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Figure 1: Vector representation for multimedia objects.

Introduction
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Given a set P = {x1, x2, x3, .., xN},P ⊂ RD, a distance function
d : RD × RD → R, a query point q ∈ RD

K-nearest neighbors search problem

KNN (q,K,P) = A, where A ⊆ P ∧ |A| = K ∧ ∀x ∈ A, y ∈ (P − A), d(q, x) < d(q, y)

Introduction
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Computer Vision
• Find the best matches for local image features
• Global image feature matching for scene recognition
• Matching deformable shapes for object recognition
• Near duplicate detection

Machine Learning
• Nearest neighbors classifiers
• Clustering algorithms

Information Retrieval
• Multimedia indexing
• Similarity search

Nearest Neighbors Search
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Naive approach: linear search (brute force)
• Impractical in large datasets

Data structures
• KD-Tree, BallTree
• Search in logarithmic time in low dimensional data
• Quickly converge to linear search as dimensionality increases

Exact Methods
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Fast search, with small loss in precision

Four group of approaches on the literature:
• Two classic approaches

• Tree partitioning structures
• Hashing-based techniques

• Nearest neighbors graphs
• Quantization-based schemes

Approximate Methods (ANNS)
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• Index construction: at each tree level, objects are split into
subsets, based on some criteria
• Search: traversing from the root to the leaves, using the same
criteria for split
• Examples:

• FLANN library: Randomized KD-Trees, Hierarchical k-means
tree, Hierarchical Clustering Tree

• PCA-Tree, RP-Tree, Cover-Tree, VP-Tree

Tree Partitioning Structures
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• Index construction: map similar objects to the same positions
in the hash tables (buckets)
• Search: find the bucket of the query object into, and uses the
data objects in that bucket as the candidate set of the results
• Examples: Locality Sensitive Hashing (LSH), Multi-Probe LSH

Hashing-based Techniques
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• Index construction: create a graph linking each object to the
other most similar ones
• Search: start in some (random) vertex and, in a greedy maner,
traverse the graph towards the closest points to the query, until
some stopping criterion is reached
• Examples: FANNG, HNSW, SW-graph, KGraph
• Recents works and benchmarks have shown considerable gains
over other approaches

Nearest Neighbors Graphs (NN graphs)
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Figure 2: Example of search on a NN graph.

Classic Search Example
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Figure 2: Example of search on a NN graph.

Classic Search Example
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• Vector compression: original vectors are compressed by
employing multiple codebooks
• Index construction: generally, based on the idea of inverted
indices
• Search: scanning the lists starting with those with keys nearest
to the query
• Examples:

• Compression: PQ, OPQ, LOPQ, AQ, CQ, TQ
• Indexing: IVFADC, IMI, GNOIMI

Quantization-based Techniques
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Table 1: Analysis of principal pros e cons of the state-of-the-art.

Advantage Disadvantage

Tree Low index construction time Scalable to just millions and
low search accuracy

Hashing Scalable to billions Lower search accuracy than
other approaches

Graph Best reported accuracy Scalable to just millions

Quantization Scalable to billions Search accuracy affected
by lossy compression

State-Of-The-Art

13 Javier A. Vargas University of Campinas



Figure 3: Topics covered in this work.

Research Topics
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Hypothesis 1

The use of multiple randomized clustering leads to the construction of
NN graphs, which are faster to traverse at search time.

Q1.1 What is the best way to connect points inside clusters?
Q1.2 How can sub-graphs created by clusters be merged?
Q1.3 Which clustering algorithm should be employed?

Hypothesis & Research Questions
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Hypothesis 2

The use of classical tree structures for indexing improves the NN
search results on NN graphs, with no significant extra cost.

Q2.1 How the KD-Trees can be employed to improve the starting
vertex selection on NN graph searches?

Q2.2 How the KD-Trees-like structures can be employed to avoid visit
unnecessary vertices at graph navigation process?

Hypothesis & Research Questions
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Hypothesis 3

The use of topological information of vertices (along with the distance
to query) through a learning scheme leads to a better selection of next
vertex (in each step of NN graph search), which fosters the earlier
discovering of the true NN.

Q3.1 How to combine the topological properties with the distance?
Q3.2 Which learning technique can be used to find near optimal

combinations of topological properties?
Q3.3 Which topological properties should be considered?
Q3.4 Which function should be optimized in the learning process?

Hypothesis & Research Questions
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Hypothesis 4

Compressing vectors via quantization schemes and the adoption of
suitable pruning strategies at construction time allow the construction
of NN graphs on billion-size datasets with a reasonable memory
consumption and time construction.

Q4.1 Does the compression of original vectors affects to the accuracy
of search on NN graphs?

Q4.2 Which heuristics can be used for pruning edges at graph
construction?

Q4.3 Can we obtain search performance improvements by exploiting
the topological properties of vertices for pruning edges at graph
construction?

Hypothesis & Research Questions
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Hypothesis 4

Compressing vectors via quantization schemes and the adoption of
suitable pruning strategies at construction time allow the construction
of NN graphs on billion-size datasets with a reasonable memory
consumption and time construction.

Q4.4 Does our NN graph technique still maintain its top search
performance at NN search when compared to the state-of-the-art
schemes for billion-scale ANNS?

Q4.5 How much resources need the proposed NN graph technique in
comparison with state-of-the-art?

Hypothesis & Research Questions
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1 A novel approach for efficient construction of NN graphs, with
comparable search performance than state-of-the-art techniques
for ANNS

2 Two novel heuristics to improve search on NN graphs using
classical KD-Trees as auxiliary data structures: one for initial
vertex selection, and the other for avoiding exhaustive
exploration of vertices’ neighbors

3 A Genetic Programming (GP) framework that aims to discover a
near-optimal combination of local topological features of vertices
along with the classical distance-to-the-query, that improves the
criterion for selection of the next vertex to be explored in the
search algorithm

Contributions
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4 The first reported memory-aware technique for creation of sparse
NN graphs on billion-size datasets

5 The extension of the GP framework above applied to the
selection of vertices’ neighbors at NN graph construction stage,
in scenarios with restricted degree of vertices (as in the
billion-size datasets)

Contributions
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Hierarchical Clustering-based
Nearest Neighbors Graphs

(HCNNG)



Figure 4: Overview of graph construction algorithm.

HCNNG Framework
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Figure 5: Overview of graph construction algorithm.

HCNNG Framework
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• Many techniques in the literature for clustering
• It is extremely important the time execution, since we are
working with million or billion of vectors
• Clusters quality is not very important
• Hierarchical clustering, in its simplest version, present a low
time complexity

Clustering
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Given a set of points P = {x1, x2, ..., xN} and minimum clusters size n

HC(P) =
{
P, |P | < n
HC(W(P, r, s)) ∪ HC(W(P, s, r)), else (1)

being r and s (r, s ∈ P ∧ r ≠ s) two randomly selected points in each
recursive call, and W(P, x, y) a function that returns the set of points
that are closer to x than to y

Expected time complexity: O(ND log(N/n))

Hierarchical Clustering
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Figure 6: Example of hierarchical clustering.

Hierarchical Clustering
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Hierarchical Clustering

27 Javier A. Vargas University of Campinas



Figure 7: Overview of graph construction algorithm.

HCNNG Framework
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Figure 8: Graph structures employed to connect points in clusters.

Sub-graphs
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• Complete graph: Generates graphs with high degrees for all
vertices
• Stars: Generate graphs with some vertices presenting high
degrees (hubs)
• Hamiltonian path: Generate graphs with low degree for all
vertices
• MST3: Generate graphs with slightly higher degrees than
hamiltonian paths

Experimentally, theMST3 presented best search results and low
vertices degrees.

Sub-graphs
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Figure 9: Overview of graph construction algorithm.

HCNNG Framework
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Given a set of cluster C = {c1, c2, . . . , cS} after multiple hierarchical
clustering. Let be Gi = (Vi,Ei) a sub-graph, where Vi = ci and
Ei = MST3(ci).

Final global graph

The final graph G′ is defined as G′ = (V ′,E′), such that V ′ = ∪ni=1Vi
and E′ = ∪ni=1Ei.

Merging Sub-graphs
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Figure 10: Sub-graphs after an hierarchical clustering execution.

Merging Sub-graphs
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Merging Sub-graphs
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Figure 11: Combination of all sub-graphs after 15 executions.

Merging Sub-graphs
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Figure 12: Overview of search algorithm.

HCNNG Framework
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• We based our initial vertex selection on KD-Trees
• KD-Trees are cheaper in time construction and memory
• We don’t perform exhaustive search on KD-Trees
• Multiple KD-Trees improve the selection

Figure 13: Example of KD-Tree-based initial vertex selection.

Initial Vertex Selection
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• In each step moves towards some vertex in the same quadrant as
the query

Figure 14: Search guided by quandrants.

Exploration Strategy
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Figure 15: Example of guided search vs classical search.

Guided Search Example
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• Computing vertices on quadrants at search is very costly
• Quadrants can be pre-computed and stored in KD-Tree-like
structures offline
• They are computed for each vertex and their neighborhood
• These KD-Trees are cheap to traverse at search time

Figure 16: Example of local KD-Tree for neighborhood of vertex v.

Guided Search
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HCNNG HNSW FANNG SW-graph KGraph
Graph construction

# graphs single multiple single single single

strategy divide and
conquer

incremental
construction

incremental
construction

incremental
construction

optimization of
random graph

generic space yes yes no yes yes
Graph search

initial vertex KD-Tree based random centroid multiple
random random

strategy guided +
backtracking

multiple level +
backtracking backtracking backtracking backtracking

HCNNG vs State-of-the-art
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• Euclidean distance
• BIGANN datasets for ANNS (visual features):

• 1 million of SIFT features vectors (128 dimensions) for index
construction, and 10K queries to evaluate search performance

• 1 million of GIST features vectors (960 dimensions) for index
construction and 1K queries to evaluate search performance

• GloVe (textual features)
• 1 million of GloVe features vectors (100 dimensions) for index

construction, and 10K queries to evaluate search performance

Validation
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• Baselines
• Fast Library for Approximate Nearest Neighbors (FLANN, Muja

and Lowe, 2014), a well-known and widely used
• Fast Approximate Nearest Neighbour Graphs (FANNG, Harwood

and Drummond, 2016): Using our own implementation
• Small world graphs (SW, Malkov et al., 2013) and Hierarchical

Navigable Small World (HNSW, Malkov and Yashunin, 2017):
Using the implementation found in Non-Metric Space Library
(NMSLIB)

• KGraph (Dong et al., 2011): Using the implementation provided
by authors

Validation
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Figure 17: Clusters size × clustering executions (100K 20-D random
vectors).

Parameter Tuning: Graph Construction
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Figure 18: Number of KD-Trees for initial vertex selection (SIFT dataset).

Parameter Tuning: Search Algorithm
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Figure 19: Different configurations of search on NN graph (SIFT dataset).

Configurations of Search Algorithm
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Figure 20: 1-NN and 10-NN search performance on SIFT dataset.

Results on SIFT
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Figure 21: 1-NN and 10-NN search performance on GIST dataset.

Results on GIST
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Figure 22: 1-NN and 10-NN search performance on GloVe dataset.

Results on GloVe
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Learning Framework for Search
onNearest Neighbors Graphs



• u→ x1 → x2 → x3 → v: 12 vertices explored
• u→ y1 → y2 → v: 8 vertices explored

Figure 23: Two different paths to find the nearest neighbor (v) of q.

Search Example
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Figure 24: Leaning framework to exploit topological properties.

GP-based Learning Framework
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Figure 25: Genetic programming near-optimal function discovery process.

GP-based Learning Process
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• Functions: Internal nodes. The set of functions employed to
combine the inputs (commonly mathematical operators)
• Terminals: Leaf Nodes. The set of values to be combined

Figure 26: Example of classic tree representation for GP individuals.

f (a, b, c) = a × a − ((b × c)/2)

GP Individual
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Figure 27: Example of mutation.

Mutation
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Figure 28: Example of crossover.

Crossover

55 Javier A. Vargas University of Campinas



Search Dependent Properties:

• Distance (D): the distance (Euclidean) from vertex u to the query
point
• Path length (L): the length of the path (number of vertices) from
the starting vertex to u

Topological Properties
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Search Independent Properties:

• Edge weight (E): the weight of the edge between v and u
• Vertex degree (N): the degree of u
• Common neighbors (C): the number of common neighbors
between vertices v and u
• Jaccard coefficient (J): J(v, u) = |g (v)∩g (u) ||g (v)∪g (u) | , where g is a
function that returns the set of neighbors of a given vertex.
• Preferential attachment (P): P(v, u) = |g(v) | × |g(u) |
• Adamic Adar (A): A(v, u) = ∑

x∈g (v)∩g (u)
1

log |g (x) |
• Edge redundancy (R):

R(v, u) =
{
0, ∃w|w ≠ v ≠ u ∧ w ∈ g(u) ∧ w ∈ g(v)
1, else

Topological Properties
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We defined the fitness function of an individual f̂ based on the recall,
as follows:

fitnessNN (f̂ ) = 1
|T |

∑
t∈T

(
g(t, f̂ ) − g(t, L2)

)
(2)

where g(t, s) computes the average recall@1 obtained on a training set
of queries Q, by using s as scoring function at search, and limiting the
number of vertices explored to t

Fitness Function
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Figure 29: Fitness of GP-based function. Search performance employing
GP-based function (green) and L2 (blue).

Fitness Function
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Figure 30: Example of GP-based individual.

f̂ (x) = (D×D)P − ( (N×J)+E)2

Scoring Function Example

60 Javier A. Vargas University of Campinas



Datasets:
• SIFT, GloVe
• YFCC100M: Yahoo-Flickr Creative Commons 100 Million
consisting of VLAD vectors, after applying PCA+whitening, we
kept the 128 most significant dimensions. We selected randomly
a subset of 1 million of images for graph construction and 10
thousand queries

Baselines:
• HCNNG, FANNG, SW-graph, KGraph

Validation
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Figure 31: 1-NN and 10-NN search performance on GloVe dataset.

Results on GloVe
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Figure 32: 1-NN and 10-NN search performance on YFCC dataset.

Results on YFCC
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Figure 33: 1-NN and 10-NN search performance on SIFT dataset.

Results on SIFT
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Table 2: Statistical paired t-test for 1-NN search (“+”: gain, “−”: lost, “=”:
tie, H: HCNNG, F: FANNG, S: SW-graph, K: KGraph).

Speedup GloVe SIFT YFCC
H F S K H F S K H F S K

102.0 + + + + = = = + + = + +
102.2 + + + + = − = + + + + +
102.4 + + + + = = + + + + + +
102.6 + + + + = = = + + + + +
102.8 + + + + + + + + + + + +
103.0 + + + + + + + + + + + +
103.2 + + + + + + + + + + + +
103.4 + + + + + + + + + + + +
103.6 + + + = + + + + + + + +
103.8 + + + − + + + + + + + =

104.0 + + = = = + + + + + + =

General + + + + + + + + + + + +

Statistical Tests
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Billion-scale Searches based
onNearest Neighbors Graphs



Existing NN graphs approaches:
• Require to load all feature vectors to principal memory
• For million-size datasets they require at most a couple of GB for
high dimensional data
• For billion-size they would require up-to terabytes of RAM,
which is unpractial

Problems at Billion Scale
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Compress original vectors via quantization methods!

Our Solution
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Figure 34: Quantization illustration, where U(xm,Cm) = arg max
i

d(xm, cmi ).

Encoding Vectors via OPQ
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Existing NN graphs approaches:
• Commonly they generate graphs with vertices’ degrees in the
scale of hundreds
• Cost for loading the data structure itself could be equal to load
original vectors in memory

Problems at Billion Scale
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Prune edges at graph construction phase!

• We extended the HCNNG construction algorithm to work with
compressed data and add an extra step for pruning edges

Our Solution
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Base case:
• When the expected size of clusters is reached, theMST3 of
current set of points is computed
• The edges of the MST3 are ranked, based on a scoring function,
along with the current set of edges
• Just the top k edges are kept for each vertex

Recursion:
• Two points x̂1 and x̂2 are selected randomly from current set of
points
• Two recursive calls for clustering the points closer to x̂1 and x̂2
• Distances between compressed vectors are computed employing
a lookup table (to reduce the complexity)

Hierarchical Clustering
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Figure 35: Case base of hierarchical clustering (maximum degree of 3).

Pruning Edges
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Figure 35: Case base of hierarchical clustering (maximum degree of 3).

Pruning Edges
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Naïve approach:
• Use the edge weight (distance between vertices) to rank edges for
a given vertex

Supervised approach:
• Exploit the topological information of vertices to improve the
ranking
• Employ an analog GP framework to learn a near optimal scoring
function that combines topological information
• Scoring function will be optimized to create graphs instead of
searching on them

Scoring Function
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Figure 36: GP-based framework for learning scoring functions for pruning.

Leaning Framework for Pruning Edges
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Datasets:
• SIFT1B: composed of one billion SIFT vectors and 10 thousand
queries for search evaluation
• DEEP1B: composed of one billion deep learning-based feature
vectors with 96 dimensions, and 10 thousand queries for search
evaluation

Validation
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Parameter Tuning
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• IVFADC: based on simple inverted indices. We used our own
implementation. For index construction, we used a coarse
codebook with K = 214 centroids. Coding via PQ with 12 bits
per sub-quantizer
• Multi-ADC: based on inverted multi indices. We used our own
implementation. For index construction, we used coarse
quantizers with K = 214. Coding via OPQ using 12 bits per
sub-quantizer
• GNO-IMI: based on a generalization of inverted multi indices.
We implemented partially this baseline. For index construction,
we used coarse quantizers with K = 214. Coding via local OPQ
with 8 bits per sub-quantizer

Baselines
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Results on Billion Datasets
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Table 3: Resources consumption for indexing techniques.

Search memory peak
(GB)

Construction time
(hours)

Method SIFT1B DEEP1B SIFT1B DEEP1B
Graph1B 72.2 72.2 41.3 37.8
GNO-IMI 31.5 30.9 65.1 55.9
Multi-ADC 28.6 27.5 23.2 18.4
IVFADC 20.0 19.7 18.9 14.2

Resources Consumption
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Conclusions & FutureWork



• We research in this thesis about nearest neighbors graphs-based
approaches for ANNS
• We proposed a technique for construction of NN graphs with
competitive results when compared to the state-of-the-art
• We propose heuristics and a learning framework for improving
navigation on graphs searches
• We propose the first NN graph-based technique that scales up-to
billion size datasets, with very competitive results when
compared to the state-of-the-art for billion scale NN search

Conclusions
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Q1.1 What is the best way to connect points inside clusters?
Connecting the points by minimum spanning trees with
maximum degree 3 produced the best results among all
structures considered.

Q1.2 How can sub-graphs created by clusters be merged?
To create the final global graph, we just performed the union of
all sets of edges and vertices of sub-graphs.

Q1.3 Which clustering algorithm should be employed?
We employed the hierarchical clustering due to their low time
complexity.

Summary
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Hypothesis 1

The use of multiple randomized clustering leads to the construction of
NN graphs, which are faster to traverse at search time

Summary
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Q2.1 How the KD-Trees can be employed to improve the starting
vertex selection on NN graph searches?
Creating multiple global KD-Trees and performing soft searches
over them, to finally select the best vertex among those contained
in the same leaf as the query.

Q2.2 How the KD-Trees-like structures can be employed to avoid visit
unnecessary vertices at graph navigation process?
We employed local KD-Trees-like structures to partition the
space with respect to each vertex, and, at search time, just
explore the neighbors of vertices that are contained in the same
sub-space than the query.

Summary
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Hypothesis 2

The use of classical tree structures for indexing improves the NN
search results on NN graphs, with no significant extra cost

Summary

87 Javier A. Vargas University of Campinas



Q3.1 How to combine the topological properties with the distance?
By means of mathematical operators to compose new scoring
functions for the priority queue.

Q3.2 Which learning technique can be used to find near optimal
combinations of topological properties?
We employed genetic programming, since it was employed with
success combining different evidences in similar scenarios.

Q3.3 Which topological properties should be considered?
The list of topological properties considered was detailed above.
We selected those based on their low time complexity to be
computed.

Q3.4 Which function should be optimized in the learning process?
Since we evaluated the search results using the recall metric, we
also defined the fitness function based on this metric

Summary
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Hypothesis 3

The use of topological information of vertices (along with the distance
to query) through a learning scheme leads to a better selection of next
vertex (in each step of NN graph search), which fosters the earlier
discovering of the true NN

Summary
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Q4.1 Does the compression of original vectors affects to the accuracy
of search on NN graphs?
Yes. In the parameter setup presented above, as it was observed,
when the compression error is reduced (by using more bits in the
encoding), the search results improved.

Q4.2 Which heuristics can be used for pruning edges at graph
construction?
We experimented with the distance as the unique criteria to select
vertices’ neighbors, saving for each vertex just the k-nearest
vertices found in the whole graph construction stage.

Summary
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Q4.3 Can we get search performance improvements by exploiting the
topological properties of vertices for pruning edges at graph
construction?
Yes. Experiments results demonstrated the improvements in
search results (compared to naïve approach) by selecting
vertices’ neighbors based on the topological information of
vertices at graph construction phase.

Q4.4 Does our NN graph technique still maintain its top search
performance at NN search when compared to the state-of-the-art
schemes for billion-scale ANNS?
Yes. Our proposed technique showed best query time/recall
trade-off than state-of-the-art techniques considered.

Summary
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Q4.5 How much resources need the proposed NN graph technique in
comparison with state-of-the-art?
The proposed technique required approximately the double of
memory and index construction time than best baseline, but it is
still far lower than the resources that another NN graph-based
technique would require to scale up to billion size dataset, which
it would be approximately 8 times the memory required for our
proposed approach (considering the same datasets).

Summary

92 Javier A. Vargas University of Campinas



Hypothesis 4

Compressing vectors via quantization schemes and the adoption of
suitable pruning strategies at construction time allow the construction
of NN graphs on billion-size datasets with a reasonable memory
consumption and time construction

Summary
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• Validate the proposed techniques in other metric and non-metric
spaces
• Include more complex topological properties in the learning
framework for NN graph search
• Development of GPU-based implementation for accelerate index
construction and searches
• Study the use of distributed architectures
• Evaluate the proposed graph construction algorithms in other
tasks, e.g, image annotation

Future Research Directions
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Table 4: Total time for 100K queries (in seconds) using classical search
approach vs the guided proposed (without compiler optimizations).

SIFT GIST GloVe
Max. Distance
Calculations

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)Classic Guided Classic Guided Classic Guided

100 30.412 37.141 21.37% 87.118 91.605 5.60% 26.438 29.346 6.14%
250 78.675 85.869 27.39% 236.031 227.334 20.92% 68.176 72.196 14.27%
500 161.466 171.058 5.16% 449.054 445.305 11.20% 141.542 145.689 10.56%
750 247.852 260.133 1.77% 679.243 687.949 5.22% 218.889 226.076 6.44%
1000 338.050 348.214 0.76% 910.847 921.767 2.70% 294.816 305.367 3.00%

Time Execution HCNNG
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Table 5: Total time for 100K queries (in seconds) using classical search
approach vs the guided proposed (with -O3 option for compiler
optimization).

SIFT GIST GloVe
Max. Distance
Calculations

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)

Query time (seconds) Gain
(recall)Classic Guided Classic Guided Classic Guided

100 10.969 10.797 21.37% 43.558 25.029 5.60% 9.167 9.659 6.14%
250 28.243 25.617 27.39% 110.971 59.117 20.92% 24.036 22.552 14.27%
500 58.703 50.911 5.16% 226.253 115.686 11.20% 50.594 44.631 10.56%
750 91.684 78.329 1.77% 345.229 176.746 5.22% 78.676 68.131 6.44%
1000 125.634 104.463 0.76% 464.278 234.372 2.70% 110.736 90.916 3.00%

Time Execution HCNNG
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Figure 40: Results for 100-NN.

HCNNG: Results for 100-NN
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Table 6: GP parameter values for learning process to improve search.

Parameter Value

Size population 400
Depth individuals 5
Functions {+, −, /, ∗,min,max}
Terminals {E, N, C, J, P, A, R} ∪ random[−1, 1]
Num generations 100
Genetic operators reproduction (5%), mutation (10%), crossover (85%)
Fitness function T = {102, 102.1, 102.2, ..., 103.9, 104 }

GP Set-up

104 Javier A. Vargas University of Campinas



Table 7: Measured time for the test set in seconds for both classic and our
GP-based search, on the GloVe dataset.

HCNNG FANNG SW-graph KGraph
time (seconds) gain

(recall)
time (seconds) gain

(recall)
time (seconds) gain

(recall)
time (seconds) gain

(recall)T classic GP classic GP classic GP classic GP
103.0 9.85 12.22 +8.89% 9.03 10.59 +4.46% 10.81 12.34 +5.97% 10.44 11.18 +4.07%
103.2 15.95 20.43 +7.80% 13.99 16.35 +3.66% 17.74 20.18 +5.35% 18.39 18.20 +6.99%
103.4 26.57 29.11 +5.60% 22.42 24.83 +2.43% 27.68 31.34 +3.95% 28.36 28.47 +7.72%
103.6 45.98 50.08 +3.96% 36.03 39.71 +1.78% 46.77 53.38 +2.62% 45.88 46.86 +6.30%
103.8 76.44 83.30 +3.33% 56.63 62.55 +1.41% 77.78 89.14 +1.76% 72.14 75.69 +4.58%
104.0 131.29 142.72 +2.50% 91.51 101.31 +1.01% 133.97 153.43 +0.69% 119.15 126.73 +4.18%

Time Execution GP-based Search
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Figure 41: Search performance on DEEP1M encoding with different
numbers of bits per sub-quantizer.

Parameter Tuning
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Table 8: GP parameter values for learning process to prune edges.

Parameter Value

Size population 200
Depth individuals 4
Functions {+, −, /, ∗,min,max}
Terminals {E, N, C, J, P, A, R} ∪ random[−1, 1]
Num generations 20
Genetic operators reproduction (5%), mutation (10%), crossover (85%)
Fitness function T = {102, 102.1, 102.2, ..., 103.9, 104 }

GP Set-up
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Figure 42: Time execution for 100-NN search

Time Execution on SIFT1B
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