Euclidean distance from the query to all the centroids of each codebook in
C. Then, a random vertex v on graph G is selected to be the initial global minimum
(line 3). Next, the distance from vertex v to the query is computed (line 4) through the
Asymmetric Distance Computation (ADC, which is described in the next paragraph) [34],
by using the lookup table L and the compressed codes for vertex v (P̂v). In this way, we
evaluate the distance using just M additions. A priority queue is then initialized with
the vertex v, scoring it with the value of its distance to the query. The graph is traversed
until there is no distance calculation left (line 6). In each step, the vertex with minimum

62

distance is taken from the queue (line 7) to explore its neighbors. If a neighbor was not
visited yet, then the distance to query is computed via ADC and it is pushed to queue
(lines 10-11). Also, if any visited vertex has a distance lower to the global minimum, then
this is updated (lines 13-15). Finally, the nearest visited vertex to the query is returned.
This algorithm is easy to generalize for k-NN searches, by adding a list to store the closer
k-vertices.

There are two ways for computing the distance from the query vector to the com-
pressed vectors indexed by the NN graph. The first is to encode the query vector, this
is, determine the index of nearest centroids in each codebook Cm ∈ C and then compute
the distance between the compressed representations in the same way as in Equation 5.1.
This approach is known as Symmetric Distance Computation (SDC). Also, it can be done
efficiently employing just M additions by pre-computing a lookup table to store the dis-
tance matrix for each codebook. The second approach to calculate the distance does not
encode the query vector q, instead, prior to the search, pre-compute the distance from
the original query vector to all the centroids of all codebooks and store them in a lookup
table L ∈ RK × RM (line 2 in Algorithm 8), where Li,m stores the distance from qm

(m-th subvector after orthogonal partition) to centroid cmi ∈ Cm. Then, at search time,
to calculate the distance with a compressed vector x̂ = (i1, i2, ..., iM), it just performs M
additions by computing the next expression:

ADC(q, x̂) =
M∑
m=1

Lim,m (5.2)

This last approach is known as Asymmetric Distance Computation (ADC). The cost of
encoding the query vector in SDC is the same that pre-computing the lookup table in
ADC (O(KD)), however, experiments performed by Jégou et. al [34] evidenced that ADC
approximate better than SDC to the euclidean distance between original uncompressed
vectors. This is the reason why we use the ADC instead of the SDC.

5.4 Experiments

In this section, we present the experimental protocol, conducted parametric analysis,
experimental results, and comparisons of our proposed approach with state-of-the-art
indexing structures for billion-scale datasets.

5.4.1 Datasets

To validate the proposed index structure, we performed experiments on two billion-size
datasets:

• SIFT1B:1 this dataset is composed of one billion SIFT vectors, and is part of the
well-known BIGANN benchmark for nearest neighbor search evaluation. Also, it is

1BIGANN: http://corpus-texmex.irisa.fr (As of January 2020).

http://corpus-texmex.irisa.fr

63

1 Function SearchNN(q, T , P̂, C)
2 L ← LookupTable(q, C)
3 v ← random vertex in G
4 d← ADC(q, P̂v)
5 Q ← initialize priority queue with tuple [n, d]
6 while T > 0 do
7 v̄ ← Q.pop()
8 foreach u ∈ ϕ(v̄, G) do
9 if T > 0 and u not visited then
10 d∗ ← ADC(q, P̂u)
11 Q.push([u, d∗])
12 T ← T − 1
13 if d∗ < d then
14 v ← u
15 d← d∗

16 return v, d

Algorithm 8: Search algorithm for billion-scale graphs.

available 10 thousand queries for search evaluation with their respective groundtruth
computed via exhaustive exploration.

• DEEP1B:2 this dataset was introduced in a recent work [9], and it is composed of
one billion deep learning-based feature vectors with 96 dimensions. For this dataset,
authors also made available a set of 10 thousand queries with their groundtruth.

5.4.2 NN Graph Parameter Setting

In order to set the final configuration of parameters for our proposed approach, we ex-
tracted a subset of 1 million vectors from DEEP1B, called DEEP1M from now on, and a
set of 10 thousand queries (not contained in DEEP1M) to evaluate the different configu-
rations. In all experiments, we employed the same parameters as in HCNNG for creation
of the NN graphs. The expected size of clusters n was set to 1000 and were performed 20
executions of the hierarchical clustering procedure to create enough edges for connecting
properly the global graph.

On the other hand, in order to encode the vectors, we set the number of partitions
of the original vector space to M = 8 (a common value used for compression), in all
experiments. Also, we experimented encoding vectors with different quantities of bits
per sub-quantizer. Figure 5.1 shows the NN search performance on graphs created over
DEEP1M, encoded with different number of bits, where the x-axis represents the num-
ber of vectors scanned (T) and the y-axis, the average recall@1 obtained on a set of 10
thousand queries. We observed that significant gains in search accuracy can be obtained
by increasing the number of bits (compared with the standard value of 8 bits). However,

2DEEP1B: http://sites.skoltech.ru/compvision/noimi (As of January 2020).

http://sites.skoltech.ru/compvision/noimi

64

102 103 104
T

0

20

40

60

80

100

Re
ca

ll@
1

DEEP1B_parambits

8-bits
10-bits
12-bits
14-bits

Figure 5.1: Search performance on DEEP1M encoding with different numbers of bits per
sub-quantizer.

we also noted that this gain is just noticible up to 12 bits. Therefore, in the final ex-
periments, we encoded the original vectors via OPQ with 12 bits per sub-quantizer. The
NN graphs employed for this parametric analysis were created using just the distance
from Equation 5.1 as scoring function, and vertices were limited to a maximum degree of
k = 15 (as it will explained in next section).

5.4.3 Genetic Programming Set-up for Scoring Function

The GP configuration that were employed on final experiments is shown in Table 5.1.
We used similar parameters as in previous chapter for learning the scoring function. We
employed a reduced population, since it is costly to evaluate the fitness of individuals.
We also observed that it was only necessary few generations to converge, differently from
experiments reported previously. Most of vertices properties employed in the learning
process are the same as those described in Section 4.2: weight edge (E), vertex degree
(N), common neighbors (C), Jaccard coefficient (J), preferential attachment (P), Adamic
Adar (A), and edge redundancy (R). We did not include the “length path” since that
feature does not make sense in this case.

We performed a set of experiments to analyze the gains in search accuracy of the
GP-based scoring function against the Euclidean distance. Figure 5.2 shows the search
performance on DEEP1M using NN graphs created by limiting the degree of vertices to
k = 5, 10, 15; and employing both scoring functions, the GP-based (dashed curves) and the
Euclidean distance (solid curves). We observed that for a degree of k = 5, our GP-based
scoring function led to the construction of a graph notably better than the distance-based
for the task of NN search. Also, while we increased the vertices’ degree, the overall
search performance on graphs improved, but the gains for our GP-based scoring function

65

Table 5.1: GP parameter values.

Parameter Value

Size population 200
Depth individuals 4
Functions {+,−, /, ∗,min,max}
Terminals {E,N,C, J, P,A,R} ∪ random[−1, 1]
Num generations 20
Genetic operators reproduction (5%), mutation (10%), crossover (85%)

decreased as well. It is guaranteed that search accuracy for GP-based function will be at
least the same as the distance-based, since this property is also included on the function
discovery process. The selection of final vertices’ degree (k) depends on the memory
available. For the billion-scale datasets considered, it is required approximately 4 GB for
storing one neighbor per vertex. On the final NN graphs created over those datasets,
we limited the vertices’ degrees to k = 15. Although, the consumption of memory is
high, compared to the other indexing structures, it is compensated with a fast and more
accurate search, as we will show in next section.

The learning process was performed over a subset of 200 thousand vectors randomly
selected from original datasets and it was executed for each different value of k. The
scoring functions discovered on the GP-based learning process that were employed to
create the final NN graphs are listed below (for k = 15):

• SIFT1B: min(min(min(−0.42, (max(0.88, E)+ (P +R))), (max(min(J,R), (P +R))× (−0.44+
(P +R)))), (−0.44− ((0.51 + (P +R))/max(−0.42, E))))

• DEEP1B: max(((A/((E − 0.35) × (R − J))) × max(E, (A × (E − J)))), (max(E,min(E, (E −
R)))− (min(min(E, J), (R×R))/(E + J))))

5.4.4 Literature Comparison

We compared the proposed NN graph-based indexing approach to other three indexing
schemes:

• IVFADC [34]: this system is based on the use of simple inverted indices. We used
our own implementation to run this method. For creation of index we employed a
coarse codebook with K = 214 centroids. Also, we compressed the residuals vectors
though PQ with 12 bits per sub-quantizer, to perform a fair comparison with our
proposed approach.

• Multi-ADC [7]: this indexing scheme is based on inverted multi indices. In this
case, we also run the experiment using our own implementation. For index con-
struction, as it was done in other works [9,24,36], we set the number of centroids for
the coarse quantizers to K = 214. We encoded the original vectors via OPQ using
also 12 bits per sub-quantizer.

66

102 103 104
T

0

20

40

60

80

100

Re
ca
ll@

1

DEEP1B_paramGP

k=5 (L2)
k=5 (GP)
k=10 (L2)
k=10 (GP)
k=15 (L2)
k=15 (GP)

Figure 5.2: Search performance on DEEP1M using graphs with different degrees and
scoring functions for neighbors selection.

• GNO-IMI [9]: this structure is based on a generalization of inverted multi in-
dices. In this case, we found part of the implementation on the authors’ repository,3

therefore, we implemented the remainder of the code in order to compare our ap-
proach with this technique. We used the same parameters for index construction
reported by authors (for the same datasets). We encoded original vectors as pro-
posed by authors, through local OPQ, however, we were only able to use 8 bits per
sub-quantizer, since 214-product quantizers should be learned, and increasing the
number of bits would take from several days to weeks for encoding vectors. We
even had to reduce the number of vectors for each local PQ learning to 10 thousand
vectors, in order to encode the whole dataset in a reasonable time.

The implementation of the proposed approach and all baselines considered in exper-
iments were CPU-oriented and executed using 50 threads on a Intel(R) Xeon(R) Gold
5220 CPU @ 2.20GHz.

5.4.5 Results on Billion-Size Datasets

To evaluate the search performance of the different indexing structures, we first conduced
a common analysis to measure the number of vectors scanned by the indices (T) vs the
recall obtained on the search of the 1-NN (only the nearest neighbor). This analysis
did not consider the different time overheads of each technique. Figures 5.3a and 5.3b
show the results of this analysis for the SIFT1B and DEEP1B datasets, respectively. Our
proposed technique is represented by the red curve, called Graph1B from now on. In the
case of SITF1B, for a reduced number of scannings, we can observe that the GNO-IMI

3GNO-IMI: https://github.com/arbabenko/GNOIMI (As of November 2019).

https://github.com/arbabenko/GNOIMI

67

20 23 26 29 212 215 218

T

0

20

40

60

80

100

Re
ca

ll@
1

SIFT1B

IVFADC
Multi-ADC
GNO-IMI
Graph1B

(a) SIFT1B

20 23 26 29 212 215 218

T

0

20

40

60

80

100

Re
ca

ll@
1

DEEP1B

IVFADC
Multi-ADC
GNO-IMI
Graph1B

(b) DEEP1B

Figure 5.3: 1-NN search performance on billion-size datasets.

and Multi-ADC performed better than the proposed Graph1B. This is because they start
exploring lists with keys near to the query (which also lead to a time overhead discussed
below), and we only use a random initialization on the search algorithm for NN graphs.
However, from T ≈ 29 and T ≈ 210 on, the proposed Graph1B outperformed Multi-
ADC and GNO-IMI, respectively. The IVFADC system demonstrated to need very high
number of vector scannings to reach high recall values, obtaining the worst performance
among all indexing structures considered.

In the case of DEEP1B dataset, the GNO-IMI and Multi-ADC indices, again, per-
formed slightly better than the proposed Graph1B for a reduced number of vector scan-
nings, but differently from SIFT1B, the GNO-IMI stayed on the top for almost all values
of T . The proposed Graph1B outperformed consistently the Multi-ADC from T ≈ 29

on, and it becomes competitive with GNO-IMI from T ≈ 213 on. Also, as in the case of
SIFT1B, the IVFADC index obtained the worst performance for search.

In order to evaluate the real performance of all indexing structures, we measured

68

the time for processing the 10 thousand queries for both datasets. Figures 5.4 and 5.5
show the time measured in seconds required for processing all queries for the SIFT1B
and DEEP1B datasets, respectively. For SIFT1B, we evaluated two types of searches:
1-NN (search of the nearest neighbor) and 100-NN (search of the 100 nearest neighbors).
For DEEP1B, we only were able to run 1-NN, since the ground-truth provided for this
dataset only contains the true nearest neighbor. For both datasets, the overhead of each
method is given by the time in which the curves starts in x-axis. In SIFTB dataset, the
proposed Graph1B obtained the lowest overhead, due to the simple random initialization
for search, and outperformed consistently all other indexing schemes in almost any point,
both in time and search accuracy, for the 1-NN. In the case of inverted multi indices-based
techniques, Multi-ADC and GNO-IMI, both showed a high overhead since they perform
an expensive preliminary search of the lists with keys closer to the query. The proposed
Graph1B performed approximately 2.4× and 3.5× faster than Multi-ADC and GNO-
IMI, respectively, at reaching 90% of recall. Finally, the IVFADC showed a overhead
comparable with GNO-IMI, but the overall performance was the worst when compared
with all indices. For 100-NN experiments, the accuracy of all indices decreased, but their
relative performance did not change significantly, standing Graph1B yet as the more fast
and accurate.

In the case of DEEP1B dataset, similar overheads as in SIFT1B were observed. Again,
the proposed Graph1B obtained the lowest overhead and outperformed all indexing struc-
tures considered for almost all points. The high overhead of GNO-IMI index led to a drop
on its search performance, even though this showed in previous experiment (Figure 5.3b)
to perform slightly better than Graph1B and outperform consistently to Multi-ADC. Con-
sidering the results of all analysis performed on these datasets, the proposed Graph1B
showed to be the more consistent index in terms of scanning rate, search accuracy, and
search time.

5.4.6 Resource Consumption

We performed a final analysis to measure the memory peak at search and the index
construction time for each technique and dataset. Table 5.2 presents the values obtained
on each measurement. In the case of the memory, this includes the compressed data, the
index, and other auxiliary variables (such as lookup tables). There is a few difference
in the memory usage between the two datasets (in almost all cases). This is due to
the dimensionality of data, given that DEEP1B has 96 and SIFT has 128 dimensions.
The impact was not significant since the vectors are already compressed using the same
amount of bits for the two datasets. The proposed Graph1B required the highest amount
of memory from all indices, since it is costly to store one neighbor per vertex (≈ 4GB). On
the other hand, for index construction time, the difference between the measurements on
the two datasets are significant. In this case, the dimensionality had more impact, since
in order to index a vector, all dimensions need to be processed. Also, we can observe that
the GNO-IMI index required the highest amount of time for index construction, among
all techniques considered.

69

100 101 102
time (seconds)

0

20

40

60

80

100

Re
ca
ll@

1

IVFADC
Multi-ADC
GNO-IMI
Graph1B

100 101 102
time (seconds)

0

20

40

60

80

100

Re
ca
ll@

10
0

IVFADC
Multi-ADC
GNO-IMI
Graph1B

Figure 5.4: Search time for 10 thousand queries on SIFT1B. Results for the 1-NN (top)
and 100-NN (bottom) searches.

100 101 102
time (seconds)

0

20

40

60

80

100

Re
ca
ll@

1

IVFADC
Multi-ADC
GNO-IMI
Graph1B

Figure 5.5: Search time for 10 thousand queries on DEEP1B.

70

Table 5.2: Resources consumption for indexing techniques.

Search memory peak
(GB)

Construction time
(hours)

Method SIFT1B DEEP1B SIFT1B DEEP1B
Graph1B 72.2 72.2 41.3 37.8
GNO-IMI [9] 31.5 30.9 65.1 55.9
Multi-ADC [7] 28.6 27.5 23.2 18.4
IVFADC [34] 20.0 19.7 18.9 14.2

71

Chapter 6

Conclusions and Future Work

The size of existing multimedia collections and the high dimensionality of vectors employed
to represent them, present many challenges at the moment of designing data structures
for indexing this data, especially in the task of NN search, since this is a principal routine
in many machine learning, computer vision and information retrieval related tasks. We
focused on this thesis to the investigation of novel indexing schemes based on NN graphs to
support more efficient and accurate NN searches, motivated by previous success achieved
by techniques from this group on the NN search task.

In the following sections we will summarize the principal contributions presented along
the chapters, describing their relation with the hypotheses and research questions pre-
sented in Chapter 1, then, we present future research directions and finalize the thesis
with the list of publications resulted from our research work.

6.1 Summary of Contributions

In Chapter 3 we introduced a novel approach for an efficient construction of easy-to-
traverse NN graphs. Our idea explores the relationship of proximity between points in
the same cluster, performing multiple clustering procedures to reinforce the connectivity
of vertices. We addressed this first contribution by answering the following research
questions:

Q1.1 What is the best way to connect points inside clusters? Answer: as we detailed
in Section 3.1, connecting the points by minimum spanning trees with maximum
degree 3 produced the best results among all structures considered.

Q1.2 How can sub-graphs created by clusters be merged? Answer: to create the
final global graph, we just performed the union of all sets of edges and vertices of
sub-graphs.

Q1.3 Which clustering algorithm should be employed? Answer: we employed the
hierarchical clustering due to their low time complexity.

Experimental results presented in Section 3.3.6, conduced over million-size datasets, showed
higher recall values than other graph-based techniques for high speedups (most notori-
ously in 1-NN search); and a comparable convergence to high recalls with better results

72

than those observed for state-of-the-art techniques at searching different number of nearest
neighbors. These experimental results led us to corroborate our Hypothesis 1: The use
of multiple clustering leads to the construction of NN graphs, which are faster to traverse
at search time.

The second contribution presented on Chapter 3 was the guided search, that employs
KD-Trees-like auxiliary structures to select a better starting vertex for search, and to
avoid exhaustive distance computations to all neighbors of current vertex at any step of
search. We addressed this contribution by answering the following research questions:

Q2.1 How KD-Trees can be employed to improve the starting vertex selection on NN
graph searches? Answer: creating multiple global KD-Trees and performing soft
searches over them, to finally select the best vertex among those contained in the
same leaf as the query.

Q2.2 How KD-Tree-like structures can be employed to avoid visit unnecessary vertices
at graph navigation process? Answer: we employed local KD-Trees-like structures
to partition the space with respect to each vertex, and, at search time, just explore
the neighbors of vertices that are contained in the same sub-space than the query.

The analysis of time overhead performed in Section 3.3.7, related to the use of auxiliary
KD-Trees, demonstrated that the use of these data structures in addition to generate
gains in search results, they also carry no significant extra time execution, corroborating
ourHypotesis 2: The use of classical tree structures for indexing improves the NN search
results on NN graphs, with no significant extra cost.

In Chapter 4, we introduced a novel learning framework based on genetic program-
ming that explored different topological properties in NN graphs, aiming to improve the
order in which vertices are visited at search time, and, therefore, reducing the number of
vertices explored to discover the true nearest neighbors. We addressed this contribution
by answering the following research questions:

Q3.1 How to combine the topological properties with the distance? Answer: by
means of mathematical operators to compose new scoring functions for the priority
queue.

Q3.2 Which learning technique can be used to find near optimal combinations of
topological properties? Answer: we employed genetic programming, since it was
employed with success combining different evidences in similar scenarios.

Q3.3 Which topological properties should be considered? Answer: the list of topo-
logical properties considered was listed in Section 4.2. We selected those based on
their low time complexity to be computed.

Q3.4 Which function should be optimized in the learning process? Answer: since
we evaluated the search results using the recall metric, we also defined the fitness
function based on this metric, as it is detailed in Section 4.3.

The experimental results and statistical tests presented in Section 4.4.4 showed that
searches on NN graphs can be improved by considering other kinds of vertices’ features,

73

besides the distance to the query, combining them by means of the mathematical ex-
pression returned by the learning stage of the proposed framework. Also, the proposed
technique has shown to obtain improvements against the usual search approach, in terms
of recall, independently of the technique employed to construct the NN graph. These re-
sults led us to confirm our Hypothesis 3: The use of topological information of vertices
(along with the distance to query) through a learning scheme leads to a better selection of
next vertex (in each step of NN graph search), which fosters the earlier discovering of the
true NN.

Finally, we presented in Chapter 5 a memory-aware version of our initial HCNNG
algorithm for creation of NN graphs on billion-scale datasets. Also, we extended the
learning framework proposed in Chapter 4 to, in this case, improving the selection of
vertices’ neighbors at graph construction phase based on topological properties of vertices,
aiming to create graphs with very low vertices’ degree. To the best of our knowledge, this
is the first reported NN graph technique that scaled up to billion-size datasets in the task
of ANNS. We addressed this contribution by answering the following research questions:

Q4.1 Does the compression of original vectors affects to the accuracy of search on
NN graphs? Answer: yes. In the parameter setup presented in Section 5.4.2, it
was observed that when the compression error is reduced (by using more bits in the
encoding), the search results improved.

Q4.2 Which heuristics can be used for pruning edges at graph construction? An-
swer: we experimented with the distance as the unique criteria to select vertices’
neighbors, saving for each vertex just the k-nearest vertices found in the whole graph
construction stage.

Q4.3 Can we get search performance improvements by exploiting the topological prop-
erties of vertices for pruning edges at graph construction? Answer: yes. Experi-
ments in Section 5.4.3 demonstrated the improvements in search results (compared
to naïve approach) by selecting vertices’ neighbors based on the topological infor-
mation of vertices at graph construction phase.

Q4.4 Does our NN graph technique still maintain its top search performance at NN
search when compared to the state-of-the-art schemes for billion-scale ANNS? An-
swer: yes. Our proposed technique showed best query time/recall trade-off than
state-of-the-art techniques considered.

Q4.5 How much resources need the proposed NN graph technique in comparison with
the state of the art? Answer: the proposed technique required approximately the
double of memory and index construction time than best baseline, but it is still far
lower than the resources that another NN graph-based technique would require to
scale up to billion size dataset, which it would be approximately 8 times the memory
required for our proposed approach (considering the same datasets).

Graphs created with the proposed approach were compared with state-of-the-art index-
ing structures on two billion-scale datasets. Our experimental results showed the lowest

74

time overhead at search for the proposed graph-based index and very competitive search
performance. Even more, our proposed technique required significant lower index con-
struction time than a state-of-the-art indexing technique based on multi-inverted indices.
These results lead us to corroborate Hypothesis 4: Compressing vectors via quantiza-
tion schemes and the adoption of suitable pruning strategies at construction time allow the
construction of NN graphs on billion-size datasets with a reasonable memory consumption
and time construction.

6.2 Future Work

We presented in this thesis novel approaches for large scale indexing of high dimen-
sional data and approximate nearest neighbors search. In addition to the contributions
presented, we visualize some future research directions that we discuss in the next para-
graphs.

In all experiments conduced to validate the proposed approaches, we only considered
the Euclidean distance. However, in many scenarios there are other distance or similarity
functions that are more adequate to compare two vectors, for example, in text retrieval
the use of the cosine similarity is preferred. Furthermore, most of space partitioning
techniques do not support searches on non-metric spaces. The proposed techniques in
this thesis do not make assumptions over the space of data, so any distance/similarity
function can be used. We leave for future work the evaluation of the proposed techniques
on other metric and non-metric spaces.

Concerning to the GP-based learning framework presented in Chapter 4, we believe
that the inclusion of other more complex topological properties in the proposed framework
could potentially improve the search results of the proposed technique, like, for example,
Page-Rank or Random Walks. Future work also comprehends the extension of this frame-
work to support searches on billion-size NN graphs, taking into consideration the possible
time/memory overheads that this technique would carry.

Recently, the high computational power of GPU’s has been exploited in different
applications to accelerate the execution of algorithms. Some works [27,35] focused on the
task of ANNS also have presented GPU’s-based implementations, reducing considerable
the time for creation of the indexing structures. Possible future work could also encompass
the development of a GPU-based implementation of the algorithms presented in this thesis
for creation of NN graphs. Another architecture-related optimization that was studied
previously in the literature [45], was the use of distributed architectures to deal with high
concurrency queries. We also plan to investigate this possibility.

In real scenarios, collections of multimedia data are highly dynamic, which demand
that indexing structures to support insertion of new data. Some works [45, 46] have
proposed approaches to insert new elements on NN graphs. We intend to investigate in
the future the use of these insertion algorithms on the graph structures proposed in this
thesis. An important aspect that will be considered is that this insertion should keep the
same navigating properties that original NN graphs created by our proposed algorithms.

Finally, NN graphs were also applied with success in the context of image annota-

75

tion [31,41,63,64] by propagating labels through the neighbors of each vertex. We believe
that the techniques proposed in this thesis could help to improve the accuracy of annota-
tions. We left this evaluation as future work.

6.3 Research Outcomes

This section presents the list of the papers that were accepted or submitted during the
doctorate period. They are listed in the following.

Related to this thesis:

1. Javier Vargas Muñoz, Marcos André Gonçalves, Zanoni Dias, Ricardo da Silva
Torres: Hierarchical Clustering-Based Graphs for Large Scale Approxi-
mate Nearest Neighbor Search. Pattern Recognition, 2019 (Chapter 3)

2. Javier Vargas Muñoz, Zanoni Dias, Ricardo da Silva Torres: A Genetic Pro-
gramming Approach for Searching on Nearest Neighbors Graphs. Inter-
national Conference on Multimedia Retrieval, 2019 (Chapter 4)

Other collaborations:

3. Keiller Nogueira, Samuel G. Fadel, Ícaro C. Dourado, Rafael de O. Werneck, Javier
Vargas Muñoz, Otávio A. B. Penatti, Rodrigo Tripodi Calumby, Lin Tzy Li,
Jefersson A. dos Santos, Ricardo da Silva Torres: Exploiting ConvNet Diversity
for Flooding Identification. IEEE Geoscience and Remote Sensing Letters [51].

4. Javier Vargas Muñoz, Lin Tzy Li, Ícaro C. Dourado, Keiller Nogueira, Samuel G.
Fadel, Otávio Augusto Bizetto Penatti, Jurandy Almeida, Luis A. M. Pereira, Ro-
drigo Tripodi Calumby, Jefersson A. dos Santos, Ricardo da Silva Torres. RECOD@
Placing Task of MediaEval 2016: ARanking Fusion Approach for Geographic-
Location Prediction of Multimedia Objects. In MediaEval 2016.

76

Bibliography

[1] Juan F. Hernández Albarracín, Edemir Ferreira, Jeferson A. dos Santos, and Ricardo
da S. Torres. Fusion of genetic-programming-based indices in hyperspectral image
classification tasks. In Proceeding of the IEEE International Geoscience and Remote
Sensing Symposium, pages 554–557, July 2017.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communication of the ACM, 51(1):117–122,
January 2008.

[3] Sunil Arya and David M. Mount. Approximate nearest neighbor queries in fixed
dimensions. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 271–280, 1993.

[4] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms. In Christian
Beecks, Felix Borutta, Peer Kröger, and Thomas Seidl, editors, Similarity Search
and Applications, pages 34–49, Cham, 2017. Springer International Publishing.

[5] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data
structure. ACM Computing Surveys, 23(3):345–405, September 1991.

[6] Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector
compression. In Proceedings of the Conference on Computer Vision and Pattern
Recognition, pages 931–938, June 2014.

[7] Artem Babenko and Victor Lempitsky. The inverted multi-index. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(6):1247–1260, June 2015.

[8] Artem Babenko and Victor Lempitsky. Tree quantization for large-scale similarity
search and classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4240–4248, June 2015.

[9] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of
deep descriptors. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2055–2063, June 2016.

[10] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH forest: Self-tuning in-
dexes for similarity search. In Proceedings of the 14th International Conference on
World Wide Web, WWW’2005, pages 651–660, 2005.

77

[11] Jon Louis Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517, September 1975.

[12] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neigh-
bor. In Proceedings of the 23rd International Conference on Machine Learning,
ICML’2006, pages 97–104, 2006.

[13] Sergey Brin. Near neighbor search in large metric spaces. In Proceedings of the 21th
International Conference on Very Large Data Bases, VLDB’1995, pages 574–584,
1995.

[14] Yong-Sheng Chen, Yi-Ping Hung, Ting-Fang Yen, and Chiou-Shann Fuh. Fast and
versatile algorithm for nearest neighbor search based on a lower bound tree. Pattern
Recognition, 40(2):360 – 375, 2007.

[15] Jian Cheng, Cong Leng, Jiaxiang Wu, Hainan Cui, and Hanqing Lu. Fast and
accurate image matching with cascade hashing for 3d reconstruction. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, page
1–8, USA, 2014. IEEE Computer Society.

[16] Luciano da F. Costa, Francisco A. Rodrigues, Gonzalo Travieso, and Paulino Ribeiro
Villas Boas. Characterization of complex networks: A survey of measurements. Ad-
vances in physics, 56(1):167–242, 2007.

[17] Ricardo da S. Torres, Alexandre X. Falcão, Marcos A. Gonçalves, João P. Papa,
Baoping Zhang, Weiguo Fan, and Edward A Fox. A genetic programming framework
for content-based image retrieval. Pattern Recognition, 42(2):283–292, 2009.

[18] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional
manifolds. In Proceedings of the 40th Annual ACM Symposium on Theory of Com-
puting, STOC’2008, pages 537–546, 2008.

[19] Moises G. de Carvalho, Alberto H. F. Laender, Marcos A. Gonçalves, and Altigran S.
da Silva. A genetic programming approach to record deduplication. IEEE Transac-
tions on Knowledge and Data Engineering, 24(3):399–412, March 2012.

[20] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, 41(6):391–407, 1990.

[21] Thanh-Toan Do, Anh-Dzung Doan, Duc-Thanh Nguyen, and Ngai-Man Cheung.
Binary hashing with semidefinite relaxation and augmented lagrangian. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, European Conference on
Computer Vision, pages 802–817, Cham, 2016. Springer International Publishing.

[22] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph con-
struction for generic similarity measures. In Proceedings of the 20th International
Conference on World Wide Web, WWW’2011, pages 577–586, 2011.

78

[23] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization
for approximate nearest neighbor search. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2946–2953, June 2013.

[24] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(4):744–755,
April 2014.

[25] Eva Gómez-Ballester, Luisa Micó, and Jose Oncina. Some approaches to improve
tree-based nearest neighbour search algorithms. Pattern Recognition, 39(2):171 –
179, 2006. Part Special Issue: Complexity Reduction.

[26] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, SIGMOD’1984, pages 47–57, New York, NY, USA, 1984. ACM.

[27] Ben Harwood and Tom Drummond. FANNG: Fast approximate nearest neighbour
graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5713–5722, 2016.

[28] Felix Hausdorff. Dimension und äußeres maß. Mathematische Annalen, 79(1):157–
179, 1918.

[29] James Hays and Alexei A. Efros. Scene completion using millions of photographs.
ACM Transactions on Graphics, 26(3):4–es, July 2007.

[30] Ran He, Yinghao Cai, Tieniu Tan, and Larry Davis. Learning predictable binary
codes for face indexing. Pattern Recognition, 48(10):3160–3168, October 2015.

[31] Michael E. Houle, Xiguo Ma, Vincent Oria, and Jichao Sun. Improving the quality
of k-nn graphs for image databases through vector sparsification. In Proceedings of
International Conference on Multimedia Retrieval, ICMR’2014, pages 89:89–89:96.
ACM, 2014.

[32] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, pages 604–613, 1998.

[33] Khalid Jebari. Selection methods for genetic algorithms. International Journal of
Emerging Sciences, 3:333–344, 12 2013.

[34] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1):117–128, 2011.

[35] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, pages 1–1, 2019.

79

[36] Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for
approximate nearest neighbor search. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2329–2336, June 2014.

[37] Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 163–
170, 2000.

[38] John R. Koza. Genetic Programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

[39] Anísio Lacerda, Marco Cristo, Marcos André Gonçalves, Weiguo Fan, Nivio Ziviani,
and Berthier Ribeiro-Neto. Learning to advertise. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’2006, pages 549–556, New York, NY, USA, 2006. ACM.

[40] Venice E. Lionga, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. Deep hash-
ing for compact binary codes learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2475–2483, June 2015.

[41] Jing Liu, Mingjing Li, Qingshan Liu, Hanqing Lu, and Songde Ma. Image annotation
via graph learning. Pattern Recognition, 42(2):218–228, February 2009.

[42] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph hashing. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, pages 3419–3427. Curran
Associates, Inc., 2014.

[43] Qin Lv, Moses Charikar, and Kai Li. Image similarity search with compact data
structures. In Proceedings of the 13th ACM International Conference on Information
and Knowledge Management, CIKM’2004, page 208–217, New York, NY, USA, 2004.
Association for Computing Machinery.

[44] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe
LSH: Efficient indexing for high-dimensional similarity search. In Proceedings of the
33rd International Conference on Very Large Data Bases, VLDB’2007, pages 950–
961, 2007.

[45] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Ap-
proximate nearest neighbor algorithm based on navigable small world graphs. Infor-
mation Systems, 45:61–68, 2014.

[46] Yury A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate near-
est neighbor search using hierarchical navigable small world graphs. arXiv preprint
arXiv:1603.09320, 2016.

[47] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In Proceedings of the International Conference on Computer
Vision Theory and Application, pages 331–340, 2009.

80

[48] Marius Muja and David G. Lowe. Fast matching of binary features. In Proceedings
of the 9th Conference on Computer and Robot Vision, pages 404–410, 2012.

[49] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high
dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(11):2227–2240, 2014.

[50] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’06, page 2161–2168, USA, 2006. IEEE Computer Society.

[51] Keiller Nogueira, Samuel G. Fadel, Ícaro C. Dourado, Rafael de O. Werneck, Javier A.
Vargas, Octavio A. Penatti, Rodrigo T. Calumby, Lin T. Li, Jefersson A. dos Santos,
and Ricardo da S. Torres. Exploiting convnet diversity for flooding identification.
IEEE Geoscience and Remote Sensing Letters, 15(9):1446–1450, Sep. 2018.

[52] Mohammad Norouzi and David J. Fleet. Cartesian k-means. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3017–3024,
June 2013.

[53] Stephen M. Omohundro. Five balltree construction algorithms. International Com-
puter Science Institute Berkeley, 1989.

[54] Dimitris Papadias. Hill climbing algorithms for content-based retrieval of similar con-
figurations. In Proceedings of the 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR’2000, pages 240–247,
New York, NY, USA, 2000. ACM.

[55] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A
comparison of hash function types and querying mechanisms. Pattern Recognition
Letters, 31(11):1348–1358, 2010.

[56] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 1532–1543, 2014.

[57] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Object retrieval with large vocabularies and fast spatial matching. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.
IEEE, 2007.

[58] Adrian Popescu, Eleftherios Spyromitros-Xioufis, Symeon Papadopoulos, Hervé
Le Borgne, and Ioannis Kompatsiaris. Toward an automatic evaluation of retrieval
performance with large scale image collections. In Proceedings of the 2015 Workshop
on Community-Organized Multimodal Mining: Opportunities for Novel Solutions,
MMCommons’2015, pages 7–12, New York, NY, USA, 2015. ACM.

81

[59] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with
parameter-sensitive hashing. In Proceedings of the 9th IEEE International Conference
on Computer Vision, ICCV’2003, page 750, USA, 2003. IEEE Computer Society.

[60] Fumin Shen, Xiang Zhou, Yang Yang, Jingkuan Song, Heng T. Shen, and Dacheng
Tao. A fast optimization method for general binary code learning. IEEE Transactions
on Image Processing, 25(12):5610–5621, Dec 2016.

[61] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descriptor
matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2008.

[62] Robert F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica, 6(1-6):579–589, 1991.

[63] Feng Su and Like Xue. Graph learning on k nearest neighbours for automatic image
annotation. In Proceedings of the 5th ACM on International Conference on Multi-
media Retrieval, ICMR’2015, pages 403–410, New York, NY, USA, 2015. ACM.

[64] Jinhui Tang, Richang Hong, Shuicheng Yan, Tat-Seng Chua, Guo-Jun Qi, and
Ramesh Jain. Image annotation by knn-sparse graph-based label propagation over
noisily tagged web images. ACM Transactions on Intelligent Systems and Technology,
2(2):14:1–14:15, February 2011.

[65] Javier A. Vargas, Ricardo da S. Torres, and Marcos A. Gonçalves. A soft computing
approach for learning to aggregate rankings. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management, CIKM’2015,
page 83–92, New York, NY, USA, 2015. Association for Computing Machinery.

[66] Jianfeng Wang, Jingdong Wang, Nenghai Yu, and Shipeng Li. Order preserving
hashing for approximate nearest neighbor search. In Proceedings of the 21st ACM
International Conference on Multimedia, MM’2013, pages 133–142, New York, NY,
USA, 2013. ACM.

[67] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li.
Scalable k-nn graph construction for visual descriptors. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, CVPR’2012, pages 1106–
1113, June 2012.

[68] Jingdong Wang and Shipeng Li. Query-driven iterated neighborhood graph search
for large scale indexing. In Proceedings of the 20th ACM International Conference
on Multimedia, MM’2012, pages 179–188, New York, NY, USA, 2012. ACM.

[69] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng T. Shen. A
survey on learning to hash. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):769–790, April 2018.

82

[70] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proceedings of the 4th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 311–321, 1993.

[71] Ting Zhang, Chao Du, and Jingdong Wang. Composite quantization for approximate
nearest neighbor search. In Proceedings of the 31st International Conference on
International Conference on Machine Learning, ICML’2014, pages II–838–II–846.
JMLR.org, 2014.

	Introduction
	Motivation
	Hierarchical Clustering-Based Nearest Neighbor Graphs
	Learning to Navigate on Nearest Neighbor Graphs
	Scaling Nearest Neighbor Graphs to Billion-Size Datasets

	Hypotheses and Research Questions
	Key Contributions
	Text Organization

	Related Work and Related Concepts
	Classic Schemes for Nearest Neighbor Search
	Space Partitioning Trees
	Hashing

	Nearest Neighbor Graphs
	Creation of NN Graphs
	Search in NN Graphs

	Quantization-Based Indexing
	Vector Compression
	Data Structures for Compressed Vectors

	Genetic Programming

	Hierarchical Clustering-Based Nearest Neighbor Graphs
	Graph Construction
	Search on Graphs
	Non-randomic Selection for Starting Vertex
	Pruning Edges to Accelerate Searches

	Experiments
	Datasets
	Evaluation Criteria
	Parameter Tuning
	Scaling Datasets
	Literature Comparison
	Experimental results
	Overhead of Auxiliary Local KD-Trees

	Learning to Navigate on Nearest Neighbor Graphs
	Genetic Programming Framework for Better Graph Navigation
	Topological Properties of Vertices
	Fitness Function Computation
	Experiments
	Datasets
	NN graph baselines
	GP set-up
	Experimental results

	Billion-Size Nearest Neighbor Graphs
	Graph Construction
	Learning to Select Vertices' Neighbors at Graph Construction
	Search on Billion-Size Graphs
	Experiments
	Datasets
	NN Graph Parameter Setting
	Genetic Programming Set-up for Scoring Function
	Literature Comparison
	Results on Billion-Size Datasets
	Resource Consumption

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Research Outcomes

	Bibliography

