Clustering-Based Graphs for Large Scale Approximate Nearest Neighbor Search

Javier Alvaro Vargas Muñoz

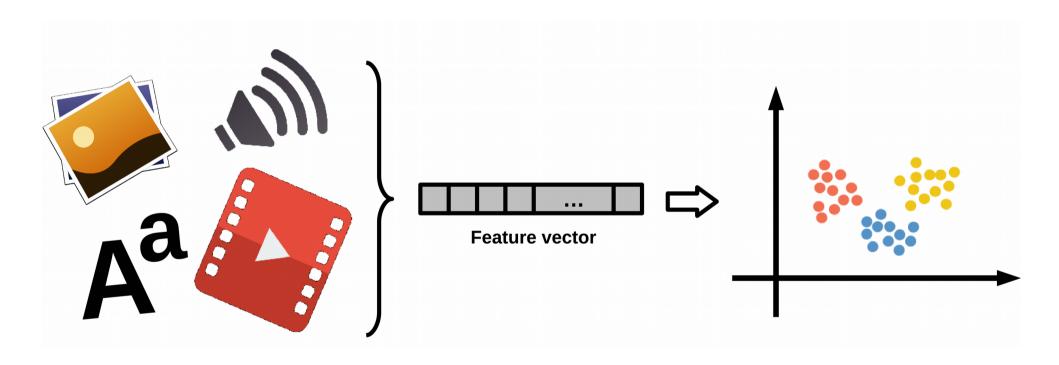
Advisor: Prof. Dr. Ricardo da Silva Torres Co-Advisor: Prof. Dr. Zanoni Dias

Institute of Computing – University of Campinas

November 28, 2017

Outline

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Schedule

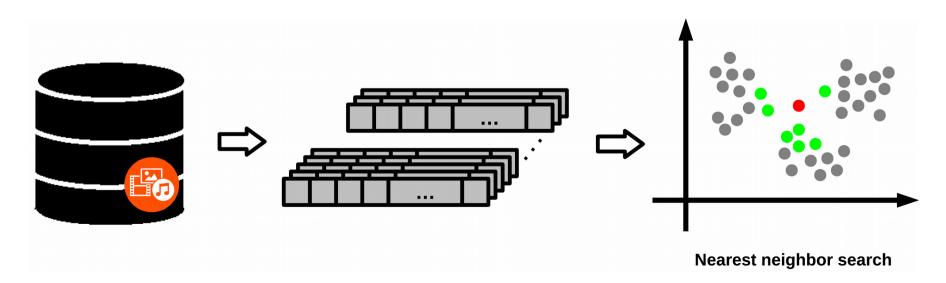


- Computer Vision
 - Find the best matches for local image features
 - Global image feature matching for scene recognition
 - Matching deformable shapes for object recognition
- Machine learning
- Multimedia retrieval

K nearest neighbors search problem

Given a set $P = \{p_1, p_2, p_3, ..., p_N\}$, $P \subset \mathbb{R}^d$, a distance function $D : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, a query point $q \in \mathbb{R}^d$

$$KNN(q,K,P)=A$$
, where $A\subseteq P \land |A|=K \land \forall x\in A, y\in P-A$, $D(q,x)< D(q,y)$



- Exact methods
 - Naive approach: linear search (brute force)
 - Impractical in large datasets
 - Data structures:
 - KD-Tree, BallTree
 - Search in logarithmic time in low dimensional data
 - Quickly converge to linear search as dimensionality increases

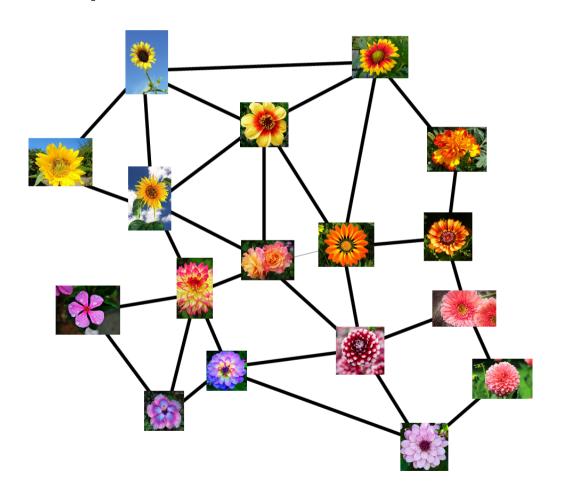
- Approximate methods (ANNS)
 - Fast search, with small loss in precision
 - Three classic approaches
 - Tree partitioning structures
 - Hashing-based techniques
 - Nearest neigbors graphs

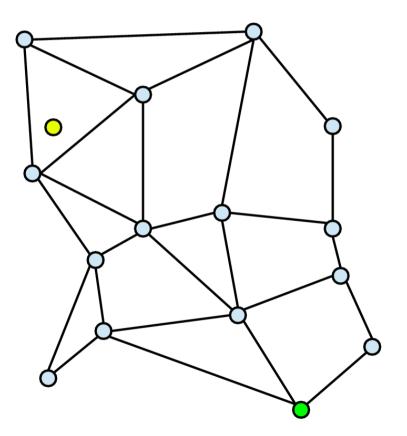
- Tree partitioning structures
 - Index contruction: at each tree level, objects are split into subsets, based on some criteria
 - Search: traversing from the root to the leaves, using the same criteria for split
 - Examples:
 - FLANN library: Randomized KD-Trees, Hierarchical kmeans tree, Hierarchical Clustering Tree
 - PCA-Tree, RP-Tree, Cover-Tree, VP-Tree

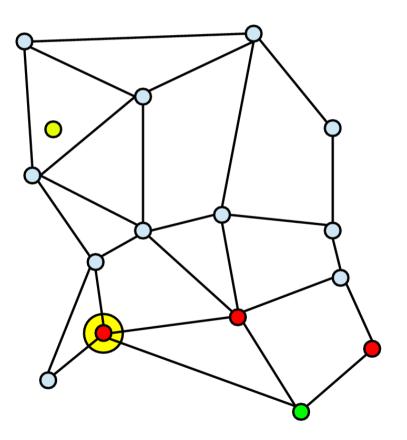
- Hashing-based techniques
 - Index contruction: map similar objects to near positions in the hash tables (buckets)
 - Search: hash the query object into a bucket, and uses the data objects in the bucket as the candidate set of the results
 - Examples: Locality Sensitive Hashing (LSH), Multi-Probe LSH

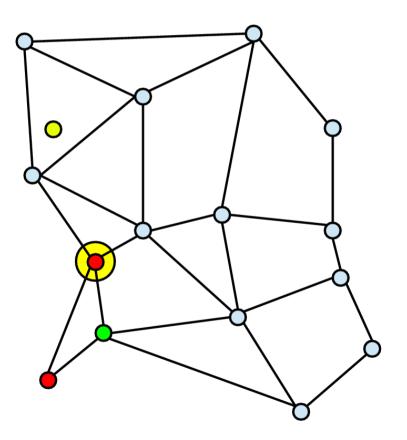
- Nearest neighbors graphs (NN graphs)
 - Graph construction: link each object to the most similar ones
 - Search: start in some (random) vertex and, in a greedy maner, traverse the graph towards the closest points to the query, until some stopping criterion is reached
 - Recents works and benchmarks have shown considerable gains over other approaches
 - Examples: FANNG, HNSW, SW, KGraph

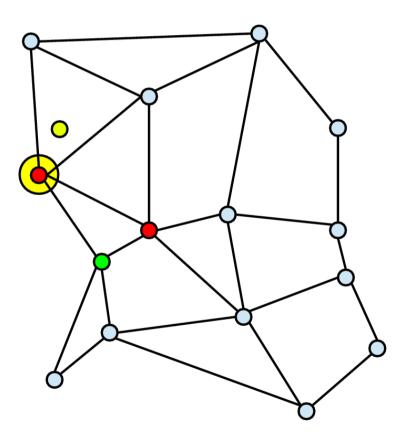
• Graph example:



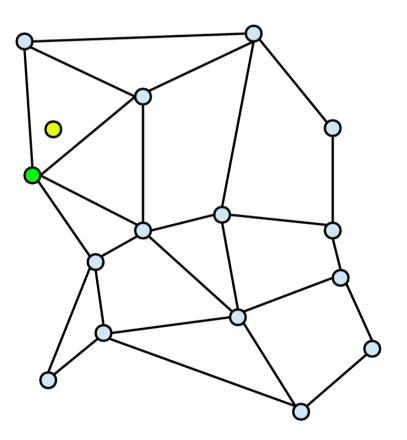








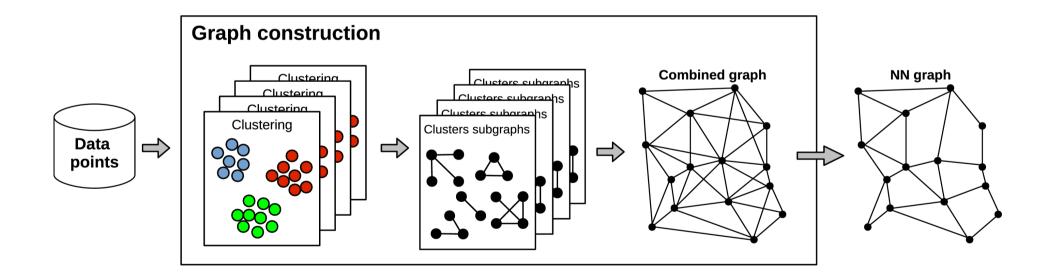


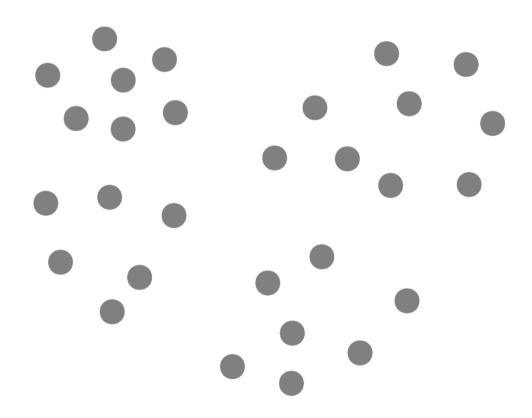


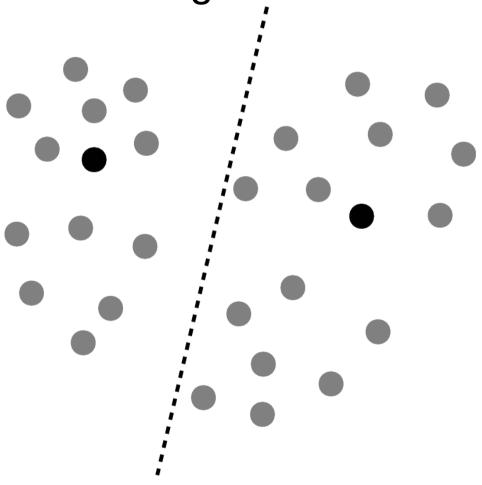
Hypothesis

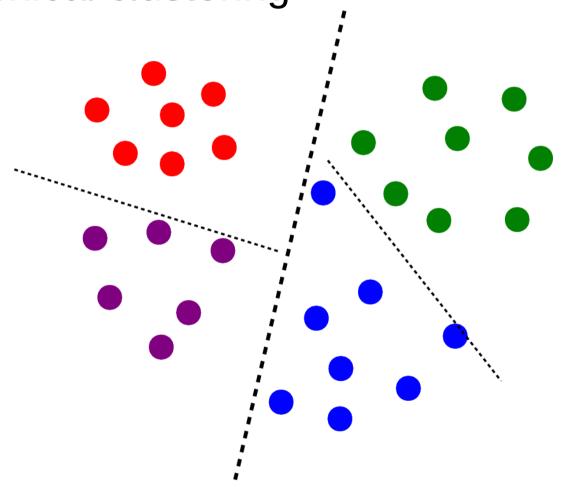
- **H1.** It is possible to construct a fast navigable NN graph based on multiple randomized clustering results
- **H2.** It is possible to avoid exhaustive exploration of neighbors at some steps of search based on heuristics and learning techniques

 Framework: Hierarchical Clustering-based Nearest Neighbor Graph (HCNNG)



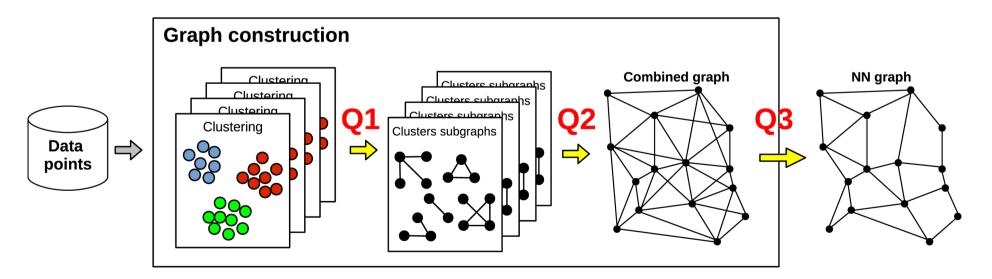




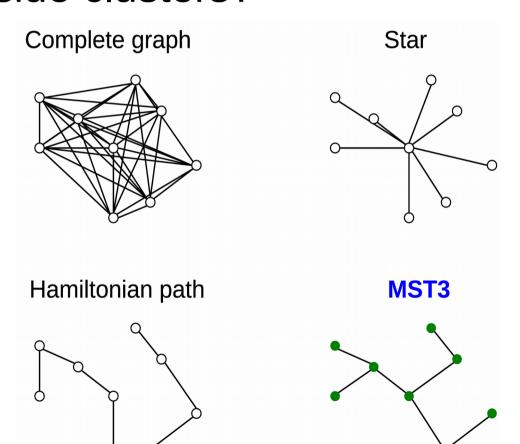


Graph Construction:

- Q1. What is the best way to connect points inside clusters?
- **Q2.** How can we merge subgraphs created in clusters?
- Q3. How could be improved the navigability in the NN graph?

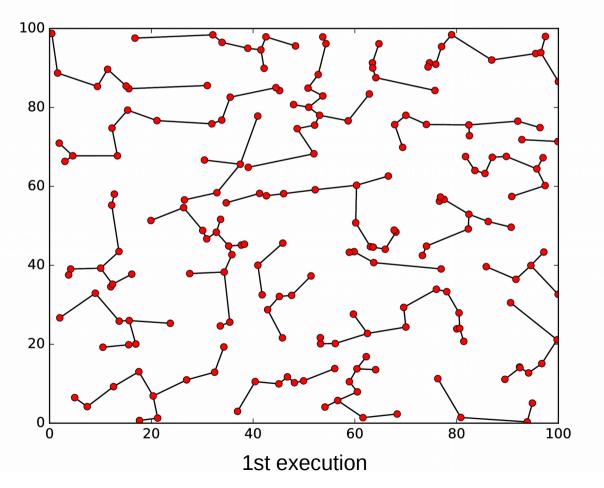


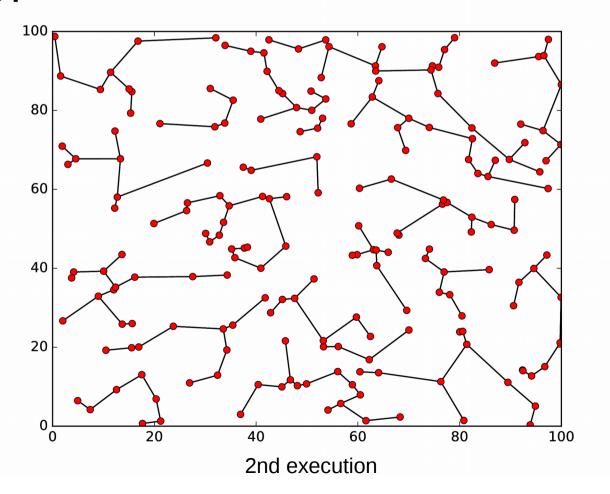
Q1. What is the best way to connect points inside clusters?

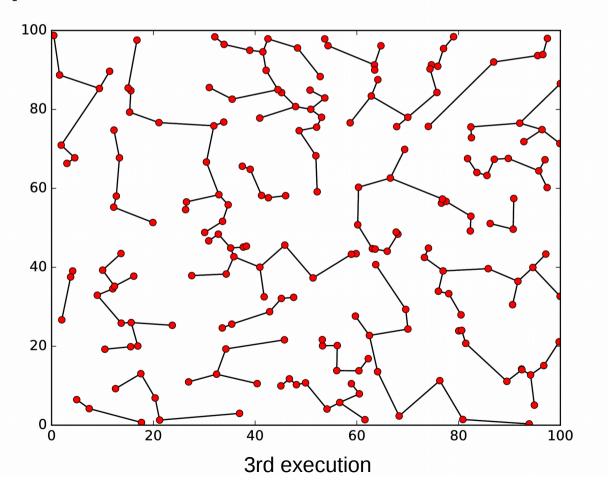


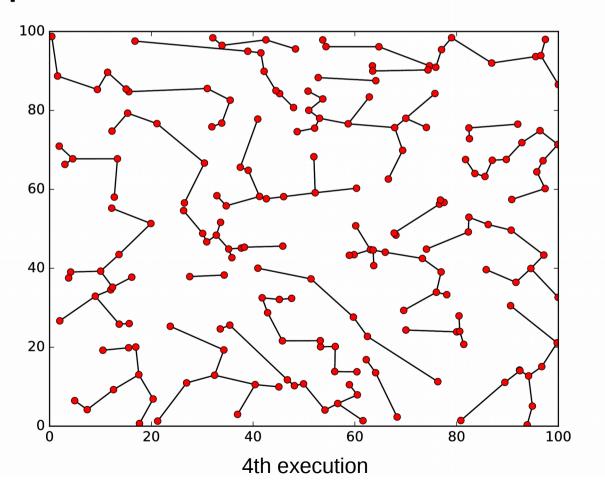
	Max degree	Max path
Complete	O(n)	O(1)
Star	O(n)	O(1)
Hamiltonian	O(1)	O(n)
MST3	O(1)	log(n)

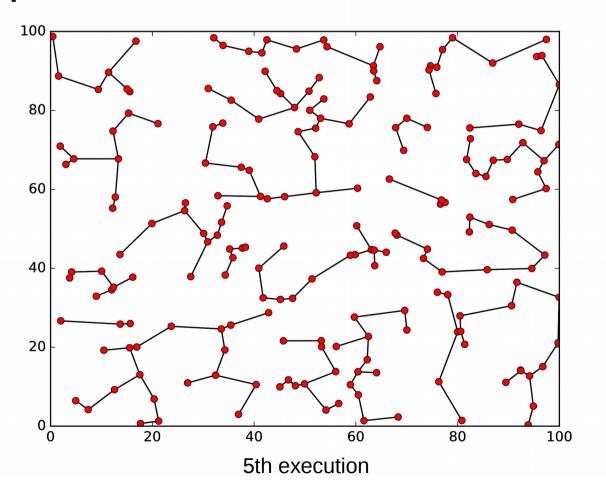
- **Q2.** How can we merge subgraphs created in clusters?
- Make the union of vertices and edges of all subgraphs without repetition

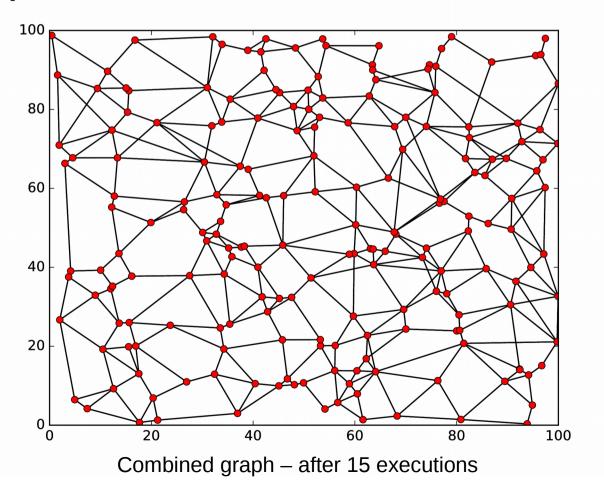










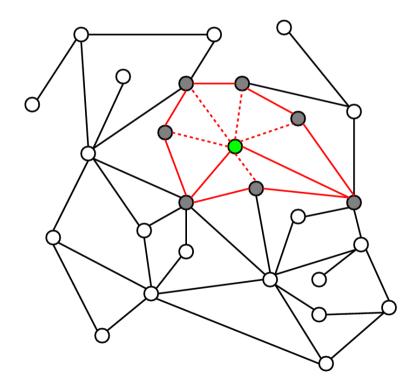


- **Q3.** How could be improved the navigability in the NN graph?
- Under investigation

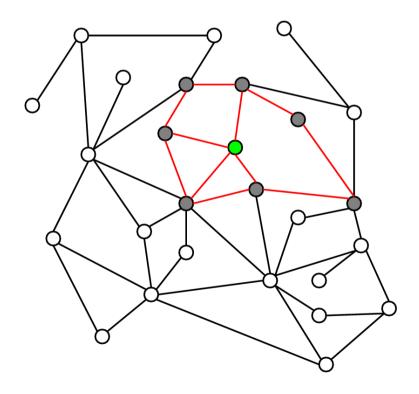
- **Q3.** How could be improved even more the navigability in the NN graph?
- Harwood and Drummond (2016)



- **Q3.** How could be improved even more the navigability in the NN graph?
- Harwood and Drummond (2016)

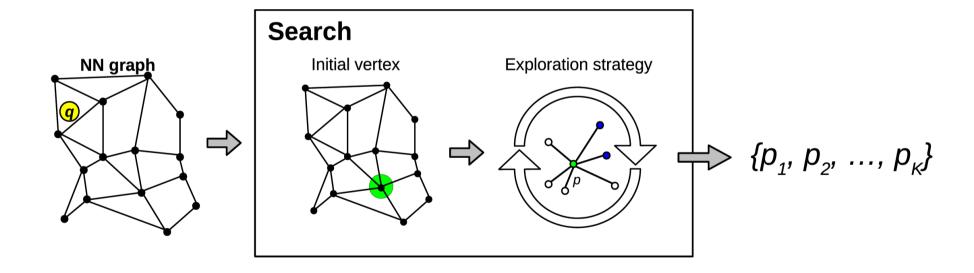


- **Q3.** How could be improved even more the navigability in the NN graph?
- Harwood and Drummond (2016)



Methodology

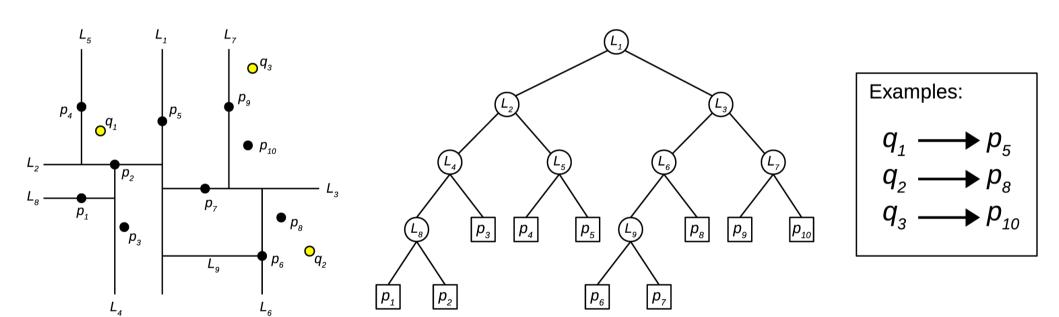
 Framework: Hierarchical Clustering-based Nearest Neighbor Graph (HCNNG)



Search on NN graph:

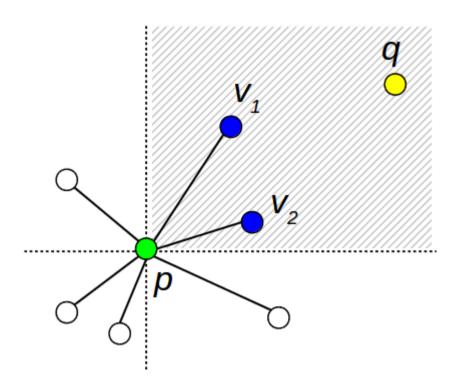
- Q4. How to estimate a good starting vertex in a search?
- Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at some steps of search?
- Q6. How could be applied a learning technique to avoid exahustive exploration of neighbors at some steps of search?

- **Q4.** How to estimate a good starting vertex for search?
- Using leaf of a KD-Tree that contains the query point:

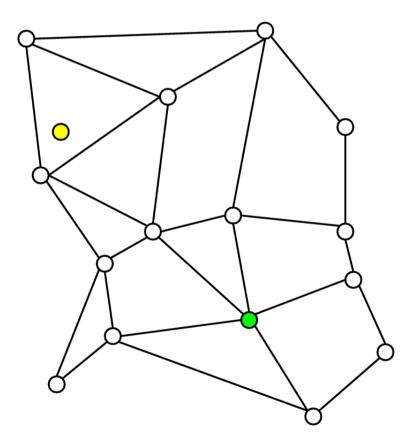


Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at some steps of search?

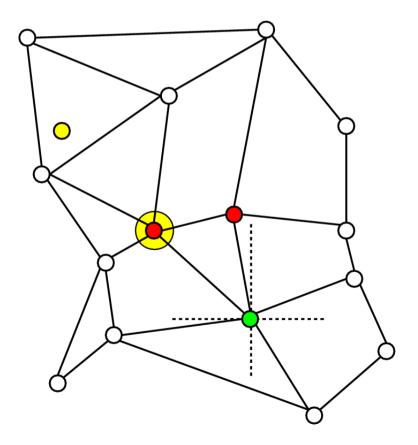
Using definition of quadrants, guided search:



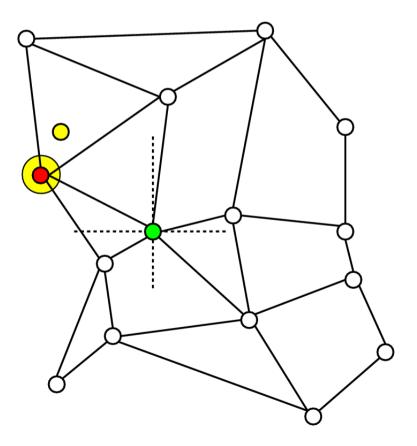
Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at early steps of search?



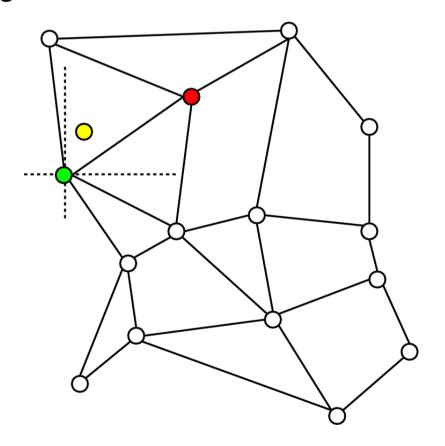
Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at early steps of search?



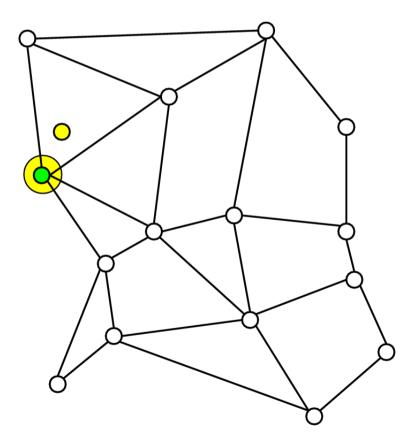
Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at early steps of search?



Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at early steps of search?



Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at early steps of search?



Q5. Which heuristic could be used to avoid exahustive exploration of neighbors at early steps of search?

guided search greedy search

Q6. How could be applied a learning technique to avoid exahustive exploration of neighbors at some steps of search?

Under investigation

HCNNG vs State-of-the-art

	HCNNG	HNSW	FANNG	SW	KGraph						
Graph construction											
# graphs	single	multiple	single	single	single						
strategy	divide and conquer	incremental construction	incremental construction	incremental construction	optimization of random graph						
generic space	yes	yes	no	yes	yes						
Search											
initial vertex	KD-Tree based	random	centroid multiple random		random						
strategy	guided + backtracking	multiple level + backtracking	backtracking	backtracking backtracking							

Validation

- BIGANN datasets for ANNS (visual features):
 - 1 million of SIFT features vectors (128 dimensions) to index construction, and 10K queries to evaluate performance
 - 1 million of GIST features vectors (960 dimensions) to index construction and 1K queries to evaluate performance
 - These datasets were previously used in other recent works to evaluate ANNS techniques
- GloVe (textual features)
 - 1 million of GloVe features vectors (100 dimensions) to index construction, and 10K queries to evaluate performance

Validation

Baselines

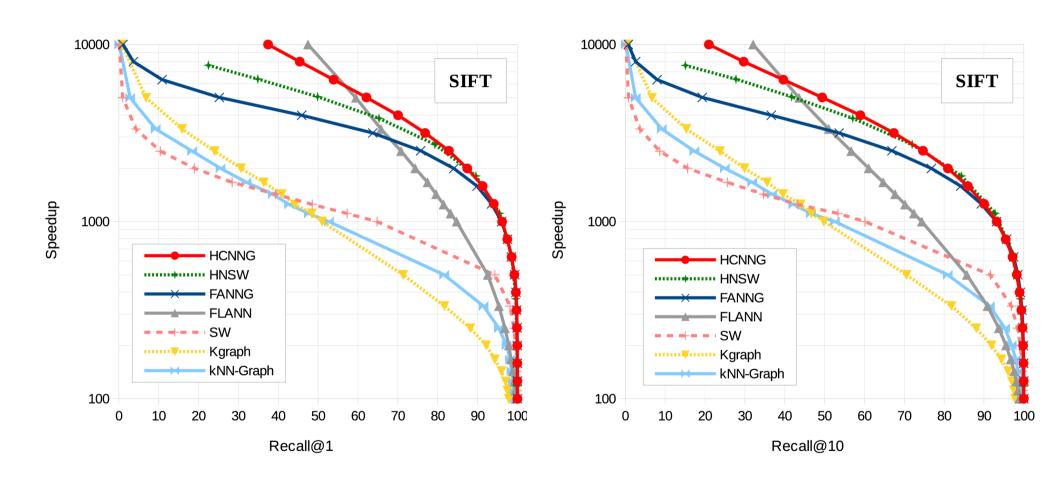
- Fast Library for Approximate Nearest Neighbors (FLANN, Muja and Lowe, 2014), a well-known and widely used
 - Randomized KD-Trees, K-Means Tree, and Hierarchical Clustering Tree
 - Auto-tuned algorithm, which selects the best algorithm and parameter values based on the data
- Fast Approximate Nearest Neighbour Graphs (FANNG, Harwood and Drummond, 2016): Using our own implementation
- Small world graphs (SW, Malkov et al., 2013) and Hierarchical Navigable Small World (HNSW, Malkov and Yashunin, 2017): Using the implementation found in Non-Metric Space Library (NMSLIB)
- Kgraph (Dong et al., 2011): Using the implementation provided by authors

Validation

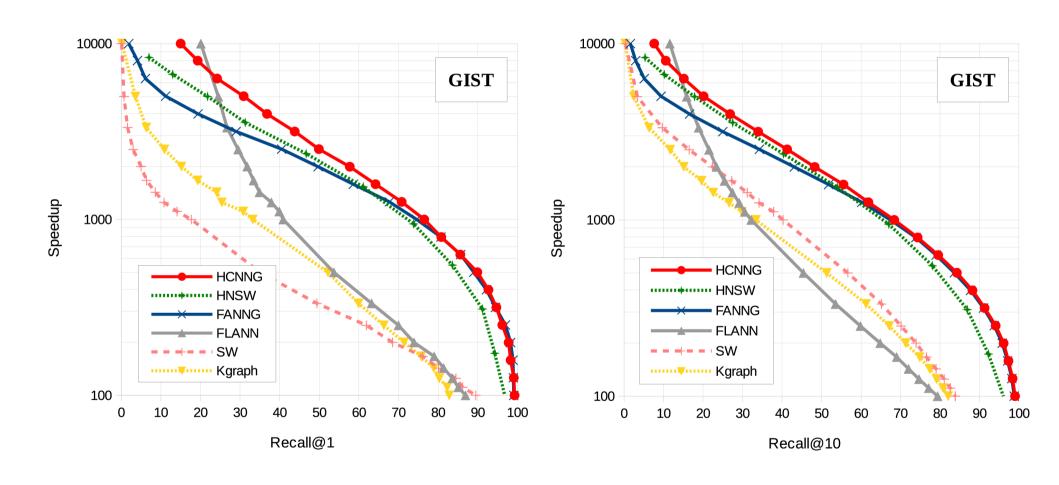
- We employed a widely-used evaluation measure for ANNS like the Speedup x Recall charts
- To keep the speedup independent from architecture where experiments are executed, we will only consider the number of distance calculations performed by each method. Thus, speedup is defined by:

$$Speedup = \frac{Collection \ size}{Number \ of \ distance \ calculations}$$

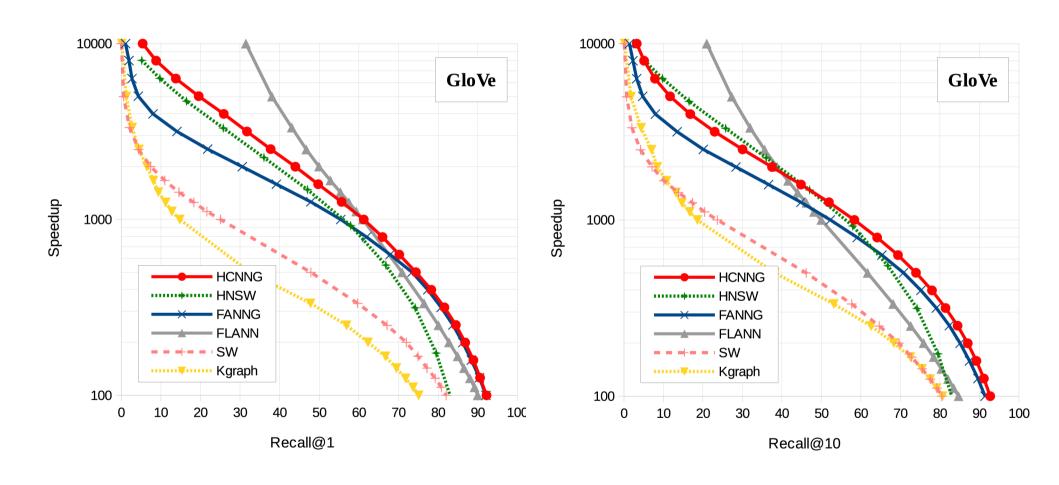
Preliminary Results



Preliminary Results



Preliminary Results



Schedule

- Courses and initial literature review.
- 2. NN graph construction algorithm.
- 3. Techniques for removing edges redundancy and reinforce connectivity on NN graphs.
- 4. Heuristics for guided search on NN Graphs.
- 5. Learning techniques for guided search on NN Graphs.
- 6. Internship (PhD sandwich program with BEPE scholarship).
- 7. Validation of framework and publication of the main results.
- 8. Writing and defense of the PhD work.

Activity	Semester									
	1s2016	2s2016	1s2017	2s2017	1s2018	2s2018	1s2019	2s2019		
1	•	•								
2		•	•							
3			•	•	•					
4			•	•	•					
5					•	•	•			
6					•	•				
7					•	•	•	•		
8								•		

References

Andoni, A., & Indyk, P. (2006). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Foundations of Computer Science, 2006. FOCS'06. 47th Annual IEEE Symposium on (pp. 459-468). IEEE.

Dong, W., Moses, C., & Li, K. (2011). Efficient k-nearest neighbor graph construction for generic similarity measures. In Proceedings of the 20th international conference on World wide web (pp. 577-586). ACM.

Harwood, B., & Drummond, T. (2016). FANNG: fast approximate nearest neighbour graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5713-5722).

Lv, Q., Josephson, W., Wang, Z., Charikar, M., & Li, K. (2007, September). Multi-probe LSH: efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd international conference on Very large data bases (pp. 950-961). VLDB Endowment.

Malkov, Y., Ponomarenko, A., Logvinov, A., & Krylov, V. (2014). Approximate nearest neighbor algorithm based on navigable small world graphs. Information Systems, 45, 61-68.

Malkov, Y., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. arXiv preprint arXiv:1603.09320.

Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11), 2227-2240.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

Thanks!