
Gustavo Rodrigues Galvão

Algorithms for Sorting by Reversals or
Transpositions, with Application to Genome

Rearrangement

Algoritmos para Problemas de Ordenação por
Reversões ou Transposições, com Aplicações em

Rearranjo de Genomas

CAMPINAS
2015

i

ii

University of Campinas
Institute of Computing

Universidade Estadual de Campinas
Instituto de Computação

Gustavo Rodrigues Galvão

Algorithms for Sorting by Reversals or
Transpositions, with Application to Genome

Rearrangement
Supervisor:

Orientador(a):
Prof. Dr. Zanoni Dias

Algoritmos para Problemas de Ordenação por
Reversões ou Transposições, com Aplicações em

Rearranjo de Genomas
PhD Thesis presented to the Graduate Pro-
gram of the Institute of Computing of the
University of Campinas to obtain a PhD de-
gree in Computer Science.

Tese de Doutorado apresentada ao Pro-
grama de Pós-Graduação em Ciência da
Computação do Instituto de Computação da
Universidade Estadual de Campinas para
obtenção do t́ıtulo de Doutor em Ciência da
Computação.

This volume corresponds to the final
version of the Thesis defended by Gus-
tavo Rodrigues Galvão, under the su-
pervision of Prof. Dr. Zanoni Dias.

Este exemplar corresponde à versão
final da Tese defendida por Gustavo
Rodrigues Galvão, sob orientação de
Prof. Dr. Zanoni Dias.

Supervisor’s signature / Assinatura do Orientador(a)

CAMPINAS
2015

iii

Agência de fomento: FAPESP
Nº processo: 2014/04718-6

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

 Galvão, Gustavo Rodrigues, 1988-
 G139a GalAlgorithms for sorting by reversals or transpositions, with application to

genome rearrangement / Gustavo Rodrigues Galvão. – Campinas, SP : [s.n.],
2015.

 GalOrientador: Zanoni Dias.
 GalTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Gal1. Biologia computacional. 2. Algoritmos aproximados. 3. Filogenia -

Matemática. I. Dias, Zanoni,1975-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Algoritmos para problemas de ordenação por reversões ou
transposições, com aplicações em rearranjo de genomas
Palavras-chave em inglês:
Computational biology
Approximation algorithms
Phylogeny - Mathematics
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Zanoni Dias [Orientador]
Maria Emília Machado Telles Walter
Yoshiko Wakabayashi
Eduardo Candido Xavier
Guilherme Pimentel Telles
Data de defesa: 02-10-2015
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

v

vi

Institute of Computing /Instituto de Computação
University of Campinas /Universidade Estadual de Campinas

Algorithms for Sorting by Reversals or
Transpositions, with Application to Genome

Rearrangement

Gustavo Rodrigues Galvão1

October 02, 2015

Examiner Board/Banca Examinadora:

• Prof. Dr. Zanoni Dias (Supervisor/Orientador)

• Prof. Dr. Maria Emı́lia Machado Telles Walter
Institute of Exact Sciences - UnB

• Prof. Dr. Yoshiko Wakabayashi
Institute of Mathematics and Statistics - USP

• Prof. Dr. Eduardo Candido Xavier
Institute of Computing - UNICAMP

• Prof. Dr. Guilherme Pimentel Telles
Institute of Computing - UNICAMP

• Prof. Dr. Cristina Gomes Fernandes
Institute of Mathematics and Statistics - USP (Substitute/Suplente)

• Prof. Dr. Cid Carvalho de Souza
Institute of Computing - UNICAMP (Substitute/Suplente)

• Prof. Dr. Flávio Keidi Miyazawa
Institute of Computing - UNICAMP (Substitute/Suplente)

1Financial support: CAPES scholarship (process 01-P-01965-2012) 08/2012–07/2013, CNPq
scholarship (process 142260/2014-2) 07/2014–08/2014, and FAPESP scholarship (process
2014/04718-6) 09/2014–09/2015.

vii

viii

Abstract

During evolution, rearrangement events may alter the order and the orientation of the
genes in a genome. The problem of finding the minimum sequence of rearrangements
that transforms one genome into another is a well-studied problem that finds applica-
tion in comparative genomics. Representing genomes as permutations, in which genes
appear as elements, that problem can be reduced to the combinatorial problem of
sorting a permutation using a minimum number of rearrangements. Such combina-
torial problem, referred to as rearrangement sorting problem, varies according to the
types of rearrangements considered.

In this thesis, we focus on two types of rearrangements: reversals and transpo-
sitions. Many variants of the rearrangement sorting problem involving these rear-
rangements have been tackled in the literature and, for most of them, the best known
algorithms are approximations or heuristics. For this reason, we present a tool, called
GRAAu, to aid in the evaluation of the results produced by these algorithms. In
addition, we present a general heuristic that can be used to improve the solutions
provided by any non-optimal algorithm.

Besides presenting GRAAu and the improvement heuristic, which have a more
general appeal, we present contributions regarding specific variants of the rearrange-
ment sorting problem. First, we consider the problem of sorting by transpositions
and we present experimental and theoretical results regarding three approximation
algorithms based on alternative approaches to the cycle graph, which is a standard
tool for attacking the rearrangement sorting problem. Then, we turn our attention
to variants involving short rearrangements. More precisely, we study five variants: (i)
the problem of sorting a signed linear permutation by super short reversals, (ii) the
problem of sorting a signed circular permutation by super short reversals, (iii) the
problem of sorting a signed linear permutation by short reversals, (iv) the problem
of sorting a signed linear permutation by super short rearrangements, and (v) the
problem of sorting a signed linear permutation by short rearrangements. We present
polynomial-time algorithms for problems (i), (ii) and (iv), a 5-approximation algo-
rithm for problem (iii), and a 3-approximation algorithm for problem (v). We use
the algorithm developed for problem (ii) to reconstruct the phylogeny of Yersinia
genomes and compare the result with the phylogenies presented in previous works.

ix

x

Resumo

Ao longo da evolução, eventos de rearranjo podem alterar a ordem e a orientação
dos genes de um genoma. O problema de calcular a menor sequência de rearranjos
que transforma um genoma em outro é um problema bastante estudado que encontra
aplicações em genômica comparativa. Representando genomas como permutações,
nas quais os genes aparecem como elementos, esse problema pode ser reduzido ao
problema combinatório de ordenar uma permutação utilizando o menor número de
rearranjos. Tal problema combinatório, referido como problema da ordenação por
rearranjo, varia de acordo com os tipos de rearranjo considerados.

Nesta tese, focamos nosso estudo em dois tipos de rearranjo: reversões e transpo-
sições. Muitas variações do problema da ordenação por rearranjo que envolvem esses
rearranjos têm sido atacadas na literatura e, para a maior parte delas, os melhores
algoritmos conhecidos são aproximações ou heuŕısticas. Em razão disso, apresentamos
uma ferramenta, chamada GRAAu, que auxilia a avaliação dos resultados produzidos
por esses algoritmos. Além disso, apresentamos uma heuŕıstica genérica que pode ser
usada para melhorar as soluções produzidas por qualquer algoritmo não exato.

Além de apresentar o GRAAu e a heuŕıstica de melhoria, os quais possuem um
apelo mais geral, apresentamos contribuições relacionadas à variações espećıficas do
problema da ordenação por rearranjo. Primeiro, consideramos o problema da or-
denação por transposições e apresentamos resultados teóricos e práticos relacionados
a três algoritmos aproximados baseados em uma abordagem alternativa ao grafo de
ciclos, que é uma ferramenta padrão para atacar o problema da ordenação por rear-
ranjo. Depois, voltamos nossa atenção à variações que envolvem rearranjos curtos.
Mais precisamente, estudamos cinco variações: (i) o problema de ordenar uma per-
mutação linear com sinal por reversões super curtas, (ii) o problema de ordenar uma
permutação circular com sinal por reversões super curtas, (iii) o problema de ordenar
uma permutação linear com sinal por reversões curtas, (iv) o problema de ordenar
uma permutação linear com sinal por rearranjos super curtos e (v) o problema de
ordenar uma permutação linear com sinal por rearranjos curtos. Apresentamos algo-
ritmos polinomiais para os problemas (i), (ii) and (iv), um algoritmo 5-aproximado
para o problema (iii) e um algoritmo 3-aproximado para o problema (v). Usamos
o algoritmo desenvolvido para o problema (ii) para reconstruir a filogenia de geno-
mas de bactérias do gênero Yersinia e comparamos os resultados com as filogenias
apresentadas em trabalhos anteriores.

xi

xii

Agradecimentos

Gostaria de agradecer aos meus pais, Fátima e Claudio, por sempre terem me apoiado.
À minha companheira, Ticiane, e à minha filha, Sofia, tanto pelo apoio e carinho,

quanto pela paciência durante todo o tempo em que estive na Pós-Graduação. Foram
inúmeras as vezes em que elas compreenderam que não poderia estar com elas devido
ao meu shigoto.

Ao meu orientador, Prof. Zanoni Dias, pela oportunidade e confiança em mim
depositada, pela orientação e colaboração durante o desenvolvimento desta tese e,
acima de tudo, por sempre estar disposto a me ajudar. Eu tenho dúvidas se teria
chegado até aqui caso não tivesse o orientador que tive. Muito obrigado, Zanoni.

Também gostaria de agradecer aos meus colegas Ulisses, Carla e Christian, assim
como ao Prof. Orlando Lee, por terem colaborado com minha pesquisa.

Por fim, agradeço às agências de fomento CAPES (processo 01-P-01965-2012),
CNPq (processo 142260/2014-2) e FAPESP (processo 2014/04718-6) pelo apoio fi-
nanceiro.

xiii

xiv

Contents

Abstract ix

Resumo xi

Agradecimentos xiii

1 Introduction 1
1.1 Permutations and Sorting Problems . 3
1.2 Evolution and Genome Rearrangement 5
1.3 The Marriage Between Permutations and Genome Rearrangement . . . 7
1.4 Contributions and Organization . 8

2 An Audit Tool for Genome Rearrangement Algorithms 11
2.1 Introduction . 12
2.2 Background . 13

2.2.1 Modeling Genomes and Rearrangement Events 13
2.2.2 Pairwise Genome Rearrangement Problem and Sorting 14
2.2.3 Variants of the Rearrangement Sorting Problem 15

2.3 Implementation . 18
2.3.1 Algorithm for Computing Rearrangement Distances 18
2.3.2 Computing Rearrangement Distances 23
2.3.3 Implementation of GRAAu . 36

2.4 Application of GRAAu . 38
2.4.1 Sorting by Prefix Reversals . 38
2.4.2 Sorting by Prefix Transpositions 45

2.5 Conclusion . 53

3 A General Heuristic for Genome Rearrangement Problems 57
3.1 Introduction . 58
3.2 Background . 60
3.3 A General Heuristic . 62
3.4 Solution Database . 65
3.5 Experimental Results . 65

xv

3.6 Conclusions . 80

4 On Alternative Approaches for Approximating the Transposition
Distance 81
4.1 Introduction . 82
4.2 Preliminaries . 83
4.3 Algorithms . 85

4.3.1 Algorithm based on the breakpoint diagram 85
4.3.2 Algorithm based on permutation codes 86
4.3.3 Algorithm based on the longest increasing subsequence 87

4.4 Computing Permutation Codes in O(n log n) Time 91
4.5 Experimental Results and Discussion 95

4.5.1 Experiments on small permutations 95
4.5.2 Experiments on large permutations 98

4.6 Conclusions . 102

5 Sorting Signed Permutations by Short Operations 105
5.1 Background . 106
5.2 Preliminaries . 108
5.3 Sorting by Bounded Signed Reversals 110

5.3.1 The Vector Diagram . 110
5.3.2 Sorting by Signed Super Short Reversals 112
5.3.3 Sorting by Signed Short Reversals 114

5.4 Sorting by Bounded Operations . 121
5.4.1 The Permutation Graph . 121
5.4.2 Sorting by Signed Super Short Operations 122
5.4.3 Sorting by Signed Short Operations 126

5.5 Experimental Results . 131
5.6 Conclusions . 132

6 Sorting Signed Circular Permutations by Super Short Reversals 135
6.1 Introduction . 136
6.2 Sorting by Cyclic Super Short Reversals 137
6.3 Sorting by Signed Cyclic Super Short Reversals 140
6.4 Sorting Circular Permutations . 144
6.5 Experimental Results and Discussion 144
6.6 Conclusions . 146

7 Concluding Remarks 149

Bibliography 153

xvi

List of Tables

2.1 Rearrangement models and values of n considered in the computation
of the rearrangement distances. 24

2.2 Exact values and bounds for the diameter. 25
2.3 Signed prefix reversal distance distribution in S±n 26
2.4 Signed reversal and transposition distance distribution in S±n 27
2.5 Signed reversal, transposition, and signed transreversal (type A) dis-

tance distribution in S±n . 27
2.6 Transposition and signed transreversal (types A and B) distance dis-

tribution in S±n . 27
2.7 Reversal distance distribution in Sn. 28
2.8 Transposition distance distribution in Sn. 29
2.9 Reversals and transposition distance distribution in Sn. 29
2.10 Prefix reversal distance distribution in Sn. 30
2.11 Prefix transposition distance distribution in Sn. 31
2.12 Prefix reversal and prefix transposition distance distribution in Sn. . . . 32
2.13 Diameter, traversal diameter, and longevity of S±n 33
2.14 Diameter, traversal diameter, and longevity of Sn. 34
2.15 Conjectures regarding D(n), T (n), and L(n). 35
2.16 Results from the audit of Algorithm 2 41
2.17 Results from the audit of Algorithm 3 42
2.18 Results obtained from the audit of Algorithm 4. 47
2.19 Results obtained from the audit of Algorithm 5 47

3.1 List of algorithms used in this paper. 66
3.2 Average distance for each approximation algorithm for the sorting by

transpositions problem. We highlight the best results produced both
with and without our heuristic. 77

3.3 Percentage of instances in which each program yielded the best results
for the sorting by transpositions problem. Columns do not add up to
100% because of ties. Best results highlighted. 78

3.4 Summary of the results produced for each algorithm. 79

4.1 Results obtained from the audit of the implementation of Walter, Dias,
and Meidanis’ algorithm. 96

xvii

4.2 Results obtained from the audit of the implementation of Benôıt-Gagné
and Hamel’s algorithm. 96

4.3 Results obtained from the audit of the implementation of Algorithm 3,
which is a constrained version of Guyer, Heath, and Vergara’s heuristic. 97

4.4 Permutations πm of size 3m+ 1, m ∈ {5, 6, 7}, for which p(πm)
d(πm) = 3m

m+1 .
Note that d(πm) ≥ b(πm)

3 ≥ m + 1. 97

5.1 Results obtained from the audit of the implementation of Algorithm 15. 132
5.2 Results obtained from the audit of the implementation of Algorithm 18. 132

6.1 Matrix of the super short reversal distances among the signed circular
permutations which represent the Yersinia genomes. 145

xviii

List of Figures

1.1 The Cayley graph Γ(G,S) where G is the set of all permutations on 4
elements and S corresponds to the three different ways of swapping the
first element of a permutation with any other element. This figure is
based on a picture by Labarre [89, Figure 5.2]. 5

2.1 Average speed gain on the execution of the 32 bit implementation with
multiple threads. The rearrangement model consisted of reversals only. 23

2.2 Breakpoint graph G(π) of permutation π = (4 2 1 3). 39
2.3 Performance comparison between algorithms 2 and 3 based on the re-

sults provided by GRAAu. 43
2.4 Breakpoint graphs of the permutations produced by Algorithm 2 when

sorting permutation π = (1 7 8 2 4 3 9 5 6). 44
2.5 Performance comparison between algorithms 4 and 5 based on the re-

sults provided by GRAAu. 48

3.1 Results regarding the algorithms for the problem of sorting by prefix
reversals. 68

3.2 Results regarding the algorithms for the problem of sorting by prefix
reversals and prefix transpositions. 69

3.3 Results regarding the algorithms for the problem of sorting by prefix
reversals, prefix transpositions, suffix reversals and suffix transpositions. 70

3.4 Results regarding the algorithms for the problem of sorting by prefix
reversals and suffix reversals. 71

3.5 Results regarding the algorithms for the problem of sorting by prefix
transpositions and suffix transpositions. 72

3.6 Results regarding the algorithms for the problem of sorting by prefix
transpositions. 73

3.7 Results regarding the algorithms for the problem of sorting by prefix
transpositions. 74

3.8 Results regarding the algorithm for the problem of sorting by reversals
and transpositions. 75

3.9 Results regarding the 5 algorithms for the problem of sorting by trans-
positions. 76

xix

4.1 Comparison of Walter, Dias, and Meidanis’ algorithm (WDM), Benôıt-
Gagné and Hamel’s algorithm (BH), and the constrained version of
Guyer, Heath, and Vergara’s heuristic (GD) based on the results pro-
vided by GRAAu. 98

4.2 Comparison of Walter, Dias, and Meidanis’ algorithm (WDM), Benôıt-
Gagné and Hamel’s algorithm (BH), the constrained version of Guyer,
Heath, and Vergara’s heuristic (GD), Bafna and Pevzner’s algorithm
(BP), Elias and Hartman’s algorithm (EH), and Dias and Dias’ algo-
rithms (DD (BP) and DD (EH)) based on the average distance. 99

4.3 Relative number of times each algorithm provided the best distance.
Note that more than one algorithm can have provided the best distance.100

4.4 Relative number of times each algorithm provided the best distance.
Note that more than one algorithm can have provided the best distance.101

5.1 Vector diagram of the signed permutation π = (+3 −4 +6 −1 +5 −2).
Note that Vec(π) = 14. 110

5.2 Permutation graph of the signed permutation (+3 −4 +6 −1 +5 −2). . 122

6.1 Phylogeny of the Yersinia genomes based on the super short reversal
distance of the signed circular permutations. 146

xx

Chapter 1

Introduction

One of the challenges of modern science is to understand how species evolve. As evolu-
tion can be viewed as a branching process, whereby new species arise from changes oc-
curring in living organisms, the study of the evolutionary history of a group of species
is commonly made by analyzing trees whose nodes represent species and edges repre-
sent evolutionary relationships. Since these relationships are referred to as phylogeny,
such trees are called phylogenetic trees.

Phylogenies can be inferred from different kinds of data, from geographic and eco-
logical, through behavioral, morphological, and metabolic, to molecular data, such as
DNA. Molecular data have the advantage of being exact and reproducible, at least
within experimental error, not to mention fairly easy to obtain [63, Chapter 12].
Distance-based methods form one of the three large groups of methods to infer phylo-
genetic trees from molecular or sequence data [96, Chapter 5]. Such methods proceed
in two steps. First, the evolutionary distance is computed for every sequence pair
and this information is stored in a matrix of pairwise distances. Then, a phylogenetic
tree is constructed from this matrix using a specific algorithm, such as Neighbor-
Joining [108]. Note that, in order to complete the first step, we need some method to
estimate the evolutionary distance between a sequence pair. Assuming the sequence
data correspond to complete genomes, we can resort to the genome rearrangement
approach [54] in order to estimate the evolutionary distance.

The genome of an organism is composed of chromosomes, which can be simplis-
tically represented as a set of ordered and oriented genes. A genome rearrangement
occurs when one or more chromosomes are broken into segments and rejoined in such
a way that the order or the orientation of the genes is changed. Some examples of
rearrangements include the following:

• Reversal/Inversion: a segment of a chromosome is reversed in such a way
that the order and orientation of the genes within the segment is also reversed;

• Transposition: a segment of a chromosome is moved to a new location in
the same chromosome. The orientation of the genes within the segment is not
changed;

1

2 Chapter 1. Introduction

• Inverted transposition/Transreversal: similar to a transposition, but the
orientation of the genes within the segment is changed;

• Translocation: an end segment of one chromosome is exchanged with an end
segment of another;

• Fusion: two chromosomes are merged into one;

• Fission: a chromosome is splitted into two;

• Deletion: a segment of a chromosome is lost;

• Duplication: a copy of some chromosome region is inserted in the genome.

We can divide rearrangements into two classes: balanced and imbalanced [66]. The
difference between them is that balanced rearrangements preserve the initial set of
genes while imbalanced rearrangements do not. Note that the first six rearrangements
above are balanced and the last two rearrangements are imbalanced.

Before we proceed, it should be noted that large-scale mutations, such as genome
rearrangements, are not the only kind of mutation that affects the DNA: it may also
be altered by point mutations. Basically, the DNA can be seen as long sequence of
four types of nucleotides (A, T, C, and G). A point mutation changes the DNA by
substituting, deleting, or adding one nucleotide. Therefore, one can also estimate the
evolutionary distance between a sequence pair resorting to a point mutation approach.
For a detailed presentation of this approach, the reader is referred to the book of
Lemey, Salemi, and Vandamme [96].

Using the genome rearrangement approach, one estimates the evolutionary dis-
tance between two genomes by finding the rearrangement distance between them,
which is the length of the shortest sequence of rearrangement operations that trans-
forms one genome into the other. Assuming genomes consist of a single chromosome,
share the same set of genes, and contain no duplicated genes, we can represent them
as permutations of integers, where each integer corresponds to a gene. If, besides the
order, the orientation of the genes is also considered, then each integer has a sign, +
or −, and the permutation is called a signed permutation. Similarly, we also refer to a
permutation as an unsigned permutation when its elements do not have signs. More-
over, if the genomes are circular, then the permutations are also circular; otherwise,
they are linear.

By representing genomes as permutations, the problem of finding the shortest
sequence of operations that transforms one genome into another can be reduced to the
combinatorial problem of computing the minimum number of operations necessary to
transform one permutation into another. By algebraic properties of permutations, this
problem can be equivalently stated as the problem of computing the minimum number
of operations necessary to transform one permutation into the identity permutation

1.1. Permutations and Sorting Problems 3

(+1 +2 . . . +n). This problem is commonly referred to as the permutation sorting
problem or as the rearrangement sorting problem.

Depending on the operations allowed to sort a permutation, we have a different
variant of the permutation sorting problem. This thesis presents a collection of ar-
ticles concerning variants that take into account two types of operations: reversals
and transpositions. Since each article provides the necessary technical background for
understanding its content, the next sections aim to provide a more historical back-
ground in order to give the readers a broader perspective. Specifically, Section 1.1
and Section 1.2 give an informal historical overview of the main concepts related to
this thesis, whereas Section 1.3 discusses how they have been combined to form a new
research field. The last section of this introductory chapter outlines the rest of this
thesis.

1.1 Permutations and Sorting Problems

According to Smith [112, Chapter 13], the subject of permutations appeared first
in China in the I Ching, or Book of Changes. The Hindus have given no attention
to the subject until Baskara II took it up on his treatise on mathematics, Lilavati.
Permutations started to gather more attention early in the Christian Era [112, Chapter
13]. In that time, there was a close relation between mathematics and the cabala,
what “led to the belief in the mysticism of arrangements and hence to the study of
permutations and combinations” [112, Chapter 13].

The first time the notion of permutations appeared in a printed book was in
Pacioli’s Suma, where “he showed how to find the number of permutations of any
number of persons sitting at a table” [112, Chapter 13]. Moreover, the first time
the word “permutation” appeared in a printed book was in Jacques Bernoulli’s Ars
Conjectandi [112, Chapter 13].

As we have seen so far, the concept of permutation denoted basically an arrange-
ments of elements, therefore it was closely related to the theory of combinations.
However, as Kiernan [85] pointed out, permutations were crucial to the evolution of
algebra in the 18th century. In his paper “Réflexions sur la résolution algébrique des
équations”, Joseph-Louis Lagrange gave a significant contribution to the problem of
the solution of equations by radicals. He observed that important properties of an
equation can be deduced by examining the effect produced by permutations of its
roots [85]. Nevertheless, he was neither able to give a solution to equations of fifth
degree (or higher) nor able to present a proof that no solution exist. Building upon
Lagrange’s work, Paolo Ruffini and Niels Henrik Abel succeeded in proving that no
solution exist, although Ruffini’s contemporaries disputed the conclusiveness of his
results [85]. Ultimately, Évariste Galois gave the necessary and sufficient conditions
for solving an equation by radicals [85].

Augustin-Louis Cauchy was the first to define a permutation as a bijective function

4 Chapter 1. Introduction

from a set to itself. Moreover, he introduced the two-row notation for permutations
and many important terms, still in use today [85]. For this reason, we can attribute
to him the study of permutations as a subject in its own right, giving rise to the
theory of permutations (and subsequently to the group theory). Since then, many
mathematicians have devoted their time to develop it. In particular, we would like
to cite one of them: Arthur Cayley. To the best of our knowledge, the first solution
to a permutation sorting problem was due to him. His paper “Note on the Theory of
Permutations” [24] shows how to derive the minimum number of two-element swaps
necessary to transform a given permutation into the identity permutation (referred
by him as primitive arrangement). It is also due to him [25] a fundamental tool in
group theory: the Cayley graph.

Generally speaking, a group is a structure consisting of a set of elements together
with a binary operation, called the group operation. Moreover, a permutation group
is a group whose elements are permutations and whose group operation is the product
(or composition) of permutations. Given a permutation group G and a set S of group
elements belonging to G, the Cayley graph Γ(G,S) associated with G and S is the
graph whose vertices are the elements of G and whose edges connect two vertices such
that the corresponding elements can be obtained from one another using an element
of S. Usually, the Cayley graph is assumed to be a connected undirected graph by
considering that: (i) S is a set of generators of G, that is, every permutation in G can
be obtained by composing the permutations in S; and (ii) if a permutation belongs
to S, then its inverse also does. For instance, Figure 1.1 illustrates the Cayley graph
Γ(G,S) where G is the set of all permutations on 4 elements and S corresponds to
the three different ways of swapping the first element of a permutation with any other
element.

It is important to note that Cayley [24] did not formulate the problem as a per-
mutation sorting problem. In fact, such formulation is characteristic of the genome
rearrangement literature. Before that, the problem was generally formulated as a
minimum factorization problem, that is, given a set of generators and a single target
permutation, the problem is to find the minimum-length generator sequence whose
product is the target permutation. If the set of generators is part of the problem
instance, then Even and Goldreich [51] have proved that the problem is NP-hard and
Jerrum [80] has proved that the problem is PSPACE-complete. These two results
explain why we study permutation sorting problems in a “variant-oriented” fashion:
there is little hope that a general efficient solution can be found.

Another problem inspired by the notion that a permutation can be represented as a
product of generators is the group diameter problem [7,45]: given a set S of generators
of a permutation group G, find the length of the longest product of generators required
to reach a group element. Note that this problem can be equivalently formulated as the
problem of finding the diameter of the Cayley graph Γ(G,S) [6]. Diameter problems
are also studied in the genome rearrangement literature. For a historical development

1.2. Evolution and Genome Rearrangement 5

of this and other problems on Cayley graphs, the interested reader is referred to the
survey by Konstantinova [87].

(1 2 3 4) (2 1 3 4)

(4 1 3 2)

(1 4 3 2)(2 4 3 1)

(4 2 3 1)

(3 2 1 4)

(2 3 1 4) (1 3 2 4)

(3 1 2 4)
(4 1 2 3)

(2 1 4 3)

(3 1 4 2)

(1 3 4 2)

(4 3 1 2)
(3 4 1 2)

(2 4 1 3)(1 4 2 3)

(3 4 2 1)
(4 3 2 1)

(2 3 4 1)

(3 2 4 1)

(1 2 4 3)

(4 2 1 3)

Figure 1.1: The Cayley graph Γ(G,S) where G is the set of all permutations on 4
elements and S corresponds to the three different ways of swapping the first element of
a permutation with any other element. This figure is based on a picture by Labarre [89,
Figure 5.2].

1.2 Evolution and Genome Rearrangement
In the introduction of this thesis, we stated that evolution can be viewed as a branching
process, whereby new species arise from changes occurring in living organisms. This
concept dates back to Charles Darwin. In the introduction of his On the Origin of
Species [34], Darwin writes:

Although much remains obscure, and will long remain obscure, I can enter-
tain no doubt, after the most deliberate study and dispassionate judgment
of which I am capable, that the view which most naturalists entertain, and
which I formerly entertained – namely, that each species has been inde-
pendently created – is erroneous. I am fully convinced that species are

6 Chapter 1. Introduction

not immutable; but that those belonging to what are called the same gen-
era are lineal descendants of some other and generally extinct species, in
the same manner as the acknowledged varieties of any one species are the
descendants of that species.

Although Darwin’s evolutionary theory gained scientific acceptance when it was
published, it faced some difficulties. The most serious of them, according to Ayala [5],
was the lack of an adequate theory of inheritance to account for the variations between
and within the species. Coincidentally, about the time Darwin’s On the Origin of
Species was published, Gregor Mendel published a paper which formulated the basic
laws of inheritance [5]. This work, however, was not known to Darwin.

The connection between Darwin’s evolutionary theory and Mendel’s theory of
heredity was only made in the 1920s and 1930s through the work of several geneticists,
giving rise to the Synthetic Theory of Evolution, also known as the Modern Synthesis
of Evolutionary Theory [5]. A key author of this theory was Theodosius Dobzhansky.
Among other things, Dobzhansky’s Genetics and the Origin of Species [43] helped to
popularize the synthetic theory to other biologists.

Another important early pioneer in genetic research was Alfred Sturtevant. Among
his contributions to the field are the first genetic map [113] (i.e. an ordering of genes
within a chromosome) and the discovery of rearrangements in Drosophila [114]. The
essence of these contributions, namely the fact that genes are linearly arranged in the
chromosome and that this arrangement can change by the occurrence of chromosomal
mutations, laid out the idea of using the degree of disorder between the arrangement
of genes as an estimate of the evolutionary distance between species. Sturtevant and
Dobzhansky [115] were the first to employ it in order to perform the phylogenetic
analysis of Drosophila. More specifically, they have constructed a phylogeny of differ-
ent strains of Drosophila pseudoobscura using a rearrangement scenario consisting of
reversals. In a posterior work [44], they write:

The linear arrangement of genes within chromosomes is constant from gen-
eration to generation in each line of descent. The degree of this stability is
comparable to that of the gene structure; genes change by mutation, chro-
mosomes change by the occurrence of chromosomal aberrations. Strains
and races of the same species, as well as distinct species, may differ in gene
arrangement. . . .

In the present article we shall report the results of comparisons of the gene
arrangement in the chromosomes of strains of D. pseudoobscura coming
from different geographical regions. . . . Moreover, as pointed out in our
preliminary communication . . . , a comparison of the different gene ar-
rangements in the same chromosome may, in certain cases, throw light on
the historical relationships of these structures, and consequently on the
history of the species as a whole.

1.3. The Marriage Between Permutations and Genome Rearrangement 7

According to Fertin et al. [54], a number of studies proposed rearrangement sce-
narios to explain chromosomal differences between relatively close species. Moreover,
these studies were based on the parsimony principle, which tells one to choose sce-
narios involving as few rearrangements as possible. As observed by Fertin et al. [54],
“this principle make the connection with combinatorial optimization possible, because
optimization principle meets the parsimony criterion”.

1.3 The Marriage Between Permutations and Ge-
nome Rearrangement

One can say that a first encounter between permutations and genome rearrangements
occurred in the work of Sturtevant and Novitski [116]. In this article, they write:

With the help of Prof. Morgan Ward, a beginning has been made in the
study of the mathematical consequences of successive inversions. Complete
catalogs have been prepared, showing all the possible different arrange-
ments of 2, 3, 4, 5, and 6 loci, respectively, together with the minimum
number of successive inversions required to change each arrangement into
a single arbitrarily chosen one. Actually, numbers were used, and the
required arbitrary sequence was the ordinal one (1, 2, 3, 4, etc.).

The engagement started with the work of Watterson et al. [126]. In this article, they
introduced the chromosome inversion problem, which consists in finding the minimum
number of inversions necessary to transform a chromosome into another. They also
provided some heuristics which yield upper and lower bounds to the problem. Fi-
nally, the marriage was consummated in the work of Kececioglu and Sankoff [84]. In
this article, they explicitly modeled chromosomes as permutations and restated the
chromosome inversion problem as the problem of sorting by reversals. Moreover, they
provided a 2-approximation algorithm and a branch-and-bound exact algorithm for
the problem.

Numerous works have been spawned from the marriage of permutations and ge-
nome rearrangements, some of which will be reviewed in the next chapters (for an
extensive and detailed survey, the reader is referred to the book of Fertin et al. [54]).
Among these works, we can find a number of doctoral theses, such as the ones of
Hannenhalli [70], Vergara [121], Christie [30], Walter [122], Bourque [18], Dias [40],
Eriksen [49], Hausen [75], Alekseyev [2], Mira [102], Labarre [89], Braga [19], Swenson
[117], Ozery-Flato [105], Baudet [11], Bernt [16], Dias [35], Feijão [52], Kováč [88],
and Bulteau [20].

We close this section by noting that the relationship between permutations and
genome rearrangements is not exclusive. On the one hand, we have that permutation
sorting problems find application in other fields, such as interconnection network
design [1, 91], evaluation of OCR zoning [83,93], and search landscape analysis [109].

8 Chapter 1. Introduction

On the other hand, permutations do not constitute the only model for genomes: other,
somewhat more general, models have been proposed, such as strings [54, Chapter 7],
graphs [54, Chapter 10], and collections of sets of genes [54, Chapter 12]. In fact,
even the rearrangement operations have been generalized with concepts like double-
cut-and-join [128], single-cut-or-join [53], and k-break rearrangements [3].

1.4 Contributions and Organization

This thesis consists of a collection of five articles that were published in peer-reviewed
journals and conference proceedings in the course of the PhD. Specifically, each one
of the next five chapters corresponds to one of these articles, while the last chapter
concludes the thesis. The following paragraphs summarize the contents of each chapter
(except the last), highlighting the main contributions.

Chapter 2 corresponds to an article [60] published in ACM Journal of Experi-
mental Algorithmics. In this chapter, we present a tool, called GRAAu, to audit
algorithms for permutation sorting problems. The audit consists in comparing, for
all permutations of up to a given size, the distance outputted by a given algorithm
with the related rearrangement distance, and then producing statistics that can be
used to analyze the performance of this algorithm. We also present tightness results
for some approximation algorithms regarding two variants of the permutation sorting
problem: the problem of sorting by prefix reversals and the problem of sorting by
prefix transpositions. The vast majority of the results presented in this chapter were
also presented in the Master’s thesis [56] of the author. For this reason, the impor-
tance of Chapter 2 is more related to the fact that it serves as a prelude to the other
chapters (for instance, Section 2.2 introduces the basic concepts used throughout this
thesis and provides a literature review of several variants of the permutation sorting
problem) than to the originality of its content.

Chapter 3 corresponds to an article [39] published in Journal of Bioinformatics and
Computational Biology. In this chapter, we present a general heuristic for permutation
sorting problems. This heuristic is an improvement heuristic, that is, instead of
producing solutions, it tries to improve the ones provided by other (non-optimal)
algorithms. To evaluate the heuristic, we applied it to the solutions provided by 23
approximation algorithms regarding 9 variants of the permutation sorting problem
that consider reversals or transpositions.

Chapter 4 corresponds to an article [62] published in Journal of Universal Com-
puter Science. The best known algorithms for the problem of sorting by transpositions
are based on a standard tool for tackling permutation sorting problems, the cycle
graph. In an attempt to bypass it, a few researches proposed algorithms based on
alternative tools. In Chapter 4, we address three of these algorithms: a 2.25-approx-
imation algorithm proposed by Walter, Dias, and Meidanis [124], a 3-approximation
algorithm proposed by Benôıt-Gagné and Hamel [14], and a heuristic proposed by

1.4. Contributions and Organization 9

Guyer, Heath, and Vergara [69]. On the theoretical side, we close a missing gap on
the proof of the approximation ratio of Benôıt-Gagné and Hamel’s algorithm [14] and
we demonstrate a way to run their algorithm in O(n log n) time. Moreover, we pro-
pose a minor adaptation to Guyer, Heath, and Vergara’s heuristic [69] that allow us to
prove an approximation bound of 3. On the evaluation side, we present experimental
data indicating that Walter, Dias, and Meidanis’ algorithm [124] is the best of the
algorithms based on alternative approaches and that it is the only one comparable to
the algorithms based on the cycle graph.

Chapter 5 corresponds to an article [61] published in Algorithms for Molecular
Biology. In this chapter, we introduce four new variants of the permutations sorting
problem: (i) the problem of sorting a signed permutation by reversals of length at
most 2; (ii) the problem of sorting a signed permutation by reversals of length at most
3; (iii) the problem of sorting a signed permutation by reversals and transpositions of
length at most 2; and (iv) the problem of sorting a signed permutation by reversals
and transpositions of length at most 3. We present polynomial-time algorithms for
problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for
problem (iv). Moreover, we show that the expected approximation ratio of the 5-
approximation algorithm is not greater than 3 for random signed permutations with
more than 12 elements. Finally, we present experimental results that show that the
approximation ratios of the approximation algorithms cannot be smaller than 3. In
particular, this means that the approximation ratio of the 3-approximation algorithm
is tight.

Chapter 6 corresponds to an article [57] published in the proceedings of the 11th
International Symposium on Bioinformatics Research and Applications. In this chap-
ter, we consider the problem of sorting a signed circular permutation by reversals of
length at most 2 and present a polynomial-time algorithm for solving it. We also
perform an experiment for inferring distances and phylogenies for published Yersinia
genomes and compare the results with the phylogenies presented in previous works.

10 Chapter 1. Introduction

Chapter 2

An Audit Tool for Genome
Rearrangement Algorithms ∗

Abstract: We consider the combinatorial problem of sorting a permutation using a mini-
mum number of rearrangement events, which finds application in the estimation of evolu-
tionary distance between species. Many variants of this problem, which we generically refer
to as the rearrangement sorting problem, have been tackled in the literature, and for most of
them, the best known algorithms are approximations or heuristics. In this article, we present
a tool, called GRAAu, to aid in the evaluation of the results produced by these algorithms.
To illustrate its application, we use GRAAu to evaluate the results of four approximation
algorithms regarding two variants of the rearrangement sorting problem: the problem of
sorting by prefix reversals and the problem of sorting by prefix transpositions. As a result,
we show that the approximation ratios of three algorithms are tight and conjecture that the
approximation ratio of the remaining one is also tight.

∗Gustavo Rodrigues Galvão and Zanoni Dias. An audit tool for genome rearrange-
ment algorithms. ACM Journal of Experimental Algorithmics, Volume 19, Article 1.7,
34 pages, 2014. Copyright 2014 Association for Computing Machinery, Inc. DOI:
http://dx.doi.org/10.1145/2661633

11

http://dx.doi.org/10.1145/2661633

12 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

2.1 Introduction

One of the problems faced by biologists is how to estimate the evolutionary distance
between species. A well-accepted approach for treating this problem is the genome re-
arrangement approach. It proposes to estimate the evolutionary distance between two
species using the rearrangement distance between their genomes, which is the length
of the shortest sequence of genome-wide mutations, called rearrangement events, that
transforms one genome into the other. The problem of finding this sequence is called
the pairwise genome rearrangement problem.

Representing genomes as permutations, in which genes appear as elements, the
pairwise genome rearrangement problem can be equivalently stated as a combinato-
rial problem of sorting a permutation using a minimum number of rearrangement
events, which is called the rearrangement sorting problem (see Section 2.2.2 for de-
tails). This problem varies according to the types of rearrangement events under
consideration. Here, we focus on variants considering two types of events: reversals
and transpositions. It is known that finding optimal solutions for these variants is dif-
ficult; therefore, most of the proposed algorithms – which we denominate generically
as genome rearrangement algorithms – are approximations or heuristics (see Section
2.2.3 for details). To analyze these algorithms in practice, researchers often perform
what we refer to as audit. Basically, it consists in comparing, for a great number of
small problem instances, the distance output by a genome rearrangement algorithm to
the related rearrangement distance. The process of auditing an algorithm consumes
a considerable amount of time and effort, so we decided to build a tool to aid it. This
tool was named GRAAu, which is an acronym for Genome Rearrangement Algorithm
Auditor.

In addition to GRAAu, we present an exact algorithm for computing rearrange-
ment distances that is more efficient in terms of memory than any algorithm we have
found in literature. Additionally, we present conjectures on how the rearrangement
distance are distributed and validate them regarding their maximum value, which is
the greatest value that the rearrangement distance of a permutation can reach con-
sidering all permutations with the same number of elements. Finally, we use GRAAu
to evaluate four genome rearrangement algorithms – two approximation algorithms
for the problem of sorting by prefix reversals and two approximation algorithms for
the problem of sorting by prefix transpositions – and we provide tight examples for
three of them, which were obtained through an analysis of the audit results produced
by GRAAu.

The rest of this article is organized as follows. Section 2.2 gives basic definitions
and notation of the article. In Section 2.3, we describe the approach used to compute
the rearrangement distances of the greatest number of permutations we could. Using
this approach, we have computed the rearrangement distances of small permutations
regarding 10 rearrangement models considered in the literature, and in Section 2.3.2
we present their distribution. In Section 2.3.3, we give a general description on how

2.2. Background 13

GRAAu works. Finally, in Section 2.4, we show the results we have obtained by
auditing four approximation algorithms for solving two variants of the rearrangement
sorting problem: the problem of sorting by prefix reversals and the problem of sorting
by prefix transpositions.

2.2 Background
In this section, we introduce the basic concepts used in this article and provide a brief
literature review of the rearrangement sorting problem. Most of this section is based
on the book of Fertin et al. [54], which we consider the main reference in the field of
genome rearrangements.

2.2.1 Modeling Genomes and Rearrangement Events
In genome rearrangement literature, one can find many approaches to model genomes.
Basically, the difference between them are the assumptions made on the genomes.
Assuming they consist of a single linear chromosome, share the same set of genes, and
contain no duplicated genes, we can model them as permutations of integers, where
each integer corresponds to a gene. If the orientation of the genes is known, then each
integer has a sign, + or −, indicating its orientation.

An unsigned permutation π is a bijection over the set {1, 2, . . ., n}. A classical
notation used in combinatorics for denoting an unsigned permutation π is the two-row
notation

π =
(

1 2 . . . n

π1 π2 . . . πn

)
,

where πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. It indicates that the image of element i ∈
{1, 2, . . ., n} is πi or, in other words, π(1) = π1, π(2) = π2, . . ., π(n) = πn. The
notation used in genome rearrangement literature, which is the one we will adopt, is
the one-row notation π = (π1 π2 . . . πn). We say that π has size n.

A signed permutation π is a bijection over the set {−n, . . ., −2, −1, 1, 2, . . ., n}.
Its two-row notation is

π =
(
−n . . . −2 −1 1 2 . . . n

−πn . . . −π2 −π1 π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. In one-row notation, we drop the mapping of the
negative elements since π(−i) = −π(i) for all i ∈ {1, 2, . . ., n}, and we also write
π = (π1 π2 . . . πn). By abuse of notation, we say that π has size n. This way, we
can handle permutations in a unified way, making distinctions between signed and
unsigned permutations when necessary.

The composition of permutations π and σ, denoted by π ◦ σ, results in the per-
mutation γ such that γ(i) = π(σ(i)). In other words, γ = (πσ1 πσ2 . . . πσn). Such an

14 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

operation allows us to model not only genomes as permutations, but also rearrange-
ment events, in such a way that a rearrangement event ρ transforms a genome π into
the genome π ◦ ρ. In Section 2.2.3 we define the rearrangement events that will be
regarded in this work.

The composition operation induces a group structure on the set of all permutations
of a given size. The group formed by all unsigned permutations of size n with ◦ is called
symmetric group and is denoted by Sn. The group formed by all signed permutations
of size n with ◦ is called hyperoctahedral group and is denoted by S±n .

Let G be a subset of Sn (S±n) such that any permutation in Sn (S±n) can be
obtained by the composition of the permutations in G. The permutations belonging
to G are said to be generators of Sn (S±n). Moreover, if π−1 ∈ G for all π ∈ G, then
we say that G is symmetric. A set M formed by generators of Sn (S±n) is called a
rearrangement model if all generators belonging to M model rearrangement events
and M is symmetric.

2.2.2 Pairwise Genome Rearrangement Problem and Sorting
The pairwise genome rearrangement problem on permutations can be formulated as
follows. Given two permutations π and σ, find the shortest sequence of generators ρ1,
ρ2, . . ., ρt belonging to a rearrangement model M such that π ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρt =
σ. The length of this sequence is the rearrangement distance between π and σ with
respect to M , denoted by dM(π, σ). Since M is symmetric, we have that dM(π, σ) =
dM(σ, π) because

π ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρt = σ ⇐⇒ σ ◦ ρ−1
t ◦ ρ−1

t−1 ◦ · · · ◦ ρ−1
1 = π.

The problem of sorting a permutation by means of a minimum number of rear-
rangement events, which we generically refer to as the rearrangement sorting problem,
is formally defined as follows. Given a permutation γ, find the minimum-length se-
quence of generators ρ1, ρ2, . . ., ρt belonging to a rearrangement model M such that
γ ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρt = ι.

Note that rearrangement distance between permutations π and σ with respect to
M is equal to the rearrangement distance between permutations σ−1 ◦ π and ι with
respect to M because

π ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρt = σ ⇐⇒ (σ−1 ◦ π) ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρt = ι.

It implies that we can reduce the pairwise genome rearrangement problem to the
rearrangement sorting problem. As well, for simplicity’s sake, we define the rear-
rangement distance of a permutation π with respect to M , denoted by dM(π), as the
rearrangement distance between π and ι with respect to M , that is, dM(π) = dM(π,
ι).

When we defined the rearrangement sorting problem, we have fixed the rearrange-
ment model beforehand. This means that depending on the rearrangement model

2.2. Background 15

being considered, we have a different variant of the rearrangement sorting problem.
The next section gives an overview of some variants that are relevant to this work.

2.2.3 Variants of the Rearrangement Sorting Problem
In this section, we provide a brief literature review of variants of the rearrangement
sorting problem that will be treated in more detail in this article. Although some of
these variants were not originally motivated by genome rearrangements, and in fact
have little biological relevance, they have been swallowed by the field and now are
presented as genome rearrangement problems [54].

A reversal r(i, j), 1 ≤ i ≤ j ≤ n, is a rearrangement event that transforms an
unsigned permutation π = (π1 π2 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the
unsigned permutation π ◦ r(i, j) = (π1 π2 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn). In
other words, r(i, j) is the unsigned permutation (1 2 . . . i− 1 j j − 1 . . . i+ 1 i j + 1
. . . n).

The variant of the rearrangement sorting problem that considers a rearrangement
model composed only by reversals is called problem of sorting by reversals. In ad-
dition, the rearrangement distance of an unsigned permutation with respect to that
rearrangement model is referred to as reversal distance. Caprara [23] has shown that
the problem of sorting by reversals is NP-hard. Watterson et al. [126] were the first to
present an approximation algorithm for this problem, which is a n−1

2 -approximation.
Kececioglu and Sankoff [84] were the first to present an approximation algorithm
with constant factor; they have presented a 2-approximation algorithm. The best
known result was presented by Berman, Hannenhalli, and Karpinski [15], which is a
1.375-approximation algorithm.

A prefix reversal pr(i), 2 ≤ i ≤ n, is a rearrangement event equivalent to the
reversal r(1, i). The variant of the rearrangement sorting problem that considers
a rearrangement model composed only by prefix reversals is called the problem of
sorting by prefix reversals. In addition, the rearrangement distance of an unsigned
permutation with respect to that rearrangement model is referred to as prefix rever-
sal distance. The problem of sorting by prefix reversals is also known as the pancake
sorting problem and was introduced by Dweighter [46]. Bulteau et al. [21] proved that
this problem is NP-hard, and the best known approximation algorithm for solving it
was developed by Fischer and Ginzinger [55]. Such algorithm is a 2-approximation.
Williams [127] has considered the problem of unsorting permutations by prefix rever-
sals – that is, the problem of exploring all permutations generated by prefix reversals.
He has presented a new data structure, called boustrophedon linked list, which al-
lows substrings of any length to be reversed in constant time. In particular, this
data structure can be used to perform a prefix reversal pr(i) in O(1)-time instead of
O(i)-time.

A signed reversal sr(i, j), 1 ≤ i ≤ j ≤ n, is a rearrangement event that transforms
a signed permutation π = (π1 π2 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the

16 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

signed permutation π ◦ sr(i, j) = (π1 π2 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . .

πn). In other words, sr(i, j) is the signed permutation (1 2 . . . i− 1 −j −(j − 1) . . .
−(i+ 1) −i j + 1 . . . n).

The variant of the rearrangement sorting problem that considers a rearrangement
model composed only by signed reversals is called the problem of sorting by signed re-
versals. In addition, the rearrangement distance of a signed permutation with respect
to that rearrangement model is referred to as signed reversal distance. Hannenhalli
and Pevzner [71] were the first to solve the problem of sorting by signed reversals,
presenting an optimal algorithm that runs in O(n4) time. Some refinements had been
made in this algorithm over the years until Tannier et al. [119] presented an algo-
rithm that runs in O (n 3

2
√

log n) time. Bader et al. [8] have shown how to compute
the signed reversal distance (without obtaining the signed reversal sequence) in linear
time.

A signed prefix reversal spr(i), 1 ≤ i ≤ n, is a rearrangement event equivalent to
the signed reversal sr(1, i). The variant of the rearrangement sorting problem that
considers a rearrangement model composed only by signed prefix reversals is called the
problem of sorting by signed prefix reversals. In addition, the rearrangement distance
of a signed permutation with respect to that rearrangement model is referred to as
signed prefix reversal distance. The problem of sorting by signed prefix reversals is
also known as the burnt pancake sorting problem and was introduced by Cohen and
Blum [31]. The best known approximation algorithm for solving this problem is a
2-approximation developed by them. The complexity of the problem is unknown.

A transposition t(i, j, k), 1 ≤ i < j < k ≤ n + 1, is a rearrangement event that
transforms a permutation π = (π1 . . . πi−1 πi . . . πj−1 πj . . . πk−1 πk . . . πn) into the
permutation π ◦ t(i, j, k) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). In other
words, t(i, j, k) is the permutation (1 2 . . . i− 1 j j − 1 . . . k− 1 i . . . j − 1 k . . . n).

The variant of the rearrangement sorting problem that considers a rearrangement
model composed only by transpositions is called the problem of sorting by transpo-
sitions. In addition, the rearrangement distance of an unsigned permutation with
respect to that rearrangement model is referred to as transposition distance. Bul-
teau et al. [22] have proved that the problem of sorting by transpositions is NP-hard.
Bafna and Pevzner [10] were the first to present approximation algorithms for this
problem, and the best one had a 1.5 approximation factor. The best known result
was presented by Elias and Hartman [48], which is a 1.375-approximation algorithm.

A prefix transposition pt(i, j), 2 ≤ i < j ≤ n, is a rearrangement event equivalent
to the transposition t(1, i, j). The variant of the rearrangement sorting problem that
considers a rearrangement model composed only by prefix transpositions is called the
problem of sorting by prefix transpositions. In addition, the rearrangement distance
of an unsigned permutation with respect to that rearrangement model is referred to
as prefix transposition distance. This problem was introduced by Dias and Meidanis
[42], and the best known approximation algorithm for solving it is a 2-approximation

2.2. Background 17

developed by them. The complexity of the problem is unknown.
The variant of the rearrangement sorting problem that considers a rearrangement

model composed by reversals and transpositions is called the problem of sorting by
reversals and transpositions. In addition, the rearrangement distance of an unsigned
permutation with respect to that rearrangement model is referred to as reversal and
transposition distance. Walter et al. [123] were the first to present an approximation
algorithm for this problem, which is a 3-approximation algorithm. Rahman et al. [107]
have presented a 2k-approximation algorithm where k is the approximation ratio of
the algorithm used for cycle decomposition. For the best known value of k at the time
of publication, the approximation ratio was 2.8386+δ for any δ > 0. The complexity
of the problem is unknown.

The variant of the rearrangement sorting problem that considers a rearrangement
model composed by signed reversals and transpositions is called the problem of sorting
by signed reversals and transpositions. In addition, the rearrangement distance of
a signed permutation with respect to that rearrangement model is referred to as
signed reversal and transposition distance. Walter et al. [123] have presented a 2-
approximation algorithm for this problem, and this has been the best known result.
The complexity of the problem is unknown.

The variant of the rearrangement sorting problem that considers a rearrangement
model composed by prefix reversals and prefix transpositions is called the problem of
sorting by prefix reversals and prefix transpositions. In addition, the rearrangement
distance of an unsigned permutation with respect to that rearrangement model is
referred to as prefix reversal and prefix transposition distance. Sharmin et al. [111]
have presented 3-approximation algorithm for this problem, and this has been the
best known result. The complexity of the problem is unknown.

Some researchers also considered a further type of rearrangement event, called
reversal+transposition or transreversal. A signed transreversal of type A tra(i, j, k),
1 ≤ i < j < k ≤ n+1, is a rearrangement event that transforms a signed permutation
π into the signed permutation π ◦ tra(i, j, k) = π ◦ sr(i, j − 1) ◦ t(i, j, k). A signed
transreversal of type B trb(i, j, k), 1 ≤ i < j < k ≤ n + 1, is a rearrangement event
that transforms a signed permutation π into the signed permutation π ◦ trb(i, j, k)
= π ◦ sr(j, k − 1) ◦ t(i, j, k).

The variant of the rearrangement sorting problem that considers a rearrangement
model composed by signed reversals, transpositions, and signed transreversals of type
A is called the problem of sorting by signed reversals, transpositions, and signed tran-
sreversals (type A). In addition, the rearrangement distance of signed permutation
with respect to that rearrangement model is referred to as signed reversal, trans-
position, and signed transreversal (type A) distance. Gu et al. [68] have presented
2-approximation algorithm for this problem. Its complexity is unknown.

The variant of the rearrangement sorting problem that considers a rearrangement
model composed by transpositions and signed transreversals of types A and B is called

18 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

the problem of sorting by transpositions and signed transreversals (types A and B).
In addition, the rearrangement distance of signed permutation with respect to that
rearrangement model is referred to as transposition, and signed transreversal (types
A and B) distance. Hartman and Sharan [74] have presented a 1.5-approximation
algorithm for this problem. Its complexity is unknown.

2.3 Implementation
In this section, we describe all of the steps toward the implementation of GRAAu.
Section 2.3.1 describes the algorithm that we have developed to compute the rear-
rangement distances and compares it with other algorithms presented in the literature.
This algorithm has allowed us to compute the distribution of the rearrangement dis-
tances for permutation sizes that have never been considered before. Section 2.3.2
presents these distributions along with some conjectures designed as an attempt to
better characterize how the rearrangement distances are distributed. This section also
describes how these data were stored and maintained in a database called the Rear-
rangement Distance Database. Finally, Section 2.3.3 describes how GRAAu works.

2.3.1 Algorithm for Computing Rearrangement Distances
Since we were interested in variants of the rearrangement sorting problem that do
not have polynomial time solutions, we could think of basically two approaches for
computing the rearrangement distance of all permutation in Sn (S±n) with respect to
a rearrangement model M :

1. to perform a breadth-first search in Sn (S±n): initialize a permutation queue Q
with ι and set its distance to 0. While Q is not empty, remove a permutation
π from Q, report π and dM(π), and compute all permutations that can be
generated from π applying on it every possible rearrangement event belonging
to M . The ones that have not been generated yet are added to Q, and their
distances are set to dM(π) + 1.

2. to develop an exact algorithm, which would execute in exponential time, for
each variant of rearrangement sorting problem, and then run each algorithm
for all permutations in Sn (S±n). Examples of exact algorithms proposed in the
literature to solve variants of the rearrangement sorting problem can be divided
between branch-and-bound and linear programming strategies.

We have adopted approach (1) for mainly two reasons:

• Simplicity and Correctness. Implementing a breadth-first search in Sn (S±n)
is simpler and, therefore, less susceptible to errors than implementing a branch-
and-bound or a linear programming algorithm. As an example, we refer to the

2.3. Implementation 19

branch-and-bound algorithm developed by Kececioglu and Sankoff [84] for one
variant of the rearrangement sorting problem. Its implementation comprises
thousands of lines of code and, as we show in Section 2.3.2, it did not computed
the rearrangement distances correctly.

• Flexibility. Considering that we were interested in taking into account a num-
ber of variants of the rearrangement sorting problem, it would be highly desir-
able if the approach could be easily adaptable. This is not the case of approach
(2), as branch-and-bound and linear programming strategies tend to be highly
variant specific because they rely on bounds or restrictions that are particular
to each variant.

Our main concern when implementing approach (1) was how to optimize memory
usage since we knew from literature that this was the bottleneck. Given the simplicity
of the approach, the only point in this direction capable of being optimized was the
way in which permutations would be represented. When we look at the definition of
a permutation, the first representation that comes in mind is a vector of integers, but
would there a way to represent permutations more concisely? The answer is yes, by
representing them as natural numbers1.

Ranking and Unranking Functions

To represent permutations as natural numbers, it is not only necessary to map a
permutation into a natural number but it is also necessary to map a natural num-
ber into a permutation because we need to compose permutations to simulate the
rearrangement events. This means that we need bijective functions

f : Sn → {0, 1, . . . , n! − 1},
f−1 : {0, 1, . . . , n! − 1} → Sn,

g : S±n → {0, 1, . . . , 2nn! − 1}, and
g−1 : {0, 1, . . . , 2nn! − 1} → S±n .

We say that functions f and g rank a permutation, therefore they are called ranking
functions. On the other hand, we say that functions f−1 and g−1 unrank a permuta-
tion, therefore they are called unranking functions.

For computing f and f−1, we have used the ranking and unranking algorithms
presented by Myrvold and Ruskey [104], which run in linear time on the size of the
permutations. Unfortunately, we could not find algorithms for computing g and g−1 in
the literature, therefore we developed a method to define these functions using f and
f−1 respectively. Before presenting this method, we must introduce some definitions.

We define the sign vector sv(π) = [sv(π1), sv(π2), . . ., sv(πn)] of a permutation
π ∈ S±n in such a way that sv(πi) = 1 if πi < 0 and sv(πi) = 0 if πi > 0 for all

1There has been some work on succinctly representing permutations (see [103]), but representing
permutations as natural numbers is more suitable for our purposes.

20 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

1 ≤ i ≤ n. We define the modular permutation m(π) of a permutation π ∈ S±n as
m(π) = (|π1| |π2| . . . |πn|). It is easy to note that a permutation π ∈ S±n can be
uniquely represented by modular permutation m(π) ∈ Sn and by sign vector sv(π).
Considering that we can view the sign vector of a permutation π ∈ S±n as the binary
number sv(π1)sv(π2). . .sv(πn), we define the bijective function h : Vn → {0, 1 . . .,
2n−1} such that h(sv(π)) = ∑n

i=1 2i−1sv(πn+1−i), where Vn = {sv(π) : π ∈ S±n }. Since
h is defined analogously to the conversion of binary numbers to decimal numbers, the
function h−1 : {0, 1 . . ., 2n − 1} → Vn is defined analogously to the conversion of
decimal numbers to binary numbers.

Now, we can define g from f and h in such a way that g(π) = 2nf(m(π)) +
h(sv(π)) for any π ∈ S±n . Moreover, g−1 is well defined from f−1 and h−1 because,
given g(π) of a permutation π ∈ S±n , we have that m(π) = f−1(g(π)−r

2n) and that sv(π)
= h−1(r), where r = h(sv(π)) = g(π) mod 2n. Since functions f , h, f−1, and h−1 can
be computed in linear time on the size of permutations, functions g and g−1 also can.

The Algorithm

With both ranking and unranking functions in hand, it is possible to present the
algorithm for computing the rearrangement distances of all permutations in Sn with
respect to a rearrangement model M (Algorithm AllDistances). We omit the descrip-
tion of the algorithm that computes the rearrangement distances of all permutations
in S±n with respect to a rearrangement model M because it is trivially derivable from
Algorithm AllDistances.

Algorithm AllDistances takes as input two parameters: an integer number n, which
is the size of permutations, and a rearrangement model M . Initially, the algorithm
creates two vectors, namely Q and D, of size |Sn|, and then sets all the elements
of vector D to −1. Vector Q is used to hold a queue of the permutations that
are being generated – that is, we have that Q[i] = f(π) such that π was the i-th
generated permutation during algorithms execution. Vector D is used to store the
rearrangement distances of the permutations already generated – that is, we have that
D[i] = dM(f−1(i)) if permutation f−1(i) has already been generated or D[i] = −1
otherwise. It means that, in addition to storing the rearrangement distances, vector
D also indicates whether a permutation has already been generated. The variables
next and last are used to manage the queue Q: variable next holds the position in the
queue containing the next permutation to be processed, whereas variable last holds
the position in the queue where a new generated permutation must be inserted. At
the end of its execution, the algorithm returns vector D.

Initially, the identity permutation is inserted in Q (line 4), its rearrangement
distance (zero) is stored in D (line 5), and the variable last is set to 2 (line 7).
We claim that the while loop (lines 8–21) maintains two loops invariants: (i) last
= |Q| + 1, where |Q| is the number of permutations in Q, and (ii) vector D stores
the rearrangement distances of all permutations in Q. This is because each time a

2.3. Implementation 21

Algorithm 1: AllDistances
Data: An integer n, which is the size of permutations, and a rearrangement

model M .
Result: A vector containing the rearrangement distances of all permutations

in Sn with respect to M .
1 Let Q and D be two vectors of size |Sn|;
2 Initialize D such that D[i] = −1, i ∈ {1, 2, . . ., |Sn|};
3 i ← Rank(ι);
4 Q[1] ← i; . insert the rank of the identity permutation in the queue
5 D[i] ← 0; . and set its rearrangement distance
6 next ← 1;
7 last ← 2;
8 while last ≤ |Sn| do
9 i ← Q[next]; . retrieve from the queue the rank of the next permutation

10 d ← D[i]; . and obtain its rearrangement distance
11 π ← Unrank(i);
12 next ← next + 1;
13 for ρ ∈ M do
14 i ← Rank(π ◦ ρ);
15 if D[i] = −1 then
16 Q[last] ← i; . insert the rank of the new permutation in the queue
17 D[i] ← d + 1; . and set its rearrangement distance
18 last ← last + 1;
19 end
20 end
21 end
22 return D;

permutation, say π, is inserted in Q, vector D is updated with the value of dM(π),
and the variable last is incremented by one unit. By definition, M is composed by
generators of Sn, therefore all permutations in Sn will eventually be generated and
inserted in Q. Moreover, each permutation is inserted in Q only once. These facts
imply that last = |Sn| + 1 when |Q| = |Sn|, what causes the while loop (lines 8–21)
to terminate. In this moment, all permutations in Sn have been inserted in Q, and
consequently their rearrangement distances have been stored in D.

Regarding the complexity of Algorithm AllDistances, each of lines 4–7, 9, 10, 12,
and 15–19 takes constant time; each of lines 3, 11, and 14 takes O(n) time; each of lines
1 and 2 takes O(|Sn|) time; the while loop of lines 8 through 21 is executed O(|Sn|)
times; finally, the for loop of lines 13 through 20 takes O(n|M |) time. Therefore,
Algorithm AllDistances runs in O(n|M ||Sn|) time, which means that it runs in time
exponential in the size of permutations, but in time polynomial in the number of
permutations.

22 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

Implementation and Discussion

To compensate for the fact that the algorithm has exponential time complexity, we
have developed a way to parallelize it. Basically, the idea was to encapsulate the while
loop in a thread and then to create multiple threads. As a result, it created a race
condition on vectors Q and D, as well as on the variables next and last. Thus, it was
necessary to synchronize all threads, avoiding that two or more of them write on the
same common data at the same time. This could be accomplished by using a binary
semaphore.

We have implemented two multithreaded versions of the algorithm: in one version,
we represented each permutation as an unsigned integer of 32 bits; in the other, as
an unsigned integer of 64 bits. Therefore, the 32 bits version can handle all unsigned
permutations of up to 12 elements and all signed permutations of up to 10 elements,
whereas the 64 bits version can handle all unsigned permutations of up to 20 elements
and all signed permutations of up to 16 elements. It means that the 64 bits version can
handle more permutations but needs twice as much memory. Both versions support a
number of rearrangement models considered in the literature as described in Section
2.3.2. They were implemented in C, using pthread library for dealing with threads.
The source code is available for download at

http://mirza.ic.unicamp.br:8080.

Vergara [121] has developed an algorithm similar to ours for computing the rear-
rangement distances of all permutations in Sn with respect to a rearrangement model
M . Although he has also employed the idea of representing permutations as natural
numbers, one cannot say that he did it for optimizing memory usage. This is because
Vergara [121] said to have ranked permutations as follows. He ordered the permu-
tations in Sn in lexicographical order, then he mapped the permutations to integers
considering this order. The problem is that ordering all permutations in Sn in lexico-
graphical order implies in representing each of them using some kind of data structure
that allows element-to-element comparison, such as vectors. Therefore, there is no
advantage in terms of memory usage when ranking permutations that way.

Dias and Meidanis [42] have computed the prefix transposition distance of all
unsigned permutations of up to 11 elements and stated that their method would need
30GB of physical memory to compute prefix transposition distances of all unsigned
permutations of 12 elements, what made the computation for n = 12 impossible (they
had a computer with 8GB of RAM). Similarly, Walter et al. [124] could not compute
the transposition distance of all unsigned permutations of 12 elements because they
would need a machine with 18GB of RAM. Our 32 bit implementation needs 2.4GB of
physical memory to compute the rearrangement distance of all unsigned permutations
of 12 elements regarding any rearrangement model. This means that our method uses
approximately 12 times less memory than the method used by Dias and Meidanis [42]
and approximately 7 times less memory than the method used by Walter et al. [124].

http://mirza.ic.unicamp.br:8080.

2.3. Implementation 23

There are further publications where the rearrangement distance of all permu-
tations of up to a given size were computed for a particular rearrangement model
[14, 37, 89, 125], but they do not provide information about memory usage, so we
cannot make fair comparisons. Nevertheless, since these publications do not present
the rearrangement distances of permutations with more than 11 elements, we infer
that the methods used by their authors for computing rearrangement distances had
reached a limit very much like the methods used by the authors we cited earlier.

Regarding the running time performance, we have performed an experiment to
measure the average speed gain on the execution of the 32 bit implementation with
multiple threads. The source code was compiled with gcc version 4.5.0, and the
resulting program was executed on a PC featuring 16 Intel Xeon CPU E5520 at
2.27GHz, and 64GB of RAM running GNU/Linux 2.6.34.

The experiment consisted in computing the reversal distance 10 times for each
pair (n, t), where n is the size of the permutations, and t is the number of threads.
Then, to determine the average speed gain, we calculated the average of the ratios
T (t)
T (1) of each execution, where T (t) was the running time with t threads. The results
are illustrated in Figure 2.1.

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

5.0	

5.5	

6.0	

5	 6	 7	 8	 9	 10	 11	 12	

Sp
ee
d	
G
ai
n	

Permuta/on	 Size	

Speed	 Gain	

2	 threads	

3	 threads	

4	 threads	

5	 threads	

6	 threads	

7	 threads	

8	 threads	

9	 threads	

10	 threads	

Figure 2.1: Average speed gain on the execution of the 32 bit implementation with
multiple threads. The rearrangement model consisted of reversals only.

2.3.2 Computing Rearrangement Distances
Using the implementations described in the previous section, we have computed the
rearrangement distances of all permutations in Sn and S±n with respect to 10 rear-

24 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

rangement models as summarized in Table 2.1. These rearrangement models give rise
to variants of the rearrangement sorting problem for which the best known polyno-
mial time solutions are approximations or heuristics, which is precisely the solutions
GRAAu aims.

Table 2.1: Rearrangement models and values of n considered in the computation of
the rearrangement distances.

Rearrangement Model n ≤
Reversals 13
Prefix Reversals 13
Transpositions 13
Prefix Transpositions 13
Reversals and Transpositions 13
Prefix Reversals and Prefix Transpositions 13
Signed Prefix Reversals 10
Signed Reversals and Transpositions 10
Signed Reversals, Transpositions, and Transreversals (type A) 10
Transpositions and Transreversals (types A and B) 10

Note that we have computed the rearrangement distances of all unsigned permu-
tations of sizes 1 ≤ n ≤ 13 and all signed permutations of sizes 1 ≤ n ≤ 10. It was
not possible to consider permutations with more elements due to memory constraints.
Nevertheless, to the best of our knowledge, it is the first time that such computations
were performed for these values of n.

Distribution of Rearrangement Distances

Although our primary intention was to use the rearrangement distance data to build
GRAAu, we have analyzed how these distances are distributed and have observed
some possible patterns that might be of interest. Before presenting these patterns, we
need to introduce some definitions and notation.

The greatest rearrangement distance of a permutation in Sn with respect to a
rearrangement model M is said to be the diameter of Sn, and we denote it by DM(n).
A slice of Sn with respect to a rearrangement model M is the subset Sin = {π| dM(π)
= i and π ∈ Sn}, 0 ≤ i ≤ DM(n). The size of the largest slice of Sn with respect to
rearrangement model M is said to be the traversal diameter of Sn, and it is denoted
by TM(n). We establish a relation between DM(n) and TM(n) by defining a function
LM : N → N such that DM(n) = TM(n) + LM(n). This function is said to be the
longevity of Sn with respect to rearrangement model M . Note that the definitions of
diameter, of slice, of traversal diameter, and of longevity also apply to S±n .

The problem of determining the diameter of Sn and S±n is also regarded in the
genome rearrangement literature. Table 2.2 presents known results for the diameters

2.3. Implementation 25

of Sn and S±n with respect to the rearrangement models listed in Table 2.1 (we have
not considered rearrangement models for which no results were found). As we can
see, the exact value of DM(n) is not known for most of the rearrangement models we
are considering. In light of this fact, some researchers have performed computations
similar to the one we have and have conjectured some of these values. Therefore,
analyzing the distribution of the rearrangement distance is a way of validating these
conjectures.

Table 2.2: Exact values and bounds for the diameter.

Rearrangement Model (M) DM(n) = DM(n) ≥ DM(n) ≤
Reversals n− 1 [9] – –
Prefix Reversals ? 15n

14 [79] 11n
8 + O(1) [28]

Transpositions ? 17n
33 + 1

33 [99] b2n−2
3 c [50]

Prefix Transpositions ? b3n
4 c [90] n − log 9

2
n [29]

Signed Prefix Reversals ? 3n
2 [31] 2n − 2 [31]

Signed Reversals and Transposi-
tions ? bn2 c + 2 [101] ?

In addition validating conjectures, we have decided to propose measures TM(n)
and LM(n) in an attempt to better characterize how the rearrangement distances are
distributed in Sn and S±n . When we look at the distributions, we can note that the
size of the slices of Sn and S±n monotonically increases until it reaches a peak, then it
monotonically decreases. Thus, TM(n) is the number of existing slices until that peak
is reached, and LM(n) is the number of existing slices afterward.

The distribution of rearrangement distances are given in tables 2.3 through 2.12,
whereas the patterns (presented as conjectures) are given in Table 2.15. To facilitate
the observation of the patterns, we have compiled the values of the diameter, of
the traversal diameter, and of the longevity of S±n and Sn in tables 2.13 and 2.14,
respectively.

Kececioglu and Sankoff [84] have presented the reversal distance distribution for
n ≤ 8. We note that the distribution obtained by us is different from theirs. For
instance, we have found that |S2

5 | = 52, |S2
6 | = 129, |S2

7 | = 266, and |S2
8 | = 487, but

they have found that |S2
5 | = 51, |S2

6 | = 127, |S2
7 | = 263, and |S2

8 | = 483. We have
confirmed that our distribution is the right one by computing the reversal distances
of the permutations in each one of these slices with GRIMM [120].

The conjecture of Dias and Meidanis [42] on the prefix transposition diameter
(they have conjectured that DM(n) = n − bn4 c, n > 3) holds for n ≤ 13. This is an
interesting result because Eriksson et al. [50] have shown that the first deviation of
the transposition diameter from its original conjecture occurred when n = 13. Walter
et al. [123] have demonstrated that bn2 c + 2 is a lower bound for the signed reversal
and transposition diameter, and have conjectured that it is an upper bound as well.

26 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

As we can observe in Table 2.4, such a conjecture does not hold for n = 7 and n = 9.

Table 2.3: Signed prefix reversal distance distribution in S±n .

n
d 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 6 12 20 30 42 56 72 90
3 2 12 36 80 150 252 392 576 810
4 1 18 90 280 675 1386 2548 4320 6885
5 6 124 680 2340 6230 14056 28224 51960
6 2 96 1214 6604 24024 68656 166740 359928
7 18 1127 12795 71568 276136 843822 2193534
8 3 389 15519 159326 901970 3636954 11738418
9 40 6957 222995 2195663 12675375 53257425
10 4 959 136301 3531887 33773653 198586153
11 43 21951 2743477 60758618 570362563
12 1 1021 562095 57953163 1138201788
13 15 24627 15244962 1282857296
14 1 347 701298 435390455
15 1 6721 22703532
16 51 179828
17 1 523
18 1

2.3. Implementation 27

Table 2.4: Signed reversal and transposition distance distribution in S±n .

n
d 1 2 3 4 5 6 7 8 9 10
1 1 4 10 20 35 56 84 120 165 220
2 3 33 157 518 1379 3178 6594 12624 22671
3 4 201 2334 14079 59420 199539 570642 1447413
4 5 952 28668 351053 2503693 12745196 51513506
5 1897 231248 6941233 93986201 773679172
6 136 670740 78428542 2611596863
7 51189 277631156
8 198

Table 2.5: Signed reversal, transposition, and signed transreversal (type A) distance
distribution in S±n .

n
d 1 2 3 4 5 6 7 8 9 10
1 1 5 14 30 55 91 140 204 285 385
2 2 31 208 875 2772 7266 16632 34386 65670
3 2 144 2636 23749 135173 569861 1948013 5704127
4 1 273 19458 470796 5610677 41281942 220275867
5 9 31744 4124493 139340551 2237360500
6 52 3189382 1252484109
7 541

Table 2.6: Transposition and signed transreversal (types A and B) distance distribu-
tion in S±n .

n
d 1 2 3 4 5 6 7 8 9 10
1 3 12 30 60 105 168 252 360 495
2 3 33 217 969 3282 9127 21959 47330 93609
3 1 2 136 2646 26051 160851 727762 2643721 8157766
4 164 16641 468245 6295028 50811764 292482730
5 6728 3276918 131988777 2436838771
6 302607 978317822
7 6

28
C

hapter
2.

A
n

A
udit

Toolfor
G

enom
e

R
earrangem

ent
A

lgorithm
s

Table 2.7: Reversal distance distribution in Sn.

n
d 2 3 4 5 6 7 8 9 10 11 12 13
1 1 3 6 10 15 21 28 36 45 55 66 78
2 2 15 52 129 266 487 820 1297 1954 2831 3972
3 2 55 389 1563 4642 11407 24600 48204 87758 150707
4 2 184 2539 16445 69863 228613 626677 1510973 3304457
5 2 648 16604 169034 1016341 4398136 15240603 44997104
6 2 2111 105365 1686534 14313789 81531167 354920337
7 2 6352 654030 16584988 198802757 1489090761
8 2 17337 3900116 159650162 2717751441
9 2 42878 22073230 1499706234
10 2 102050 116855950
11 2 239756
12 2

2.3.
Im

plem
entation

29

Table 2.8: Transposition distance distribution in Sn.

n
d 2 3 4 5 6 7 8 9 10 11 12 13
1 1 4 10 20 35 56 84 120 165 220 286 364
2 1 12 68 259 770 1932 4284 8646 16203 28600 48048
3 1 31 380 2700 13467 52512 170907 484440 1231230 2864719
4 45 1513 22000 191636 1183457 5706464 22822293 78829491
5 2836 114327 2010571 21171518 157499810 910047453
6 255053 12537954 265819779 3341572727
7 31599601 1893657570
8 427

Table 2.9: Reversals and transposition distance distribution in Sn.

n
d 2 3 4 5 6 7 8 9 10 11 12 13
1 1 5 13 26 45 71 105 148 201 265 341 430
2 10 89 408 1301 3331 7367 14672 27002 46716 76897
3 4 266 3467 24057 111767 396691 1167102 2993970 6919519
4 200 12826 233587 2321700 15036792 71584145 272688548
5 10010 895535 23229430 325121379 2887887456
6 456208 79255048 3046408308
7 13039641

30
C

hapter
2.

A
n

A
udit

Toolfor
G

enom
e

R
earrangem

ent
A

lgorithm
s

Table 2.10: Prefix reversal distance distribution in Sn.

n
d 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 6 12 20 30 42 56 72 90 110 132
3 1 11 35 79 149 251 391 575 809 1099 1451
4 3 48 199 543 1191 2278 3963 6429 9883 14556
5 20 281 1357 4281 10666 22825 43891 77937 130096
6 133 1903 10561 38015 106461 252737 533397 1030505
7 2 1016 15011 93585 377863 1174766 3064788 7046318
8 35 8520 132697 919365 4126515 14141929 40309555
9 455 79379 1309756 9981073 49337252 184992275
10 5804 814678 14250471 118420043 639783475
11 73232 9123648 169332213 1525125357
12 956354 111050066 2183056566
13 6 13032704 1458653648
14 167 186874852
15 2001

2.3.
Im

plem
entation

31

Table 2.11: Prefix transposition distance distribution in Sn.

n
d 2 3 4 5 6 7 8 9 10 11 12 13
1 1 3 6 10 15 21 28 36 45 55 66 78
2 2 14 50 130 280 532 924 1500 2310 3410 4862
3 3 55 375 1575 4970 12978 29610 61050 116325 208065
4 4 194 2598 18096 85128 308988 933108 2456256 5812092
5 5 562 15532 188386 1364710 7030210 28488724 96641974
6 3 1161 74183 1679189 19713542 148968371 827628815
7 1244 244430 11759676 242448896 2832043750
8 327 416845 56288493 2323157040
9 3 231058 141492748
10 31375

32
C

hapter
2.

A
n

A
udit

Toolfor
G

enom
e

R
earrangem

ent
A

lgorithm
s

Table 2.12: Prefix reversal and prefix transposition distance distribution in Sn.

n
d 2 3 4 5 6 7 8 9 10 11 12 13
1 1 4 8 13 19 26 34 43 53 64 76 89
2 1 15 70 190 407 759 1290 2050 3095 4487 6294
3 36 469 2478 8282 21691 48678 98049 182203 317982
4 41 2123 25565 149273 581935 1780614 4632302 10717571
5 5 5679 185801 2167742 13780795 60634266 210376864
6 4781 828184 22649298 264782966 1814609062
7 157 1604884 148475998 3711594670
8 289301 479397553
9 714

2.3.
Im

plem
entation

33

Table 2.13: Diameter, traversal diameter, and longevity of S±n .

Table 2.3
n D(n) T(n) L(n)
2 4 3 1
3 6 4 2
4 8 5 3
5 10 6 4
6 12 8 4
7 14 9 5
8 15 10 5
9 17 11 6
10 18 13 5

Table 2.5
n D(n) T(n) L(n)
2 2 1 1
3 3 2 1
4 4 2 2
5 4 3 1
6 5 3 2
7 5 4 1
8 6 4 2
9 6 5 1
10 7 5 2

Table 2.4
n D(n) T(n) L(n)
2 2 1 1
3 3 2 1
4 4 3 1
5 4 3 1
6 5 4 1
7 6 4 2
8 6 5 1
9 7 5 2
10 8 6 2

Table 2.6
n D(n) T(n) L(n)
2 3 2 1
3 3 2 1
4 3 2 1
5 4 3 1
6 4 3 1
7 5 4 1
8 5 4 1
9 6 5 1
10 7 5 2

34
C

hapter
2.

A
n

A
udit

Toolfor
G

enom
e

R
earrangem

ent
A

lgorithm
s

Table 2.14: Diameter, traversal diameter, and longevity of Sn.

Table 2.7
n D(n) T(n) L(n)
2 1 1 0
3 2 1 1
4 3 2 1
5 4 3 1
6 5 3 2
7 6 4 2
8 7 5 2
9 8 5 3
10 9 6 3
11 10 7 3
12 11 7 4
13 12 8 4

Table 2.10
n D(n) T(n) L(n)
2 1 1 0
3 3 2 1
4 4 3 1
5 5 4 1
6 7 5 2
7 8 6 2
8 9 7 2
9 10 8 2
10 11 9 2
11 13 10 3
12 14 11 3
13 15 12 3

Table 2.8
n D(n) T(n) L(n)
2 1 1 0
3 2 1 1
4 3 2 1
5 3 2 1
6 4 3 1
7 4 3 1
8 5 4 1
9 5 4 1
10 6 5 1
11 6 5 1
12 7 6 1
13 8 6 2

Table 2.11
n D(n) T(n) L(n)
2 1 1 0
3 2 1 1
4 3 2 1
5 4 3 1
6 5 3 2
7 6 4 2
8 6 4 2
9 7 5 2
10 8 6 2
11 9 6 3
12 9 7 2
13 10 7 3

Table 2.9
n D(n) T(n) L(n)
2 1 1 0
3 1 1 0
4 2 1 1
5 3 2 1
6 3 2 1
7 4 3 1
8 4 3 1
9 5 4 1
10 5 4 1
11 6 5 1
12 6 5 1
13 7 6 1

Table 2.12
n D(n) T(n) L(n)
2 1 1 0
3 2 1 1
4 2 2 0
5 3 2 1
6 4 3 1
7 5 3 2
8 5 4 1
9 6 5 1
10 7 5 2
11 7 6 1
12 8 6 2
13 9 7 2

2.3. Implementation 35

Table 2.15: Conjectures regarding D(n), T (n), and L(n).

Rearrangement Model (M) DM(n) TM(n) LM(n) n ≥
Reversals – d2n

3 e − 1 bn3 c 3
Prefix Reversals – n − 1 – 1
Transpositions – bn2 c – 1
Prefix Transpositions – n − d2n

5 e d2n
5 e − b

n
4 c 4

Signed Prefix Reversals – b5n+2
4 c – 1

Signed Reversals and Transpo-
sitions n − bn−2

3 c n − dn−2
2 e d

n−2
2 e − b

n−2
3 c 3

Rearrangement Distance Database

The rearrangement distances were stored in files indexed by permutations – that is,
for each pair (n, M), we have created a file containing the rearrangement distances
of all permutations in Sn (S±n) with respect to M such that the record in the position
i of that file contains the rearrangement distance of the permutation f−1(i) (g−1(i)).
As the values of the rearrangement distances have not exceeded 255, each record has
one-byte length. Overall, we have created 119 files totaling about 60GB of data.

We have designed a web interface to enable users access to the information con-
tained in these files. The access address is

http://mirza.ic.unicamp.br:8080.

Using this interface, a user can do the following:

• Search the rearrangement distance of a permutation with respect to a rearrange-
ment model;

• Search for permutations belonging to a slice of Sn (S±n) with respect to a rear-
rangement model. The search result is limited to 200 permutations for efficiency
reasons;

• Verify the distribution of the rearrangement distances in Sn (S±n) with respect
to a rearrangement model.

In addition to searching for the rearrangement distance of a permutation with
respect to a rearrangement model, it is possible to view a sequence of permutations
that illustrates the transformation of that permutation into the identity permutation.
We refer to this sequence as solution. Note that Algorithm AllDistances presented in
Section 2.3.1 does not compute the solution, so we had to modify that algorithm in
order to compute it.

We created a vector P of size |Sn| such that P [i] = f(π), where π is a parent
permutation of permutation σ = f−1(i) (i.e. π is the permutation such that σ = π ◦ρ,

http://mirza.ic.unicamp.br:8080.

36 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

ρ ∈ M , and dM(σ) = dM(π) + 1 = D[i]). Then, we have made vector P be updated
every time a new permutation was inserted in vector Q and its rearrangement distance
was stored in vector D, which corresponds to the for loop of lines 13 through 20. When
Algorithm AllDistances terminates, in addition to returning vector D, it also returns
vector P . With this vector in hand, it is not hard to see how to obtain the solution
recursively.

As well as the rearrangement distances, the parent permutations were also stored
in files indexed by permutations – that is, for each pair (n, M), we created a file
containing the parent permutations of all permutations in Sn (S±n) with respect to M
such that the record in the position i of that file contains the parent permutation of
the permutation f−1(i) (g−1(i)). Differently from the rearrangement distances, which
only need 1 byte per record, parent permutations need 4 bytes in the case of the 32
bits implementation, and 8 bytes in the case of the 64 bits implementation. It makes
the files too big and, for this reason, we did not compute the parent permutations of
the permutations in S13. Overall, we have created 112 files totaling about 72GB of
data.

We created this web interface to give users the ability to extract information of
interest regarding the rearrangement distances. For instance, Grusea and Labarre
have used the information about the distribution of the rearrangement distances in a
recent work [67]. As another example, for those who are interested in proving exact
values or bounds for the diameter, it may be useful to know which permutations
belong to the slice Sin such that i = DM(n).

2.3.3 Implementation of GRAAu
The audit performed by GRAAu is similar to the method adopted in previous works
for analyzing approximation algorithms and heuristics for genome rearrangements
[14, 38, 121, 124, 125]. It consists in comparing, for all permutations of up to a given
size, the distance output by a given genome rearrangement algorithm with the related
rearrangement distance and then producing statistics that can be used to analyze the
performance of this algorithm. The statistics produced by GRAAu are as follows:

• Diameter: Greatest distance output by the algorithm.

• Average Distance: Average of the distances output by the algorithm.

• Average Ratio: Average of the ratios between the distance output by the
algorithm and the related rearrangement distance.

• Maximum Ratio: Greatest ratio among all the ratios between the distance
output by the algorithm and the related rearrangement distance.

• Equals: Percentage of distances output by the algorithm that is equal to the
related rearrangement distance.

2.3. Implementation 37

In addition to the statistics, GRAAu outputs up to 50 permutations exhibiting the
maximum ratio.

GRAAu was implemented as a client-server application, and hence it is composed
of two components: a server that stores the rearrangement distances (such as described
in Section 2.3.2) and the audit results (i.e. the statistics and the permutations which
exhibited the maximum ratio); and a client that executes the rearrangement algorithm
(which must be implemented by the user), compares the output distances with the
rearrangement distances (obtained from the server), and reports the results back to
the server.

Both the client and the server were implemented in Java. The communication
between them is achieved through standard web service messaging over HTTP (we
have adopted Apache Axis2 1.5.2 engine to support the implementation and the de-
ployment of the web services). The server is installed on a machine featuring a Intel
Core i7-2600K, which has four cores at 3.4 GHz each, and 16GB of RAM, and running
Apache Tomcat 6.0.26 on GNU/Linux 2.6.32. Compiled code, setup instructions, and
tutorial are available for download at

http://mirza.ic.unicamp.br:8080/bioinfo/graau.jsf.

GRAAu does not require registration by the user. In the beginning of the auditing
process of a rearrangement algorithm, the web server generates a unique ID to this
algorithm, a random 256-bit AES key, and a counter, and sends them to the client
using RSA. Then, for each web service call that changes the audit state of this algo-
rithm, the client sends its ID and the encrypted value of the counter along with the
other parameters to allow the web server to authenticate the call. After such calls,
the client and the web server increment the counter. The AES key and the algorithm
ID are recorded in a file in the client computer so that the audit can be resumed after
any interruption.

The audit results and audit progress information for each rearrangement algorithm
being audited by GRAAu become available online. In addition to these, there is other
information available, namely the name of the rearrangement algorithm, the rear-
rangement model that it considers, and its description. The name and the description
of an algorithm can be edited; the audit results, and even all the information about
an algorithm, can be deleted. To perform any of these operations, the user has to
enter a 128-bit password exchanged between the client and the web server using RSA
and recorded in the same file as the AES key and the algorithm ID.

The time needed to complete the audit of a rearrangement algorithm is not easily
predictable because it depends on many factors, such as the complexity of the algo-
rithm, number of threads chosen, Internet bandwidth, and CPU speed. For instance,
we implemented Watterson et. al. [126] algorithm and audited it with GRAAu using
a computer featuring a Intel Core 2 Duo CPU at 2.20 GHz and a broadband Internet
connection (4Mbps). The audit took less than 4 hours to complete. On the other
hand, it took about 72 hours to audit a naive implementation of the algorithm of

http://mirza.ic.unicamp.br:8080/bioinfo/graau.jsf.

38 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

Kececioglu and Sankoff algorithm [84] using the same configuration.

2.4 Application of GRAAu
In this section, we present some results that we have obtained by using GRAAu
to evaluate approximation algorithms for two variants of the rearrangement sorting
problem, namely the problem of sorting by prefix reversals and the problem of sorting
by prefix transpositions.

2.4.1 Sorting by Prefix Reversals
In this section, we present the results the we have obtained from the audit of two
versions of the 2-approximation algorithm developed by Fischer and Ginzinger [55]
for the problem of sorting by prefix reversals. As we have shown in Section 2.2.3, this
is the best known approximation algorithm for this problem. Before we present the
results, we provide a brief description of the theory underlying their algorithm.

Given a permutation π in Sn, we extend it with two elements π0 = 0 and πn+1 =
n + 1. The extended permutation is still denoted by π. The prefix reversal distance
of π is denoted by dpr(π). A breakpoint in π is a pair of adjacent elements (πi, πi+1)
such that |πi − πi+1| 6= 1, 1 ≤ i ≤ n. Note that the pair (π0, π1) is not considered a
breakpoint. The number of breakpoints in π is denoted by bpr(π).

Example 1. Let π = (0 1 3 2 4 5 6) be an extended permutation. Then, we have that
the pairs of adjacent elements (1, 3) and (2, 4) are breakpoints, therefore bpr(π) = 2.

Note that bpr(π) = 0 if and only if π = ι. Since a prefix reversal can remove at
most one breakpoint of an unsigned permutation, the following lemma holds.

Lemma 1 (Fischer and Ginzinger [55]). For any unsigned permutation π, we have
that dpr(π) ≥ bpr(π).

A strip of π is a subsequence of contiguous elements πi πi+1 . . . πj, 1 ≤ i ≤ j ≤ n,
such that (πi−1, πi) and (πj, πj+1) are breakpoints, and none of the pairs (πk, πk+1), i
≤ k ≤ j− 1, is a breakpoint. A strip with more than one element is called decreasing
if πi > πi+1 > · · · > πj, otherwise it is called increasing.

Example 2. Let π be the permutation of Example 1. Then, we have that 1, 3 2, and
4 5 are strips of π. In addition, the second one is an decreasing strip and the last one
is an increasing strip.

Unless stated otherwise, in the rest of this section we will only consider permuta-
tions where the pair of elements (πn, πn+1) is a breakpoint. This is simply because
if there are m ordered elements at the end of π, say π = (π1, . . ., πn−m, n − m +
1, . . ., n − 1, n), we can reduce the problem of sorting π to sorting the permutation
σ = (π1, . . ., πn−m).

2.4. Application of GRAAu 39

The breakpoint graph G(π) = (V , E) of a permutation π ∈ Sn is a directed graph
whose vertex set is composed by the elements of π – that is, V = {π0, π1 . . ., πn+1} –
and whose edge set E is composed by so-called red and blue edges, defined as follows:
an edge e is red if e = (πi, πi+1) and position i is a breakpoint, or e = (π0, π1) and
|π0 − π1| 6= 1; an edge e = (πi, πj), 1 ≤ i < j ≤ n + 1, is blue if πj = πi ± 1 and i

< j − 1. Figure 2.2 illustrates the breakpoint graph of permutation (4 2 1 3).

0 4 2 1 3 5

Figure 2.2: Breakpoint graph G(π) of permutation π = (4 2 1 3).

Let π be an unsigned permutation and e = (πi, πj) be a blue edge of G(π). Since
there is at least one adjacent red edge on each side of e, we can classify it into at least
one of the following types:

• type 1, if (πi−1, πi) and (πj−1, πj) are red edges;

• type 2, if (πi, πi+1) and (πj, πj+1) are red edges;

• type 3, if (πi, πi+1) and (πj−1, πj) are red edges;

• or type 4, if (πi−1, πi) and (πj, πj+1) are red edges.

Moreover, a blue edge e = (πi, πj) is said to be a good edge if at least one of the three
conditions holds:

1. e is of type 1 with i = 1;

2. e is of type 2 with i 6= 0;

3. e is of type 3.

Fischer and Ginzinger [55] have shown that if the breakpoint graph of a permuta-
tion π ∈ Sn has a good blue edge, then it is possible to remove a breakpoint with at
most two prefix reversals, such as described next:

• if the blue edge e = (πi, πj) satisfies condition (1), then (πj−1, πj) is a breakpoint
because e is of type 1, and the prefix reversal pr(j − 1) removes it since σj−1 =
πi and σj = πj in the permutation σ = π ◦ pr(j − 1);

• if the blue edge e = (πi, πj) satisfies condition (2), we can apply the prefix
reversal pr(j) on π, yielding the permutation σ = π ◦ pr(j). Note that j < n +
1 since e is of type 2; therefore the prefix reversal pr(j) is valid. The breakpoint
graph G(σ) contains the blue edge e′ = (σ1, σj−i+1) because σ1 = πj and σj−i+1

40 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

= πi; moreover, (σj−i, σj−i+1) is a breakpoint because σj−i = πi and σj−i+1 =
πi+1, and the prefix reversal pr(j − i) removes it since γj−i = σ1 and γj−i+1 =
σj−i+1 in the permutation γ = σ ◦ pr(j − i);

• if the blue edge e = (πi, πj) satisfies condition (3), we can apply the prefix
reversal pr(i) on π, yielding the permutation σ = π ◦ pr(i). The breakpoint
graph G(σ) contains the blue edge e′ = (σ1, σj) because σ1 = πi and σj =
πj; moreover, (σj−1, σj) is a breakpoint because σj−1 = πj−1 and σj = πj, and
the prefix reversal pr(j − 1) removes it since γj−1 = σ1 and γj = σj in the
permutation γ = σ ◦ pr(j − 1). Note that if i = 1, then we do not need to
apply the prefix reversal pr(i).

If the breakpoint graph of a permutation π ∈ Sn, π 6= ι, does not have a good blue
edge, then Fischer and Ginzinger [55] have proved that π is of the form

π = (p1 . . . 1︸ ︷︷ ︸
l1

p2 . . . p1 + 1︸ ︷︷ ︸
l2

. . . l . . . pbpr(π)−1 + 1︸ ︷︷ ︸
lbpr(π)

).

In other words, π consists of bpr(π) ≥ 2 decreasing strips of length li for all 1 ≤ i

≤ bpr(π). In this case, they have demonstrated that the sequence of 2bpr(π) prefix
reversals

pr(n), pr(n − l1), pr(n), pr(n − l2), . . ., pr(n), pr(n − lbpr(π))

sorts π.
Therefore, it is possible to sort any unsigned permutation π applying no more

than 2bpr(π) prefix reversals using the following strategy. While G(π) contains good
blue edges, we choose one of them and apply at most two prefix reversals to remove
a breakpoint; if it is not the case, the permutation will have the form described
previously, so we can sort it applying 2bpr(π) prefix reversals. Since dpr(π) ≥ bpr(π)
(Lemma 1), we have that any algorithm using such strategy is a 2-approximation.

Fischer and Ginzinger [55] have not specified an algorithm that implements this
strategy. They have only said that good blue edges that satisfy condition (1) were
preferred over good blue edges that satisfy conditions (2) and (3) because the former
just need one prefix reversal to remove a breakpoint instead of two. For this reason, we
have considered two algorithms: one that favors good blue edges satisfying condition
(2) over good blue edges satisfying condition (3) (Algorithm 2), and another one that
favors the opposite (Algorithm 3). We have audited algorithms 2 and 3 with GRAAu,
and the results are presented in tables 2.16 and 2.17 respectively. As we can see later
in Figure 2.3, both algorithms exhibited a very similar performance, with a small
advantage to Algorithm 3.

Fischer and Ginzinger [55] have conducted a different experimental investigation on
the performance of their algorithm. They have computed the prefix reversal distance
of 10,000 random permutations of length up to 71 using a branch-and-bound method

2.4. Application of GRAAu 41

Algorithm 2: 2-approximation algorithm for sorting by prefix reversals
Data: A permutation π ∈ Sn.
Result: Number of prefix reversals applied to sort π.

1 d ← 0;
2 while π 6= ι do
3 if G(π) contains a good blue edge (πi, πj) satisfying condition (1) then
4 π ← π ◦ pr(j − 1);
5 d ← d + 1;
6 else if G(π) contains a good blue edge (πi, πj) satisfying condition (2) then
7 π ← π ◦ pr(j);
8 π ← π ◦ pr(j − i);
9 d ← d + 2;

10 else if G(π) contains a good blue edge (πi, πj) satisfying condition (3) then
11 π ← π ◦ pr(i);
12 π ← π ◦ pr(j − 1);
13 d ← d + 2;
14 else
15 Let l be the number of elements of π that are not ordered elements at

the end of π, and let li be the length of the i-th strip of π;
16 π ← π ◦ pr(l) ◦ pr(l − l1) ◦ pr(l) ◦ pr(l − l2) ◦ · · · pr(l) ◦ pr(l −

lbpr(π));
17 d ← d + 2bpr(π);
18 end
19 end
20 return d;

Table 2.16: Results from the audit of Algorithm 2

n Diameter Avg. Distance Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 3 1.50 1.00 1.00 100.00%
4 5 2.79 1.09 1.33 70.83%
5 8 4.01 1.12 1.75 62.50%
6 9 5.26 1.14 1.80 51.25%
7 12 6.50 1.15 1.83 42.54%
8 14 7.74 1.16 1.83 34.51%
9 15 8.98 1.17 2.00 27.75%
10 17 10.21 1.17 2.00 22.17%
11 19 11.45 1.18 2.00 17.63%
12 21 12.68 1.18 2.00 13.98%
13 23 13.91 1.19 2.00 11.07%

42 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

Algorithm 3: 2-approximation algorithm for sorting by prefix reversals
Data: A permutation π ∈ Sn.
Result: Number of prefix reversals applied to sort π.

1 d ← 0;
2 while π 6= ι do
3 if G(π) contains a good blue edge (πi, πj) satisfying condition (1) then
4 π ← π ◦ pr(j − 1);
5 d ← d + 1;
6 else if G(π) contains a good blue edge (πi, πj) satisfying condition (3) then
7 π ← π ◦ pr(i);
8 π ← π ◦ pr(j − 1);
9 d ← d + 2;

10 else if G(π) contains a good blue edge (πi, πj) satisfying condition (2) then
11 π ← π ◦ pr(j);
12 π ← π ◦ pr(j − i);
13 d ← d + 2;
14 else
15 Let l be the number of elements of π that are not ordered elements at

the end of π, and let li be the length of the i-th strip of π;
16 π ← π ◦ pr(l) ◦ pr(l − l1) ◦ pr(l) ◦ pr(l − l2) ◦ · · · pr(l) ◦ pr(l −

lbpr(π));
17 d ← d + 2bpr(π);
18 end
19 end
20 return d;

Table 2.17: Results from the audit of Algorithm 3

n Diameter Avg. Distance Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 3 1.50 1.00 1.00 100.00%
4 5 2.71 1.06 1.33 79.17%
5 7 3.93 1.10 1.75 69.17%
6 9 5.18 1.12 1.75 57.36%
7 11 6.44 1.14 1.75 47.66%
8 13 7.68 1.15 1.83 38.94%
9 15 8.93 1.16 1.86 31.61%
10 17 10.17 1.17 1.89 25.52%
11 19 11.41 1.18 1.90 20.54%
12 21 12.65 1.18 1.91 16.48%
13 23 13.89 1.19 1.91 13.20%

2.4. Application of GRAAu 43

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

4 5 6 7 8 9 10 11 12 13

A
v
e
ra

g
e
 R

a
ti
o

Size of permutations

Algorithm 2 Algorithm 3

 10

 20

 30

 40

 50

 60

 70

 80

4 5 6 7 8 9 10 11 12 13

E
q

u
a

ls
 (

%
)

Size of permutations

Algorithm 2 Algorithm 3

Figure 2.3: Performance comparison between algorithms 2 and 3 based on the results
provided by GRAAu.

and have compared them with the distance computed by the algorithm. The results
they have obtained led them to believe that “with a deeper analysis of the algorithm
the theoretical approximation ratio could even be lowered”. Our results point to an
opposite direction.

In the case of Algorithm 2, the maximum ratio has matched the theoretical ap-
proximation ratio, which is equal to 2, for 9 ≤ n ≤ 13. This is sufficient for proving
that the approximation ratio of Algorithm 2 is tight (Theorem 1). In the case of Al-
gorithm 3, the maximum ratio has not matched the theoretical approximation ratio,
but it seems to be converging to it. Therefore, we conjecture that the approximation
ratio of Algorithm 3 is tight (Conjecture 1).

Theorem 1. The approximation ratio of Algorithm 2 is tight.

Proof. Let π = (1 7 8 2 4 3 9 5 6) be an unsigned permutation. Since dpr(π) ≥ bpr(π)
= 6 and the sequence of prefix reversals pr(3), pr(6), pr(2), pr(7), pr(9), pr(6) sorts
π, we have that dpr(π) = 6. On the other hand, Algorithm 2 sorts π as follows:

1. As we can see in Figure 2.4(a), G(π) does not contain a blue edge satisfying
condition (1), but it contains a blue edge satisfying condition (2), namely (π1,
π4). Therefore, Algorithm 2 applies the prefix reversal pr(4) followed by the
prefix reversal pr(3), yielding the permutation π = (7 8 2 1 4 3 9 5 6);

2. As we can see in Figure 2.4(b), G(π) does not contain a blue edge satisfying
condition (1), but it contains a blue edge satisfying condition (2), namely (π2,
π7). Therefore, Algorithm 2 applies the prefix reversal pr(7) followed by the
prefix reversal pr(5), yielding the permutation π = (2 1 4 3 9 8 7 5 6);

3. As we can see in Figure 2.4(c), G(π) does not contain a blue edge satisfying
condition (1), but it contains a blue edge satisfying condition (2), namely (π7,

44 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

π9). Therefore, Algorithm 2 applies the prefix reversal pr(9) followed by the
prefix reversal pr(2), yielding the permutation π = (5 6 7 8 9 3 4 1 2);

4. As we can see in Figure 2.4(d), G(π) does not contain a blue edge satisfying
condition (1) neither a blue edge satisfying condition (2), but it contains a
blue edge satisfying condition (3), namely (π5, π10). Therefore, Algorithm 2
applies the prefix reversal pr(5) followed by the prefix reversal pr(9), yielding
the permutation π = (2 1 4 3 5 6 7 8 9);

5. As we can see in Figure 2.4(e), G(π) does not contain a good blue edge, so let
σ = (π1 π2 π3 π4) = (2 1 4 3) be the permutation formed by the elements of
π that are out of position (note that the elements π5, π6, π7, π8, and π9 are
ordered elements at the end of π). We have that Algorithm 2 sorts π applying
the sequence of 2bpr(σ) = 4 prefix reversals pr(4), pr(2), pr(4), and pr(2).

Thus, denoting by A2(π) the number of prefix reversals applied by Algorithm 2 for
sorting π, we have that A2(π) = 12.

Let γ = (1 7 8 2 4 3 9 5 6 10 11 . . . n), n ≥ 10, be an unsigned permutation. Since
the elements γi, 10 ≤ i ≤ n, are in the right position, Algorithm 2 will sort γ the
same way it sorts π; moreover, we have that dpr(γ) = dpr(π) = 6. Therefore, A2(γ)

dpr(γ) =
12
6 = 2.

0 1 7 8 2 4 3 9 5 6 10

(a) G(π) for π = (1 7 8 2 4 3 9 5 6)
0 7 8 2 1 4 3 9 5 6 10

(b) G(π) for π = (7 8 2 1 4 3 9 5 6)

0 2 1 4 3 9 8 7 5 6 10

(c) G(π) for π = (2 1 4 3 9 8 7 5 6)
0 5 6 7 8 9 3 4 1 2 10

(d) G(π) for π = (5 6 7 8 9 3 4 1 2)

0 2 1 4 3 5 6 7 8 9 10

(e) G(π) for π = (2 1 4 3 5 6 7 8 9)

Figure 2.4: Breakpoint graphs of the permutations produced by Algorithm 2 when
sorting permutation π = (1 7 8 2 4 3 9 5 6).

Conjecture 1. The approximation ratio of Algorithm 3 is tight.

2.4. Application of GRAAu 45

2.4.2 Sorting by Prefix Transpositions
In this section, we present the results that we have obtained from the audit of two
approximation algorithms for the problem of sorting by prefix transpositions. The
2-approximation algorithm proposed by Dias and Meidanis [42]; it is the best known
approximation algorithm for this problem and an improved version of this algorithm
proposed by us. As we did in the previous section, before we present the results, we
provide a brief description of the theory underlying these algorithms.

Given a permutation π in Sn, we extend it with two elements π0 = 0 and πn+1

= n + 1. The extended permutation is still denoted by π. The prefix transposition
distance of π is denoted by dpt(π). A breakpoint in π is a pair of adjacent elements
(πi, πi+1) such that πi+1 − πi 6= 1, 1 ≤ i ≤ n. Note that the pair (π0, π1) is not
considered a breakpoint. The number of breakpoints in π is denoted by bpt(π).

Example 3. Let π = (0 1 3 4 2 5 6) be an extended permutation. Then, we have that
the pairs (1, 3), (4, 2), and (2, 5) are breakpoints; therefore bpt(π) = 3.

Note that bpt(π) = 0 if and only if π = ι. Since a prefix transposition can remove
at most two breakpoints of an unsigned permutation, the following lemma holds.

Lemma 2 (Dias and Meidanis [42]). For any unsigned permutation π, we have that
dpt(π) ≥ bpt(π)

2 .

A strip of π is a subsequence of contiguous elements πi πi+1 . . . πj, 1 ≤ i ≤ j ≤ n,
such that (πi−1, πi) and (πj, πj+1) are breakpoints, and none of the pairs (πk, πk+1),
i ≤ k ≤ j − 1, is a breakpoint.

Example 4. Let π be the permutation of Example 3. Then, we have that 1, 3 4, 2,
and 5 are strips of π.

Dias and Meidanis [42] have shown that it is always possible to remove at least one
breakpoint of a unsigned permutation π by applying a prefix transposition. Let π ∈
Sn and let π1 . . . πi be the first strip of π. If πi < n, then there exists a strip of π that
begins with the element πj = πi + 1 such that i < j − 1 and (πj−1, πj) is a breakpoint.
In this case, the prefix transposition pt(i+ 1, j) removes that breakpoint. Otherwise,
if πi = n, then the prefix transposition pt(i + 1, n + 1) removes the breakpoint (πn,
πn+1). Algorithm 4 is the algorithm derived from this analysis. Since it removes at
least one breakpoint for each prefix transposition it applies and dpt(π) ≥ bpt(π)

2 (Lemma
2), we have that Algorithm 4 is a 2-approximation.

Dias and Meidanis [42] have noted that a prefix transposition can eliminate two
breakpoints and proved that there exists at most one such prefix transposition. Let
π ∈ Sn and let pt(i, j) be the prefix transposition that removes two breakpoints of
π. We have that π ◦ pt(i, j) = (πi . . . πj−1 π1 . . . πi−1 πj . . . πn), where πi−1 6= πi
− 1, πj−1 6= πj − 1, πj−1 = π1 − 1, and πi−1 = πj − 1. Therefore, π1 determines
uniquely the index j, and j determines uniquely the index i. It means that we can

46 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

make Algorithm 4 “greedier” – that is, before applying the prefix transposition which
removes one breakpoint, we can verify if it is possible to apply the prefix transposition
which removes two. Such an algorithm is presented in Algorithm 5. It is easy to see
that this algorithm is a 2-approximation as well.

Algorithm 4: 2-approximation algorithm for sorting by prefix transpositions
Data: A permutation π ∈ Sn.
Result: Number of prefix transpositions applied to sort π

1 d ← 0;
2 while π 6= ι do
3 Let πi be the last element of the first strip of π;
4 if πi = n then
5 π ← π ◦ pt(i+ 1, n+ 1);
6 d ← d + 1;
7 else
8 Let πj be the element of π such that πj = πi + 1;
9 π ←π ◦ pt(i+ 1, j);

10 d ← d + 1;
11 end
12 end
13 return d;

Algorithm 5: Improved 2-approximation algorithm for sorting by prefix trans-
positions

Data: A permutation π ∈ Sn.
Result: Number of prefix transpositions applied to sort π

1 d ← 0;
2 while π 6= ι do
3 Let i be the position of π1 − 1 in π;
4 y ← i + 1;
5 Let j be the position of πy − 1 in π;
6 x ← j + 1;
7 if x > 1 and x < y then
8 π ← π ◦ pt(x, y);
9 d ← d + 1;

10 else
11 Apply the same steps as shown in lines 3–11 of Algorithm 4;
12 end
13 end
14 return d;

We have audited algorithms 4 and 5 with GRAAu, and the results are presented in
tables 2.18 and 2.19, respectively. As we can see in Figure 2.5, Algorithm 5 presented

2.4. Application of GRAAu 47

much better results than Algorithm 4; however, when it comes to the maximum ratio
obtained for both algorithms, the results suggest that it is converging to the theoretical
approximation ratio, which is equal to 2. Before proving that the maximum ratio of
these algorithms indeed converges to 2, we must introduce some concepts and notation.

Table 2.18: Results obtained from the audit of Algorithm 4.

n Diameter Avg. Distance Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 2 1.17 1.00 1.00 100.00%
4 3 1.92 1.06 1.50 87.50%
5 4 2.72 1.12 1.50 70.83%
6 5 3.55 1.16 1.67 54.72%
7 6 4.41 1.20 1.67 39.60%
8 7 5.28 1.24 1.75 26.92%
9 8 6.17 1.27 1.75 17.33%
10 9 7.07 1.29 1.80 10.55%
11 10 7.98 1.32 1.80 6.07%
12 11 8.90 1.34 1.83 3.32%
13 12 9.82 1.36 1.83 1.73%

Table 2.19: Results obtained from the audit of Algorithm 5

n Diameter Avg. Distance Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 2 1.17 1.00 1.00 100.00%
4 3 1.79 1.00 1.00 100.00%
5 4 2.45 1.01 1.33 97.50%
6 5 3.10 1.01 1.33 95.28%
7 6 3.77 1.02 1.50 91.11%
8 7 4.43 1.03 1.50 86.61%
9 8 5.10 1.04 1.60 81.31%
10 9 5.77 1.05 1.60 75.55%
11 10 6.44 1.06 1.67 69.64%
12 11 7.12 1.07 1.67 63.56%
13 12 7.79 1.07 1.71 57.58%

We say that a permutation is reduced if it only contains strips of length 1. We
can reduce any permutation that contains one or more strips of length > 1 as follows.

48 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

4 5 6 7 8 9 10 11 12 13

A
v
e
ra

g
e
 R

a
ti
o

Size of permutations

Algorithm 4 Algorithm 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 5 6 7 8 9 10 11 12 13

E
q

u
a

ls
 (

%
)

Size of permutations

Algorithm 4 Algorithm 5

Figure 2.5: Performance comparison between algorithms 4 and 5 based on the results
provided by GRAAu.

Discard the right-most strip if it ends with n, then keep the minimal element of each
strip of π, and finally renumber the remaining elements appropriately. For example,
the reduced permutation corresponding to (1 2 4 5 3 6), in which strips are underlined,
is (1 3 2), through discarding the strip 6 and replacing strips 1 2, 4 5, and 3 by 1,
3, and 2 respectively. Lemmas 3 and 4 allow us to restrict our attention to sorting
reduced permutations. With regard to Lemma 3, we remark that Christie [30] has
proved an analogous result for the problem of sorting by transpositions, and our proof
is a direct adaptation of that provided by him.

Lemma 3. If a permutation π ∈ Sn is reduced to a permutation σ ∈ Sm, m ≤ n,
then dpt(π) = dpt(σ).

Proof. Clearly dpt(π) ≤ dpt(σ), since any prefix transposition on σ may be mimicked
by a prefix transposition on π. It remains to be shown that dpt(σ) ≤ dpt(π).

Form a vector Vπ of length n by inserting n − m asterisks (*) into σ such that
Vπ[i] is an asterisk if i > 1 and (πi−1, πi) is not a breakpoint in π or πj = j for
all j ≥ i. For example, if π = (1 3 4 5 7 8 2 6 9), then σ = (1 3 5 2 4), and Vπ
= [1 3 * * 5 * 2 4 *]. Then any prefix transposition on π can be applied to Vπ,
and ignoring asterisks this prefix transposition can be applied to σ. Note that if
any prefix transposition on Vπ moves a block that consists only of asterisks, then the
corresponding prefix transposition on σ does nothing, so can be ignored. A sequence
of prefix transpositions that sorts π will sort Vπ (ignoring asterisks), and so a sequence
of prefix transpositions of at most the same length exists that sorts σ. Hence dpt(σ)
≤ dpt(π), and the lemma has been proved.

Lemma 4. Let A4(π) and A5(π) be the number of prefix transpositions applied by
algorithms 4 and 5, respectively, to sort an unsigned permutation π. If π is reduced
to an unsigned permutation σ, then A4(π) = A4(σ) and A5(π) = A5(σ).

2.4. Application of GRAAu 49

Proof. The claim follows directly from the fact that algorithms 4 and 5 never apply
a prefix transposition that breaks a strip apart.

To prove that the approximation ratio of Algorithm 4 is tight (see Theorem 2),
we show that there exists a class of permutations, denoted by Hn, for which A4(Hn)
is (asymptotically) twice the prefix transposition distance.

Lemma 5. Let Hn be an unsigned permutation of size n, where n is an even integer,
such that

Hn
i =

{
n− i−1

2 if i ∈ {1, 3, 5, . . . , n− 1}
i
2 if i ∈ {2, 4, 6, . . . , n}.

Then, we have dpt(Hn) = n
2 .

Proof. The proof follows from induction on n. As for the base case, we have dpt(H2)
= 1. As for the induction step, assume that dpt(Hk) = k

2 for k ∈ {2, 4, . . ., n}. If we
apply the prefix transposition pt(3, 4) on Hn+2, we obtain the unsigned permutation
π = Hn+2 ◦ pt(3, 4) such that

πi =

n+ i if i ∈ {1, 2}
i− 2 if i ∈ {3, 4}
n− i−5

2 if i ∈ {5, 7, 9, . . . , n+ 1}
i
2 if i ∈ {6, 8, 10, . . . , n+ 2}.

But the permutation π can be reduced to permutation Hn, therefore dpt(Hn+2) ≤ 1
+ dpt(Hn) = n+2

2 . Since dpt(Hn+2) ≥ bpt(Hn+2)
2 = n+2

2 , we conclude that dpt(Hn+2) =
n+2

2 , and the lemma follows.

Lemma 6. A4(Hn) = n − 1.

Proof. The proof follows from induction on n. As for the base case, we have A4(H2)
= 1. As for the induction step, assume that A4(Hk) = k − 1 for k ∈ {2, 4, . . ., n}. If
permutation Hn+2 is given as input to Algorithm 4, it will apply the prefix transpo-
sition pt(2, n+ 3) followed by prefix transposition pt(2, 3), yielding the permutation
π such that

πi =

n+ 1 if i = 1
i− 1 if i ∈ {2, 3}
n− i−4

2 if i ∈ {4, 6, 8, . . . , n}
i+1

2 if i ∈ {5, 7, 9, . . . , n+ 1}
n+ 2 if i = n+ 2.

But the permutation π can be reduced to the permutation Hn, therefore A4(Hn+2) =
A4(Hn) + 2 = n + 1 and the lemma follows.

Theorem 2. The approximation ratio of Algorithm 4 is tight.

50 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

Proof. By lemmas 5 and 6, we have A4(Hn)
dpt(Hn) = 2n−2

n
. Since this ratio converges to 2 in

the limit, the theorem follows.

The proof that the approximation ratio of Algorithm 5 is tight (see Theorem 3) is
very similar to that of Theorem 2. We show that there exists a class of permutations,
denoted by P n, for which A5(P n) is (asymptotically) twice the prefix transposition
distance. The only difference is that we need more intermediate results (see Lemmas
7, 8, and 9).

Lemma 7. Let Jn be an unsigned permutation of size n, where n is an even integer,
such that

Jni =
{

2i if i ∈ {1, 2, 3, . . . , n2}
2(i− n

2)− 1 if i ∈ {n2 + 1, n2 + 2, n2 + 3, . . . , n}.

Then, we have dpt(Jn) = n
2 .

Proof. The proof follows from induction on n. As for the base case, we have dpt(J2)
= 1. As for the induction step, assume that dpt(Jk) = k

2 for k ∈ {2, 4, . . ., n}. If
we apply the prefix transposition pt(2, n+2

2 + 2) on Jn+2, we obtain the unsigned
permutation π = Jn+2 ◦ pt(2, n+2

2 + 2) such that

πi =

2(i+ 1) if i ∈ {1, 2, 3, . . . , n2}
1 if i = n+2

2
2 if i = n+2

2 + 1
2(i− n+2

2)− 1 if i ∈ {n+2
2 + 2, n2 + 3, n2 + 4, . . . , n+ 2}.

But the permutation π can be reduced to permutation Jn, therefore dpt(Jn+2) ≤ 1 +
dpt(Jn) = n+2

2 . Since dpt(Jn+2) ≥ bpt(Jn+2)
2 = n+2

2 , we conclude that dpt(Jn+2) = n+2
2 ,

and the lemma follows.

Lemma 8. Let Kn be an unsigned permutation of size n, where n is an even integer,
such that

Kn
i =

{
n
2 + i+1

2 if i ∈ {1, 3, 5, . . . , n− 1}
i
2 if i ∈ {2, 4, 6, . . . , n}.

Then, we have dpt(Kn) = n
2 .

Proof. The proof follows from induction on n. As for the base case, we have dpt(K2)
= 1. As for the induction step, assume that dpt(Kk) = k

2 for k ∈ {2, 4, . . ., n}. If
we apply the prefix transposition pt(n + 2, n + 3) on Kn+2, we obtain the unsigned
permutation π = Kn+2 ◦ pt(n+ 2, n+ 3) such that

πi =

n+2

2 if i = 1
n+2

2 + i
2 if i ∈ {2, 4, 6, . . . , n+ 2}

i−1
2 if i ∈ {3, 5, 7, . . . , n+ 1}.

2.4. Application of GRAAu 51

But the permutation π can be reduced to permutation Kn, therefore dpt(Kn+2) ≤ 1
+ dpt(Kn) = n+2

2 . Since dpt(Kn+2) ≥ bpt(Kn+2)
2 = n+2

2 , we conclude that dpt(Kn+2) =
n+2

2 , and the lemma follows.

Lemma 9. Let Ln be an unsigned permutation of size n, where n is an even integer
and n ≥ 4, such that

Lni =

n if i = 1
1 if i = 2
i if i ∈ {3, 5, 7, . . . , n− 1}
i− 2 if i ∈ {4, 6, 8, . . . , n}.

Then, we have dpt(Ln) = n
2 .

Proof. First of all, note that dpt(Ln) ≥ bpt(Ln)
2 = n

2 . To show that this lower bound is
tight, we divide our analysis into two cases:

1. n ≡ 0 (mod 4).

In this case, we divide the sorting process of permutation Ln into two phases.
In the first phase, we transform Ln into permutation Mn such that

Mn
i =

2i+ 1 if i ∈ {1, 3, 5, . . . , n2 − 1}
2i if i ∈ {2, 4, 6, . . . , n2}
2(i− n

2)− 1 if i ∈ {n2 + 1, n2 + 3, n2 + 5, . . . , n− 1}
2(i− n

2)− 2 if i ∈ {n2 + 2, n2 + 4, n2 + 6, . . . , n}.

In the second phase, we transform Mn into the identity permutation. Since
transforming Ln into Mn is equivalent to transforming Mn−1 ◦ Ln into the
identity permutation, we can conclude that dpt(Ln)≤ dpt(Mn−1 ◦ Ln) + dpt(Mn).

We have that

Mn−1
i =

n
2 + i+1

2 if i ∈ {1, 5, 9, . . . , n− 3}
n
2 + i+2

2 if i ∈ {2, 6, 10, . . . , n− 2}
i−1

2 if i ∈ {3, 7, 11, . . . , n− 1}
i
2 if i ∈ {4, 8, 12, . . . , n},

therefore the permutation π = Mn−1 ◦ Ln is such that

πi =

n
2 if i = 1
n
2 + 1 if i = 2
i−1

2 if i ∈ {3, 7, 11, . . . , n− 1}
n
2 + i

2 if i ∈ {4, 8, 12, . . . , n}
n
2 + i+1

2 if i ∈ {5, 9, 13, . . . , n− 3}
i−2

2 if i ∈ {6, 10, 14, . . . , n− 2}.

52 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

But the permutation π can be reduced to permutation K
n
2 , therefore dpt(π) =

dpt(K
n
2). Besides, permutation Mn can be reduced to permutation J

n
2 . Thus,

dpt(Ln) ≤ dpt(Mn−1 ◦ Ln) + dpt(Mn) = dpt(K
n
2) + dpt(J

n
2) = n

2 .

2. n ≡ 2 (mod 4).
In this case, we also divide the sorting process of permutation Ln into two
phases. In the first phase, we transform Ln into permutation On such that

On
i =

2 if i = 1
2i+ 1 if i ∈ {2, 4, 6, . . . , n2 − 1}
2i if i ∈ {3, 5, 7, . . . , n2}
1 if i = n

2 + 1
2(i− n

2)− 1 if i ∈ {n2 + 2, n2 + 4, n2 + 6, . . . , n− 1}
2(i− n

2)− 2 if i ∈ {n2 + 3, n2 + 5, n2 + 7, . . . , n}.

In the second phase, we transform On into the identity permutation. Since
transforming Ln into On is equivalent to transforming On−1 ◦ Ln into the identity
permutation, we can conclude that dpt(Ln) ≤ dpt(On−1 ◦ Ln) + dpt(On).
We have that

On−1
i =

n
2 + 1 if i = 1
1 if i = 2
n
2 + i+1

2 if i ∈ {3, 7, 11, . . . , n− 3}
n
2 + i+2

2 if i ∈ {4, 8, 12, . . . , n− 2}
i−1

2 if i ∈ {5, 9, 13, . . . , n− 1}
i
2 if i ∈ {6, 10, 14, . . . , n},

therefore the permutation π = On−1 ◦ Ln is such that

πi =

n
2 if i = 1
n
2 + 1 if i = 2
n
2 + i+1

2 if i ∈ {3, 7, 11, . . . , n− 3}
i−2

2 if i ∈ {4, 8, 12, . . . , n− 2}
i−1

2 if i ∈ {5, 9, 13, . . . , n− 1}
n
2 + i

2 if i ∈ {6, 10, 14, . . . , n}.

But the permutation π can be reduced to permutation K n−2
2 , therefore dpt(π) =

dpt(K
n−2

2). Besides, the permutation On can be reduced to permutation J
n+2

2 .
Thus, dpt(Ln) ≤ dpt(On−1 ◦ Ln) + dpt(On) = dpt(K

n−2
2) + dpt(J

n+2
2) = n

2 .

Since dpt(Ln) ≤ n
2 in both cases, we can conclude that dpt(Ln) = n

2 .

Lemma 10. Let P n be an unsigned permutation of size n, where n is an even integer
and n ≥ 6, such that

2.5. Conclusion 53

P n
i =

1 if i = 1
i+ 1 if i ∈ {2, 4, 6, . . . , n− 2}
i− 1 if i ∈ {3, 5, 7, . . . , n− 1}
n if i = n.

Then, we have dpt(P n) = n
2 .

Proof. Applying the prefix transposition pt(n−1, n) on P n, we obtain the permutation
π = P n ◦ pt(n− 1, n) such that

πi =

n− 2 if i = 1
1 if i = 2
i if i ∈ {3, 5, 7, . . . , n− 3}
i− 2 if i ∈ {4, 6, 8, . . . , n− 2}
n− 1 if i = n− 1
n if i = n.

But permutation P n can be reduced to permutation Ln−2, therefore dpt(P n) ≤ 1 +
dpt(Ln−2) = n

2 . Since dpt(P n) ≥ bpt(Pn)
2 = n−1

2 , we can conclude that dpt(P n) = n
2 .

Lemma 11. A5(P n) = n − 2.

Proof. The proof follows from induction on n. As for the base case, we have A5(P 6)
= 4. As for the induction step, assume that A5(P k) = k − 2 for k ∈ {6, 8, . . ., n}. If
permutation P n+2 is given as input to Algorithm 5, it will apply prefix transposition
pt(2, 3) followed by prefix transposition pt(2, 5), yielding the permutation π = P n+2

◦ pt(2, 3) ◦ pt(2, 5) such that

πi =

1 if i = 1
2 if i = 2
5 if i = 3
i+ 1 if i ∈ {4, 6, 8, . . . , n}
i− 1 if i ∈ {5, 7, 9, . . . , n+ 1}
n+ 2 if i = n+ 2.

But the permutation π can reduced to permutation P n, therefore A5(P n+2) = 2 +
A5(P n) = n and the lemma follows.

Theorem 3. The approximation ratio of Algorithm 5 is tight.

Proof. By lemmas 10 and 11, we have A5(Pn)
dpt(Pn) = 2n−4

n
. Since this ratio converges to 2

in the limit, the theorem follows.

2.5 Conclusion
It has been a long time since researchers have addressed the problem of finding a
shortest sequence of rearrangement events that transform the genome of one species

54 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

into another. Representing the order of the genes in a genome as permutations, the
previous problem can be equivalently stated as the combinatorial problem of sorting
a permutation using a minimum number of rearrangement events. In general, sorting
permutations using rearrangement events is a difficult problem; therefore, the best
known solution for many of its variants are approximation algorithms and heuristics.
That is why we have decided to build GRAAu, a tool for evaluating approximation
algorithms and heuristics for genome rearrangements.

To build this tool, we computed the rearrangement distances of all permutations
in Sn, 1 ≤ n ≤ 13, and in S±n , 1 ≤ n ≤ 10, with respect to a number of rearrangement
models regarded in the literature that take into account reversals or transpositions.
To best of our knowledge, this was the first time that the rearrangement distances
have been computed for these values of n. This achievement is attributable to our
development of a simple and flexible breadth-first search algorithm that is more effi-
cient in terms of memory usage than any other algorithm that we have found in the
literature. In addition, to improve its execution time, which is exponential on the size
of permutations, we have developed a way to parallelize it.

By analyzing the distribution of the rearrangement distances, we were able to
notice some interesting facts. First, we have looked for other works that also presented
the distribution of the rearrangement distances so that we could compare them with
the distribution we have computed, and we have discovered that the reversal distance
distribution presented by Kececioglu and Sankoff [84] is not correct. Then, we have
looked for conjectures on the diameter of Sn and S±n that could be validated. As a
result, we have verified that the conjecture of Dias and Meidanis [42] on the prefix
transposition diameter is valid for n = 12 and n = 13, whereas the conjecture of
Walter et al. [123] on the signed reversal and transposition diameter is not valid for
n = 7 and n = 9. For this reason, we have presented a new conjecture on the signed
reversal and transposition diameter. Last, as an attempt to better characterize how
the rearrangement distances are distributed, we have proposed two new measures –
the traversal diameter and the longevity – and we have presented conjectures on them
as well.

We have illustrated the application of GRAAu by using it to evaluate two approx-
imation algorithms for the problem of sorting by prefix reversals and two approxima-
tion algorithms for the problem of sorting by prefix transpositions. We have focused
on the use of GRAAu’s output for proving the tightness of the approximation ratio of
these approximation algorithms, and based on the values of maximum ratio and on
the permutations that exhibited it, we have proved that the approximation ratios of
three out of the four algorithms analyzed are tight. Although we have not been able
to prove the tightness of the approximation ratio of one approximation algorithm, we
have conjectured that its approximation ratio is tight because the maximum ratio ob-
tained for this algorithm was converging to the theoretical approximation ratio. The
tightness results regarding the two approximation algorithms for the problem of sort-

2.5. Conclusion 55

ing by prefix reversals contradict the hypothesis raised by Fischer and Ginzinger [55]
that the approximation ratio of the approximation algorithm yielded by their greedy
strategy may be lowered.

Finally, we remark that GRAAu can be used for purposes other than evaluat-
ing genome rearrangement algorithms. For instance, Labarre [90] has proved a lower
bound on the prefix transposition distance, and for comparing it to the lower bounds
proved by Dias and Meidanis [42] and Chitturi and Sudborough [29], he had to com-
pute the prefix transposition distance of all permutations in Sn for 1 ≤ n ≤ 12.
However, he could have used GRAAu to perform such comparison. By doing so, he
would benefit in two ways: (1) he would not spend time and effort computing the
distances, and (2) the comparison could have been performed for n = 13.

56 Chapter 2. An Audit Tool for Genome Rearrangement Algorithms

Chapter 3

A General Heuristic for Genome
Rearrangement Problems ∗

Abstract: In this paper we present a general heuristic for several problems in the genome
rearrangement field. Our heuristic does not solve any problem directly, it is rather used to
improve the solutions provided by any non-optimal algorithm that solve them. Therefore,
we have implemented several algorithms described in the literature and several algorithms
developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known prob-
lems in the genome rearrangement field. A total of 13 algorithms were implemented for
problems that use the notions of prefix and suffix operations. In addition, we worked on 5
algorithms for the classic problem of sorting by transposition and we conclude the experi-
ments by presenting results for 3 approximation algorithms for the sorting by reversals and
transpositions problem and 2 approximation algorithms for the sorting by reversals prob-
lem. Another algorithm with better approximation ratio can be found for the last genome
rearrangement problem, but it is purely theoretical with no practical implementation. The
algorithms we implemented in addition to our heuristic lead to the best practical results in
each case. In particular, we were able to improve results on the sorting by transpositions
problem, which is a very special case because many efforts have been made to generate
algorithms with good results in practice and some of these algorithms provide results that
equal the optimum solutions in many cases. Our source codes and benchmarks are freely
available upon request from the authors so that it will be easier to compare new approaches
against our results.

∗Ulisses Dias, Gustavo Rodrigues Galvão, Carla Négri Lintzmayer, and Zanoni
Dias. A general heuristic for genome rearrangement problems. Journal of Bioinfor-
matics and Computational Biology, Volume 12, Issue 03, 26 pages, 2014. Copyright
2014 Imperial College Press. DOI: http://dx.doi.org/10.1142/S0219720014500127

57

http://dx.doi.org/10.1142/S0219720014500127

58 Chapter 3. A General Heuristic for Genome Rearrangement Problems

3.1 Introduction

Genome rearrangements are mutational events that affect large stretches of the DNA
sequence. They occur when a chromosome breaks at two or more locations and its
pieces are reassembled in a different order. It was proposed in 1936 by Dobzhansky and
Sturtevant that the degree of disorder between two genomes can be an indicator of the
evolution distance between them [54]. Due to the principle of parsimony, it is common
to consider the minimum number of events that transform one genome into the other as
an approximation for the evolutive distance. The study of the combinatorial problems
in genome rearrangements area exists for over twenty years now [64,126] and despite
they have become, in some sense, independent of the application, their biological
background still inspires some variants.

Reversals and transpositions are the best studied rearrangement events. The for-
mer occurs when a block of DNA sequence is reverted and the latter occurs when a
block of DNA moves from one place to another in the same chromosome. The reversal
(transposition) distance is the minimum number of such operations that transforms
a given genome into another. Caprara [23] proved that finding this minimum number
of reversals is a NP-hard problem while Bulteau, Fertin and Rusu [22] proved the
same for transpositions. The best algorithms for both have an approximation factor
of 1.375 [15,48].

Several efforts have been made to consider algorithms that take more than one
rearrangement operation into account. Here, we consider the case when reversals
and transpositions are allowed. The first algorithm for this problem was developed by
Walter, Dias and Meidanis [123] with an approximation factor of 3. The author’s only
concern was to prove the theoretical approximation bound, so they overlooked some
details that could have made the algorithm more suitable for a practical analysis.
Thus, we decided to add these details in order to create a significantly improved
version of this algorithm (see Section 3.5).

The approximation factor for the sorting by transpositions and reversals problem
was later improved to 2k by Rahman, Shatabda and Hasan [107] where k is the
approximation ratio of the algorithm used for cycle decomposition. Although the
best approximation ratio for the cycle decomposition problem was recently published
by Chen [27] with k = 17

12 + ε ≈ 1.4167 + ε, for any positive ε, we implemented the
cycle decomposition algorithm devised by Christie [30] with k = 3

2 = 1.5 because it is
simpler. Therefore, all the algorithms for the sorting by reversals and transpositions
problem have the same ratio in our implementation.

When genome rearrangement operations affect segments from the beginning of
the genome, we call them prefix rearrangements. The well-known Pancake Flipping
Problem [46] considers prefix reversals and was proved recently to be NP-hard by
Bulteau, Fertin and Rusu [21]. The best algorithm has an approximation factor of
2 and it was given by Fischer and Ginzinger [55]. Lintzmayer and Dias [98] recently
gave an improved version of the same algorithm, which prefers bigger prefix reversals

3.1. Introduction 59

and, although still being a 2-approximation, in practice it showed better results.
When we consider prefix transpositions, the best algorithm is also a 2-approxima-

tion given by Dias and Meidanis [42], but the problem remains open. A greedy and
better version of their algorithm was given by Galvão and Dias [58].

Another open problem considers both prefix reversals and prefix transpositions.
It was introduced by Sharmin et al. [111], which also provided a 3-approximation
algorithm. Lintzmayer and Dias [98] gave an improved version of this algorithm with
greedy features that prefers prefix transpositions that remove two breakpoints at once
and bigger prefix reversals. Their algorithm still has an approximation factor of 3,
but presents better results in practice. Recently, Dias and Dias [41] presented a
2-approximation algorithm for the same problem.

It is also possible to consider operations restricted to the end of genomes. We
call them suffix rearrangements. The three problems involving prefix rearrangements
mentioned above were considered along with their suffix versions by Lintzmayer and
Dias [98]. They presented two 2-approximation algorithms for each of the three new
problems: considering prefix reversals and suffix reversals, considering prefix transpo-
sitions and suffix transpositions and considering prefix reversals, prefix transpositions,
suffix reversals and suffix transpositions. The two algorithms for each problem follow
the same general idea. One of them extends the existing algorithm for the problem
that allows only the prefix operations; generally, the actions of the prefix algorithm
are mimicked and merged with the corresponding actions of the suffix. The second
is always an improved version of the first one that uses greedy choices such as bigger
operations or operations that remove more breakpoints.

In sum, approximation algorithms have been proposed for several rearrangement
problems. The algorithms provide non-optimal solutions in many cases even for small
permutations. Here, we present a method to improve these solutions. We refer to
our heuristic as general because it can be used to improve solutions provided by any
non-optimal algorithm in the genome rearrangement field. Therefore, the previously
mentioned approximation algorithms can benefit from this work. We highlight that
our heuristic is not restricted to the problems we tested. We describe in the paper
some properties that must be satisfied in order to apply our approach.

After applying our heuristic, we were able to generate the best results in practice
for each genome rearrangement problem.

This paper is organized as follows. Section 3.2 defines the notation used throughout
the paper and provides a formal presentation for each problem. Section 3.3 describes
our general heuristic. Section 3.4 presents the database we created in order to fulfill
a requirement in our heuristic. Section 3.5 shows the improvements obtained by
applying our heuristic on the solutions provided by a set of non-optimal algorithms.
Finally, Section 3.6 condenses the main aspects of this work.

60 Chapter 3. A General Heuristic for Genome Rearrangement Problems

3.2 Background

We are interested in the model where the order of genes is known and where the
genomes share a subset of genes without duplications, which allows us to represent
genomes using permutations. A permutation π is a bijection of {1, 2, . . ., n} onto
itself. The group of all permutations of {1, 2, . . ., n} is denoted by Sn, and we write
a permutation π ∈ Sn as π = (π1 π2 . . . πn) such that π(i) = πi.

The composition of two permutations π and σ is the permutation π · σ = (πσ1 πσ2

. . . πσn). We can see the composition as the relabeling of elements in π according
to elements in σ. Let ι = (1 2 . . . n) be the identity permutation. We can easily
verify that ι is a neutral element such that π · ι = ι · π = π. We define the inverse
of a permutation π as the permutation π−1 such that π · π−1 = π−1 · π = ι and it
satisfies π−1

πi
= i. In other words, it is the function that returns the position in π of

each element πi.
In this paper, we mention several distance genome rearrangement problems that

are defined as follows. Let ξ be a set of rearrangement events that can be applied to
π, the distance dξ(π) is the minimum number t of operations ξ1, ξ2, . . . ξt such that
π · ξ1 · ξ2 . . . ξt = ι.

A transposition is an operation ρt(i, j, k), 1 ≤ i < j < k ≤ n+1, that moves blocks
of contiguous elements of a permutation π in such a way that (π1 . . . πi−1 πi . . . πj−1

πj . . . πk−1 πk . . . πn) · ρt(i, j, k) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). The
transposition distance of a permutation π is denoted by dt(π).

A prefix transposition ρpt(j, k), 2 ≤ j < k ≤ n + 1, is an operation equivalent
to the transposition ρt(1, j, k). A suffix transposition ρst(i, j), 1 ≤ i < j ≤ n, is
an operation equivalent to the transposition ρt(i, j, n + 1). The prefix transposition
distance of a permutation π is denoted by dpt(π). The prefix and suffix transposition
distance of a permutation π is denoted by dptst(π).

A reversal is an operation ρr(i, j), 1 ≤ i < j ≤ n, that reverses the order of π[i..j].
Therefore, (π1 . . . πi−1 πi πi+1 . . . πj πj+1 . . .πn) · ρr(i, j) = (π1 . . . πi−1 πj . . . πi+1 πi
πj+1 . . .πn). The reversal distance of permutation π is denoted by dr(π). When
reversals and transpositions are allowed, we have the distance problem denoted by
drt(π)

A prefix reversal ρpr(j), 2 ≤ j ≤ n, is equivalent to the reversal ρr(1, j). The suffix
reversal ρsr(i), 1 ≤ i < n, is an operation equivalent to the reversal ρr(i, n). The
prefix reversal distance of a permutation π is denoted by dpr(π). The prefix and suffix
reversal distance of a permutation π is denoted by dprsr(π).

The prefix reversal and prefix transposition distance is denoted by dprpt(π). When
prefix and suffix transpositions as well as prefix and suffix reversals are allowed, we
have the distance problem denoted by dprptsrst(π).

Given a permutation π ∈ Sn, we extend it with two elements π0 = 0 and πn+1 =
n + 1. The extended permutation is still denoted as π. A transposition breakpoint
of π ∈ Sn is a pair of adjacent elements that are not consecutive, that is, a pair (πi,

3.2. Background 61

πi+1) such that πi+1 − πi 6= 1, 0 ≤ i ≤ n.
Transposition breakpoints divide a permutation into transposition strips, which

are maximal intervals with no transposition breakpoints. Christie [30] showed that
every permutation π can be uniquely transformed into a reduced permutation πr such
that dt(π) = dt(πr). Moreover, Dias and Meidanis [42] showed that this property is
also valid for the prefix transposition distance, that is, dpt(πr) = dpt(π).

We say that a permutation is reduced if it only contains transposition strips of
length 1. We can reduce any permutation that contains one or more transposition
strips of length greater than 1 as follows. Assuming the permutation is in the extended
form, keep the minimal element of each strip of π and discard the others. After that,
renumber the sequence appropriately. For example, to reduce the permutation (0 2 3 1
4 5 6), in which transposition strips are underlined, we keep only the minimal element
of each strip and generated (0 2 1 4). This permutation is not valid because the
element “3” is missing, so we renumber it in order to obtain the reduced permutation
(0 2 1 3).

The reduced permutation as defined above cannot be used for distance problems
that involve any kind of reversals. That happens because usually dξ(πr) 6= dξ(π) if
r, pr, sr ∈ ξ. We have tried to circumvent this issue by adopting reversal breakpoints
and partially reducing the input permutations. A pair of elements πi and πi+1, with
0 ≤ i ≤ n, is a reversal breakpoint if |πi+1 − πi| 6= 1.

When we are dealing with prefix rearrangement problems (either prefix transposi-
tion or prefix reversals), we always consider the pair (π0, π1) as a breakpoint. Similarly,
when we are dealing with suffix rearrangement problems, we always consider the pair
(πn, πn+1) as a breakpoint.

Reversal breakpoints divide a permutation into reversal strips, which are maximal
intervals with no reversal breakpoints. We use the notion of reversal strips to partially
reduce permutations. We say that a permutation is partially reduced if it only contains
reversal strips of length 1 or 2.

We can transform any permutation π that contains one or more reversal strips of
length greater than 2 into a partially reduced permutation πpr as follows. Assuming π
is a permutation in the extended form, for each strip longer than 2 elements we keep
the first and the second elements and discard the others. After that, we renumber the
sequence appropriately.

For example, to partially reduce the permutation (0 2 3 1 4 5 6 9 8 7 10), in which
reversal strips are underlined, we keep only the first and the second element of each
strip longer than 2 elements and generate (0 2 3 1 4 5 9 8 10). This permutation is
not valid because the elements “6” and “7” are missing, so we renumber it in order to
obtain the partially reduced permutation (0 2 3 1 4 5 7 6 8).

When we partially reduce a permutation, we save the number of discarded ele-
ments from each reversal strip in order to later recreate the original permutation. In
the previous partial reduction example, the array [0, 0, 0, 1, 1, 0] stores the number of

62 Chapter 3. A General Heuristic for Genome Rearrangement Problems

discarded elements and it is enough to recover the original permutation. It informs
that one element was removed from the fourth reversal strip and one was removed from
the fifth reversal strip, so we can add those elements taking into account that reversal
strips are either increasing or decreasing sequences of consecutive elements. After
that, we renumber the sequence appropriately to obtain the original permutation.

The procedure for recreating a reduced permutation is similar, but in this case
each element in the reduced permutation is a transposition strip (note that we do not
consider a sequence of decreasing elements as a transposition strip). Therefore, the
discarded elements were increasing sequences of consecutive elements. So, we simply
add as many elements as indicated by the array in increasing order and later renumber
the sequence appropriately.

For conciseness, we may henceforth talk of breakpoints and strips where we mean
reversal or transposition breakpoints and reversal or transposition strips. To distin-
guish between each case, one should keep in mind that we use the notion of transposi-
tion breakpoints or transposition strips if reversals are not allowed by the rearrange-
ment problem. Other than that, breakpoints and strips may be safely understood as
reversal breakpoints and reversal strips. Also, note that the elements (π0, π1) and
(πn, πn+1) are always breakpoints if at least one of the allowed operations are prefix
operations or suffix operations, respectively.

3.3 A General Heuristic

Let ξ be a set of allowed rearrangement events that characterize a distance problem.
We represent a solution as a sequence S =< S0, S1, . . ., Sm >, where each Si is a
permutation, Si = Si−1 · ρξ, 1 ≤ i ≤ m, S0 is the input permutation and Sm = ι. A
sliding window W =< Sstart, . . . , Send > is a subsequence of S, 0 ≤ start < end ≤ m.

Our heuristic works by iteratively improving an initial solution. Each step makes a
local change within a sliding window, which moves across the solution. We repeat this
step until the sliding window reaches the last element in the solution. The main idea
here is to transform the sliding window into a small instance of the sorting problem.
Then, we can retrieve the optimal solution for that instance in the database built as
described in Section 3.4.

Our database stores the exact solution for all possible permutations whose sizes go
from 1 to 12. That said, we constrain the size of the sub-problem instances accordingly,
and hence limit the number of elements in the sliding window.

Let W =< Sstart, Sstart+1, . . . , Send > be our window. The sequence of operations
that transform Sstart into Send is the same that would be used to transform S−1

end ·Sstart
into ι. That is because we can relabel the entire window using composition in order to
create the sequence < S−1

end ·Sstart, S−1
end ·Sstart+1, . . . , S

−1
end ·Send >, where S−1

end ·Send = ι.
This property offers a clue about how the sub-problem can be created from a

given window. In cases where reversals are not being used, we look for a window

3.3. A General Heuristic 63

where π = S−1
end · Sstart is equivalent by reduction to a permutation πr, such that

|πr| ≤ 12, then we can retrieve the solution for π in our database and use it to mimic
a solution for S−1

end · Sstart. That solution for S−1
end · Sstart can be transformed back into

a window W1 =< Sstart, . . . , Send >. If |W1| < |W | we replace the window W for the
optimized window W1 in S.

The procedure for the cases where reversals are allowed is similar, except that we
partially reduce π to the permutation πpr. In this case, we look for windows such that
π = S−1

end · Sstart is equivalent by partial reduction to a permutation πpr, such that
|πpr| ≤ 12.

Our method begins by defining S0 as the first element in the sliding window
(start = 0). The last element in the window depends on the database we have
available. Algorithm 6 shows how to dynamically identify the last element in the
sliding window from the solution S and the index of the first element.

In short, Algorithm 6 searches for the biggest index end such that the reduction of
S−1
end ·Sstart results in a permutation whose size is less than or equals to 12. Therefore,

the while loop in Algorithm 6 stops when we find the end or when there is no more
permutations in S. The function reduce in line 4 performs a reduction or partial
reduction depending on the problem we are dealing with. The discarded variable is
an array with the number of discarded elements from each strip. This array helps to
recreate the original permutation as explained in Section 3.2.

Algorithm 6: Sliding Window
Data: S =< S0, S1, . . . , Sm >, start,Database Size

1 end← start+ 1
2 while True do
3 π ← S−1

end · Sstart
4 πred, discarded← reduce(π)
5 if |πred| > Database Size then
6 return end− 1
7 if end = m then
8 return end

9 end← end+ 1

We start Algorithm 6 by setting end = start + 1 in line 1. This line could be
optimized depending on the operation we allow. For example, for transpositions we
know that each operation can change the number of breakpoints by at most 3. Thus,
we could have made end = start+ bDatabase Size/3c. However, we want to let this
algorithm as generic as possible.

Algorithm 7 shows our iterative procedure. The stop condition occurs when Send
is the last element in S (lines 14–15). Each step we select a new sliding window by
incrementing start (line 16) and using Algorithm 6 to find a proper end (line 3).

After that, we search the database for a reduced version πred of the permutation

64 Chapter 3. A General Heuristic for Genome Rearrangement Problems

Algorithm 7: General Heuristic
Data: S =< S0, S1, . . . , Sm >,Database

1 start← 0
2 while True do
3 end← Sliding Window(S, start,Database.size)
4 W ←< Sstart, . . . , Send >
5 π ← S−1

end · Sstart
6 πred, discarded← reduce(π)
7 database seq ← Database.get(πred)
8 if |database seq| < end− start+ 1 then
9 W1 ← []

10 for each permutation in database seq do
11 expanded← expand(permutation, discarded)
12 W1.append(Send · expanded)
13 S.replace(W,W1)
14 if end = m then
15 return S
16 start← start+ 1

π = S−1
end · Sstart and retrieve a sorting sequence for it (lines 5 – 7). This sequence can

be adjusted to fit in S by using a 2-step process. The first step is to expand each
permutation in the sorting sequence. Recall that we generate the discard array every
time we reduce (or partially reduce) a permutation. This array is helpful not only to
transform πred back into π, but also to transform the sorting sequence for πred into a
sorting sequence for π. The procedure that performs this task is done by the function
expand in line 11. We have already explained this procedure with an example in
Section 3.2.

After the first step, we have a sorting sequence X =< S−1
end ·Sstart, . . . , ι >. There-

fore, we build a new window by applying the composition Send · Xi to each element
Xi in X (line 12). Since Send · S−1

end · Sstart = Sstart and Send · ι = Send, we have just
created a new window that can easily replace the original window in S (line 13).

Algorithm 6 runs in O(n), where n is the number of elements in each permutation
in the sorting sequence S =< S0, S1, . . . , Sm >. Lines 3 and 4 are the most time
consuming steps inside the while loop that goes from line 2 to line 9. The number
of iterations is limited by a constant factor that depends on Database Size (which
in our case is 12) and on the number of breakpoints that can be removed by each
genome rearrangement operation. In the worst case, one breakpoint can be removed
by each operation in the genome rearrangement problems we have studied in this
paper. Therefore, the stated complexity follows.

Algorithm 7 runs in O(mn) time, since the number of iterations performed by the
while loop (lines 2 – 16) is limited by the number of elements in S and the most time

3.4. Solution Database 65

consuming steps in the loop are O(n). Note that the for-loop in lines 10–12 iterates
over the elements in the window, which is limited by a constant, as we explained
above for Algorithm 6.

3.4 Solution Database
We have built a database containing optimal solutions for small instances of the
genome rearrangement problems described in Section 3.2. As mentioned in Section
3.3, this database stores solutions for all possible permutations up to 12 elements. We
have not considered longer permutations due to space constraints.

We generated the solutions by performing breadth-first search in the symmetric
group Sn, 1 ≤ n ≤ 12. We start by initializing a permutation queue Q with ι and set
its solution to < ι >. While Q is not empty, we remove an arbitrary permutation π

from Q and compute all permutations that can be generated from π by applying on
it every possible rearrangement event belonging to ξ that does not break any strip of
π. Each permutation, say γ, that has not been generated yet is added to Q and its
solution is set to < γ, Tk, Tk−1, . . ., ι >, where < Tk, Tk−1, . . ., ι > is the solution of
permutation π.

Note that we have only considered rearrangement events that do not break strips.
This is because the heuristic uses the solution to an instance stored in the database
to derive a solution to an arbitrary instance of a genome rearrangement problem.
Regarding the sorting by transposition problem, Christie [30] shows that, for any
permutation π, there is a minimum sequence of transpositions that sorts π without
creating new breakpoints. That said, our database stores the optimal solution for
any instance of the sorting by transpositions problem. The same happens for the
sorting by prefix transpositions problem [42]. However, we cannot guarantee it for
any instance of problems that use reversals. In this case, our database stores short
solutions that can be used to replace those proposed by approximation algorithms,
but they can possibly be non-optimal.

3.5 Experimental Results
In order to verify the performance of the proposed heuristic, we implemented 23
approximation algorithms and applied our heuristic to the solutions provided by them.
Table 3.1 refers to each algorithm implemented by us for the sake of this analysis. We
also referred to the original authors of each algorithm and to the papers where they
were initially published. We ran all these algorithms on the same set of arbitrarily
large permutations. This set is composed of 58,000 random permutations of sizes
ranging from 15 to 300 in intervals of 5, with 1,000 permutations of each size.

Table 3.1 also shows the approximation ratio for each algorithm we implemented.
On a side note, we highlight that the algorithm coded as RSH* was originally proposed

66 Chapter 3. A General Heuristic for Genome Rearrangement Problems

Table 3.1: List of algorithms used in this paper.

Problem Code Authors Ratio

Prefix Reversal FG Fischer and Ginzinger [55] 2
LD Lintzmayer and Dias [98] 2

Prefix Reversal and Prefix
Transposition

DD Dias and Dias [41] 2
LD Lintzmayer and Dias [98] 3
SEA Sharmin et al. [111] 3

Prefix Reversal, Prefix Transposition,
Suffix Reversal and Suffix Transposition

LD1 Lintzmayer and Dias [98] 2
LD2 Lintzmayer and Dias [98] 2

Prefix Reversal and Suffix Reversal LD1 Lintzmayer and Dias [98] 2
LD2 Lintzmayer and Dias [98] 2

Prefix Transposition and Suffix
Transposition

LD1 Lintzmayer and Dias [98] 2
LD2 Lintzmayer and Dias [98] 2

Prefix Transposition DM Dias and Meidanis [42] 2
GD Galvão and Dias [58] 2

Reversal C Christie [30] 1.5
KS Kececioglu and Sankoff [84] 2

Reversal and Transposition
DEA Dias et al.This 3
RSH* Rahman, Shatabda and

Hasan [107]
3

WDM Walter, Dias and Meida-
nis [123]

3

Transposition

BP Bafna and Pevzner [10] 1.5
DD1 Dias and Dias [36] 1.5
DD2 Dias and Dias [38] 1.375
EH Elias and Hartman [48] 1.375
WDM Walter, Dias and Meida-

nis [124]
2.25

as a 2k-approximation algorithm by Rahman, Shatabda and Hasan [107], where k is
the approximation ratio of the algorithm used for cycle decomposition. Since the
best algorithm for the cycle decomposition problem has an approximation factor k =
17
12 + ε ≈ 1.4167 + ε for any positive ε [27], it would be reasonable to expect an
approximation ratio approximately equal to 2.83 for Rahman, Shatabda and Hasan’s
algorithm. However, we implemented the cycle decomposition algorithm devised by
Christie [30] with k = 3

2 = 1.5 because it is simpler. Therefore, our implementation
guarantees the approximation factor 3.

A second remark about Table 3.1 regards the algorithm coded as DEA. We imple-
mented this algorithm based on a greedy removal of reversal breakpoints similarly to
WDM. However, the WDM algorithm only tries to remove one transposition break-
point each time by increasing the first strip with its next element. This approach
suffices to prove the theoretical approximation bound.

Our algorithm finds a better outcome by always trying to remove the most amount
of breakpoints. One must keep in mind that we will refer only to transpositions
ρt(i, j, k) such that (πi−1, πi), (πj−1, πj) and (πk−1, πk) are breakpoints, and reversals
ρr(l,m) such that (πl−1, πl) and (πm, πm+1) are breakpoints. First, the algorithm tries

3.5. Experimental Results 67

to remove three breakpoints with one transposition. This is possible if πi = πk−1± 1,
πj = πi−1 ± 1 and πk = πj−1 ± 1. If that is not possible, it tries to remove two
breakpoints with either a transposition or a reversal. A transposition removes two
breakpoints if either (i) πi = πk−1 ± 1 and πj = πi−1 ± 1, (ii) πi = πk−1 ± 1 and
πk = πj−1 ± 1, or (iii) πj = πi−1 ± 1 and πk = πj−1 ± 1. A reversal removes two
breakpoints if πl = πm+1±1 and πm = πl−1±1. Finally, if removing two breakpoints is
not possible, the algorithm removes only one, with either a transposition or a reversal.
A transposition removes one breakpoint if one of the following three circumstances
occurs: (i) πi = πk−1± 1, (ii) πj = πi−1± 1, or (iii) πk = πj−1± 1. A reversal removes
one breakpoint if either πl = πm+1 ± 1 or πm = πl−1 ± 1.

Note that the search for any of these operations (that remove three, two or one
breakpoint) is O(n), it is enough to vary one of the indices to find the others.

The results for all algorithms in Table 3.1 are shown in figures 3.1 to 3.9. Each
figure relates to a specific genome rearrangement problem and presents four types of
graphics.

• The first type reports in percentages how many times the heuristic improved the
initial solutions. Keep in mind that this graph does not make any assumption
about individual improvements. It simply informs the percentage of the 1,000
instances of each size that had the initial solution improved.

• The second type complements the data already available in the first graph.
It presents the average improvement of the solutions when the initial solution
has improved. In other words, every time our heuristic improves the initial
solution provided by the algorithm, we calculate the difference in size between
the sequence produced by our implementation and the initial solution. The
graph plots the average value.

• The third graph plots the average distance over all permutations of a given
size after we run our heuristic on them. We also add a lower bound (LB) for
comparison purposes.

• The fourth graph plots the average approximation ratio after we run our heuris-
tic on them. To plot this graph, we used the same lower bound used in the third
graph.

The performance of our method varies depending on the algorithm that produces
the initial solution. The main explanation for the variation is how close to the opti-
mal solution the result produced by the algorithm is. Usually, the closer the initial
solutions are to the optimal solution, the more difficult it is to improve them.

As an example for the sorting by transposition problem, many efforts have been
made in order to generate algorithms with good practical results. Therefore, the
transposition problem is the one such that our heuristics leads to lowest improvements.

68 Chapter 3. A General Heuristic for Genome Rearrangement Problems

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Prefix Reversals

FG
LD

0

50

100

150

200

250

300

350

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

FG
LD
LB

1

1.5

2

2.5

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

FG
LD

1

1.05

1.1

1.15

1.2

1.25

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

FG
LD

Figure 3.1: Results regarding the algorithms for the problem of sorting by prefix
reversals. We were able to improve 68.7% of the solutions provided by LD, whereas
47.1% of FG solutions were improved. In addition, the average improvement for LD
was around 1.9, while it was around 1.5 for FG. The lower bound used in our analysis
is dpr(π) ≥ bpr(π)− 1.

3.5. Experimental Results 69

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Prefix Reversals and Prefix Transpositions

DD
LD

SEA

0

50

100

150

200

250

300

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

DD
LD

SEA
LB

1

1.5

2

2.5

3

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

DD
LD

SEA

1

1.2

1.4

1.6

1.8

2

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

DD
LD

SEA

Figure 3.2: Results regarding the algorithms for the problem of sorting by prefix
reversals and prefix transpositions. We observe that the algorithm SEA benefits more
from our approach, followed by DD. The LD algorithm benefits less than the others.
Overall, we were able to improve 86.1% of the solutions provided by SEA, 77.5% of
the solutions provided by DD and 70.8% of the solutions provided by LD. The average
improvement is around 2.2, 1.9 and 1.7 for SEA, DD and LD, respectively. The lower
bound used in our analysis is dprpt(π) ≥

⌈
bprpt(π)−1

2

⌉
.

70 Chapter 3. A General Heuristic for Genome Rearrangement Problems

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Prefix Reversals, Prefix Transpositions, Suffix Reversals and Suffix Transpositions

LD1
LD2

0

50

100

150

200

250

300

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

LD1
LD2

LB

1

1.5

2

2.5

3

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

LD1
LD2

1

1.2

1.4

1.6

1.8

2

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

LD1
LD2

Figure 3.3: Results regarding the algorithms for the problem of sorting by prefix
reversals, prefix transpositions, suffix reversals and suffix transpositions. LD2 is an
improved version of LD1 and provides shorter solutions in almost every case. We were
able to improve 86.2% of the solutions provided by LD1 and 79.4% of the solutions
proved by LD2. In addition, the average improvement for LD1 and LD2 is 2.2 and
1.6, respectively. The lower bound used in our analysis is dprptsrst(π) ≥

⌈
bprptsrst(π)−2

2

⌉
.

3.5. Experimental Results 71

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Prefix Reversals and Suffix Reversals

LD1
LD2

0

50

100

150

200

250

300

350

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

LD1
LD2

LB

1

1.5

2

2.5

3

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

LD1
LD2

1

1.05

1.1

1.15

1.2

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

LD1
LD2

Figure 3.4: Results regarding the algorithms for the problem of sorting by prefix
reversals and suffix reversals. LD2 is an improved version of LD1 and provides shorter
solution in almost every case. So, it would be reasonable to expect that LD1 should
benefit more from our approach than LD2. However, it is not the case since we were
able to improve 68.6% of the solutions provided by LD1 and 76.9% of the solutions
provided by LD2. In addition, the average improvement for LD1 and LD2 is 1.9 and
2.3, respectively. The lower bound used in our analysis is dprsr(π) ≥ bprsr(π)− 2.

72 Chapter 3. A General Heuristic for Genome Rearrangement Problems

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Prefix Transpositions and Suffix Transpositions

LD1
LD2

0

50

100

150

200

250

300

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

LD1
LD2

LB

1

2

3

4

5

6

7

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

LD1
LD2

1

1.2

1.4

1.6

1.8

2

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

LD1
LD2

Figure 3.5: Results regarding the algorithms for the problem of sorting by prefix
transpositions and suffix transpositions. We were able to improve almost 100.0% of
the solutions provided by LD1 and 76.8% of the solutions provided by LD2. The
average improvement is around 6.4 and 1.9 for LD1 and LD2, respectively. This
discrepancy can be explained by the fact that LD2 is way better than LD1. As an
example, for n = 300, LD2 can return solutions that have 80 less operations than LD1
in 86.2% of the cases. The lower bound used in our analysis is dptst(π) ≥

⌈
bptst(π)−2

2

⌉
.

3.5. Experimental Results 73

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Prefix Transpositions

DM
GD

0

50

100

150

200

250

300

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

DM
GD
LB

1

2

3

4

5

6

7

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

DM
GD

1

1.2

1.4

1.6

1.8

2

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

DM
GD

Figure 3.6: Results regarding the algorithms for the problem of sorting by prefix
transpositions. We observe that the algorithm DM was improved in almost every case
and the average improvement is around 6.0. The improvements for the GD algorithm
were more modest, so that 66.4% of the solutions were improved and the average
improvement is around 1.7. The lower bound used in our analysis is dpt(π) ≥

⌈
bpt(π)−1

2

⌉
.

74 Chapter 3. A General Heuristic for Genome Rearrangement Problems

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Reversals

C
KS

0

50

100

150

200

250

300

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

C
KS
LB

1

1.25

1.5

1.75

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

C
KS

1

1.1

1.2

1.3

1.4

1.5

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

C
KS

Figure 3.7: Results regarding the algorithms for the problem of sorting by reversals.
We were able to improve 74.9% of the solutions provided by KS and only 15.1% of
the solutions provided by C. The average improvement was about 1.5 and 1.1 for
KS and C, respectively. The lower bound used in our analysis was developed by
Kececioglu and Sankoff 21: dr(π) ≥

⌈
1
2m+ 2

3(br(π)−m)
⌉
, where at least m reversals

are guaranteed to eliminate 2m breakpoints.

3.5. Experimental Results 75

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Reversals and Transpositions

DEA
RSH*
WDM

0

50

100

150

200

250

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

DEA
RSH*
WDM

LB

2

4

6

8

10

12

14

16

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

DEA
RSH*
WDM

1

1.5

2

2.5

3

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

DEA
RSH*
WDM

Figure 3.8: Results regarding the algorithm for the problem of sorting by reversals
and transpositions. We observe that the algorithm WDM was improved in almost
every case and the average improvement was about 6.9. The algorithm RSH* was
improved in 93.4% of the cases and the average improvement was about 9.1. The
algorithm DEA was improved in 53.5% of the cases and the average improvement was
about 1.3. The lower bound used in our analysis is drt(π) ≥

⌈
brt(π)

3

⌉
.

76 Chapter 3. A General Heuristic for Genome Rearrangement Problems

0%

20%

40%

60%

80%

100%

15 50 100 150 200 250 300

Im
pr

ov
ed

 P
er

m
ut

at
io

ns

Size of permutations

Transpositions

BP
DD1
DD2

EH
WDM

0

20

40

60

80

100

120

140

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
ed

 D
is

ta
nc

e

Size of permutations

BP
DD1
DD2

EH
WDM

LB

1

1.03

1.06

1.09

1.12

1.15

15 50 100 150 200 250 300

A
ve

ra
ge

 Im
pr

ov
em

en
t

Size of permutations

BP
DD1
DD2

EH
WDM

1

1.01

1.02

1.03

1.04

15 50 100 150 200 250 300

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n

R
at

io

Size of permutations

BP
DD1
DD2

EH
WDM

Figure 3.9: Results regarding the 5 algorithms for the problem of sorting by transpo-
sitions. These algorithms did not benefit too much from our heuristic and we believe
that such modest results are due to the fact that they provide near-optimal solutions.
The second graph shows that the algorithms are very close to the lower bound on
average. The lower bound used in our analysis is dt(π) ≥

⌈
n+1−codd(π)

2

⌉
, where codd is

the amount of cycles with an odd number of black edges in the directed edge-colored
cycle graph developed by Bafna and Pevzner [10].

3.5. Experimental Results 77

As we observe in the second graph in Figure 3.9, on average the improved results
are almost equal to the lower bound, which shows that not much could be done to
improve them.

Table 3.2 summarizes some key points for the sorting by transpositions problem.
It reports the average distance for each approximation algorithm for the sorting by
transpositions problem. Observe that the algorithm WDM plus our heuristic is the
approach that offers the best results on average. When we do not use the heuristic,
the best algorithm is DD1. We highlight the best results on average for each size.

The results presented so far are averages. In Table 3.3, we present results con-
cerning the fraction of the instances in which each program was the winner (provider
of the shorter sequence that sorts the input permutation). This table reinforces the
idea that our heuristic leads to the best practical result. Clearly, DD1 is the best
algorithm among those that do not use our heuristic. When we consider the results
with our heuristic, we observe that WDM was improved more often than the others,
and in the end it generates the shortest sequence in more cases.

It is worth mentioning that after using our heuristic we were able to generate the
best practical results to date for the sorting by transposition problem as well as the
others.

The other rearrangement problems found larger improvements. Table 3.4 summa-
rizes the results shown in the graphs by considering all the 58,000 test cases at once.
The column “(%) of Improvement” shows the percentage of improved solutions and
the column “Average Improvement” complements that information by reporting the
average difference in size between the sequence produced by our implementation and
the initial solution on cases when our heuristic improves the initial solution.

Table 3.2: Average distance for each approximation algorithm for the sorting by trans-
positions problem. We highlight the best results produced both with and without our
heuristic.

Code Size of Permutation
50 100 150 200 250 300

O
ri

gi
na

l BP 25.6 50.9 76.0 101.2 126.4 151.5
DD1 25.0 49.9 74.8 99.8 124.7 149.7
DD2 25.1 50.0 74.9 99.9 124.7 149.8
EH 25.5 50.4 75.3 100.3 125.1 150.2
WDM 25.2 50.0 74.9 99.9 124.8 149.8

Im
pr

ov
ed

BP 25.4 50.6 75.7 100.9 126.1 151.3
DD1 24.9 49.8 74.7 99.7 124.7 149.7
DD2 25.1 49.9 74.8 99.8 124.7 149.7
EH 25.2 50.2 75.1 100.1 125.0 150.0
WDM 24.9 49.7 74.6 99.6 124.4 149.5

Lower Bound 24.6 49.5 74.4 99.4 124.3 149.3

78 Chapter 3. A General Heuristic for Genome Rearrangement Problems

Table 3.3: Percentage of instances in which each program yielded the best results for
the sorting by transpositions problem. Columns do not add up to 100% because of
ties. Best results highlighted.

Code Size of Permutation
50 100 150 200 250 300

O
ri

gi
na

l BP 43.2 26.0 18.7 15.7 12.1 9.2
DD1 85.3 78.1 75.1 71.5 69.2 70.9
DD2 73.2 67.1 64.4 64.2 64.3 62.9
EH 45.5 38.4 36.2 34.8 38.3 36.9
WDM 65.8 62.2 61.2 60.2 60.9 60.1

Im
pr

ov
ed

BP 53.7 33.9 24.1 20.7 14.7 12.0
DD1 86.6 78.0 75.0 70.5 68.6 69.2
DD2 73.3 68.3 64.6 64.4 63.8 61.1
EH 62.7 50.7 46.6 48.1 49.8 47.9
WDM 91.1 88.6 86.7 86.1 89.4 87.0

The columns “Average Original Distance” and “Average Improved Distance” show
the Average distance for each approximation algorithm both with and without our
heuristic, respectively. The last two columns “Average Improved Ratio” and “Maxi-
mum Improved Ratio” show how the approximation ratio behaves. The approximation
ratio is calculated with the lower bounds shown in figures 3.1 to 3.9.

Table 3.4 allows us to check which algorithm is producing the best results. Usually,
the algorithm that produces the best initial solution leads to the best result after
applying our heuristic, except for the sorting by transpositions problem that we have
mentioned before.

For the sorting by prefix reversals problem, LD has a slight advantage and benefits
more from our heuristic than FG, but it is not enough to make the difference very
remarkable. In the end, the approximation ratios are very similar.

For the sorting by prefix reversals and prefix transpositions problem, LD is the
best before and after applying our heuristic, which is unexpected since this is a 3-
approximation algorithm and DD guarantees the approximation ratio of 2. Observe,
however, that the maximum approximation ratio presented by LD in our experiments
after applying our heuristic is 1.889, which suggests that one could work on this
algorithm in order to decrease the theoretical approximation bound.

For the sorting by prefix reversals and suffix reversals problem, the best algorithm
(coded as LD2) benefits more from our heuristic. For the sorting by prefix reversals,
prefix transpositions, suffix reversals and suffix transpositions problem, the sorting
by prefix transpositions and suffix transpositions problem and the sorting by prefix
transpositions problem, the worst algorithms (coded as LD1) are the ones which
benefit more from our heuristic. Indeed, the solutions provided by them were improved
in many cases (see column “(%) of Improvement”).

3.5.
Experim

entalR
esults

79

Table 3.4: Summary of the results produced for each algorithm. The values are averages over all the 58,000 test instances of sizes
ranging from 15 to 300 in intervals of 5, with 1,000 permutations of each size.

Problem Code
(%) of
Improve-
ment

Average
Improve-
ment

Average
Original
Distance

Average
Improved
Distance

Average
Improved
Ratio

Maximum
Improved
Ratio

Prefix Reversal FG 47.09 1.47 190.73 190.03 1.207 1.409
LD 68.68 1.92 190.43 189.10 1.204 1.419

Prefix Reversal and Prefix
Transposition

DD 77.52 1.93 111.17 109.65 1.404 1.857
LD 70.80 1.67 109.80 108.60 1.388 1.857
SEA 86.13 2.18 153.76 151.88 1.916 2.111

Prefix Reversal, Prefix Transposition,
Suffix Reversal and Suffix Transposition

LD1 86.18 2.19 152.92 151.02 1.917 2.000
LD2 79.34 1.65 106.74 105.43 1.361 1.875

Prefix Reversal and Suffix Reversal LD1 68.57 1.91 178.17 176.85 1.133 1.391
LD2 76.93 2.26 174.89 173.14 1.112 1.321

Prefix Transposition and Suffix
Transposition

LD1 99.99 6.36 153.05 146.69 1.818 1.973
LD2 76.77 1.86 102.16 100.73 1.288 1.667

Prefix Transposition DM 99.95 5.98 153.04 147.07 1.811 1.978
GD 66.44 1.66 106.00 104.89 1.330 1.588

Reversal C 15.08 1.13 145.22 145.05 1.373 1.489
KS 74.93 1.54 150.08 148.93 1.417 1.556

Reversal and Transposition
DEA 53.54 1.35 83.49 82.76 1.555 1.875
RSH* 93.42 9.06 114.57 105.89 1.960 2.315
WDM 99.71 6.95 146.52 139.58 2.513 2.876

Transposition

BP 23.53 1.08 79.77 79.52 1.020 1.250
DD1 3.89 1.01 78.58 78.54 1.006 1.167
DD2 2.47 1.00 78.66 78.63 1.008 1.222
EH 18.26 1.02 79.05 78.86 1.012 1.222
WDM 30.90 1.07 78.73 78.40 1.004 1.250

80 Chapter 3. A General Heuristic for Genome Rearrangement Problems

However, even after the improvement, these algorithms performed poorly when com-
pared to their counterparts as we assess them by the average distance columns.

For the sorting by reversals problem, the solutions provided by the best algorithm
(coded as C) were improved in 15.08% of the solutions and the average improvement
was around 1.13. The KS algorithm benefited more from our heuristic, but it was not
enough to outdo C.

For the sorting by reversals and transpositions problem, the best algorithm (coded
as DEA) was implemented by ourselves based on a greedy removal of breakpoints. Our
algorithm did not benefit too much from our heuristic like the others, but in the end
it keeps leading to the best results. The maximum improved ratio for DEA was
1.875 in our experiments, which is very far from the theoretical approximation ratio
3. This suggests that some work could be done in order to improve the theoretical
approximation ratio.

3.6 Conclusions
We presented a general heuristic that improves an initial solution for several rear-
rangement problems. Our method selects sub-sequences from the initial solution and
tries to improve the solution by replacing those sub-sequences with shorter solutions
retrieved from a database.

We applied our heuristic to the solutions provided by 23 approximation algorithms.
We observed great improvements when we considered only prefix transpositions. Tak-
ing the 2 algorithms implemented for this problem into account, we observed that
around 83% of the cases were improved.

For most of the sorting problems that allow reversals, we observed that our heuris-
tic performance is close to that observed for the sorting by prefix transpositions prob-
lem. For example, the initial solution was improved in more than 70% of the cases
in the following problems: sorting by prefix reversals and prefix transpositions, and
sorting by prefix reversals and suffix reversals, sorting by prefix reversals, prefix trans-
positions, suffix reversals and suffix transpositions. When only reversals were consid-
ered, we were able to improve around 45% of the initial solutions and when only prefix
reversals were considered, around 58% of the initial solutions were improved.

For the sorting by reversals and transpositions problem, we were able to improve
82% of the test instances. Finally, for the sorting by transpositions problem, we were
able to improve more than 15% of the test cases. Around 94% of these improvements
occurred by just one unit. The sorting by transpositions problem is a very special
case because many efforts have been made to generate algorithms with good results in
practice and some of these algorithms provide results that equal the optimum solutions
in many cases. Although the improvements were comparatively lower than those for
other problems, we believe they are relevant because improvements on the problem
of sorting by transpositions are quite rare and hard to obtain.

Chapter 4

On Alternative Approaches for
Approximating the Transposition
Distance ∗

Abstract: We study the problem of sorting by transpositions, which consists in computing
the minimum number of transpositions required to sort a permutation. This problem is NP-
hard and the best approximation algorithms for solving it are based on a standard tool for
attacking problems of this kind, the cycle graph. In an attempt to bypass it, some researches
posed alternative approaches. In this paper, we address three algorithms yielded by such ap-
proaches: a 2.25-approximation algorithm based on breakpoint diagrams, a 3-approximation
algorithm based on permutation codes, and a heuristic based on longest increasing subse-
quences. Regarding the 2.25-approximation algorithm, we show that previous experimental
data on its approximation ratio are incorrect. Regarding the 3-approximation algorithm,
we close a missing gap on the proof of its approximation ratio and we show a way to run it
in O(n logn) time. Regarding the heuristic, we propose a minor adaptation that allow us
to prove an approximation bound of 3. We present experimental data obtained by running
these algorithms for all permutations with up to 13 elements and by running these algo-
rithms and the best known algorithms based on the cycle graph for large permutations. The
data indicate that the 2.25-approximation algorithm is the best of the algorithms based on
alternative approaches and that it is the only one comparable to the algorithms based on
the cycle graph.

∗Gustavo Rodrigues Galvão and Zanoni Dias. On Alternative Approaches for
Approximating the Transposition Distance. Journal of Universal Computer Sci-
ence. Volume 20, No. 9, pp. 1259-1283, 2014. Copyright 2014 J.UCS. DOI:
http://dx.doi.org/10.3217/jucs-020-09-1259

81

http://dx.doi.org/10.3217/jucs-020-09-1259

82 Chapter 4. On Alternative Approaches

4.1 Introduction

A transposition is the rearrangement event that switches the location of two contigu-
ous portions of a genome. The problem of computing the transposition distance be-
tween two genomes consists in finding the minimum number of transpositions needed
to transform one genome into the other. Such problem finds application in com-
parative genomics because the transposition distance can be used to estimate the
evolutionary distance between two genomes.

Representing the order of the genes in the genomes as permutations, that prob-
lem can be reduced to the combinatorial problem of finding the minimum number
of transpositions required to sort a permutation, which is referred to as the Problem
of Sorting by Transpositions. This problem was recently proven to be NP-hard [22],
therefore it is not likely that a polynomial-time algorithm exists. It was introduced
by Bafna and Pevzner [10], who presented a 1.5-approximation algorithm that runs
in quadratic time. Later, Elias and Hartman [48] improved the approximation bound
to 1.375, maintaining quadratic time complexity. Recently, Dias and Dias [36,37] pre-
sented improved versions of Bafna and Pevzner’s algorithm and Elias and Hartman’s
algorithm, which keep the original approximation ratios, and these have been the best
known algorithms for the problem of sorting by transpositions.

These approximation algorithms, as well as others [30, 68, 73] with relatively low
approximation ratios (i.e. less or equal than 1.5), are based on a structure named the
cycle graph. This structure is regarded as complex by some authors, therefore they
posed alternative approaches in order to bypass it. For a detailed literature survey,
the reader is referred to the book of Fertin and colleagues [54].

Walter, Dias, and Meidanis [124] presented a 2.25-approximation algorithm based
on a structure named the breakpoint diagram that runs in O(n2) time. They ran some
experiments in order to observe the approximation ratio of their algorithm in practice,
but it was not conclusive. Benôıt-Gagné and Hamel [14] developed a 3-approxima-
tion algorithm based on permutation codes that runs in O(n2) time. According to
them, although there exist better algorithms with respect to approximation ratio, their
algorithm is faster than any existing one. Besides, their experimental results suggested
that the approximation ratio of their algorithm may be lowered. Guyer, Heath, and
Vergara [69] devised a heuristic based on the longest increasing subsequence in a
permutation that runs in O(n5log n) time. The experiments they performed suggested
that it has the potential to produce near-optimal results.

In this work, we review these algorithms in order to improve their analyses, pro-
viding theoretical strengthening whenever possible, and to determine whether they
are good alternatives to the algorithms based on the cycle graph. Regarding Walter,
Dias, and Meidanis’ algorithm [124], we show that previous experimental data on its
approximation ratio are incorrect, and then we present new experimental data sug-
gesting that its approximation ratio may be lowered to 2. Regarding Benôıt-Gagné
and Hamel’s algorithm [14], we close a missing gap on the proof of its approximation

4.2. Preliminaries 83

ratio and we demonstrate a way to run it in O(n log n) time. On the other hand,
we present experimental data that contradicts Benôıt-Gagné and Hamel’s hypothesis
that its approximation ratio may be lowered. Regarding Guyer, Heath, and Vergara’s
heuristic [69], we propose a minor adaptation that allow us to prove an approxima-
tion bound of 3. On the other hand, we present experimental data that indicates this
algorithm does not produce near-optimal results. Finally, we compare these three
algorithms to the best known algorithms based on the cycle graph.

The remainder of this paper is organized as follows. In the next section, we give
the basic definitions and notation of the paper. In Section 4.3, we briefly describe the
algorithms studied in this paper, close a missing gap on Benôıt-Gagné and Hamel’s
proof [14] for the approximation ratio of their algorithm (Lemma 14), and demonstrate
that a constrained version of Guyer, Heath, and Vergara’s heuristic [69] still has an
approximation bound of 3 (Theorem 4). In Section 4.4, we show how to compute the
permutation codes in O(n log n) time, what allow us to implement Benôıt-Gagné and
Hamel’s algorithm [14] in such a way that its running time becomes O(n log n). In Sec-
tion 4.5, we present experimental results along with a discussion on the performance
of the algorithms in practice. In the last section, we conclude the paper.

4.2 Preliminaries
We represent genomes as permutations, where genes appear as elements. A permuta-
tion π is a bijection of {1, 2, . . ., n} onto itself. The group of all permutations of {1,
2, . . ., n} is denoted by Sn and we write a permutation π ∈ Sn as π = (π1 π2 . . . πn).
Sometimes, we extend it with two elements π0 = 0 and πn+1 = n + 1. The extended
permutation will still be called π.

A transposition is an operation ρ(i, j, k), 1 ≤ i < j < k ≤ n+1, that moves blocks
of contiguous elements of a permutation π ∈ Sn in such way that ρ(i, j, k) · (π1 . . .

πi−1 πi . . . πj−1 πj . . . πk−1 πk . . . πn) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn).
The Problem of Sorting by Transpositions consists in finding the minimum number of
transpositions that transform a permutation π ∈ Sn into the identity permutation In
= (1 2 . . . n). This number is known as the transposition distance of a permutation
π and it is denoted by d(π).

Given a permutation π ∈ Sn, a breakpoint is a pair of adjacent elements that are not
consecutive, that is, a pair (πi, πi+1) such that πi+1 − πi 6= 1, 0 ≤ i ≤ n. The number
of breakpoints of π is denoted by b(π). Note that In is the only permutation in Sn
having zero breakpoints. Since a transposition can remove at most three breakpoints,
we can state the following lemma.

Lemma 12. [10] For any permutation π ∈ Sn, d(π) ≥ b(π)
3 .

A strip of a permutation π is a maximal series of consecutive elements without a
breakpoint. We denote the number of strips in π by s(π).

84 Chapter 4. On Alternative Approaches

Example 5. Let π = (0 4 5 2 3 1 6) be the extended permutation of (4 5 2 3 1). We
have that the pairs (0, 4), (5, 2), (3, 1), and (1, 6) are breakpoints, thus b(π) = 4.
We also have that 4 5, 2 3, and 1 are strips of π, thus s(π) = 3.

Let π ∈ Sn, π 6= In, s1 be the first strip of π, and sm be the last strip of π, m ≤
n. If we assume that π1 = 1, we can transform π into a permutation σ ∈ Sn−|s1| such
that σi = πi − |s1|, i > |s1|. It is not hard to see that d(π) = d(σ). An analogous
argument can be used to show that we can transform π into a permutation γ ∈ Sn−|sm|
such that d(π) = d(γ) if πn = n. These transformations are referred to as reductions,
and we call irreducible any permutation in which such reductions cannot be applied.
Furthermore, we denote by S∗n the set formed by all irreducible permutations of Sn.

Lemma 13. For any permutation π ∈ S∗n, s(π) = b(π) − 1.

Proof. Let s1, s2, . . ., ss(π) be the strips of a permutation π ∈ S∗n. The last element of
strip si and the first element of strip si+1, 1 ≤ i ≤ s(π) − 1, form a breakpoint, and the
pairs (π0, π1) and (πn, πn+1) are always breakpoints on an irreducible permutation.
Therefore, we have that b(π) = s(π) + 1 and the claim follows.

Given a permutation π ∈ Sn, the left and right codes of an element πi, denoted
lc(πi) and rc(πi) respectively, are defined as lc(πi) = |{πj : πj > πi and 1 ≤ j ≤
i − 1}| and rc(πi) = |{πj : πj < πi and i + 1 ≤ j ≤ n}|. The left (resp., right) code
of a permutation π is then defined as the sequence of lc’s (resp., rc’s) of its elements,
and it is denoted by lc(π) (resp., rc(π)).

Let us call plateau any maximal length sequence of contiguous elements in a num-
ber sequence that have the same nonzero value. The number of plateaux in a code c
is denoted p(c). We denote by p(π) the minimum of p(lc(π)) and p(rc(π)). Note that
In is the only permutation in Sn having zero plateaux.

Example 6. Let π = (5 3 2 4 1). We have that lc(π) = lc(π1) lc(π2) lc(π3) lc(π4)
lc(π5) = 0 1 2 1 4, and rc(π) = rc(π1) rc(π2) rc(π3) rc(π4) rc(π5) = 4 2 1 1 0. Then,
p(π) = min{p(lc(π)), p(rc(π))} = min{4, 3} = 3.

An increasing subsequence of a permutation π is a subsequence πi1 πi2 . . . πij of
nonnecessarily contiguous elements of π such that for all k, 0 < k < j, we have ik <
ik+1 and πik < πik+1 . A longest increasing subsequence is an increasing subsequence
of π of maximum length. The set of the elements belonging to a longest increasing
subsequence is denoted by LIS(π). It is easy to see that, for any π ∈ Sn, |LIS(π)| =
n if and only if π = In.

Example 7. Let π = (2 3 1 5 4). The increasing subsequences 2 3 5 and 2 3 4 are
maximal, therefore either LIS(π) = {2, 3, 5} or LIS(π) = {2, 3, 4}.

4.3. Algorithms 85

4.3 Algorithms
The following sections describe three algorithms for sorting by transpositions based
on alternative approaches, namely Walter, Dias, and Meidanis’ 2.25-approximation
algorithm [124], Benôıt-Gagné and Hamel’s 3-approximation algorithm [14], and a
constrained version of Guyer, Heath, and Vergara’s heuristic [69]. Moreover, Sec-
tion 4.3.2 contains the missing proof for the approximation ratio of Benôıt-Gagné
and Hamel’s algorithm [14] and Section 4.3.3 contains the demonstration that the
constrained version of Guyer, Heath, and Vergara’s heuristic has an approximation
bound of 3.

4.3.1 Algorithm based on the breakpoint diagram

Walter, Dias, and Meidanis [124] developed an approximation algorithm based on
breakpoints. We will not discuss in detail how this algorithm works because it relies
on an extensive case by case analysis that is not relevant to the discussion we set in
this paper. Nevertheless, we present below a sketch of this algorithm (Algorithm 8)
to make it clear why it is a 2.25-approximation algorithm.

Algorithm 8: Sketch of the 2.25-approximation algorithm proposed by Walter,
Dias, and Meidanis [124].

Data: A permutation π ∈ Sn.
Result: Number of transpositions applied for sorting π.

1 d ← 0;
2 while π 6= In do
3 if there exists a transposition ρ(i, j, k) that removes more than 1 breakpoint

of π then
4 π ← ρ(i, j, k) · π;
5 d ← d + 1;
6 else
7 Find up to 3 transpositions that removes at least 4 breakpoints when

applied on π;
8 Apply on π the transpositions found and update d accordingly;
9 end

10 end
11 return d;

Note that, in the worst case, Algorithm 8 removes 4 breakpoints applying 3 trans-
positions. Thus, denoting by A8(π) the number of transpositions applied by Algorithm
8 for sorting π, we have A8(π) ≤ 3

4b(π). Since d(π) ≥ b(π)
3 (Lemma 12), we conclude

that Algorithm 8 is a 2.25-approximation. As for its time complexity, Walter, Dias
and Meidanis [124] showed that it runs in O(n2) time.

86 Chapter 4. On Alternative Approaches

4.3.2 Algorithm based on permutation codes
Benôıt-Gagné and Hamel [14] showed that it is always possible to decrease by one
unit the number of plateaux of a (right or left) code by applying a transposition.
Since p(π) represents the minimum value between p(lc(π)) and p(rc(π)), it is possible
to sort π applying at most p(π) transpositions. Thus, Benôıt-Gagné and Hamel [14]
proposed a simple algorithm for approximating the transposition distance that only
computes the value of p(π). Such algorithm is described below (Algorithm 9).

Algorithm 9: Algorithm proposed by Benôıt-Gagné and Hamel [14].
Data: A permutation π ∈ Sn.
Result: Number of transpositions applied for sorting π.

1 Compute lc(π);
2 Compute rc(π);
3 i ← p(lc(π));
4 j ← p(rc(π));
5 d ← min{i, j};
6 return d;

Although Benôıt-Gagné and Hamel [14] stated that Algorithm 9 is a 3-approxi-
mation, we think that they did not provide a complete proof for such claim. That is,
they proved that Algorithm 9 has the following approximation ratio

c · p(π)
b(π) , where c =

3b b(π)
3 c + b(π) mod 3
d b(π)

3 e
,

and they also proved that c ≤ 3, but it lacked the proof that p(π) ≤ b(π). Such proof
is given by Lemma 14.

Lemma 14. Given a permutation π ∈ Sn, π 6= In, we have that p(π) < b(π).

Proof. Let π ∈ Sn, π 6= In, s1 be the first strip of π, and sm be the last strip of
π, m ≤ n. If π1 = 1, then lc(πi) = rc(πi) = 0 for any element πi ∈ s1. Thus,
the elements belonging to s1 do not affect p(π). The same can be observed for the
elements belonging to sm when πn = n. It means that if we reduce π to σ, then p(π)
= p(σ). Since it is not hard to see that b(π) = b(σ), we can restrict our analysis to
irreducible permutations.

Let γ ∈ S∗n, and let the series of consecutive elements γi γi+1 . . . γj be a strip of
γ. We have that lc(γk+1) = lc(γk) and rc(γk+1) = rc(γk), i ≤ k < j. It means that,
with respect to lc(γ) and rc(γ), the elements belonging to a strip of γ either have zero
value or are contained in the same plateau. Therefore, s(γ) ≥ p(lc(γ)) and s(γ) ≥
p(rc(γ)), thus s(γ) ≥ p(γ). Since, by Lemma 13, b(γ) > s(γ), the claim follows.

Regarding the time complexity of Algorithm 9, Benôıt-Gagné and Hamel [14]
noted that lc(π) and rc(π) can be easily computed in O(n2) time, while p(lc(π))

4.3. Algorithms 87

and p(rc(π)) can be easily computed in O(n) time. Therefore, they concluded that
Algorithm 9 runs in O(n2) time. In Section 4.4, we show how to compute lc(π) and
rc(π) in O(n log n) time.

4.3.3 Algorithm based on the longest increasing subsequence
Guyer, Heath, and Vergara [69] developed a greedy algorithm based on the longest
increasing subsequence of a permutation π ∈ Sn. At each iteration, the algorithm
selects, from the

(
n+1

3

)
possible transpositions, the transposition ρ(i, j, k) such that

|LIS(ρ(i, j, k) · π)| is maximum. We say that a transposition satisfying this greedy
choice is a greedy transposition. Since there may exist more than one greedy trans-
position, the performance of this algorithm may vary depending on the rule used to
choose among greedy transpositions. Guyer, Heath, and Vergara [69] neither pointed
out any specific rule nor presented an approximation guarantee, therefore we decided
to define a rule that could lead us to determine an approximation guarantee.

One might think of the rule that only greedy transpositions which remove break-
points should be applied. Note that, using this rule, it would be trivial to prove an
approximation bound of 3 due to Lemma 12. It is not true, however, that there al-
ways exists a greedy transposition satisfying this rule. For instance, among all the 56
permutations that can be obtained from permutation π = (7 5 6 4 2 3 1) by applying
a transposition, there are 8 permutations yielded by greedy transpositions, but none
of them has less breakpoints than π.

We say that a transposition ρ(i, j, k) does not cut a strip of a permutation π if
the pairs of adjacent elements (πi−1, πi), (πj−1, πj) and (πk−1, πk) are breakpoints.
The rule we considered is that only greedy transpositions which do not cut strips of
permutations should be applied. Although it is possible that a greedy transposition
cuts a strip of permutation (see Example 8), Lemma 17 shows that there is always a
greedy transposition satisfying such a rule. Algorithm 10 is the resulting algorithm
from this rule.

Algorithm 10: Constrained version of Guyer, Heath, and Vergara’s heuris-
tic [69].

Data: A permutation π ∈ Sn.
Result: Number of transpositions applied for sorting π.

1 d ← 0;
2 while π 6= In do
3 d ← d + 1;
4 ρd ← a transposition such that |LIS(ρd · π)| is maximum and that does not

cut a strip of π;
5 π ← ρd · π;
6 end
7 return d

88 Chapter 4. On Alternative Approaches

Example 8. Let π = (5 6 3 4 1 2). We have that ρ(1, 3, 6) is a greedy transposition
and it cuts the strip 1 2.

Lemma 15. Let π1 π2 . . . πr be the first strip of a permutation π ∈ Sn. If π1 = 1,
then a transposition ρ(i, j, k) where i ≤ r cannot be a greedy transposition.

Proof. Let ρ(i, j, k) be a transposition where i ≤ r and let π′ be the permutation π′

= ρ(i, j, k) · π. There are two cases to consider:

a) j − 1 ≤ r. In this case, it is not hard to see that |LIS(π′)| ≤ |LIS(π)| because
the elements πi, πi+1, . . ., πj−1 are all smaller than the elements πj, πj+1, . . .,
πk−1, therefore ρ(i, j, k) could not be a greedy transposition.

b) j − 1 > r. In this case, we argue that, if ρ(i, j, k) was a greedy transposition,
then none of the elements πi, πi+1, . . ., πr could belong to LIS(π′). For the sake
of the contradiction, assume they could. Then none of the elements πj, πj+1, . . .,
πk−1 could belong to LIS(π′) because they are greater than the formers. This
implies that the elements in LIS(π′) would form an increasing subsequence in π,
therefore |LIS(π′)| ≤ |LIS(π)| and ρ(i, j, k) could not be a greedy transposition.
But if none of the elements πi, πi+1, . . ., πr could belong to LIS(π′), then ρ(i, j,
k) could not be a greedy transposition since |LIS(ρ(i+ 1, j, k) · π)| > |LIS(π′)|.

Lemma 16. Let πs πs+1 . . . πn be the last strip of a permutation π ∈ Sn. If πn = n,
then a transposition ρ(i, j, k) where k > s cannot be a greedy transposition.

Proof. Analogous to the proof of Lemma 15.

Lemma 17. Given a permutation π, there exists a greedy transposition which does
not cut any of its strips.

Proof. Let ρ(i, j, k) be a greedy transposition, and let π′ be the permutation such
that π′ = ρ(i, j, k) · π. If ρ(i, j, k) does not cut a strip of π, then we are done.
Otherwise, we have to basically consider three possibilities:

(a) (πi−1, πi) is not a breakpoint.
In this case let i′ be the greatest integer such that i′ < i and (πi′−1, πi′) is a
breakpoint (Lemma 15 guarantees that i′ ≥ r when π1 = 1), and let π′′ be the
permutation such that π′′ = ρ(i′, j, k) · π. Then, we have four subcases to
analyze:

(i) πi ∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} ∈ LIS(π′). In this subcase we
have that the elements in LIS(π′) form an increasing subsequence in π′′,
therefore |LIS(π′′)| ≥ |LIS(π′)|. Since ρ(i, j, k) is a greedy transposition
by hypothesis, we have that |LIS(π′′)| ≤ |LIS(π′)|. Therefore |LIS(π′′)| =
|LIS(π′)| and ρ(i′, j, k) is also a greedy transposition.

4.3. Algorithms 89

(ii) πi ∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} /∈ LIS(π′). In this subcase we have
that the elements in {πi′ , πi′+1, . . ., πi−1} along with the elements in LIS(π′)
form an increasing subsequence in π′′, therefore |LIS(π′′)| > |LIS(π′)| and
this contradicts our hypothesis that ρ(i, j, k) is a greedy transposition.

(iii) πi /∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} ∈ LIS(π′). In this subcase we have
that |LIS(ρ(i+1, j, k) · π)| > |LIS(π′)| and this contradicts our hypothesis
that ρ(i, j, k) is a greedy transposition.

(iv) πi /∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} /∈ LIS(π′). The proof for this subcase
is the same as that in subcase (a.i).

(b) (πj−1, πj) is not a breakpoint.

In this case let j′ be the least integer such that j < j′ and (πj′−1, πj′) is a
breakpoint, and let j′′ be the greatest integer such that j′′ < j and (πj′′−1,
πj′′) is a breakpoint. It may be the case that either j′ = k or j′′ = i, but it
is impossible that j′ = k and j′′ = i, otherwise ρ(i, j, k) would only move
elements belonging to the same strip, therefore |LIS(π′)| ≤ |LIS(π)| and ρ(i, j,
k) could not be a greedy transposition. Also note that a situation where πj−1

∈ LIS(π′) and πj ∈ LIS(π′) is not possible given the definition of an increasing
subsequence. Then, if we assume that j′ 6= k and let π′′ be the permutation
such that π′′ = ρ(i, j′, k) · π, we have three subcases to analyze:

(i) πj−1 ∈ LIS(π′) and {πj, πj+1, . . ., πj′−1} /∈ LIS(π′). This subcase is analo-
gous to subcase (a.ii).

(ii) πj−1 /∈ LIS(π′) and {πj, πj+1, . . ., πj′−1} ∈ LIS(π′). In this subcase we have
that |LIS(ρ(i, j−1, k) · π)| > |LIS(π′)| and this contradicts our hypothesis
that ρ(i, j, k) is a greedy transposition.

(iii) πj−1 /∈ LIS(π′) and {πj, πj+1, . . ., πj′−1} /∈ LIS(π′). This subcase is analo-
gous to subcase (a.iv).

On the other hand, if we assume that j′′ 6= i and let π′′ be the permutation such
that π′′ = ρ(i, j′′, k) · π, we also have three subcases to analyze:

(i) πj ∈ LIS(π′) and {πj′′ , πj′′+1, . . ., πj−1} /∈ LIS(π′). This subcase is analo-
gous to subcase (a.ii).

(ii) πj /∈ LIS(π′) and {πj′′ , πj′′+1, . . ., πj−1} ∈ LIS(π′). In this subcase we have
that |LIS(ρ(i, j+1, k) · π)| > |LIS(π′)| and this contradicts our hypothesis
that ρ(i, j, k) is a greedy transposition.

(iii) πj /∈ LIS(π′) and {πj′′ , πj′′+1, . . ., πj−1} /∈ LIS(π′). This subcase is analo-
gous to subcase (a.iv).

90 Chapter 4. On Alternative Approaches

(c) (πk−1, πk) is not a breakpoint.
In this case let k′ be the least integer such that k < k′ and (πk′−1, πk′) is a
breakpoint (Lemma 16 guarantees that k′ ≤ s when πn = n), and let π′′ be the
permutation such that π′′ = ρ(i, j, k′) · π . Then, we have four subcases to
analyze:

(i) πk−1 ∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} ∈ LIS(π′). This subcase is anal-
ogous to subcase (a.i).

(ii) πk−1 ∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} /∈ LIS(π′). This subcase is anal-
ogous to subcase (a.ii).

(iii) πk−1 /∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} ∈ LIS(π′). In this subcase we have
that |LIS(ρ(i, j, k−1) · π)| > |LIS(π′)| and this contradicts our hypothesis
that ρ(i, j, k) is a greedy transposition.

(iv) πk−1 /∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} /∈ LIS(π′). This subcase is anal-
ogous to subcase (a.iv).

Although more than one possibility can occur at the same time, they are indepen-
dent from each other, in such a way that in all possible cases, if transposition ρ(i, j,
k) cuts a strip of π, then it is possible to derive a greedy transposition which does
not, thus the claim follows.

Based on the fact that Algorithm 10 does not apply greedy transpositions that
cut strips, we are able to prove an upper bound on the number of transpositions it
applies for sorting permutations (Lemma 18). Using this upper bound, it is possible
to prove that Algorithm 10 is a 3-approximation (Theorem 4).

Lemma 18. Let A10(π) be the number of transpositions applied by Algorithm 10 for
sorting a permutation π. Then, we have A3(π) ≤ s(π) − 1.

Proof. For helping us to determine an upper bound to the number of transpositions
applied by Algorithm 10, we define a simple procedure, called StripSum, which sums
the sizes of the strips of a permutation. It receives as input a permutation π ∈ Sn
and proceeds as follows. Firstly, it sorts all the strips of π with respect to their sizes,
obtaining a list of strips s0, s1, . . ., ss(π)−1 such that |si| ≥ |si+1| for all i, 0 ≤ i < s(π)
− 1. Secondly, it initializes a variable named SUM to |s0|. Finally, starting from s1,
it iterates over the list of strips such that, at iteration i, the algorithm increases the
value of SUM by |si|. Let SUMi be the value of the variable SUM at iteration i, with
SUM0 = |s0|. Clearly, SUMi = SUMi−1 + |si| for all i, 1 ≤ i ≤ s(π) − 1. Besides,
when the algorithm stops, SUM = SUMs(π)−1 = |s0| + |s1| + · · · + |ss(π)| = n.

Now, assume that π was given as input to Algorithm 10 and let πi be the per-
mutation produced after i iterations, with π0 = π. We can prove by induction that
|LIS(πi)| ≥ SUMi. For the base case, we have |LIS(π0)| ≥ SUM0 because, by defi-
nition, |LIS(π0)| must be equal or greater than the size of any strip of π0. For the

4.4. Computing Permutation Codes in O(n log n) Time 91

induction step, assume the claim holds for some 0 < i < A3(π). Since Algorithm
10 never cuts a strip, all the strips of πi are formed by strips of π0. Let s′ be the
strip of greatest size among all strips of π0 whose elements do not belong to a given
LIS(πi). We have that |LIS(πi+1)| ≥ |LIS(πi)| + |s′| because it is possible to apply
a transposition on πi and obtain a new permutation containing an increasing subse-
quence formed by the elements of s′ and LIS(πi). If |s′| ≥ |si+1|, then |LIS(πi+1)| ≥
|LIS(πi)| + |s′| ≥ SUMi + |si+1| = SUMi+1. Otherwise, if |s′| < |si+1|, it means that
the elements of all strips st, 0 ≤ t ≤ i+ 1, belong to LIS(πi), therefore |LIS(πi+1)| >
|LIS(πi)| ≥ SUMi+1.

The inequality |LIS(πi)| ≥ SUMi implies that Algorithm 10 makes |LIS(π)| con-
verge to n applying no more transpositions than the number of iterations that proce-
dure StripSum performs. Since it performs s(π) − 1 iterations, the lemma follows.

Theorem 4. Algorithm 3 is a 3-approximation.

Proof. Lemma 15 guarantees that Algorithm 10 will never apply a transposition which
moves the elements of the first strip of π when π1 = 1. Similarly, Lemma 16 guarantees
that Algorithm 10 will never apply a transposition which moves the elements of the last
strip of π when πn = n. For this reason, if we reduce permutation π to a permutation
σ, it is not hard to see that A10(π) = A3(σ). Thus, we can restrict our analysis to
irreducible permutations.

Let γ ∈ S∗n. By Lemma 18, we have that A3(γ) ≤ s(γ) − 1. Since, by Lemma 13,
s(γ) = b(γ) − 1, we conclude that A3(γ) ≤ b(γ) − 2. It means that A3(γ) ≤ 3d(γ)
once d(γ) ≥ b(γ)

3 (Lemma 12), and the theorem has been proved.

Since there are O(n3) possible transpositions to consider per iteration, it takes
O(nlog n) time to determine a longest increasing subsequence of a permutation, it
takes O(1) time to determine whether a transposition cuts a strip of a permutation,
and the while loop executes O(n) times, we conclude that Algorithm 10 runs in
O(n5log n) time.

4.4 Computing Permutation Codes in O(n log n)
Time

In this section, we describe how to compute the left and right codes of a permutation
with n elements in O(n log n) time, what allow us to implement Benôıt-Gagné and
Hamel’s algorithm [14] in such a way that its running time becomes O(n log n). We
note that permutation codes are closely related to the Lehmer code [95] (in fact, the
Lehmer code is equivalent to the right code of a permutation) and there are known
algorithms for computing the Lehmer code in O(n log n) time (see [4, page 235]).

Given a permutation π ∈ Sn, the left code of the element πk in the interval [i, j],
denoted by lc[i,j], is defined as

92 Chapter 4. On Alternative Approaches

lc[i,j](πk) = |{πl : πl > πk and i ≤ l ≤ k − 1}|

for all i ≤ k ≤ j. Similarly, the right code of the element πk in the interval [i, j],
denoted by rc[i,j], is defined as

rc[i,j](πk) = |{πl : πl < πk and k + 1 ≤ l ≤ j}|

for all i ≤ k ≤ j. If i = j, then we define lc[i,i](πk) = rc[i,i](πk) = 0.
It is not hard to realize that lc[i,j](πk) = lc(πk) and rc[i,j](πk) = rc(πk) when i

= 1 and j = n. By looking at the problem of computing the left/right code of the
elements of a permutation π ∈ Sn as the problem of computing the left/right code of
such elements in the interval [1, n], it becomes clearer that we can use a divide-and-
conquer approach to solve it. Firstly, we compute recursively the left/right code of
the elements π1 π2 . . . πm in the interval [1, m] and the left/right code of the elements
πm+1 πm+2 . . . πn in the interval [m + 1, n] such that m = bn+1

2 c. As for the base
case, we have lc[i,i](πi) = rc[i,i](πi) = 0 for all 1 ≤ i ≤ n. Once the left/right codes of
these elements have been computed in the referred intervals, we have that:

• lc[1,n](πk) = lc[1,m](πk) for all 1 ≤ k ≤ m and lc[1,n](πk) = lc[m+1,n](πk) + |{πl :
πl > πk and 1 ≤ l ≤ m}| for all m + 1 ≤ k ≤ n;

• rc[1,n](πk) = rc[m+1,n](πk) for all m + 1 ≤ k ≤ n and rc[1,n](πk) = rc[1,m](πk) +
|{πl : πl < πk and m+ 1 ≤ l ≤ n}| for all 1 ≤ k ≤ m.

This means that, regarding the left code, the main question is how to efficiently
compute |{πl : πl > πk and 1 ≤ l ≤ m}| for every element πk such that m + 1 ≤ k ≤
n; regarding the right code, it is how to efficiently compute |{πl : πl < πk and m+ 1
≤ l ≤ n}| for every element πk such that 1 ≤ k ≤ m.

The answer for the above questions relies on mergesort, that is, it is possible
to adapt the merge step of mergesort so that we can efficiently establish the order
relations between the elements and, consequently, we can efficiently compute those
values. Firstly, we present an algorithm, called MergeLeftCodes, that shows how to
accomplish it regarding the left code.

Algorithm MergeLeftCodes receives four parameters as input: a vector L contain-
ing the elements πi, πi+1, . . ., πj ordered in ascending order; a vector R containing
the elements πj+1, πj+2, . . ., πk ordered in ascending order; a vector LC such that
LC[e] = lc[i,j](πe) for all i ≤ e ≤ j and LC[e] = lc[j+1,k](πe) for all j + 1 ≤ e ≤ k;
and the inverse permutation of π, π−1. As a result, it returns a vector M containing
the elements of vectors L and R ordered in ascending order and updates vector LC
in such a way that LC[e] = lc[i,k](πe) for all i ≤ e ≤ k.

We will prove the correctness of Algorithm MergeLeftCodes by proving that the
following loop invariants hold for the while loop of lines 7-18:

• vector M contains the m − 1 smallest elements of L and R ordered in ascending
order;

4.4. Computing Permutation Codes in O(n log n) Time 93

• LC[e] = lc[i,k](πe), where e = π−1
M [t], for all 1 ≤ t ≤ m − 1;

• L[l] and R[r] are the smallest elements of vectors L and R that have not been
copied to M .

Algorithm 11: MergeLeftCodes.
Data: Three vectors L, R and LC, and permutation π−1 ∈ Sn.
Result: Returns a vector containing the elements of L and R ordered in

ascending order and updates vector LC in such a way that LC[e] =
lc[i,k](πe) for all i ≤ e ≤ k.

1 l ← 1;
2 r ← 1;
3 m ← 1;
4 Let M be a vector of size |L| + |R|;
5 R[|R| + 1] ← n + 1;
6 L[|L| + 1] ← n + 1;
7 while m ≤ |M | do
8 if R[r] < L[l] then
9 M [m] ← R[r];

10 e ← π−1
M [m];

11 LC[e] ← LC[e] + |L| − l;
12 r ← r + 1;
13 else
14 M [m] ← L[l];
15 l ← l + 1;
16 end
17 m ← m + 1;
18 end
19 return M ;

It not hard to see that these loop invariants hold before the first iteration of the
while loop of lines 7-18. At each iteration, we have to consider two possibilities: either
R[r] < L[l] or R[r] > L[l].

If R[r] < L[l], then R[r] is the smallest element that has not been copied to M ,
therefore it is copied to M (line 9). Since the elements of L are to the left of the
elements of R in the permutation π, it means that there exists |L| − l elements
greater than M [m] and to its left in π considering just the elements of L (note that
the element n + 1 must not be considered). Given that LC[e], e = π−1

M [m], equals
the number of elements greater than M [m] and to its left in π considering just the
elements of R, we conclude that LC[e] + |L| − l equals the number of elements greater
then M [m] and to its left in π considering both the elements of L and R. In other
words, we have LC[e] = lc[i,k](πe) after line 11. Finally, the variables r and m are
incremented (lines 12 and 17), thus the loop invariants still hold.

94 Chapter 4. On Alternative Approaches

If R[r] > L[l], then L[l] is the smallest element that has not been copied to M ,
therefore it is copied to M (line 14). Since the elements of L are to the left of the
elements of R in the permutation π, we have LC[e] = lc[i,k](πe), e = π−1

M [m], therefore it
is not necessary to update vector LC. Finally, the variables l and m are incremented
(lines 15 and 17), thus the loop invariants still hold.

After the while loop of lines 7-18 terminates, it is clear that vector M will contain
the elements of vectors L and R ordered in ascending order. Besides, vector LC will
have been updated in such a way that LC[e] = lc[i,k](πe) for all i ≤ e ≤ k.

As for the time complexity of Algorithm MergeLeftCodes, we have that each of the
lines 1, 2, 3, 5, and 6 runs in time O(1), line 4 runs in time O(n), and the while loop
executes O(n) times. Therefore, Algorithm MergeLeftCodes runs in O(n) time.

With Algorithm MergeLeftCodes in hand, the recursive algorithm that computes
the left code of the elements πi πi+1 . . . πj in the interval [i, j] can be trivially
derived from the discussion held at the beginning of this section. This algorithm is
called RecursiveLeftCode and it is presented below. In order to obtain the left code
of a permutation π, we simply execute Algorithm RecursiveLeftCode as described by
Algorithm 13.

Algorithm 12: RecursiveLeftCode.
Data: A permutation π ∈ Sn and its inverse, π−1, vector LC, and indexes i

and j.
Result: Returns a vector containing the elements πi πi+1 . . . πj ordered in

ascending order and updates vector LC in such a way that LC[e] =
lc[i,j](πe) for all i ≤ e ≤ j.

1 m ← b i+j2 c;
2 if i < j then
3 L ← RecursiveLeftCode(π, π−1, LC, i, m);
4 R ← RecursiveLeftCode(π, π−1, LC, m+ 1, j);
5 M ← MergeLeftCodes(L, R, LC, π−1);
6 else
7 Let M be a vector of size 1;
8 M [1] ← πi;
9 LC[i] ← 0;

10 end
11 return M ;

The time complexity of Algorithm RecursiveLeftCode equals the time complexity
of mergesort, which is O(n log n). Computing π−1 as well as creating a vector of size
n takes O(n) time, therefore Algorithm 13 runs in O(n log n) time.

In the case of the right code, the adaptation to the merge step of mergesort is
very similar to the one made in the case of the left code, except that the elements are
ordered in descending order rather than in ascending order. Moreover, it is not hard
to see that the correctness and complexity analyses of the algorithms for computing

4.5. Experimental Results and Discussion 95

Algorithm 13: Computing the left code of a permutation.
Data: A permutation π ∈ Sn.
Result: Returns a vector containing the left codes of the elements of π.

1 Compute π−1;
2 Let LC be a vector of size n;
3 RecursiveLeftCode(π, π−1, LC, 1, n);
4 return LC ;

the right code of a permutation are analogous to the ones performed for algorithms
MergeLeftCodes and RecursiveLeftCode, therefore we omit them.

4.5 Experimental Results and Discussion
The following sections describe the experiments we have performed and discuss the
results we have obtained. The algorithms described in this paper were implemented
in Java, while the algorithms based on the cycle graph were implemented in Python
(we used Dias and Dias [36, 37] implementations). The experiments were performed
on an Intel R© CoreTM i7-2600K CPU at 3.40GHz with 16GB of RAM running Ubuntu
12.04.2 LTS operating system.

4.5.1 Experiments on small permutations
The approximation algorithms presented in Section 4.3 were implemented and tested
by their authors for verifying their performance in practice. One kind of test was to
compare the distance computed by the algorithm with d(π) for every π ∈ Sn in order
to obtain the real approximation ratio of the respective approximation algorithm for
small permutations. More specifically, Walter, Dias, and Meidanis [124] ran this test
for 1 ≤ n ≤ 11, Benôıt-Gagné and Hamel [14] ran it for 1 ≤ n ≤ 9, and Guyer, Heath,
and Vergara [69] ran it just for n = 6.

We ran this kind of test for 1≤ n≤ 13 for all algorithms using GRAAu [58], and the
results are presented in tables 4.1, 4.2, and 4.3, where n is the size of the permutations,
Max. Dist. is the greatest distance outputted by the algorithm, Avg. Dist. is the
average of the distances outputted by the algorithm, Avg. Ratio is the average of the
ratios between the distance outputted by the algorithm and the transposition distance,
Max. Ratio is the greatest ratio among all the ratios between the distance outputted
by the algorithm and the transposition distance, and Equals is the percentage of
distances outputted by the algorithm that is equal to the transposition distance.

Firstly, we note that the results obtained by Walter, Dias, and Meidanis for their
2.25-approximation algorithm are incorrect. For instance, the maximum value of A8(π)

d(π)
they observed for n = 11 was 10

5 . But this result cannot be right because A8(π) ≤
9 for every π ∈ S11. Given a permutation π ∈ Sn, it is easy to see that 0 ≤ b(π) ≤

96 Chapter 4. On Alternative Approaches

Table 4.1: Results obtained from the audit of the implementation of Walter, Dias,
and Meidanis’ algorithm.

n Max. Dist. Avg. Dist. Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 2 1.00 1.00 1.00 100.00%
4 3 1.54 1.00 1.00 100.00%
5 3 2.08 1.00 1.00 100.00%
6 4 2.61 1.00 1.33 99.17%
7 5 3.14 1.00 1.33 98.57%
8 6 3.66 1.01 1.50 97.12%
9 6 4.19 1.01 1.50 96.06%
10 7 4.70 1.01 1.50 94.15%
11 8 5.22 1.01 1.60 92.84%
12 9 5.73 1.02 1.60 90.68%
13 9 6.24 1.02 1.60 89.30%

Table 4.2: Results obtained from the audit of the implementation of Benôıt-Gagné
and Hamel’s algorithm.

n Max. Dist. Avg. Dist. Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 2 1.00 1.00 1.00 100.00%
4 3 1.54 1.00 1.00 100.00%
5 4 2.13 1.02 1.50 95.00%
6 5 2.75 1.06 1.67 85.00%
7 6 3.42 1.10 2.00 71.77%
8 7 4.13 1.14 2.00 56.41%
9 8 4.87 1.18 2.00 41.62%
10 9 5.63 1.22 2.25 28.80%
11 10 6.42 1.25 2.25 18.74%
12 11 7.22 1.29 2.25 11.57%
13 12 8.05 1.32 2.40 6.77%

4.5. Experimental Results and Discussion 97

Table 4.3: Results obtained from the audit of the implementation of Algorithm 3,
which is a constrained version of Guyer, Heath, and Vergara’s heuristic.

n Max. Dist. Avg. Dist. Avg. Ratio Max. Ratio Equals
1 0 0.00 1.00 1.00 100.00%
2 1 0.50 1.00 1.00 100.00%
3 2 1.00 1.00 1.00 100.00%
4 3 1.54 1.00 1.00 100.00%
5 4 2.10 1.01 1.50 97.50%
6 5 2.67 1.03 1.50 92.78%
7 6 3.26 1.05 1.67 86.45%
8 7 3.86 1.06 1.67 77.93%
9 8 4.48 1.08 2.00 69.06%
10 9 5.10 1.10 2.00 58.94%
11 10 5.73 1.12 2.00 49.61%
12 11 6.38 1.14 2.00 40.23%
13 12 7.03 1.15 2.25 32.18%

Table 4.4: Permutations πm of size 3m + 1, m ∈ {5, 6, 7}, for which p(πm)
d(πm) = 3m

m+1 .
Note that d(πm) ≥ b(πm)

3 ≥ m + 1.

Permutation Transposition Sorting Sequence
π5 = (16 9 4 11 6 15 8 2 12 7
5 3 14 13 10 1)

ρ(5, 9, 12), ρ(1, 7, 10), ρ(3, 9, 14), ρ(5, 10,
17), ρ(6, 10, 14), ρ(1, 7, 11)

π6 = (19 11 4 18 6 14 8 13 10
2 15 5 9 7 3 17 16 12 1)

ρ(4, 12, 17), ρ(7, 12, 16), ρ(6, 9, 15), ρ(1,
5, 11), ρ(3, 8, 20), ρ(4, 13, 17), ρ(1, 5, 13)

π7 = (22 13 4 21 6 17 8 16 10
15 12 2 18 5 11 9 7 3 20 19 14
1)

ρ(4, 14, 20), ρ(8, 13, 19), ρ(7, 10, 18), ρ(6,
9, 17), ρ(1, 5, 11), ρ(3, 8, 23), ρ(4, 16, 20),
ρ(1, 5, 15)

n+ 1. As discussed in Section 4.3.1, A8(π) ≤ 3
4b(π), therefore A8(π) ≤ 3n+3

4 , and the
claim follows.

The real approximation ratios observed for the 2.25-approximation algorithm seem
to increase in a progression that converges to 2, that is, 2

2 , 4
3 , 6

4 , 8
5 , . . ., 2k

k+1 . This may
indicate that a deeper analysis of this algorithm could lead one to prove that it is in
fact a 2-approximation.

Regarding the 3-approximation algorithm developed by Benôıt-Gagné and Hamel,
if we just consider the real approximation ratios obtained for n ∈ {7, 10, 13}, we can
observe that they seem to follow the progression 6

3 , 9
4 , 12

5 , . . ., 3k
k+1 . We ran further

experiments to verify the strength of this assumption, and we found permutations πm
of size 3m+1, m ∈ {5, 6, 7}, for which p(πm)

d(πm) = 3m
m+1 (these permutations are presented

98 Chapter 4. On Alternative Approaches

in Table 4.4). Note that, for m = 7, the real approximation ratio of Benôıt-Gagné
and Hamel’s algorithm equals 21

8 = 2.625. This is an indication that the approxima-
tion ratio of this algorithm may not be lowered, contradicting the hypothesis raised by
Benôıt-Gagné and Hamel that its approximation ratio “tends to a number significantly
smaller than 3”.

Figure 4.1 illustrates that, of the three algorithms, Walter, Dias, and Meidanis’
algorithm has the best practical performance.

4.5.2 Experiments on large permutations
In order to investigate what happens in practice for large permutations and to compare
the algorithms regarded in this paper against the best known algorithms based on the
cycle graph (namely Bafna and Pevzner’s 1.5-approximation algorithm [10], Elias
and Hartman’s 1.375-approximation algorithm [48], Dias and Dias’ [36] extension of
Bafna and Pevzner’s algorithm [10], and Dias and Dias’ [37] extension of Elias and
Hartman’s algorithm [48]) we tested all these algorithms on the same set of arbitrarily

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

5 6 7 8 9 10 11 12 13

A
ve

ra
ge

 R
at

io

Size of permutations

BH
GD

WDM

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 6 7 8 9 10 11 12 13

E
qu

al
s

(%
)

Size of permutations

BH
GD

WDM

Figure 4.1: Comparison of Walter, Dias, and Meidanis’ algorithm (WDM), Benôıt-
Gagné and Hamel’s algorithm (BH), and the constrained version of Guyer, Heath,
and Vergara’s heuristic (GD) based on the results provided by GRAAu.

4.5. Experimental Results and Discussion 99

large permutations. This set consisted of 59,000 random permutations of sizes varying
between 10 and 300 in intervals of 5, with 1,000 permutations of each size.

Figure 4.2 shows the average distance computed for all algorithms. As can be seen,
these data corroborate with the data obtained for small permutations, that is, of the
three algorithms studied in this paper, Walter, Dias, and Meidanis’ algorithm has the
best practical performance. Figure 4.2 also shows that Walter, Dias, and Meidanis’
algorithm provided results comparable to those provided by the algorithms based on
the cycle graph. For the purpose of further verifying how good the algorithms studied
in this paper performed in comparison to the algorithms based on the cycle graph,
we computed how often each algorithm provided the best distance. The results are
presented in figures 4.3 and 4.4.

 0

 50

 100

 150

 200

 250

 300

 10 50 100 150 200 250 300

A
ve

ra
ge

 D
is

ta
nc

e

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

Figure 4.2: Comparison of Walter, Dias, and Meidanis’ algorithm (WDM), Benôıt-
Gagné and Hamel’s algorithm (BH), the constrained version of Guyer, Heath, and
Vergara’s heuristic (GD), Bafna and Pevzner’s algorithm (BP), Elias and Hartman’s
algorithm (EH), and Dias and Dias’ algorithms (DD (BP) and DD (EH)) based on the
average distance. Due to time constraints, we could not compute the average distance
of the constrained version of Guyer, Heath, and Vergara’s heuristic for permutations
with more than 115 elements (note that this algorithm runs in O(n5log n) time). The
average distances computed for algorithms WDM, EH, DD (BP), DD (EH) and BP
were about equal, therefore they are overlapping in the graph.

We can notice that the results were consistently the same regardless of the size of
the permutations. Benôıt-Gagné and Hamel’s algorithm and the constrained version
of Guyer, Heath, and Vergara’s heuristic provided the best distance less times than the
other algorithms (for permutations with more than 20 elements, they did not provide
the best distance even once). Walter, Dias, and Meidanis’ algorithm provided the best
distance more times than Bafna and Pevzner’s algorithm and Elias and Hartman’s
algorithm, but less times than Dias and Dias’ algorithms. Although Walter, Dias, and
Meidanis’ algorithm did not outperform Dias and Dias’ algorithms, which are the best
known algorithms for sorting by transpositions, it is remarkable that it outperformed
two approximation algorithms with much better approximation ratios.

100 Chapter 4. On Alternative Approaches

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10 15 20 25 30 35 40 45 50

%
 o

f t
ot

al

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

55 60 65 70 75 80 85 90 95 100

%
 o

f t
ot

al

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

 0

 10

 20

 30

 40

 50

 60

 70

 80

105 110 115 120 125 130 135 140 145 150

%
 o

f t
ot

al

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

Figure 4.3: Relative number of times each algorithm provided the best distance. Note
that more than one algorithm can have provided the best distance.

4.5. Experimental Results and Discussion 101

 0

 10

 20

 30

 40

 50

 60

 70

 80

155 160 165 170 175 180 185 190 195 200

%
 o

f t
ot

al

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

 0

 10

 20

 30

 40

 50

 60

 70

 80

205 210 215 220 225 230 235 240 245 250

%
 o

f t
ot

al

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

 0

 10

 20

 30

 40

 50

 60

 70

 80

255 260 265 270 275 280 285 290 295 300

%
 o

f t
ot

al

Size of permutations

BH
GD

WDM
EH

DD (BP)
DD (EH)

BP

Figure 4.4: Relative number of times each algorithm provided the best distance. Note
that more than one algorithm can have provided the best distance.

102 Chapter 4. On Alternative Approaches

4.6 Conclusions

In this paper, we revisited three algorithms for the problem of sorting by transposi-
tions: Walter, Dias, and Meidanis’ 2.25-approximation algorithm [124], Benôıt-Gagné
and Hamel’s 3-approximation algorithm [14], and Guyer, Heath, and Vergara’s heuris-
tic [69]. These algorithms are based on alternative approaches to the cycle graph,
which is the standard tool for tackling permutation sorting problems.

Regarding theoretical aspects, we closed a missing gap on the proof of the ap-
proximation ratio of Benôıt-Gagné and Hamel’s algorithm [14] and we demonstrated
a way to run their algorithm in O(n log n) time. This latter reinforces Benôıt-Gagné
and Hamel’s argument that, although there does exist better algorithms with respect
to approximation ratio, their algorithm is fast. We proposed a minor adaptation to
Guyer, Heath, and Vergara’s heuristic [69] that allowed us to prove an approximation
bound of 3. Finally, with respect to Walter, Dias, and Meidanis’ algorithm [124],
we did not present any theoretical improvement, but we demonstrated that previous
experimental data on its approximation ratio are incorrect.

Regarding practical aspects, we performed an experimental investigation of these
three algorithms for small and large permutations. For the experiments on small
permutations, we considered all permutations with up to 13 elements. To the best of
our knowledge, this was the first time these algorithms were tested for all permutations
with more that 11 elements. For the experiments on large permutations, we also taken
into account approximation algorithms based on the cycle graph, namely Bafna and
Pevzner’s 1.5-approximation algorithm [10], Elias and Hartman’s 1.375-approximation
algorithm [48], Dias and Dias’ [36] extension of Bafna and Pevzner’s algorithm [10],
and Dias and Dias’ [37] extension of Elias and Hartman’s algorithm [48]. The latter
two are the best known algorithms for the problem of sorting by transpositions.

The experimental data yielded by the experiments on small permutations gave
some insights on the approximation ratio of the algorithms under study. It indicated
that the approximation ratio of Benôıt-Gagné and Hamel’s algorithm [14] may not
be lowered, contradicting a first hypothesis [14] that it could be, and that the ap-
proximation ratio of Walter, Dias, and Meidanis’ algorithm [124] may be lowered
to 2. Unfortunately, we could not obtain any proof regarding the tightness of the
approximation ratio of the studied algorithms.

Both the experiments on small and large permutations pointed out Walter, Dias,
and Meidanis’ algorithm [124] as the best algorithm out of the three algorithms based
on alternative approaches. Moreover, the experiments on large permutations showed
that Walter, Dias, and Meidanis’ algorithm [124] provided results comparable to the
ones provided by the algorithms based on the cycle graph. In fact, Walter, Dias,
and Meidanis’ algorithm [124] outperformed on average both Bafna and Pevzner’s
algorithm [10] and Elias and Hartman’s algorithm [48], what is remarkable since
these algorithms have much better approximation ratios.

We conclude that, although the algorithms based on alternative approaches have

4.6. Conclusions 103

worse approximation ratios, Benôıt-Gagné and Hamel’s algorithm [14] is a good al-
ternative due to its simplicity and its practical and asymptotic speed, while Walter,
Dias, and Meidanis’ algorithm [124] is a good alternative in terms of practical results.
The constrained version of Guyer, Heath, and Vergara’s heuristic [69] proposed by us
does not figure as a good alternative because it did not present good practical results
and it has a prohibitive time complexity, just as the original heuristic.

Although the experimental data on small permutations suggested that none of the
studied algorithms are promising alternatives in terms of approximation ratios, it is
still not clear whether the approaches they rely on can or cannot yield algorithms
with low approximation ratios. Therefore, searching for results that could help make
progress on this question either way is an interesting direction to follow for future
work.

104 Chapter 4. On Alternative Approaches

Chapter 5

Sorting Signed Permutations by
Short Operations ∗

Abstract: During evolution, global mutations may alter the order and the orientation
of the genes in a genome. Such mutations are referred to as rearrangement events, or
simply operations. In unichromosomal genomes, the most common operations are reversals,
which are responsible for reversing the order and orientation of a sequence of genes, and
transpositions, which are responsible for switching the location of two contiguous portions of
a genome. The problem of computing the minimum sequence of operations that transforms
one genome into another – which is equivalent to the problem of sorting a permutation into
the identity permutation – is a well-studied problem that finds application in comparative
genomics. There are a number of works concerning this problem in the literature, but
they generally do not take into account the length of the operations (i.e. the number of
genes affected by the operations). Since it has been observed that short operations are
prevalent in the evolution of some species, algorithms that efficiently solve this problem
in the special case of short operations are of interest. In this paper, we investigate the
problem of sorting a signed permutation by short operations. More precisely, we study
four flavors of this problem: (i) the problem of sorting a signed permutation by reversals
of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length
at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions
of length at most 2; and (iv) the problem of sorting a signed permutation by reversals
and transpositions of length at most 3. We present polynomial-time solutions for problems
(i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv).
Moreover, we show that the expected approximation ratio of the 5-approximation algorithm
is not greater than 3 for random signed permutations with more than 12 elements. Finally,
we present experimental results that show that the approximation ratios of the approxima-
tion algorithms cannot be smaller than 3. In particular, this means that the approximation
ratio of the 3-approximation algorithm is tight.

∗Gustavo Rodrigues Galvão, Orlando Lee, and Zanoni Dias. Sorting signed per-
mutations by short operations. Algorithms for Molecular Biology, Volume 10, Article
12, 2015. Copyright 2015 Rodrigues Galvão et al.; licensee BioMed Central. DOI:
http://dx.doi.org/10.1186/s13015-015-0040-x

105

http://dx.doi.org/10.1186/s13015-015-0040-x

106 Chapter 5. Sorting Signed Permutations by Short Operations

5.1 Background

One of the challenges of modern science is to understand how species evolve. As evolu-
tion can be viewed as a branching process, whereby new species arise from changes oc-
curring in living organisms, the study of the evolutionary history of a group of species
is commonly made by analyzing trees whose nodes represent species and edges repre-
sent evolutionary relationships. Since these relationships are referred to as phylogeny,
such trees are called phylogenetic trees.

Phylogenies can be inferred from different kinds of data, from geographic and eco-
logical, through behavioral, morphological, and metabolic, to molecular data, such as
DNA. Molecular data have the advantage of being exact and reproducible, at least
within experimental error, not to mention fairly easy to obtain [63, Chapter 12].
Among the existing methods for phylogenetic reconstruction from molecular data, we
focus on those referred to as distance-based methods. These methods build the phy-
logenetic tree corresponding to a group of species as follows. First, the evolutionary
distance between each pair of species is estimated in order to generate a distance ma-
trix M such that each entry Mi,j contains the evolutionary distance between species
i and j. Then, the phylogenetic tree is constructed from this matrix using a specific
algorithm, such as Neighbor-Joining [108]. Therefore, a key point of distance-based
methods is how to estimate the evolutionary distance between two species.

A well-accepted approach for estimating the evolutionary distance is the genome
rearrangement approach [54]. It proposes to estimate the evolutionary distance be-
tween two species using the rearrangement distance between their genomes, which is
the length of the shortest sequence of genome-wide mutations, called rearrangement
events, that transforms one genome into the other. Assuming genomes consist of
a single linear chromosome, share the same set of genes, and contain no duplicated
genes, we can represent them as permutations of integers where each integer corre-
sponds to a gene. Besides, each integer may have a sign, + or −, indicating the gene
orientation. Permutations whose elements have signs are called signed permutations
and permutations whose elements do not have signs are called unsigned permutations.

By representing genomes as permutations, the problem of finding the shortest
sequence of rearrangement events that transforms one genome into another can be
reduced to the combinatorial problem of calculating the minimum number of opera-
tions necessary to transform one permutation into another. By algebraic properties of
permutations, this problem can be equivalently stated as the problem of calculating
the minimum number of operations necessary to transform one permutation into the
identity permutation (+1 +2 . . . +n). This problem is commonly referred to as the
permutation sorting problem.

Depending on the operations allowed to sort a permutation, we have a different
variant of the permutation sorting problem. Reversals and transpositions are the most
often considered operations for phylogenetic reconstruction. A reversal is responsi-
ble for reversing the order and flipping the signs of a sequence of elements within

5.1. Background 107

a permutation, while a transposition is responsible for switching the location of two
contiguous portions of a permutation. The problem of sorting an unsigned permu-
tation by reversals is an NP-hard problem [23]. It was introduced by Watterson et
al. [126] and the best known result is due to Berman, Hannenhalli and Karpinski [15],
who presented a 1.375-approximation algorithm. The problem of sorting a signed
permutation by reversals was introduced by Bafna and Pevzner [9], who presented a
1.5-approximation algorithm. Hannenhalli and Pevzner [72] presented the first poly-
nomial algorithm for this problem, which was further improved by Tannier, Bergeron
and Sagot [119] to run in subquadratic time. Barder, Moret and Yan [8] showed
how to determine the minimum number of reversals that sorts a signed permutation
(without actually sorting) in linear time. The problem of sorting an unsigned permu-
tation by transpositions is an NP-hard problem [22]. It was introduced by Bafna and
Pevzner [10], who presented a 1.5-approximation algorithm. Later, Elias and Hart-
man [48] improved the approximation bound to 1.375. Variants of the permutation
sorting problem which allow both reversals and transpositions are also regarded in
the literature [68, 107,123].

Simultaneously with the study of the aforementioned variants of the permutation
sorting problem, some researchers have investigated variants in which bounds are
imposed on the lengths of the operations. Jerrum [80] proved that the problem of
sorting an unsigned permutation by reversals (or transpositions) of length 2 is solvable
in polynomial time. Later, Heath and Vergara [78] considered the problem of sorting
an unsigned permutation by reversals of length at most 3 and presented the best known
result for it, a 2-approximation algorithm. Heath and Vergara [76,77] also considered
the problem of sorting an unsigned permutation by transpositions of length at most
3 and presented a 4

3 -approximation algorithm. Jiang et al. [82] presented a (1+ε)-
approximation for unsigned permutations with many inversions and, more recently,
Jiang et al. [81] also devised an 5

4 -approximation algorithm for sorting general unsigned
permutations by transpositions of length at most 3. Finally, Vergara [121] showed that
the 4

3 -approximation algorithm for the problem of sorting by transpositions of length
at most 3 is a 2-approximation algorithm for the problem of sorting by reversals and
transpositions of length at most 3.

The biological relevance of these bounded variants is grounded on the assumption
that rearrangement events affecting large portions of a genome are less likely to occur.
In the past, corroborating evidence has emerged, that is, separate sets of observations
have shown the prevalence and significance of short reversals (i.e. reversals involving
one or a few genes) in the evolution of bacterial genomes [32,94] and lower eukaryotes
genomes [100,110]. This fact, together with the realization that signed permutations
constitute a more biologically relevant model for genomes, motivated us to investigate
the problem of sorting a signed permutation by short operations.

In preliminary work, Galvão and Dias [59] investigated the problem of sorting a
signed permutation by reversals of length at most 3 and presented three approxima-

108 Chapter 5. Sorting Signed Permutations by Short Operations

tion algorithms, the best one having an approximation factor of 9. In this paper,
we not only present an approximation algorithm with a better approximation factor,
but also consider other bounded variants. More precisely, we study four variants of
the permutation sorting problem: (i) the problem of sorting a signed permutation
by reversals of length at most 2, (ii) the problem of sorting a signed permutation by
reversals of length at most 3, (iii) the problem of sorting a signed permutation by
reversals and transpositions of length at most 2, and (iv) the problem of sorting a
signed permutation by reversals and transpositions of length at most 3. We present
polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem
(ii), and a 3-approximation for problem (iv). Moreover, we show that the expected ap-
proximation factor of the 5-approximation algorithm is not greater than 3 for random
signed permutations with more than 12 elements. Finally, we present experimental
results that show that the approximation factors of the approximation algorithms
cannot be smaller than 3. In particular, this means that the approximation factor of
the 3-approximation algorithm is tight.

5.2 Preliminaries
In this section, we present basic definitions that are used throughout this paper,
generally following [59]. Let n be a positive integer.

A signed permutation π is a bijection of {−n, . . ., −2, −1, 1, 2, . . ., n} onto itself
that satisfies π(−i) = − π(i) for all i ∈ {1, 2, . . ., n}. The two-row notation for a
signed permutation is

π =
(
−n . . . −2 −1 1 2 . . . n

−πn . . . −π2 −π1 π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. The notation used in genome rearrangement
literature, which is the one we will adopt, is the one-row notation π = (π1 π2 . . . πn).
Note that we drop the mapping of the negative elements since π(−i) = −π(i) for all i
∈ {1, 2, . . ., n}. By abuse of notation, we say that π has size n. The set of all signed
permutations of size n is S±n .

A signed reversal ρ(i, j), 1 ≤ i ≤ j ≤ n, is an operation that transforms a signed
permutation π = (π1 π2 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the signed per-
mutation π · ρ(i, j) = (π1 π2 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn). A signed
reversal ρ(i, j) is called a signed k-reversal if k = j − i + 1. A signed k-reversal is
called short if k ≤ 3. It is called super short if k ≤ 2.

The problem of sorting by signed short reversals consists in finding the minimum
number of signed short reversals that transform a permutation π ∈ S±n into the identity
permutation ιn = (+1 +2 . . . +n). This number is referred to as the signed short
reversal distance of permutation π and it is denoted by dssr(π). Similarly, the problem
of sorting by signed super short reversals consists in finding the minimum number of

5.2. Preliminaries 109

signed super short reversals that transform a permutation π ∈ S±n into ιn. This
number is referred to as the signed super short reversal distance of permutation π and
it is denoted by dsssr(π).

A transposition ρ(i, j, k), 1 ≤ i < j < k ≤ n+ 1, is an operation that transforms
a signed permutation π = (π1 . . . πi−1 πi . . . πj−1 πj . . . πk−1 πk . . . πn) into the
signed permutation π · ρ(i, j, k) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). A
transposition ρ(i, j, k) is called an (x, y)-transposition, where x = j − i and y = k

− j. An (x, y)-transposition is called short if x + y ≤ 3. It is called super short if x
+ y = 2.

The problem of sorting by signed short operations consists in finding the minimum
number of signed short reversals and short transpositions that transform a permuta-
tion π ∈ S±n into ιn. This number is referred to as the signed short operation distance
of permutation π and it is denoted by dsso(π). Similarly, the problem of sorting by
signed super short operations consists in finding the minimum number of signed super
short reversals and super short transpositions that transform a permutation π ∈ S±n
into ιn. This number is referred to as the signed super short operation distance of a
permutation π and it is denoted by dssso(π).

We say that a pair of elements (πi, πj) of a signed permutation π is an inversion if
i < j and |πi| > |πj|. The number of inversions in a signed permutation π is denoted
by Inv(π).

Lemma 19. Let π be a signed permutation. If Inv(π) > 0, then there exists an
inversion (πi, πj) such that j = i + 1.

Proof. Let π1, π2, . . . , πi be a maximal subsequence such that |π1| < |π2| < · · · < |πi|.
Since Inv(π) > 0, we have that i < n. So |πi+1| < |πi| and the result follows.

Let ∆Inv(π, ρ) denote the change in the number of inversions in a signed permuta-
tion π due to the application of an operation ρ, that is, ∆Inv(π, ρ) = Inv(π) − Inv(π
· ρ). The following lemma provides bounds on the value of ∆Inv(π, ρ) considering
that ρ is a short operation.

Lemma 20. Let π be a signed permutation. Then, we have that

i) −1 ≤ ∆Inv(π, ρ) ≤ 1 if ρ is a super short operation,

ii) −2 ≤ ∆Inv(π, ρ) ≤ 2 if ρ is a short transposition, and

iii) −3 ≤ ∆Inv(π, ρ) ≤ 3 if ρ is a signed short reversal.

Proof. Suppose first that ρ is a super short operation. If ρ is a 1-reversal, then ∆Inv(π,
ρ) = 0. Moreover, if ρ is a signed 2-reversal ρ(i, i + 1) or a (1, 1)-transposition ρ(i,
i + 1, i + 2), then ∆Inv(π, ρ) = 1 if (πi, πi+1) is an inversion and ∆Inv(π, ρ) = −1
otherwise.

Now, suppose that ρ is a (1, 2)-transposition ρ(i, i + 1, i + 2). We have that if (πi,
πi+1) and (πi, πi+2) are inversions, then ∆Inv(π, ρ) = 2. On the other hand, if (πi,

110 Chapter 5. Sorting Signed Permutations by Short Operations

πi+1) and (πi, πi+2) are not inversions, then ∆Inv(π, ρ) = −2. Finally, if either (πi,
πi+1) or (πi, πi+2) is an inversion, then ∆Inv(π, ρ) = 0. Note that a similar argument
holds if ρ is a (2, 1)-transposition.

Finally, suppose that ρ is a signed 3-reversal ρ(i, i + 2). We have that if |πi| >
|πi+1| > |πi+2|, then ∆Inv(π, ρ) = 3. On the other hand, if |πi| < |πi+1| < |πi+2|, then
∆Inv(π, ρ) = −3. Since in the other subcases we have that −1 ≤ ∆Inv(π, ρ) ≤ 1,
the lemma follows.

5.3 Sorting by Bounded Signed Reversals
In this section, we present a polynomial-time solution for the problem of sorting
by super short signed reversals and a 5-approximation algorithm for the problem of
sorting by signed short reversals. Before we present the main results, we first introduce
a useful tool for tackling these problems, the vector diagram. This tool was also used
by Heath and Vergara [78,121] for the problem of sorting by (unsigned) short reversals.

5.3.1 The Vector Diagram

For each element πi of a signed permutation π, we define a vector v(πi) whose length
is given by |v(πi)| = ||πi| − i|. If |v(πi)| > 0, the vector v(πi) has a direction indicated
by the sign of |πi| − i. The vector v(πi) is a right vector if |πi| − i > 0 while it is
a left vector if |πi| − i < 0. If the length of v(πi) is zero, then v(πi) is said to be a
positive zero vector if πi = i and a negative zero vector if πi = −i. A vector diagram
Vπ of π is the set of vectors of the elements of π. The sum of the lengths of all the
vectors in Vπ is denoted by Vec(π). See Figure 5.1 for an example.

(+3 −4 +6 −1 +5 −2)

Figure 5.1: Vector diagram of the signed permutation π = (+3 −4 +6 −1 +5 −2).
Note that Vec(π) = 14.

Two elements πi and πj, i < j, of a signed permutation π are said to be vector-
opposite if the vectors v(πi) and v(πj) differ in direction, |v(πi)| ≥ j − i, and |v(πj)|
≥ j − i. Besides, they are said to be m-vector-opposite if j − i = m. Note that m
specifies the distance between vector-opposite elements. For instance, in Figure 5.1
the elements π2 = −4 and π4 = −1 are 2-vector-opposite elements.

Lemma 21. Let π be a signed permutation. If Inv(π) > 0, then π contains at least a
pair of vector-opposite elements.

5.3. Sorting by Bounded Signed Reversals 111

Proof. We say that an element πe in π is out-of-place if |πe| 6= e. Note that there must
exist out-of-place elements in π if Inv(π) > 0. Among all out-of-place elements in π,
let πi be the one with the greatest absolute value. We first show by contradiction that
v(πi) is a right vector. Suppose v(πi) is a left vector, that is, |πi| − i < 0. Then the
element πk such that |πk| = i is an out-of-place element with absolute value greater
than |πi|, a contradiction.

Now since there is at least one right vector in Vπ, there exists a rightmost right
vector in Vπ, that is, a right vector v(πi) such that i is as large as possible. The
element πk such that k = |πi| is out-of-place since |πk| 6= k. The vector v(πk) is
therefore a left vector as it occurs to the right of v(πi), the rightmost right vector.
Consider the elements πi+1, πi+2, . . ., πk. At least one of these elements corresponds
to a left vector. Select the leftmost left vector from these elements, that is, select the
vector v(πj) such that i+ 1 ≤ j ≤ k and j is as small as possible.

We claim that πi and πj are vector-opposite elements. Since |v(πi)| = k ≥ j, all
that remains to be shown is that |v(πj)| ≤ i. In other words, we need to show that
the correct position of element πj does not occur to the right of position i. For a
contradiction, suppose this is the case. Then the element πt such that t = |πj| is
out-of-place and therefore v(πt) is either a right or left vector. It is not a right vector
since it occurs on the right of v(πi), the rightmost right vector. It is not a left vector
since it occurs on the left of v(πj), the leftmost left vector from a set that includes
v(πt). Then we have a contradiction since we have found an out-of-place element that
corresponds to a zero vector. The lemma follows.

Lemma 22. Let π ∈ S±n be a signed permutation such that Inv(π) > 0 and let πi
and πj be m-vector-opposite elements. Moreover, let π′ ∈ S±n be a signed permutation
such that |π′i| = |πj|, |π′j| = |πi|, and |π′k| = |πk| for all k /∈ {i, j}. Then Vec(π) −
Vec(π′) = 2m.

Proof. We have that

Vec(π)− Vec(π′) = ∑n
k=1(|v(πk)| − |v(π′k)|)

= |v(πi)| − |v(π′i)|+ |v(πj)| − |v(π′j)|
= m+m

= 2m,

and therefore the lemma follows.

Let ∆Vec(π, ρ) denote the change in the sum of the lengths of all the vectors in Vπ
due to the application of a signed reversal ρ, that is, ∆Vec(π, ρ) = Vec(π) − Vec(π
· ρ). The following lemma provides bounds on the value of ∆Vec(π, ρ) considering
that ρ is a signed short reversal.

Lemma 23. Let π be a signed permutation. Then, we have that

i) ∆Vec(π, ρ) = 0 if ρ is a signed 1-reversal,

112 Chapter 5. Sorting Signed Permutations by Short Operations

ii) −2 ≤ ∆Vec(π, ρ) ≤ 2 if ρ is a signed 2-reversal, and

iii) −4 ≤ ∆Vec(π, ρ) ≤ 4 if ρ is a signed 3-reversal.

Proof. Suppose first that ρ is a signed 1-reversal ρ(i, i). In this case, ρ does not affect
the length of the vector v(πi), therefore ∆Vec(π, ρ) = 0.

Now, suppose that ρ is a signed 2-reversal ρ(i, i + 1). If the elements πi and πi+1

are 1-vector-opposite, then ∆Vec(π, ρ) = 2. On the other hand, if v(πi) is a zero or a
left vector and v(πi+1) is a zero or a right vector, then ∆Vec(π, ρ) = −2. Note that
∆Vec(π, ρ) cannot be greater than 2 and cannot be less than −2 because ρ(i, i + 1)
can increase or decrease the length of v(πi) and v(πi+1) by just one unit.

Finally, suppose that ρ is a signed 3-reversal ρ(i, i + 2). Note that ρ does not
affect the length of the vector v(πi+1). Now, if the elements πi and πi+2 are 2-vector-
opposite, then ∆Vec(π, ρ) = 4. On the other hand, if v(πi) is a zero or a left vector
and v(πi+2) is a zero or a right vector, then ∆Vec(π, ρ) = −4. Note that ∆Vec(π, ρ)
cannot be greater than 4 and cannot be less than −4 because ρ(i, i + 2) can increase
or decrease the length of v(πi) and v(πi+2) by just two units.

5.3.2 Sorting by Signed Super Short Reversals
From the proof of Lemma 20, we have that a signed 1-reversal does not change the
number of inversions in a signed permutation and a signed 2-reversal can eliminate at
most one inversion. This means that, for sorting a signed permutation π, we have to
apply Inv(π) signed 2-reversals plus a given number of signed 1-reversals in order to
flip the signs of the remaining negative elements. The question is: how many signed
1-reversals do we have to apply?

Intuitively, if an element πi is in t distinct pairs of inversions in a signed permu-
tation π, then its sign will be flipped t times, one time per signed 2-reversal applied.
Therefore, if πi is negative and t is even, then πi will remain negative after we apply
the t signed 2-reversals. The same is true when πi is positive and t is odd. We can
make use of the vector diagram in order to capture this intuition formally.

Let V even−
π be a subset of Vπ such that V even−

π = {v(πi) : πi < 0 and |v(πi)| is
even} and let V odd+

π be a subset of Vπ such that V odd+
π = {v(πi) : πi > 0 and | v(πi)| is

odd}. The elements of a signed permutation π whose vectors belong to either V even−
π

or V odd+
π are precisely the elements which will be negative after we apply the Inv(π)

signed 2-reversals (Lemma 24). Using this fact, we can obtain an exact formula for
the signed super short reversal distance of a signed permutation π (Theorem 5).

Lemma 24. Let π be a signed permutation and let π′ = π · ρ(i, i + 1). Then, we
have that |V even−

π′ | + |V odd+
π′ | = |V even−

π | + |V odd+
π |.

Proof. The signed 2-reversal ρ(i, i + 1) changes the signs of πi and πi+1 along with
the parities of |v(πi)| and |v(πi+1)|. For this reason, if πi (or πi+1) belongs to either
V even−
π or V odd+

π , then π′i+1 = −πi (or π′i = −πi+1) belongs to either V even−
π′ or V odd+

π′ .

5.3. Sorting by Bounded Signed Reversals 113

On the other hand, if πi (or πi+1) does not belong to neither V even−
π nor V odd+

π , then
π′i+1 = −πi (or π′i = −πi+1) does not belong to either V even−

π′ or V odd+
π′ . Therefore the

lemma follows.

Lemma 25. Let π be a signed permutation. Then, we have that dsssr(π) ≤ Inv(π) +
|V even−
π | + |V odd+

π |.

Proof. It suffices to prove that it is always possible to apply signed super short rever-
sals on π 6= ιn in such a way that the resulting permutation π′ satisfies

Inv(π′) + |V even−

π′ |+ |V odd+

π′ | ≤ Inv(π) + |V even−

π |+ |V odd+

π | − 1. (5.1)

If Inv(π) = 0, then |v(πi)| = 0 for every πi of π. This means that |V odd+
π | = 0, and

therefore we can sort π with |V even−
π | signed 1-reversals and (5.1) holds.

If Inv(π) > 0, then there exists a signed 2-reversal ρ(i, i + 1) that removes an
inversion in π (Lemma 19). So, apply such signed 2-reversal on π and let π′ denote
the resulting permutation. We have that Inv(π′) = Inv(π) − 1. Moreover, we have
that |V even−

π′ | + |V odd+
π′ | = |V even−

π | + |V odd+
π | (Lemma 24). Summing both equalities

we obtain (5.1), therefore the lemma follows.

Lemma 26. Let π be a signed permutation. Then, we have that dsssr(π) ≥ Inv(π) +
|V even−
π | + |V odd+

π |.

Proof. It suffices to prove that if we apply an arbitrary signed super short reversal on
π, then the resulting permutation π′ satisfies

Inv(π′) + |V even−

π′ |+ |V odd+

π′ | ≥ Inv(π) + |V even−

π |+ |V odd+

π | − 1. (5.2)

Suppose first that we apply a signed 1-reversal ρ(i, i) on π and let π′ denote the
resulting permutation. We have that Inv(π′) = Inv(π). Moreover, since the sign of πi
is flipped without changing the parity of |v(πi)|, we have that |V even−

π′ | + |V odd+
π′ | ≥

|V even−
π | + |V odd+

π | − 1. Summing the previous equality with this inequality we obtain
(5.2).

Now, suppose that we apply a signed 2-reversal ρ(i, i + 1) on π and let π′ denote
the resulting permutation. We have that |V even−

π′ | + |V odd+
π′ | = |V even−

π | + |V odd+
π |

(Lemma 24). Moreover, since a signed 2-reversal can remove at most one inversion,
we have that Inv(π′)≥ Inv(π)− 1. Summing the previous equality with this inequality
we obtain (5.2). Therefore the lemma follows.

Theorem 5. Let π be a signed permutation. Then, we have that dsssr(π) = Inv(π) +
|V even−
π | + |V odd+

π |.

Proof. Immediate from Lemmas 25 and 26.

From the proof of Lemma 25, we can derive the following optimal algorithm for
sorting a signed permutation by signed super short reversals. First, perform signed

114 Chapter 5. Sorting Signed Permutations by Short Operations

2-reversals on the inversions until the permutation has no inversions. Then, perform
signed 1-reversals on the negative elements until the permutation has no negative
elements. Since a signed permutation π ∈ S±n can have at most

(
n
2

)
inversions and at

most n negative elements, we have that this algorithm runs in O(n2) time. We remark
that the value of dsssr(π) can be computed in O(n

√
log n) time because computing

|V even−
π | + |V odd+

π | takes O(n) time and computing Inv(π) takes O(n
√

log n) time [26].

5.3.3 Sorting by Signed Short Reversals
A trivial algorithm for the problem of sorting by signed short reversals is the optimal
algorithm for the problem of sorting by signed super short reversals. From the lower
bound of Lemma 27, it follows that this trivial algorithm is a 6-approximation algo-
rithm. Moreover, we have that this approximation bound is tight. For instance, we
need 6 signed super short reversals for sorting the signed permutation (−3 −2 −1),
but one signed 3-reversal is sufficient for sorting it.

Lemma 27. Let π be a signed permutation. Then, we have that dssr(π) ≥
Inv(π)+|V −π |+|V +

π |
6 .

Proof. It suffices to prove that if we apply an arbitrary signed short reversal on π,
then the resulting permutation π′ satisfies

Inv(π′) + |V even−

π′ |+ |V odd+

π′ | ≥ Inv(π) + |V even−

π |+ |V odd+

π | − 6. (5.3)

From the proof of Lemma 26, we have that (5.3) holds when we apply a signed
super short reversal on π. So, suppose that we apply the signed 3-reversal ρ(i, i +
2) on π and let π′ denote the resulting permutation. We have that Inv(π′) ≥ Inv(π)
− 3. Moreover, we have that |V even−

π′ | + |V odd+
π′ | ≥ |V even−

π | + |V odd+
π | − 3. Summing

both inequalities we obtain (5.3), and the lemma follows.

Let V odd
π be a subset of Vπ such that V odd

π = {v(πi) : |v(πi)| is odd} and let V 0−
π be

a subset of Vπ such that V 0−
π = {v(πi) : v(πi) is a negative zero vector}. By using these

two subsets of Vπ, we can obtain better bounds on the signed short reversal distance of
a signed permutation π (Lemmas 29 and 30). These bounds lead to a 5-approximation
for the problem of sorting by signed short reversals (Theorem 6). We note that the
upper bound given in Lemma 29 relies on the fact that it is always possible to switch
the positions of a pair of m-vector-opposite elements (without affecting the elements
between them) applying m signed short reversals (Lemma 28).

Lemma 28. Let π ∈ S±n be a signed permutation such that Inv(π) > 0 and let πi
and πj be m-vector-opposite elements. It is possible to transform π into π′ ∈ S±n such
that |π′i| = |πj|, |π′j| = |πi|, and |π′k| = |πk| for all k /∈ {i, j} applying d signed short
reversals, where

d =
{
m− 1 if m is even,
m if m is odd.

5.3. Sorting by Bounded Signed Reversals 115

Proof. We have two cases to consider:

a) m is even. In this case, we can transform π into a signed permutation π′ ∈ S±n
such that |π′i| = |πj|, |π′j| = |πi|, π′j−1 = −πj−1, and π′k = πk for all k /∈ {i, j −
1, j} applying the sequence of signed short reversals ρ(i, i + 2), ρ(i + 2, i + 4),
. . ., ρ(j − 4, j − 2)), ρ(j − 2, j)), ρ(j − 4, j − 2), . . ., ρ(i, i + 2). Therefore,
to transform π into π′, we can apply m− 1 signed 3-reversals.

b) m is odd. In this case, we can transform π into a signed permutation π′ ∈ S±n
such that |π′i| = |πj|, |π′j| = |πi|, and π′k = πk for all k /∈ {i, j} applying the
sequence of signed short reversals ρ(i, i + 2), ρ(i + 2, i + 4), . . ., ρ(j − 3, j −
1), ρ(j − 1, j), ρ(j − 3, j − 1), . . ., ρ(i, i + 2). Therefore, to transform π into
π′, we can apply m − 1 signed 3-reversals and one signed 2-reversal, totalizing
m signed short reversals.

Since in both cases we can transform π into π′ applying 2dm2 e − 1, the lemma follows.

Lemma 29. Let π be a signed permutation. Then, we have that dssr(π) ≤ Vec(π) +
|V odd
π | + |V 0−

π |.

Proof. It suffices to prove that it is always possible to apply a sequence of t > 0 signed
short reversals on π 6= ιn in such a way that the resulting permutation π′ satisfies

Vec(π′) + |V odd
π′ |+ |V 0−

π′ | ≤ Vec(π) + |V odd
π |+ |V 0−

π | − t. (5.4)

If Vec(π) = 0, then |v(πi)| = 0 for every πi in π. This means that |V odd
π | = 0.

Therefore we can sort π with |V 0−
π | signed 1-reversals and (5.4) holds.

If Vec(π) > 0, then π contains at least one pair of vector-opposite elements (Lemma
21). Let πi and πj, i < j, be m-vector-opposite elements. Now, suppose that we apply
the d signed reversals described in Lemma 28 on π and let π′ denote the resulting
permutation. We will show that the application of this sequence of signed short
reversals results in an average decrease in

∆(π, π′) = Vec(π) + |V odd
π |+ |V 0−

π | − (Vec(π′) + |V odd
π′ |+ |V 0−

π′ |)
= 2m+ (|V odd

π | − |V odd
π′ |) + (|V 0−

π | − |V 0−
π′ |)

of at least 1 unit per signed short reversal. In other words, we need to show that
∆(π,π′)

d
≥ 1.

In order the evaluate the value of ∆(π, π′), we divide our analysis in two cases:

a) m is even. In this case, we have that the parities of the lengths of the vectors
do not change, therefore |V odd

π | − |V odd
π′ | = 0. In order to evaluate the value of

|V 0−
π | − |V 0−

π′ |, we further divide our analysis into three subcases:

i) |v(πi)| and |v(πj)| are even. In this subcase, we have that the vectors v(πi),
v(πj−1), and v(πj) may become negative zero vectors, therefore |V 0−

π | −
|V 0−
π′ | ≥ −3. This means that ∆(π, π′) ≥ 2m − 3.

116 Chapter 5. Sorting Signed Permutations by Short Operations

ii) |v(πi)| and |v(πj)| have distinct parities. In this subcase, we have that the
vector v(πj−1) and one of the vectors v(πi) and v(πj) (precisely the one
whose length is even) may become negative zero vectors, therefore |V 0−

π | −
|V 0−
π′ | ≥ −2. This means that ∆(π, π′) ≥ 2m − 2.

iii) |v(πi)| and |v(πj)| are odd. In this subcase, we have that none of the vectors
v(πi) and v(πj) can become a negative zero vector, but the vector v(πj−1)
can. Therefore |V 0−

π | − |V 0−
π′ | ≥ −1. This means that ∆(π, π′) ≥ 2m− 1.

b) m is odd. In this case, we further divide our analysis into three subcases:

i) |v(πi)| and |v(πj)| are even. In this subcase, we have that none of the
vectors v(πi) and v(πj) can become a negative zero vector, therefore |V 0−

π |
− |V 0−

π′ | = 0. Moreover, |v(πi)| and |v(πj)| become odd, therefore |V odd
π | −

|V odd
π′ | = −2. This means that ∆(π, π′) = 2m− 2.

ii) |v(πi)| and |v(πj)| have distinct parities. In this subcase, we have that the
parities of the lengths of the vectors v(πi) and v(πj) are switched, therefore
|V odd
π | − |V odd

π′ | = 0. Moreover, one of the vectors v(πi) and v(πj) (precisely
the one whose length is odd) may become a negative zero vector, therefore
|V 0−
π | − |V 0−

π′ | ≥ −1. This means that ∆(π, π′) ≥ 2m− 1.

iii) |v(πi)| and |v(πj)| are odd. In this subcase, we have that |v(πi)| and |v(πj)|
become even, therefore |V odd

π | − |V odd
π′ | = 2. On the other hand, we have

that the vectors v(πi) and v(πj) may become negative zero vectors, there-
fore |V 0−

π | − |V 0−
π′ | ≥ −2. This means that ∆(π, π′) ≥ 2m.

Note that the only subcase in which we have ∆(π,π′)
d

< 1 is subcase (b.i), precisely
when m = 1. So, assume that we have no choice other than selecting a pair of 1-
vector-opposite elements πi and πj such that |v(πi)| and |v(πj)| are even. We will
show that it is still possible to apply a sequence of signed short reversals on π in such
a way that (5.4) holds.

Let v(πi) be the rightmost right vector of π, that is, i is the largest integer for which
v(πi) is a right vector. As shown in the proof of Lemma 21, there exists an element
πj, j > i, such that πi and πj form a pair of vector-opposite elements. Combining
this fact with our initial assumption, we can conclude that j = i + 1.

Now, suppose that we apply the signed short reversal ρ(i, i + 1) on π and let π′
denote the resulting permutation. From our previous case-by-case analysis, we have
that ∆(π, π′) = 0. Moreover, we have that v(π′i+1) is the rightmost right vector of π′.
Therefore, there exists an element π′k, k > i + 1, such that π′i+1 and π′k form a pair
of m-vector-opposite elements, as shown in the proof of Lemma 21. This means that
we can apply the d short signed reversals described in Lemma 28 on π′, obtaining
permutation π′′. Given that |v(π′i+1)| is odd, we can conclude from our previous case-
by-case analysis that ∆(π′, π′′) ≥ 2m − 1 if m is odd and ∆(π′, π′′) ≥ 2m − 2 if m
is even. Hence, the average decrease in ∆(π, π′′) is of at least 2m−1

m+1 units per signed

5.3. Sorting by Bounded Signed Reversals 117

short reversal if m is odd and of at least 2m−2
m

units per signed short reversal if m is
even.

Note that 2m−1
m+1 < 1 when m = 1, but in this case we show that the average

decrease in ∆(π, π′′) is of at least 1 unit per signed short reversal. We have two cases
to consider:

1) |v(π′k)| is odd. In this case, we have that ∆(π′, π′′) ≥ 2, therefore the average
decrease in ∆(π, π′′) is of at least 1 unit per signed short reversal.

2) |v(π′k)| is even. We show that this case cannot happen. For the sake of contra-
diction, assume that |v(π′k)| is even. Then, we have that |v(π′k)| ≥ 2. Besides,
since m = 1, we have that k = i + 2. These two facts imply that πi and πi+2

are 2-vector-opposite elements, but it contradicts our initial hypothesis that we
had no choice other than selecting a pair of 1-vector-opposite elements.

Since it always possible to apply a sequence of t signed short reversals on π in such
a way that the resulting permutation π′ satisfies (5.4), the lemma follows.

Lemma 30. Let π be a signed permutation. Then, we have that dssr(π) ≥
Vec(π)+|V oddπ |+|V 0−

π |
5 .

Proof. It suffices to prove that if we apply an arbitrary signed short reversal on π,
then the resulting permutation π′ satisfies

Vec(π′) + |V odd
π′ |+ |V 0−

π′ | ≥ Vec(π) + |V odd
π |+ |V 0−

π | − 5. (5.5)

Suppose first that we apply a signed 1-reversal ρ(i, i) on π and let π′ denote the
resulting permutation. We have that Vec(π′) = Vec(π) and |V odd

π′ | = |V odd
π |. Moreover,

since the sign of πi is flipped without changing the parity of |v(πi)|, we have that |V 0−
π′ |

≥ |V 0−
π | − 1 ≥ |V 0−

π | − 5. Summing the previous equalities with this inequality we
obtain (5.5).

Suppose now that we apply a signed 2-reversal ρ(i, i + 1) on π and let π′ denote
the resulting permutation. We have that Vec(π′) ≥ Vec(π) − 2. Moreover, we have
that |V odd

π′ | ≥ |V odd
π | − 2 and |V 0−

π′ | ≥ |V 0−
π | − 2, but since V odd

π ∩ V 0−
π = ∅, we

conclude that |V odd
π′ | + |V 0−

π′ | ≥ |V odd
π | + |V 0−

π | − 2 ≥ |V odd
π | + |V 0−

π | − 3. Summing
the previous inequalities we obtain (5.5).

Finally, suppose that we apply a signed 3-reversal ρ(i, i + 2) on π and let π′ denote
the resulting permutation. We have that the parities of the lengths of the vectors do
not change and hence |V odd

π′ | = |V odd
π |. Moreover, we have that Vec(π′) ≥ Vec(π) −

4 and |V 0−
π′ | ≥ |V 0−

π | − 3. It should be noted, however, that if v(πi) (or v(πi+2))
belongs to V 0−

π , then Vec(π′) ≥ Vec(π) − 2 because the length of v(πi) (or v(πi+2))
increases by 2 units. On the other hand, if neither v(πi) nor v(πi+2) belongs to V 0−

π ,
then |V 0−

π′ | ≥ |V 0−
π | − 1. Therefore Vec(π′) + |V 0−

π′ | ≥ Vec(π) + |V 0−
π | − 5. Summing

the previous equality with this inequality we obtain (5.5) and the lemma follows.

118 Chapter 5. Sorting Signed Permutations by Short Operations

Theorem 6. The problem of sorting by short signed reversals is 5-approximable.

Proof. Immediate from Lemmas 29 and 30.

Heath and Vergara [78] have described an algorithm for finding vector-opposite
elements which runs in linear time on n, the size of the input permutation. Basically,
what their algorithm does is to find vector-opposite elements πi and πj such that v(πi)
is the rightmost right vector of π. Algorithm 14 is an adaptation of that algorithm.
The difference between the two algorithms is that, given a signed permutation π 6=
ιn, Algorithm 14 guarantees that, if it returns a pair (πi, πi+1), then πi and πi+2 are
not 2-vector-opposite. Note that Algorithm 14 also runs in linear time on n.

Algorithm 14: Returns a pair of vector-opposite elements.
Data: A permutation π ∈ S±n .
Result: A pair of vector-opposite elements.

1 i ← n
2 while |πi| ≤ i do
3 i ← i − 1
4 end
5 j ← i + 1
6 while |πj| = j do
7 j ← j + 1
8 end
9 if j < n and j − i = 1 then

10 if |πi+2| < i+ 2 and |v(πi)| ≥ 2 and |v(πi+2)| ≥ 2 then
11 j ← i + 2
12 end
13 end
14 return (πi, πj)

Algorithm 15: Algorithm for sorting by signed short reversals.
Data: A permutation π ∈ S±n .
Result: Number of signed short reversals applied for sorting π.

1 d ← 0
2 while Vec(π) > 0 do
3 Let πi and πj be m-vector opposite elements returned by Algorithm 14
4 Apply signed short reversals on π such as described in Lemma 28
5 d ← d + 2dm2 e − 1
6 end
7 Apply signed 1-reversals on π until it has no negative elements and update d

accordingly
8 return d

5.3. Sorting by Bounded Signed Reversals 119

Algorithm 15 sorts a signed permutation in two steps. While the signed permuta-
tion has vector-opposite elements, the algorithm finds a pair of them using Algorithm
14 and then switches their positions applying the signed short reversals described
in Lemma 28. When the signed permutation has no vector-opposite elements, the
algorithm applies signed 1-reversals until the signed permutation has no negative el-
ements.

It follows from Theorem 6 that Algorithm 15 is a 5-approximation algorithm for
the problem of sorting by short signed reversals. Regarding its time complexity, it
suffices to compute the total cost of calls to lines 3, 4, and 7. The total cost of calls
in line 3 equals the total cost for all calls to Algorithm 14. Although it runs in O(n)
time and there are O(n2) vector-opposite elements in a signed permutation, we can
provide the Algorithm 14 with enough information so that the costs of calls to this
algorithm can be significantly reduced. Note that Algorithm 14 performs two scans in
the signed permutation, one for each vector of the vector-opposite elements returned.
By observing that a rightmost right vector remains a rightmost vector until it becomes
a zero vector, it need not be searched again if the vector has not been zeroed. Thus,
the scan for the rightmost vector needs to be performed only O(n) times. In addition,
the total cost of scans for the left vector for the same right vector is bounded by the
length of the right vector, also O(n). The total cost for all calls to Algorithm 14 with
this refinement is thus O(n2). Each call to line 4 takes O(m) time, where m = j − i,
and causes a strict decrease in Vec(π) of 2m units. Thus, the cost in this case is
bounded by Vec(π) rather than the number of iterations performed in the while loop.
As each vector has length at most n, we have that Vec(π) ≤ n2, meaning a cost of
O(n2) time for the calls to line 4. Finally, we have that line 3 runs in O(n) time,
therefore Algorithm 15 runs in O(n2) time.

We finish by noting that there exists a large class of signed permutations for
which the approximation ratio of Algorithm 15 is much lower than its worst-case
approximation ratio (Lemma 31). Moreover, based on the fact that the expected
value of Vec(π) of a random signed permutation π ∈ S±n is n2−1

3 (Lemma 33), we can
conclude that the expected approximation ratio of Algorithm 15 for sorting a random
signed permutation is also lower than the worst-case approximation ratio (Theorem
7). Just to make things clear, we define a random signed permutation as a random
ordering of the elements {1, 2, . . ., n}, with the added characteristic that the sign, +
or −, of each element is also randomly chosen.

Lemma 31. Let A15(π) be the number of signed short reversals applied by Algorithm
15 for sorting a signed permutation π ∈ S±n . We have that A15(π)

dssr(π) ≤ 3 when Vec(π) =
0 or Vec(π) ≥ 4n.

Proof. We have two cases to consider:

a) Vec(π) = 0. In this case, we have that Algorithm 15 sorts π with |V 0−
π | signed

1-reversals. On the other hand, we have that dssr(π) ≥ |V 0−
π |
3 because a signed

120 Chapter 5. Sorting Signed Permutations by Short Operations

short reversal cannot affect more than 3 elements at once. Therefore A15(π)
dssr(π) ≤

3.

b) Vec(π) ≥ 4n. In this case, we have seen that Algorithm 15 sorts π in two steps.
First it applies signed 2-reversals and signed 3-reversals on π until Vec(π) = 0
and then it applies signed 1-reversals on π until |V 0−

π | = 0. Note that, in the first
step, each signed short reversal applied by Algorithm 15 results in an average
decrease in Vec(π) of at least 2 units. Hence Algorithm 15 applies at most Vec(π)

2
signed short reversals in the first step. Moreover, Algorithm 15 applies at most
n signed 1-reversals in the second step because |V 0−

π | ≤ n. On the other hand,
we have that dssr(π) ≥ Vec(π)

4 (Lemma 23). This analysis lead us to conclude
that A15(π)

dssr(π) ≤ 2 + 4n
Vec(π) . Therefore A15(π)

dssr(π) ≤ 3.

Since A15(π)
dssr(π) ≤ 3 in both cases, the lemma follows.

In what follows, let Pr(|v(πi)| = j) denote the probability that |v(πi)| is equal to
j and E(X) denote the expected value of a random variable X.

Lemma 32. Let π ∈ S±n be a random signed permutation. Then ∑n
i=1 Pr(|v(πi)| = j)

= 2(n−j)
n

for 1 ≤ j ≤ n − 1.

Proof. We have that |S±n | = n!2n and for each 1 ≤ k ≤ n, there are (n− 1)!2n signed
permutations for which |πi| = k. Then

Pr(|v(πi)| = j) =

1
n

if j = 0,
2
n

if i+ j ≤ n and i− j ≥ 1,
1
n

if i+ j > n or i− j < 1 but not both,
0 otherwise,

for 0 ≤ j ≤ n − 1. In order to evaluate ∑n
i=1 Pr(|v(πi)| = j) for a given j, we consider

two cases:

a) 1 ≤ j < n
2 . In this case, we have that

Pr(|v(πi)| = j) =

1
n

if 1 ≤ i ≤ j,
1
n

if n − j + 1 ≤ i ≤ n,
2
n

otherwise.

Therefore, we have that ∑n
i=1 Pr(|v(πi)| = j) = j

n
+ j

n
+ 2(n−2j)

n
= 2(n−j)

n
.

b) n
2 ≤ j ≤ n. In this case, we have that

Pr(|v(πi)| = j) =

1
n

if 1 ≤ i ≤ n − j,
1
n

if j + 1 ≤ i ≤ n,
0 otherwise.

Therefore, we have that ∑n
i=1 Pr(|v(πi)| = j) = n−j

n
+ n−j

n
= 2(n−j)

n
.

5.4. Sorting by Bounded Operations 121

Since in both cases ∑n
i=1 Pr(|v(πi)| = j) = 2(n−j)

n
holds, the lemma follows.

Lemma 33. Let π ∈ S±n be a random signed permutation. Then E(Vec(π)) = n2−1
3 .

Proof. Given that E(|v(πi)|) = ∑n−1
j=0 j Pr(|v(πi)| = j), we have that

E(Vec(π)) = E(∑n
i=1|v(πi)|)

= ∑n
i=1 E(|v(πi)|)

= ∑n
i=1

∑n−1
j=0 j Pr(|v(πi)| = j)

= ∑n−1
j=1 j

∑n
i=1 Pr(|v(πi)| = j)

= ∑n−1
j=1 j

2(n−j)
n

= 2∑n−1
j=1 j − 2

n

∑n−1
j=1 j

2

= 2(n2−n
2)− 2

n
((n−1)n(2n−1)

6)
= n2 − n− 2n2−3n+1

3
= n2−1

3 ,

and the lemma follows.

Theorem 7. The expected approximation ratio of Algorithm 15 for sorting a random
signed permutation π ∈ S±n is no greater than 3 for n ≥ 13.

Proof. According to Lemma 31, we have that the approximation ratio of Algorithm
15 for sorting a given signed permutation σ ∈ S±n is no greater than 3 when Vec(σ) ≥
4n. Since we know that the expected value of Vec(π) of a random signed permutation
π ∈ S±n is n2−1

3 (Lemma 33), we conclude that the expected approximation ratio of
Algorithm 15 for sorting π is no greater than 3 if n2−1

3 ≥ 4n. This inequality holds
when n ≥ 13, and the theorem follows.

5.4 Sorting by Bounded Operations
In this section, we present a polynomial-time solution for the problem of sorting by
super short operations and a 3-approximation algorithm for the problem of sorting by
short operations. Before we present the main results, we first introduce a useful tool
for tackling these problems, the permutation graph. This tool was also used by Heath
and Vergara [77] for dealing with the problem of sorting by short transpositions.

5.4.1 The Permutation Graph
The permutation graph of a permutation π ∈ S±n is the undirected graph Gπ = (V ,
E), where V = {π1, π2, . . ., πn} and E = {(πi, πj) : i < j and |πi| > |πj|}. In other
words, Gπ is an undirected graph whose vertex set is formed by the elements of π and
edge set is formed by the inversions in π. Figure 5.2 illustrates Gπ for π = (+3 −4
+6 −1 +5 −2).

122 Chapter 5. Sorting Signed Permutations by Short Operations

+3 −4 +6 −1 +5 −2

Figure 5.2: Permutation graph of the signed permutation (+3 −4 +6 −1 +5 −2).

Given a signed permutation π, we denote the number of connected components
(or simply components) of Gπ by c(π). Moreover, we say that a component of Gπ is
odd if it contains an odd number of negative elements (vertices) and we say it is even
otherwise. The number of odd components of Gπ is denoted by codd(π). Lastly, we
say that an edge of Gπ is a cut-edge if its deletion increases the number of components
of Gπ.

5.4.2 Sorting by Signed Super Short Operations
From the proof of Lemma 20, we have that a super short operation can eliminate at
most one inversion of a signed permutation. This means that, for sorting a signed
permutation π, we have to apply Inv(π) super short operations (i.e. 2-reversals and
(1, 1)-transpositions) plus a given number of signed 1-reversals in order to flip the
signs of the remaining negative elements. As before, the question is: how many signed
1-reversals do we have to apply? As Lemmas 34 and 35 show, the answer is codd(π).

Lemma 34. Let π ∈ S±n be a signed permutation. Then, we have that dssso(π) ≤
Inv(π) + codd(π).

Proof. It suffices to prove that it is always possible to apply a signed super short
operation on π 6= ιn in such a way that the resulting permutation π′ satisfies

Inv(π′) + codd(π′) ≤ Inv(π) + codd(π)− 1. (5.6)

If Inv(π) = 0, then each component of Gπ is a single vertex. Therefore, we can
sort π with codd(π) signed 1-reversals and (5.6) holds.

If Inv(π) > 0, then there exists an edge e = (πi, πi+1) in Gπ (Lemma 19). Suppose
first that e is not a cut-edge and that we apply the (1, 1)-transposition ρ(i, i + 1, i +
2) on π, obtaining the permutation π′. We have that Inv(π′) = Inv(π) − 1. Moreover,
since e is not a cut-edge, we have that the vertex sets of the components of Gπ′ are
the same as of the components of Gπ. This means that codd(π′) = codd(π). Summing
both equalities we obtain (5.6).

Now, suppose that e is a cut-edge and let C denote the component of Gπ which
contains e. Moreover, let C1 and C2 denote the components of C − e and assume,
without loss of generality, that πi ∈ C1. We have three cases to consider:

5.4. Sorting by Bounded Operations 123

a) C1 and C2 are both even. Note that C is even. Apply the (1, 1)-transposition
ρ(i, i + 1, i + 2) on π and let π′ denote the resulting permutation. Then, we
have that Inv(π′) = Inv(π) − 1 and that codd(π′) = codd(π). Summing both
equalities we obtain (5.6).

b) C1 and C2 have distinct parities. Note that C is odd. Apply the (1, 1)-
transposition ρ(i, i + 1, i + 2) on π and let π′ denote the resulting permutation.
Then, we have that Inv(π′) = Inv(π) − 1 and that codd(π′) = codd(π). Summing
both equalities we obtain (5.6).

c) C1 and C2 are both odd. Note that C is even. Apply the signed 2-reversal ρ(i,
i + 1) on π and let π′ denote the resulting permutation. Then, we have that
Inv(π′) = Inv(π) − 1. Moreover, we have that codd(π′) = codd(π) because C1

and C2 become even after the signed reversal is applied on π. Summing both
equalities we obtain (5.6).

Since it is always possible to apply a signed super short operation on π in such a
way that the resulting permutation π′ satisfies (5.6), the lemma follows.

Lemma 35. Let π ∈ S±n be a signed permutation. Then dssso(π) ≥ Inv(π) + codd(π).

Proof. It suffices to prove that if we apply an arbitrary super short operation on π,
then the resulting permutation π′ satisfies

Inv(π′) + codd(π′) ≥ Inv(π) + codd(π)− 1. (5.7)

Suppose first that we apply a signed 1-reversal ρ(i, i) and let π′ denote the resulting
permutation. Then, we have that Inv(π′) = Inv(π). Moreover, since the component
containing πi may become even, we have that codd(π′) ≥ codd(π) − 1. Summing the
previous equality with this inequality we obtain (5.7).

Now, suppose that we apply the (1, 1)-transposition ρ(i, i + 1, i + 2) on π and
let π′ denote the resulting permutation. We have two cases to consider:

a) (πi, πi+1) is not an inversion. In this case, we have that Inv(π′) = Inv(π)
+ 1. On the other hand, by adding a new edge, we may eliminate two odd
components, therefore codd(π′) ≥ codd(π) − 2. Summing the previous equality
with this inequality we obtain (5.7).

b) (πi, πi+1) is an inversion. In this case, we have that Inv(π′) = Inv(π) − 1.
Moreover, let e = (πi, πi+1) be an edge of Gπ and let C be the component of
Gπ containing e and. We further divide our analysis into two subcases:

i) e is not a cut-edge. In this case, we have that codd(π′) = codd(π) because
the parity of the component C − e is the same as of C, therefore (5.7)
holds.

124 Chapter 5. Sorting Signed Permutations by Short Operations

ii) e is a cut-edge. In this case, let C1 and C2 denote the components of C −
e. If C is odd, then either C1 or C2 is odd. If C is even, then either C1 and
C2 are both odd or C1 and C2 are both even. In any case, we have that
codd(π′) ≥ codd(π), therefore (5.7) holds.

Finally, suppose that we apply the signed 2-reversal ρ(i, i + 1) on π and let π′
denote the resulting permutation. By making use of an argument analogous to the
one in the previous paragraph, we conclude that π′ satisfies (5.7) and the lemma
follows.

Theorem 8. Let π ∈ S±n be a signed permutation. Then, dssso(π) = Inv(π) + codd(π).

Proof. Immediate from Lemmas 34 and 35.

Let π be a signed permutation. From the proof of Lemma 35, we can conclude
that a super short operation cannot decrease the value of codd(π) if it is applied on an
inversion in π. Moreover, from the proof of Lemma 34, we can conclude that if a (1,
1)-transposition increases the value of codd(π) when applied on an inversion in π, then
it is possible to apply a signed 2-reversal on this inversion in such a way that codd(π)
remains unaltered. These observations lead us to the following optimal algorithm for
sorting by signed super short operations (Algorithm 16).

The time complexity of Algorithm 16 depends on the time complexity of the
algorithm used to compute the value of codd(π). A straightforward algorithm is to
traverse Gπ with a depth-first search and count the number of odd components. Such
an algorithm runs in O(n2) time. It is possible, however, to count the number of odd
components in Gπ in O(n) time.

Koh and Ree [86] have studied the permutation graph of unsigned permutations
and have demonstrated some useful properties about them. Since the permutation
graph of the signed permutation π ∈ S±n is isomorphic to the permutation graph of
the unsigned permutation (|π1| |π2| . . . |πn|), we are able to translate those properties
to the permutation graph of signed permutations. In particular, Lemma 36 represents
the translation of one of those properties.

Lemma 36. Let π ∈ S±n be a signed permutation. The vertex sets of the components
of Gπ are of the form C1 = {π1, π2, . . ., πk}, C2 = {πk+1, πk+2, . . ., πl}, . . ., Ct =
{πm+1, πm+2, . . ., πn}. Moreover, we have that {|π1|, |π2|, . . ., |πk|} = {1, 2, . . ., k},
{|πk+1|, |πk+2|, . . ., |πl|} = {k + 1, k + 2, . . ., l}, . . ., {|πm+1|, |πm+2|, . . ., |πn|} =
{m + 1, m + 2, . . ., n}.

We say that a contiguous sequence of elements πi πi+1 . . . πj, i ≤ j, of a signed
permutation π is a complete substring if {|πi|, |πi+1|, . . ., |πj|} = {i, i + 1, . . ., j}.
From Lemma 36, we have that the vertex set of a component of Gπ forms a complete
substring. Furthermore, assume that {πi, πi+1, . . ., πj} is the vertex set of a component
of Gπ. We claim that πi πi+1 . . . πj is the minimum complete substring that starts

5.4. Sorting by Bounded Operations 125

Algorithm 16: Optimal algorithm for sorting by super short operations.
Data: A permutation π ∈ S±n .
Result: Number of super short operations applied for sorting π.

1 d ← 0
2 codd ← codd(π)
3 while Inv(π) > 0 do
4 Let (πi, πi+1) be an inversion in π
5 π ← π · ρ(i, i + 1, i + 2)
6 if codd(π) > codd then
7 π ← π · ρ(i, i + 1, i + 2) . undo the previous (1, 1)-transposition
8 π ← π · ρ(i, i + 1)
9 end

10 d ← d + 1
11 end
12 Apply signed 1-reversals on π until it has no negative elements and update d

accordingly
13 return d

with πi. For the sake of contradiction, suppose that there exists a complete substring
πi πi+1 . . . πk such that k < j. We have that πl > πm for every i ≤ l ≤ k and k + 1
≤ m ≤ j. Therefore there does not exist any edge in Gπ connecting the elements in
{πi, πi+1, . . ., πk} with the elements in {πk+1, πk+2, . . ., πj}. But this contradicts our
hypothesis that {πi, πi+1, . . ., πj} is the vertex set of a component of Gπ.

From the discussion of the last paragraph, we can design the following algorithm
for finding the vertex sets of the components of the permutation graph of a signed
permutation π ∈ S±n . Find the minimum complete substring π1 π2 . . . πk starting
with π1 and let C1 = {π1, π2, . . ., πk} be a component of Gπ. If k < n, then find
the minimum complete substring πk+1 πk+2 . . . πl starting with πk+1 and let C2 =
{πk+1, πk+2, . . ., πl} be another component of Gπ. Continue with this process until
all elements have been assigned to a component. It remains to show how to find the
minimum complete substring πi πi+1 . . . πj starting with πi. Note that i is the least
element and j is the largest element of the set S = {|πi|, |πi+1|, . . ., |πj|}. Since
all integers in the interval [i, j] are in S, we have that |S| = j − i + 1. This fact
give us the necessary and sufficient condition for knowing when we have found the last
element of the minimum complete substring starting with πi. The complete algorithm
is detailed below (Algorithm 17).

Algorithm 17 performs a linear scan on the positions of the permutation π ∈ S±n ,
and so it runs in O(n). With the vertex sets of the components of Gπ, it is easy to
count the number of odd components in Gπ in O(n) time. Returning to Algorithm
16, we can see that lines 4-9 run in O(n) time. Since the while loop iterates a total of
O(n2) times and line 12 runs in O(n) time, we can conclude that Algorithm 16 runs in
O(n3) time. We remark that the value of dssso(π) can be computed inO(n

√
log n) time

126 Chapter 5. Sorting Signed Permutations by Short Operations

Algorithm 17: Find the vertex sets of the components of a permutation graph.
Data: A permutation π ∈ S±n .
Result: The vertex sets of the components of Gπ.

1 C ← ∅
2 S ← ∅
3 i ← 1
4 while i ≤ n do
5 C ← C ∪ {πi}
6 min ← i
7 max ← |πi|
8 while (max−min +1) > |C| do
9 i ← i + 1

10 C ← C ∪ {πi}
11 if |πi| > max then
12 max ← |πi|
13 end
14 end
15 S ← S ∪ C
16 C ← ∅
17 i ← i + 1
18 end
19 return S

because computing codd(π) takes O(n) time and computing Inv(π) takes O(n
√

log n)
time [26].

5.4.3 Sorting by Signed Short Operations
A trivial algorithm for the problem of sorting by signed short operations is the optimal
algorithm for the problem of sorting by signed super short operations. From the lower
bound of Lemma 37, it follows that this algorithm is a 4-approximation algorithm.
In addition, we have that this approximation bound is tight. For instance, we need
4 signed super short operations for sorting the signed permutation (−3 −2 −1), but
one signed 3-reversal is sufficient for sorting it.

Lemma 37. Let π ∈ S±n be a signed permutation. Then, dsso(π) ≥ Inv(π)+codd(π)
4 .

Proof. It suffices to prove that if we apply an arbitrary short operation on π, then
the resulting permutation π′ satisfies

Inv(π′) + codd(π′) ≥ Inv(π) + codd(π)− 4. (5.8)

From the proof of Lemma 35, we have that (5.8) holds in case we apply a super
short operation on π. So, suppose that we apply a short operation ρ on π which acts

5.4. Sorting by Bounded Operations 127

on the elements πi, πi+1, and πi+2. Moreover, let π′ denote the resulting permutation.
We have three cases to consider:

a) πi, πi+1, and πi+2 belong to the same component. In this case, we have that
Inv(π′) ≥ Inv(π) − 3 and codd(π′) ≥ codd(π) − 1, therefore (5.8) holds.

b) two elements in {πi, πi+1, πi+2} belong to a component C1 and the remaining
element belongs to a component C2. In this case, we have that Inv(π′) ≥ Inv(π)
− 1 and codd(π′) ≥ codd(π) − 2, therefore (5.8) holds.

c) πi, πi+1, and πi+2 belong to distinct components. In this case, we have that
Inv(π′) = Inv(π) + 3 and codd(π′) ≥ codd(π′) − 3, therefore (5.8) holds.

Since (5.8) holds in any case, the lemma follows.

Given a signed permutation π, let ctodd(π) be the number of odd components of
Gπ which have exactly t vertices. By just considering the odd components having
at most two vertices, we can obtain better bounds on the signed short operation
distance of a signed permutation π (Lemmas 39 and 40). These bounds lead to a 3-
approximation for the problem of sorting by signed short reversals (Theorem 9). We
note that the upper bound given in Lemma 39 relies on the fact that we can establish
an isomorphism between a component with m vertices and the permutation graph of
a signed permutation σ ∈ S±m (Lemma 38).

Lemma 38. Let π ∈ S±n be a signed permutation and let C = (VC, EC) be a component
of Gπ with m vertices. Then, there exists a signed permutation σ ∈ S±m such that Gσ

is isomorphic to C.

Proof. By Lemma 36, we have that if VC = {πi+1, πi+2, . . ., πi+m}, then {|πi+1|, |πi+2|,
. . ., |πi+m|} = {i + 1, i + 2, . . ., i + m}. Let σ ∈ S±m be a signed permutation such
that

σj =
{
πi+j − i if πi+j > 0
πi+j + i if πi+j < 0

for all j ∈ {1, 2, . . ., m}. We claim that the bijective function f(πi+x) = σx is an
isomorphism between C and Gσ. To see this, firstly note that πi+x is a negative vertex
if, and only if, σx is a negative vertex. Secondly, let k and l be to integers such that
1 ≤ k < l ≤ m. Note that (πi+k, πi+l) is an edge of C if, and only if, (σk, σl) is an
edge of Gσ, and so the lemma follows.

Lemma 39. Let π ∈ S±n be a signed permutation. Then dsso(π) ≤ Inv(π) + c2
odd(π)

+ c1
odd(π).

Proof. It suffices to prove that it is always possible to apply a sequence of t > 0 signed
short operations on π 6= ιn in such a way that the resulting permutation π′ satisfies

Inv(π′) + c2
odd(π′) + c1

odd(π′) ≤ Inv(π) + c2
odd(π) + c1

odd(π)− t. (5.9)

128 Chapter 5. Sorting Signed Permutations by Short Operations

If Inv(π) = 0, then each component of Gπ is a single vertex. Therefore, we can
apply c1

odd(π) signed 1-reversals and (5.9) holds.
If Inv(π) > 0, then there exists an edge e = (πi, πi+1) in Gπ (Lemma 19). Let C

denote the component of Gπ which contains e and assume that C contains m vertices.
We have four cases to consider:

a) m ≥ 5. In this case, we further divide our analysis into two subcases:

i) e is not a cut-edge. In this case, apply the (1, 1)-transposition ρ(i, i + 1, i
+ 2) on π and let π′ denote the resulting permutation. Then, we have that
Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π), and c1

odd(π′) = c1
odd(π). Therefore

(5.9) holds.
ii) e is a cut-edge. In this case, let C1 and C2 denote the components of C
− e. Moreover, let m1 be the number of vertices in C1 and let m2 be
the number of vertices in C2. If m1 ≥ 3 and m2 ≥ 3, then apply the (1,
1)-transposition ρ(i, i + 1, i + 2) on π and let π′ denote the resulting
permutation. We have that Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π), and

c1
odd(π′) = c1

odd(π). So, without loss of generality, assume that m1 ≤ 2. Note
that m2 ≥ 3 because m1 + m2 = m ≥ 5. If C1 is even, then apply the
(1, 1)-transposition ρ(i, i + 1, i + 2) on π and let π′ denote the resulting
permutation. We have that Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π), and

c1
odd(π′) = c1

odd(π). Otherwise, if C1 is odd, apply the signed the 2-reversal
ρ(i, i+ 1) on π and let π′ denote the resulting permutation. We have that
Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π), and c1

odd(π′) = c1
odd(π). In any

case, we have that the resulting permutation π′ satisfies (5.9).

b) m = 4. According to Lemma 38, there exists a signed permutation σ ∈ S±4 such
that Gσ is isomorphic to C. We have verified that every permutation σ ∈ S±4
for which c(σ) = 1 can be sorted with at most Inv(σ) signed short operations,
therefore it is possible to apply a sequence of signed short operations on C in
such a way that the resulting permutation π′ satisfies (5.9).

c) m = 3. Analogous to case b).

d) m = 2. In this case, we further divide our analysis into three subcases:

i) πi and πi+1 are both negatives. In this case, apply the signed the 2-reversal
ρ(i, i+ 1) on π and let π′ denote the resulting permutation. We have that
Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π), and c1

odd(π′) = c1
odd(π), therefore

(5.9) holds.
ii) πi and πi+1 have distinct signs. In this case, apply the (1, 1)-transposition

ρ(i, i + 1, i + 2) on π and let π′ denote the resulting permutation. Then,
we have that Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π) − 1, and c1

odd(π′) =
c1
odd(π) + 1, therefore (5.9) holds.

5.4. Sorting by Bounded Operations 129

iii) πi and πi+1 are both positives. In this case, apply the (1, 1)-transposition
ρ(i, i + 1, i + 2) on π and let π′ denote the resulting permutation. Then, we
have that Inv(π′) = Inv(π) − 1, c2

odd(π′) = c2
odd(π), and c1

odd(π′) = c1
odd(π),

therefore (5.9) holds.

Since it is always possible to apply a sequence of signed short operations on π in
such a way that the resulting permutation π′ satisfies (5.9), the lemma follows.

Lemma 40. Let π ∈ S±n be a signed permutation. Then, we have that dsso(π) ≥
Inv(π)+c2

odd(π)+c1
odd(π)

3 .

Proof. It suffices to prove that if we apply an arbitrary short operation on π, then
the resulting permutation π′ satisfies

Inv(π′) + c2
odd(π′) + c1

odd(π′) ≥ Inv(π) + c2
odd(π) + c1

odd(π)− 3. (5.10)

Suppose first that we apply a signed 1-reversal ρ(i, i) and let π′ denote the resulting
permutation. Then, we have that Inv(π′) = Inv(π). Moreover, since πi can belong
to an odd component with at most two vertices, we have that c2

odd(π′) + c1
odd(π′) ≥

c2
odd(π) + c1

odd(π) − 1, therefore (5.10) holds.
Now, suppose that we apply a super short operation ρ on π which acts on the

elements πi and πi+1, and let π′ denote the resulting permutation. We have two cases
to consider:

a) πi and πi+1 belong to the same component. In this case, we have that Inv(π′)
= Inv(π) − 1 and c2

odd(π′) + c1
odd(π′) ≥ c2

odd(π) + c1
odd(π), and (5.10) holds.

b) πi and πi+1 belong to distinct components. In this case, we have that Inv(π′)
= Inv(π) + 1 and c2

odd(π′) + c1
odd(π′) ≥ c2

odd(π) + c1
odd(π) − 2. Therefore (5.10)

holds.

Finally, suppose that we apply a short operation ρ on π which acts on the elements
πi, πi+1, and πi+2. Moreover, let π′ denote the resulting permutation. We have three
cases to consider:

a) πi, πi+1, and πi+2 belong to the same component. In this case, we have that
Inv(π′) ≥ Inv(π) − 3 and c2

odd(π′) + c1
odd(π′) ≥ c2

odd(π) + c1
odd(π). Therefore

(5.10) holds.

b) two elements in {πi, πi+1, πi+2} belong to the component C1 and the remaining
element belongs to the component C2. In this case, we have that Inv(π′) ≥
Inv(π) − 1 and c2

odd(π′) + c1
odd(π′) ≥ c2

odd(π) + c1
odd(π) − 2, and (5.10) holds.

c) πi, πi+1, and πi+2 belong to distinct components. In this case, we have that πi
< πi+1 < πi+2, thus Inv(π′) = Inv(π) + 3. Moreover, we have that c2

odd(π′) +
c1
odd(π′) ≥ c2

odd(π) + c1
odd(π) − 3. Therefore (5.10) holds.

130 Chapter 5. Sorting Signed Permutations by Short Operations

Since (5.10) holds in every case, the lemma follows.

Theorem 9. The problem of sorting by short signed operations is 3-approximable.

Proof. Immediate from Lemmas 39 and 40.

Let π be a signed permutation. From the proof of Lemma 39, we can conclude that
as long as Inv(π) > 0, we can apply a sequence of short operations that eliminates
inversions and keeps the value of c2

odd(π) + c1
odd(π) unchanged. When Inv(π) = 0, we

can sort π applying c1
odd(π) signed 1-reversals. This is precisely what Algorithm 18

does.

Algorithm 18: Algorithm for sorting by short operations.
Data: A permutation π ∈ S±n .
Result: Number of short operations applied for sorting π.

1 d ← 0
2 codd ← c2

odd(π) + c1
odd(π)

3 while Inv(π) > 0 do
4 Let (πi, πi+1) be an inversion in π
5 Let C = (VC , EC) be the component of Gπ such that πi,πi+1 ∈ VC
6 if |VC | ≥ 5 then
7 π ← π · ρ(i, i + 1, i + 2)
8 if c2

odd(π) + c1
odd(π) > codd then

9 π ← π · ρ(i, i + 1, i + 2) . undo the previous (1, 1)-transposition
10 π ← π · ρ(i, i + 1)
11 end
12 d ← d + 1
13 else if |VC | = 4 or |VC | = 3 then
14 Let m = |VC | and let σ ∈ S±m be a signed permutation such that Gσ '

C (Lemma 38)
15 Apply on C the sequence of short operations that optimally sorts σ
16 d ← d + dsso(σ)
17 else
18 if πi < 0 and πi+1 < 0 then
19 π ← π · ρ(i, i + 1)
20 else
21 π ← π · ρ(i, i + 1, i + 2)
22 end
23 d ← d + 1
24 end
25 end
26 Apply signed 1-reversals on π until it has no negative elements and update d

accordingly
27 return d

5.5. Experimental Results 131

It follows from Theorem 9 that Algorithm 18 is a 3-approximation algorithm for
the problem of sorting by short reversals. Regarding its time complexity, we have
that each iteration of the while loop takes O(n) time. Since the while loop iterates a
total of O(n2) times and line 26 runs in O(n) time, we can conclude that Algorithm
18 runs in O(n3) time.

5.5 Experimental Results
We have implemented Algorithms 15 and 18, and we have audited them using GRAAu
[60]. The audit consists of comparing the distance computed by an algorithm with the
rearrangement distance for every π ∈ S±n , 1 ≤ n ≤ 10. The results are presented in
Tables 5.1 and 5.2, where n is the size of the permutations, Avg. Ratio is the average
of the ratios between the distance returned by an algorithm and the rearrangement
distance, Max. Ratio is the greatest ratio among all the ratios between the distance
returned by an algorithm and the rearrangement distance, and Exact is the percentage
of distances returned by the algorithm that is exactly the rearrangement distance.

Besides providing the Max. Ratio, GRAAu also provides up to 50 permutations for
which the algorithms achieved this ratio. These permutations can be used to obtain
lower bounds on the theoretical approximation ratios of Algorithms 15 and 18. This
is precisely what Lemmas 41 and 42 do. Observe that, in the case of Algorithm 18,
the lower bound matches the upper bound, so we can conclude that its approximation
ratio is tight (Lemma 43).

Lemma 41. The approximation ratio of Algorithm 15 is at least 3.

Proof. Let π = (+3 +4 −1 −2) be a signed permutation. On one hand, we have
that Algorithm 15 applies the sequence of signed short reversals ρ(2, 4), ρ(1, 3), ρ(1,
1), ρ(2, 2), ρ(3, 3), and ρ(4, 4) for sorting π. On the other hand, we have that
the sequence of signed short reversals ρ(1, 3) and ρ(2, 4) sorts π, and the lemma
follows.

Lemma 42. The approximation ratio of Algorithm 18 is at least 3.

Proof. Let π = (−3 −2 −5 −4 +1) be a signed permutation. On one hand, we have
that Algorithm 18 applies the sequence of signed short operations ρ(1, 2, 3), ρ(3, 4,
5), ρ(4, 5), ρ(3, 4), ρ(2, 3), and ρ(1, 2) for sorting π. On the other hand, we have
that the sequence of signed short operations ρ(3, 5) and ρ(1, 3) sorts π. Therefore
the lemma follows.

Lemma 43. The approximation ratio of Algorithm 18 is tight.

Proof. Immediate from Theorem 9 and Lemma 42.

132 Chapter 5. Sorting Signed Permutations by Short Operations

Table 5.1: Results obtained from the audit of the implementation of Algorithm 15.

n Avg. Ratio Max. Ratio Exact
1 1.00 1.00 100.00%
2 1.00 1.00 100.00%
3 1.13 2.50 77.08%
4 1.18 3.00 60.16%
5 1.24 3.00 41.04%
6 1.28 3.00 26.04%
7 1.31 3.00 15.06%
8 1.34 3.00 8.00%
9 1.35 3.00 3.93%
10 1.37 3.00 1.79%

Table 5.2: Results obtained from the audit of the implementation of Algorithm 18.

n Avg. Ratio Max. Ratio Exact
1 1.00 1.00 100.00%
2 1.00 1.00 100.00%
3 1.04 1.50 91.67%
4 1.02 1.50 93.75%
5 1.31 3.00 46.41%
6 1.54 3.00 19.11%
7 1.73 3.00 7.13%
8 1.87 3.00 2.50%
9 1.99 3.00 0.75%
10 2.08 3.00 0.20%

5.6 Conclusions

In this article, we have presented optimal algorithms for sorting by signed super
short reversals and for sorting by signed super short operations, a 5-approximation
algorithm for sorting by signed short reversals, and a 3-approximation algorithm for
sorting by signed short operations. We have shown that the expected approximation
ratio of the 5-approximation algorithm is not greater than 3 for random signed per-
mutations with more than 12 elements. Moreover, the experimental results on small
signed permutations have led us to conclude that the approximation ratio of both
approximation algorithms cannot be smaller than 3. In particular, this means that
the approximation ratio of the 3-approximation algorithm is tight.

We make two remarks. The first remark is that bounding the length of the
operations is not the only approach yielded by the assumption that rearrangement

5.6. Conclusions 133

events affecting large portions of a genome are less likely to occur. Some researchers
[13, 106, 118] have proposed to assign weights to the operations according to their
length. The second remark is that, as opposed to the unbounded variants of the
permutation sorting problem, sorting a linear permutation by short operations is not
equivalent to sorting a circular permutation by short operations (see [47] for details).
To the best of our knowledge, the only bounded variant considered in the literature
that involves circular permutations is the problem of sorting an unsigned circular per-
mutation by reversals of length 2. Jerrum [80] and Egri-Nagy et al. [47] demonstrated
how to solve this problem in polynomial time.

We see some possible directions for future work. One is to develop polynomial time
solutions for the problem of sorting by signed short reversals and for the problem of
sorting by signed short operations. Another possibility is to study the problem of
sorting signed circular permutations by short operations. In particular, we think that
the ideas used to solve the problem of sorting by signed super short reversals can also
be used to tackle the problem of sorting a signed circular permutation by reversals of
length of at most 2. Finally, one could apply the methods discussed in this work to
inferring phylogenies. For instance, Egri-Nagy et al. [47] applied their method (i.e.
sorting unsigned circular permutations by reversals of length 2) to reconstruct the
phylogenetic history of some published Yersinia genomes. As a result, they produced
a phylogenetic tree that is broadly consistent with the phylogenetic tree of Bos et
al. [17].

134 Chapter 5. Sorting Signed Permutations by Short Operations

Chapter 6

Sorting Signed Circular
Permutations by Super Short
Reversals ∗

Abstract: We consider the problem of sorting a circular permutation by reversals of length
at most 2, a problem that finds application in comparative genomics. Polynomial-time
solutions for the unsigned version of this problem are known, but the signed version remained
open. In this paper, we present the first polynomial-time solution for the signed version of
this problem. Moreover, we perform an experiment for inferring distances and phylogenies
for published Yersinia genomes and compare the results with the phylogenies presented in
previous works.

∗Gustavo Rodrigues Galvão, Christian Baudet, and Zanoni Dias. Sorting signed
circular permutations by super short reversals. In Bioinformatics Research and Ap-
plications, series Lecture Notes in Bioinformatics, Volume 9096, pp. 272-283, 2015.
Copyright 2015 Springer International Publishing Switzerland. DOI: http://dx.doi.
org/10.1007/978-3-319-19048-8_23

135

http://dx.doi.org/ 10.1007/978-3-319-19048-8_23
http://dx.doi.org/ 10.1007/978-3-319-19048-8_23

136 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

6.1 Introduction

Distance-based methods form one of the three large groups of methods to infer phylo-
genetic trees from sequence data [96, Chapter 5]. Such methods proceed in two steps.
First, the evolutionary distance is computed for every sequence pair and this infor-
mation is stored in a matrix of pairwise distances. Then, a phylogenetic tree is con-
structed from this matrix using a specific algorithm, such as Neighbor-Joining [108].
Note that, in order to complete the first step, we need some method to estimate the
evolutionary distance between a sequence pair. Assuming the sequence data corre-
spond to complete genomes, we can resort to the genome rearrangement approach [54]
in order to estimate the evolutionary distance.

In genome rearrangements, one estimates the evolutionary distance between two
genomes by finding the rearrangement distance between them, which is the length of
the shortest sequence of rearrangement events that transforms one genome into the
other. Assuming genomes consist of a single chromosome, share the same set of genes,
and contain no duplicated genes, we can represent them as permutations of integers,
where each integer corresponds to a gene. If, besides the order, the orientation of the
genes is also regarded, then each integer has a sign, + or −, and the permutation is
called a signed permutation (similarly, we also refer to a permutation as an unsigned
permutation when its elements do not have signs). Moreover, if the genomes are
circular, then the permutations are also circular; otherwise, they are linear.

A number of publications address the problem of finding the rearrangement dis-
tance between two permutations, which can be equivalently stated as a problem of
sorting a permutation into the identity permutation (for a detailed survey, the reader
is referred to the book of Fertin et al. [54]). This problem varies according to the
rearrangement events allowed to sort a permutation. Reversals are the most common
rearrangement event observed in genomes. They are responsible for reversing the or-
der and orientation of a sequence of genes within a genome. Although the problem
of sorting a permutation by reversals is a well-studied problem, most of the works
concerning it do not take into account the length of the reversals (i.e. the number of
genes affected by it). Since it has been observed that short reversals are prevalent in
the evolution of some species [32,33,94,110], recent efforts have been made to address
this issue [47,61].

In this paper, we add to those efforts and present a polynomial-time solution for
the problem of sorting a signed circular permutation by super short reversals, that is,
reversals which affect at most 2 elements (genes) of a permutation (genome). This
solution closes a gap in the literature since polynomial-time solutions are known for
the problem of sorting an unsigned circular permutation [47, 80], for the problem of
sorting an unsigned linear permutation [80], and for the problem of sorting a signed
linear permutation [61]. Moreover, we reproduce the experiment performed by Egri-
Nagy et. al. [47] to infer distances and phylogenies for published Yersinia genomes,
but this time we consider the orientation of the genes (they have ignored it in order

6.2. Sorting by Cyclic Super Short Reversals 137

to treat the permutations as unsigned).
The rest of this paper is organized as follows. Section 6.2 succinctly presents the

solution developed by Jerrum [80] for the problem of sorting by cyclic super short
reversals. Section 6.3 builds upon the previous section and presents the solution
for the problem of sorting by signed cyclic super short reversals. Section 6.4 briefly
explains how we can use the solutions described in Sect(s). 6.2 and 6.3 to solve the
problem of sorting a (signed) circular permutation by super short reversals. Section
6.5 presents experimental results performed on Yersinia pestis data. Finally, Sect.
6.6 concludes the paper.

6.2 Sorting by Cyclic Super Short Reversals
A permutation π is a bijection of {1, 2, . . ., n} onto itself. A classical notation used
in combinatorics for denoting a permutation π is the two-row notation

π =
(

1 2 . . . n

π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. This notation indicates that π(1) = π1, π(2) = π2,
. . ., π(n) = πn. The notation used in genome rearrangement literature, which is the
one we will adopt, is the one-row notation π = (π1 π2 . . . πn). We say that π has size
n. The set of all permutations of size n is Sn.

A cyclic reversal ρ(i, j) is an operation that transforms a permutation π = (π1 π2

. . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the permutation π · ρ(i, j) = (π1 π2 . . .

πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn) if 1 ≤ i < j ≤ n and transforms a permutation
π = (π1 π2 . . . πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the permutation π · ρ(i, j) =
(πj πj+1 . . . πn πi+1 . . . πj−1 πi πi−1 . . . π1) if 1 ≤ j < i ≤ n. The cyclic reversal ρ(i,
j) is called a cyclic k-reversal if k ≡ j − i + 1 (mod n). It is called super short if k
= 2.

The problem of sorting by cyclic super short reversals consists in finding the mini-
mum number of cyclic super short reversals that transform a permutation π ∈ Sn into
ιn = (1 2 . . . n). This number is referred to as the cyclic super short reversal distance
of permutation π and it is denoted by d(π).

Let S(πi, πj) denote the act of switching the positions of the elements πi and πj in
a permutation π. Note that the cyclic 2-reversal ρ(i, j) can be alternatively denoted
by S(πi, πj). Given a sequence S of cyclic super short reversals and a permutation
π ∈ Sn, let RS(πi) be the number of cyclic 2-reversals of the type S(πi, πj) and let
LS(πi) be the number of cyclic 2-reversals of the type S(πk, πi). In other words,
RS(πi) denotes the number of times a cyclic 2-reversal moves the element πi to the
right and LS(πi) denotes the number of times a cyclic 2-reversal moves the element
πi to the left. We define the net displacement of an element πi with respect to S as
dS(πi) = RS(πi) − LS(πi). The displacement vector of π with respect to S is defined
as dS(π) = (dS(π1), dS(π2), . . ., dS(πn)).

138 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

Lemma 44. Let S = ρ1, ρ2, . . ., ρt be a sequence of cyclic super short reversals that
sorts a permutation π ∈ Sn. Then, we have that

n∑
i=1

dS(πi) = 0, (6.1)

πi − dS(πi) ≡ i (mod n). (6.2)

Proof. Let LS be the number of times a cyclic super short reversal of S moves an
element to the left and let RS be the number of times a cyclic super short reversal of
S moves an element to the right. Then, LS = RS because a cyclic super reversal always
moves two elements, one for each direction. Therefore, we have that ∑n

i=1 dS(πi) =∑n
i=1 (RS(πi) − LS(πi)) = RS − LS = 0 and equation 6.1 follows. The equation 6.2

follows from the fact that, once the permutation is sorted, all of its elements must be
in the correct position.

Note that, in one hand, we can think of a sequence of cyclic super short reversals
as specifying a displacement vector. On the other hand, we can also think of a
displacement vector as specifying a sequence of cyclic super short reversals. Let x =
(x1, x2, . . ., xn) ∈ Zn be a vector and π ∈ Sn be a permutation. We say that x is a
valid vector for π if ∑i xi = 0 and πi − xi ≡ i (mod n). Given a vector x = (x1, x2,
. . ., xn) ∈ Zn and two distinct integers i, j ∈ {1, 2, . . ., n}, let r = i − j and s = (i
+ xi) − (j + xj). The crossing number of i and j with respect to x is defined by

cij(x) =
{
|{k ∈ [r, s] : k ≡ 0 (mod n)}| if r ≤ s,

−|{k ∈ [s, r] : k ≡ 0 (mod n)}| if r > s.

The crossing number of x is defined by C(x) = 1
2
∑
i,j |cij(x)|. Intuitively, if S is a

sequence of cyclic super short reversals that sorts a permutation π and dS(π) = x,
then cij(x) measures the number of times the elements πi and πj must “cross”, that
is, the number of cyclic 2-reversals of type S(πi, πj) minus the number of cyclic 2-
reversals of type S(πj, πi). Using the notion of crossing number, Jerrum [80] was able
to prove the following fundamental lemma.

Lemma 45 (Jerrum [80]). Let S be a minimum-length sequence of cyclic super short
reversals that sorts a permutation π ∈ Sn and let x ∈ Zn be a valid vector for π. If
dS(π) = x, then d(π) = C(x).

The Lemma 45 allows the problem of sorting a permutation π by cyclic super short
reversals to be recast as the optimisation problem of finding a valid vector x ∈ Zn for
π with minimum crossing number. More specifically, as Jerrum [80] pointed out, this
problem can formulated as the integer program:

Minimize C(x) over Zn

subject to ∑i xi = 0, πi − xi ≡ i (mod n).

6.2. Sorting by Cyclic Super Short Reversals 139

Although solving an integer program is NP-hard in the general case, Jerrum [80]
presented a polynomial-time algorithm for solving this one.

Firstly, Jerrum [80] introduced a transformation Tij : Zn → Zn defined as follows.
For any vector x ∈ Zn, the result, x′ = Tij(x), of applying Tij to x is given by x′k =
xk for k /∈ {i,j}, x′i = xi − n, and x′j = xj + n. Lemma 46 shows what is the effect
of this transformation on the crossing number of a vector.

Lemma 46. Let x and x′ be two vectors over Zn such that x′ = Tij(x). Then, C(x′)
− C(x) = 2(n + xj − xi).

Proof. The proof of this lemma is given by Jerrum [80, Theorem 3.9]. We note,
however, that he mistakenly wrote that C(x′) − C(x) = 4(n + xj − xi). In other
words, he forgot to divide the result by 2. This division is necessary because the
crossing number of a vector is the half of the sum of the crossing numbers of its
indices.

Let max(x) and min(x) respectively denote the maximum and minimum compo-
nent values of a vector x ∈ Zn. The transformation Tij is said to contract x iff xi =
max(x), xj = min(x) and xi − xj ≥ n. Moreover, Tij is said to strictly contract x
iff, in addition, the final inequality is strict. The algorithm proposed by Jerrum [80]
starts with a feasible solution to the integer program and performs a sequence of
strictly contracting transformations which decrease the value of the crossing number.
When no further strictly contracting transformation can be performed, the solution
is guaranteed to be optimal. This is because, as showed by Jerrum [80], any two
local optimum solutions (i.e solutions which admit no strictly contracting transfor-
mation) can be brought into agreement with each other via a sequence of contracting
transformations. The detailed algorithm is given below (Algorithm 19).

Algorithm 19: Algorithm for sorting by cyclic super short reversals.
Data: A permutation π ∈ Sn.
Result: Number of cyclic super short reversals applied for sorting π.

1 Let x be a n dimension vector
2 for k = 1 to n do
3 xk ← πk − k
4 end
5 while max(x)−min(x) > n do
6 Let i,j be two integers such that xi = max(x) and xj = min(x)
7 xi ← xi − n
8 xj ← xj + n

9 end
10 return C(x)

Regarding the time complexity of Algorithm 19, we have that line 1 and the for
loop of lines 2-4 take O(n) time. Jerrum [80] observed that none of the variables xi

140 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

changes value more than once, therefore the while loop iterates only O(n) times. As
the lines 6-8 take O(n) time, the while loop takes O(n2) time to execute. Since we
can compute the value of C(x) in O(n2) time, the overall complexity of the algorithm
is O(n2).

Note that, in this section, we have focused on the problem of computing the
cyclic super short reversal distance of a permutation rather than finding the minimum
number of cyclic super short reversals that sorts it. As Jerrum [80] remarked, his
proofs are constructive and directly imply algorithms for finding the sequence of cyclic
super short reversals.

6.3 Sorting by Signed Cyclic Super Short Rever-
sals

A signed permutation π is a bijection of {−n, . . ., −2, −1, 1, 2, . . ., n} onto itself that
satisfies π(−i) = −π(i) for all i ∈ {1, 2, . . ., n}. The two-row notation for a signed
permutation is

π =
(
−n . . . −2 −1 1 2 . . . n

−πn . . . −π2 −π1 π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. The notation used in genome rearrangement
literature, which is the one we will adopt, is the one-row notation π = (π1 π2 . . . πn).
Note that we drop the mapping of the negative elements since π(−i) = −π(i) for all i
∈ {1, 2, . . ., n}. By abuse of notation, we say that π has size n. The set of all signed
permutations of size n is S±n .

A signed cyclic reversal ρ(i, j) is an operation that transforms a signed permuta-
tion π = (π1 π2 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the signed permutation π
· ρ(i, j) = (π1 π2 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn) if 1 ≤ i ≤ j ≤ n and
transforms a signed permutation π = (π1 π2 . . . πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the
signed permutation π · ρ(i, j) = (−πj −πj+1 . . . −πn πi+1 . . . πj−1 -πi −πi−1 . . . −π1)
if 1 ≤ j < i ≤ n. The signed cyclic reversal ρ(i, j) is called a signed cyclic k-reversal
if k ≡ j − i + 1 (mod n). It is called super short if k ≤ 2.

The problem of sorting by signed cyclic super short reversals consists in finding the
minimum number of signed cyclic super short reversals that transform a permutation
π ∈ S±n into ιn. This number is referred to as the signed cyclic super short reversal
distance of permutation π and it is denoted by d±(π).

Let S(|πi|, |πj|) denote the act of switching the positions and flipping the signs
of the elements πi and πj in a signed permutation π. Note that the signed cyclic
2-reversal ρ(i, j) can be alternatively denoted by S(|πi|, |πj|). Given a sequence S
of cyclic signed super short reversals and a signed permutation π ∈ S±n , let RS(πi)
be the number of signed cyclic 2-reversals of the type S(|πi|, |πj|) and let LS(πi) be
the number of signed cyclic 2-reversals of the type S(|πk|, |πi|). We define the net

6.3. Sorting by Signed Cyclic Super Short Reversals 141

displacement of an element πi with respect to S as dS(πi) = RS(πi) − LS(πi). The
displacement vector of π with respect to S is defined as dS(π) = (dS(π1), dS(π2), . . .,
dS(πn)). The following lemma is the signed analog of Lemma 44. We omit the proof
because it is the same as of the proof of Lemma 44.

Lemma 47. Let S = ρ1, ρ2, . . ., ρt be a sequence of signed cyclic super short reversals
that sorts a signed permutation π ∈ S±n . Then, we have that

n∑
i=1

dS(πi) = 0, (6.3)

|πi| − dS(πi) ≡ i (mod n). (6.4)

Let x ∈ Zn be a vector and π ∈ S±n be a signed permutation. We say that
x is a valid vector for π if ∑i xi = 0 and |πi| − xi ≡ i (mod n). Given a valid
vector x for the signed permutation π, we define the set podd(π, x) as podd(π, x)
= {i : πi > 0 and |xi| is odd} and we define the set neven(π, x) as neven(π, x) =
{i : πi < 0 and |xi| is even}. Moreover, let U(π, x) denote the union of these sets,
that is, U(π, x) = podd(π, x) ∪ neven(π, x). The following lemma is the signed analog
of Lemma 45.

Lemma 48. Let S be a minimum-length sequence of signed cyclic super short reversals
that sorts a signed permutation π ∈ S±n and let x ∈ Zn be a valid vector for π. If
dS(π) = x, then d±(π) = C(x) + |U(π, x)|.

Proof. Note that the sequence S can be decomposed into two distinct subsequences S1

and S2 such that S1 is formed by the signed cyclic 1-reversals of S and S2 is formed by
the signed cyclic 2-reversals of S. Moreover, we can assume without loss of generality
that the signed cyclic reversals of subsequence S2 are applied first. We argue that |S1|
= |U(π, x)| regardless the size of S2. To see this, suppose that we apply a signed cyclic
2-reversal ρ(i, j) of S2 in π, obtaining a signed permutation π′. Moreover, let S ′ be
the resulting sequence after we remove ρ(i, j) from S. We have that dS′(π′k) = dS(πk)
for k /∈ {i,j}, dS′(π′i) = dS(πi) − 1, and dS′(π′j) = dS(πj) + 1. Then, assuming the
vector x′ ∈ Zn is equal to dS′(π′), we can conclude that U(π′, x′) = U(π, x) because
ρ(i, j) has changed both the parities of |xi| and |xj| and the signs of πi and πj. Since
|S1| = |U(π, x)| regardless the size of S2 and we know from Lemma 45 that |S2| ≥
C(x), we can conclude that |S2| = C(x), therefore the lemma follows.

The Lemma 48 allows the problem of sorting a signed permutation π by signed
cyclic super short reversals to be recast as the optimisation problem of finding a valid
vector x ∈ Zn for π which minimizes the sum C(x) + |U(π, x)|. The next theorem
shows how to solve this problem in polynomial time.

Theorem 10. Let π ∈ S±n be a signed permutation. Then, we can find a valid vector
x ∈ Zn which minimizes the sum C(x) + |U(π, x)| in polynomial time.

142 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

Proof. We divide our analysis into two cases:

i) n is even. In this case, we have that the value of |U(π, x)| is the same for
any feasible solution x. This is because, in order to be a feasible solution, a
vector x has to satisfy the restriction |πi| − xi ≡ i (mod n). This means that
xi is congruent modulo n with a = |πi| − i and belongs to the equivalent class
{. . ., a − 2n, a − n, a, a + n, a + 2n, . . .}. Since n is even, the parities of the
absolute values of the elements in this equivalence class are the same, therefore
the value of |U(π, x)| is the same for any feasible solution x. It follows that
we can only minimize the value of C(x) and this can be done by performing
successive strictly contracting transformations.

ii) n is odd. In this case, it is possible to minimize the values of |U(π, x)| and C(x).
Firstly, we argue that minimizing C(x) leads to a feasible solution x′′ such that
C(x′′) + |U(π, x′′)| is at least as low as C(x′) + |U(π, x′)|, where x′ can be any
feasible solution such that C(x′) is not minimum. To see this, let x′ be a feasible
solution such that C(x′) is not minimum. Then, we can perform a sequence of
strictly contracting transformations which decrease the value of C(x). When
no further strictly contracting transformation can be performed, we obtain a
solution x′′ such that C(x′′) is minimum. On one hand, we know from Lemma
46 that each strictly contracting transformation Tij decreases C(x) by at least 2
units. On the other hand, since n is odd, its possible that the parities of |xi| and
|xj| have been changed in such a way that the value of |U(π, x)| increases by
2 units. Therefore, in the worst case, each strictly contracting transformation
does not change the value of C(x) + |U(π, x)|, so C(x′) + |U(π, x′)| ≥ C(x′′) +
|U(π, x′′)|. Now, we argue that, if there exists more than one feasible solution
x such that C(x) is minimum, then it is still may be possible to minimize the
value of |U(π, x)|.

Jerrum [80, Theorem 3.9] proved that if there is more than one feasible solution
such that C(x) is minimum, then each of these solutions can be brought into
agreement with each other via a sequence of contracting transformations. Note
that a contracting transformation Tij does not change the value of C(x), but
it can change the value of |U(π, x)| because n is odd and the parities of |xi|
and |xj| change when Tij is performed. This means that, among all feasible
solutions such that C(x) is minimum, some of them have minimum |U(π, x)|
and these solutions are optimal. Therefore, we can obtain an optimal solution
by first obtaining a feasible solution with minimum C(x) (this can be done
by performing successive strictly contracting transformations) and then we can
apply on it every possible contracting transformation Tij which decreases the
value of |U(π, x)|.

6.3. Sorting by Signed Cyclic Super Short Reversals 143

The proof of Theorem 10 directly implies an exact algorithm for sorting by signed
cyclic super short reversals. Such an algorithm is described below (Algorithm 20).
Regarding its time complexity, we know from previous section that lines 1-9 take
O(n2) time. Since lines 13-23 take O(1) time, we can conclude that the nested for
loops take O(n2) times to execute. Finally, we can compute C(x) + |U(π, x)| in O(n2),
therefore the overall complexity of Algorithm 20 is O(n2).

Algorithm 20: Algorithm for sorting by signed cyclic super short reversals.
Data: A permutation π ∈ S±n .
Result: Number of signed cyclic super short reversals applied for sorting π.

1 Let x be a n dimension vector
2 for k = 1 to n do
3 xk ← |πk| − k
4 end
5 while max(x)−min(x) > n do
6 Let i,j be two integers such that xi = max(x) and xj = min(x)
7 xi ← xi − n
8 xj ← xj + n

9 end
10 if n is odd then
11 for i = 1 to n− 1 do
12 for j = i+ 1 to n do
13 if xi > xj then
14 min ← j
15 max ← i

16 else
17 min ← i
18 max ← j

19 end
20 if xmax − xmin = n and min ∈ U(π, x) and max ∈ U(π, x) then
21 xmax ← xi − n
22 xmin ← xj + n

23 end
24 end
25 end
26 end
27 return C(x) + |U(π, x)|

Note that, in this section, we have focused on the problem of computing the signed
cyclic super short reversal distance of a signed permutation rather than finding the
minimum number of signed cyclic super short reversals that sorts it. We remark that
the proofs are constructive and directly imply algorithms for finding the sequence of
signed cyclic super short reversals.

144 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

6.4 Sorting Circular Permutations
In this section, we briefly explain how we can use the solution for the problem of
sorting by (signed) cyclic super short reversals to solve the problem of sorting a
(signed) circular permutation by super short reversals. This explanation is based on
Sect. 2.3 of the work of Egri-Nagy et al. [47] and on Sect. 2.5 of the book of Fertin
et al. [54], where one can find more details.

Note that a circular permutation can be “unrolled” to produce a linear permuta-
tion, such as defined in the two previous sections. This process can produce n different
linear permutations, one for each possible rotation of the circular permutation. More-
over, since a circular permutation represents a circular chromosome, which lives in
three dimension, it can also be “turned over” before being unrolled. This means that,
for each possible rotation of the circular permutation, we can first turn it over and
then unroll it, producing a linear permutation. Again, this process can produce n
different linear permutations. The n linear permutations produced in the first process
are different from the n linear permutations produced in the second process, thus
both processes can produce a total of 2n different linear permutations. Each of these
2n linear permutations represents a different viewpoint from which to observe the
circular permutation, therefore they are all equivalent.

The discussion of the previous paragraph leads us to conclude that, in order to
sort a (signed) circular permutation by super short reversals, we can sort each of the
2n equivalent (signed) linear permutations by (signed) cyclic super short reversals,
generating 2n different sorting sequences. Then, we can take the sequence of minimum
length as the sorting sequence for the (signed) circular permutation and the super short
reversal distance of the (signed) circular permutation is the length of this sequence.
Note that this procedure takes O(n3) time because we have to execute Algorithm 19
or Algorithm 20 O(n) times.

6.5 Experimental Results and Discussion
We implemented the procedure described in the previous section for computing the
super short reversal distance of a signed circular permutation and we reproduced the
experiment performed by Egri-Nagy et. al. [47] for inferring distances and phyloge-
nies for published Yersinia genomes. In fact, we performed the same experiment,
except that we considered the orientation of the genes rather than ignoring it and we
considered that each permutation has 78 elements rather than 792. More specifically,
we obtained from Darling et al. [33] the signed circular permutations which represent

2In their article, Darling et al. [33] state that they could identify 78 conserved segments (or blocks)
using Mauve, but they provided permutations with elements ranging from 0 to 78. In a personal
communication, Darling confirmed that there are actually 78 blocks, with 0 and 78 being part of the
same block. Nevertheless, we performed another experiment, this time considering the permutations
have 79 elements. Although the distances were greater, the topology of the tree was the same.

6.5. Experimental Results and Discussion 145

Table 6.1: Matrix of the super short reversal distances among the signed circular
permutations which represent the Yersinia genomes. The names of the species were
abbreviated so that YPK refers to Y. pestis Kim, YPA to Y. pestis Antiqua, YPM to
Y. pestis Microtus 91001, YPC to Y. pestis CO92, YPN to Y. pestis Nepal516, YPP
to Y. pestis Pestoides F 15-70, YT1 to Y. pseudotuberculosis IP31758, and YT2 to
Y. pseudotuberculosis IP32953.

YPK YPA YPM YPC YPN YPP YT1 YT2
YPK 0 243 752 205 338 533 764 760
YPA 243 0 772 352 279 510 724 773
YPM 752 772 0 728 747 643 361 385
YPC 205 352 728 0 381 656 776 760
YPN 338 279 747 381 0 547 617 624
YPP 533 510 643 656 547 0 434 457
YT1 764 724 361 776 617 434 0 189
YT2 760 773 385 760 624 457 189 0

eight Yersinia genomes. Then, we computed the super short reversal distance between
every pair of signed circular permutation and this information was stored in a matrix
of pairwise distances (Table 6.1). Finally, a phylogenetic tree was constructed from
this matrix using Neighbor-Joining [108] method. The resulting phylogeny is shown
in Fig. 6.1.

Considering the pair of Y. pseudotuberculosis as outgroup, the obtained phylogeny
shows that Y. pestis Microtus 91001 was the first to diverge. It was followed then by
the divergences of Y. pestis Pestoides F 15-70, Y. pestis Nepal516, Y. pestis Antiqua
and the final divergence of Y. pestis Kim and Y. pestis CO92. This result is different
of the one obtained by Egri-Nagy et. al. [47] which used super short reversal distance
between unsigned permutations. On their results, the divergence of Y. pestis Nepal516
happened before the divergence of Y. pestis CO92 which occurred previous to the
divergence of Y. pestis Kim and Y. pestis Antiqua.

In our work and in the work of Egri-Nagy et. al. [47], the use of super short
reversals resulted on topologies which are different from the one of Darling et al. [33],
which considered inversions of any size. The first difference observed on the result
of Darling et al. [33] is that Y. pestis Pestoides F 15-70 diverged before Y. pestis
Microtus 91001. The second difference shows that Y. pestis Nepal516 is sibling of Y.
pestis Kim, that Y. pestis CO92 is sibling of Y. pestis Antiqua and that these four
bacteria have a common ancestor that is descendant of Y. pestis Microtus 91001.

If we look to the branch lengths of the two trees obtained with super short reversal
distances and we compare with the branch lengths of the topology obtained by Darling
et al. [33], we can see that our results are more consistent than the one obtained by
Egri-Nagy et al. [47]. For instance, on our results the distance between the two Y.

146 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

70.0

Y. pestis A
N

T
IQ

U
A

Y.
 p

es
tis

 M
IC

R
O

T
U

S
 9

10
01

Y. pseudotuberculosis IP31758

Y. pestis P
E

S
TO

ID
E

S
 F

 15-70

Y. pseudotuberculosis IP32953

Y.
 p

es
tis

 N
E

PA
L5

16

Y. pestis CO92

Y. pestis KIM

119.03

75.97

14
0.

1667.67

21
6.

25

173.5
87.58

184.25

101.42
203.09

30.34

137.33 62.25

Figure 6.1: Phylogeny of the Yersinia genomes based on the super short reversal
distance of the signed circular permutations.

pseudotuberculosis is smaller than the one observed between the pair Y. pestis Kim
and Y. pestis Antiqua, what agrees with the configuration obtained by Darling et
al. [33].

6.6 Conclusions

In this paper, we presented a polynomial-time solution for the problem of sorting a
signed circular permutation by super short reversals. From a theoretical perspective,
this solution is important because it closes a gap in the literature. From a biological
perspective, it is important because signed permutations constitute a more adequate
model for genomes. Moreover, we performed an experiment to infer distances and
phylogenies for published Yersinia genomes and compared the results with the phy-
logenies presented in previous works [33,47]. Our obtained topology is similar to the
one obtained by Egri-Nagy et. al. [47]. However, the distances calculated with our
algorithm are more consistent with the topology obtained by Darling et al. [33]. Some

6.6. Conclusions 147

theoretical questions remain open (for instance, the diameter of the super short re-
versal distance for signed permutations), and we intend to address them in our future
research.

148 Chapter 6. Sorting Signed Circular Permutations by Super Short Reversals

Chapter 7

Concluding Remarks

We conclude this thesis with a summary of the previous chapters (except the first)
along with a discussion of a few possible directions for further research.

In Chapter 2, we presented GRAAu, a tool for evaluating approximation algo-
rithms and heuristics for permutation sorting problems. To build this tool, we com-
puted the rearrangement distances of all permutations in Sn, 1 ≤ n ≤ 13, and in
S±n , 1 ≤ n ≤ 10, with respect to a number of rearrangement models regarded in the
literature that take into account reversals or transpositions. We did not compute the
rearrangement distances for permutations with more elements due to resource con-
straints. Therefore, a possible direction for future research is to develop more efficient
algorithms for computing the rearrangement distance of every permutation in the
symmetric group. Gonçalves, Bueno, and Hausen [65] have managed to do this by
restricting the rearrangement model to transpositions only. Such restriction allowed
them to use toric equivalences to reduce the search space.

The rearrangement distances were stored in the database, referred to as Rearrange-
ment Distance Database, which can be accessed via the internet. Hence, anyone can
access it and extract information of interest regarding the rearrangement distances.
For instance, by analyzing the distribution of the rearrangement distances, we were
able to validate some conjectures about the diameter of the symmetric group. Other
researchers [12,67,97] have also used the information available in the Rearrangement
Distance Database.

Finally, to illustrate the application of GRAAu, four approximation algorithms
were audited. Based on the data provided by GRAAu, specifically the Maximum Ratio
and the permutations that exhibited it, we were able to show that the approximation
ratios of three algorithms are tight. The idea of using the data provided by GRAAu to
get insight on the approximation ratio of an algorithm was also used in other chapters
of this thesis and may as well be used in future works.

In Chapter 3, we presented a general heuristic for permutation sorting problems.
The heuristic works by iteratively improving an initial solution produced by other
algorithm. In each step, it makes a local change within a sliding window, which

149

150 Chapter 7. Concluding Remarks

moves across the solution. The main idea employed by the heuristic is to transform the
sliding window into a small instance of the permutation sorting problem in such a way
that an optimal solution for that instance can be retrieved from the Rearrangement
Distance Database. To evaluate the heuristic, we applied it to the solutions provided
by 23 approximation algorithms. The performance of the heuristic varied considerably
depending on the algorithm that produced the initial solutions: it ranged from almost
100% of improvement to below 5%. The observed variation is mainly due to the quality
of the initial solutions: the closer they are to the optimal solution, the more difficult
it is to improve them.

A drawback of retrieving an optimal solution from a database is that it does not
scale up to larger permutations. An alternative approach is to compute an optimal
solution using an exact exponential time algorithm. In this way, the size of the sliding
window can be adjusted according to the efficiency of the exact algorithm at hand.
Recently, Lancia, Rinaldi, and Serafini [92] proposed a general Integer Programming
(IP) model that can be used to solve several variants of the permutation sorting
problem. We believe that the combination of our heuristic with their IP model can
lead to interesting results.

In Chapter 4, we presented experimental and theoretical results regarding three
algorithms for the problem of sorting by transpositions, namely Walter, Dias, and
Meidanis’ 2.25-approximation algorithm [124], Benôıt-Gagné and Hamel’s 3-approx-
imation algorithm [14], and Guyer, Heath, and Vergara’s heuristic [69]. These algo-
rithms are based on alternative approaches to the cycle graph, which is the tool used
by the best known approximation algorithms for the problem of sorting by transposi-
tions [38, 48]. Chapter 4 delivers a good picture of this group of algorithms and lays
the groundwork for future research. In particular, it is still not clear whether these
alternative approaches can or cannot yield algorithms with low approximation ratios.
Therefore, searching for results that could help make progress on this question either
way is an interesting direction to follow.

In chapters 5 and 6, we addressed the problem of sorting signed permutations by
bounded operations. Specifically, we studied (i) the problem of sorting a signed linear
permutation by super short reversals, (ii) the problem of sorting a signed circular
permutation by super short reversals, (iii) the problem of sorting a signed linear per-
mutation by short reversals, (iv) the problem of sorting a signed linear permutation by
super short operations, and (v) the problem of sorting a signed linear permutation by
short operations. We presented polynomial-time algorithms for problems (i), (ii) and
(iv), and we presented polynomial-time approximation algorithms for problems (iii)
and (v). Possible directions for future research include developing better algorithms
for problems (iii) and (v) as well as considering other rearrangement operations, such
as short transpositions and short reversals, for sorting a signed circular permutation.

Finally, we used the algorithm developed for problem (ii) to perform an experi-
ment for inferring distances and phylogenies for published Yersinia genomes. In fact,

151

we reproduced the experiment performed by Egri-Nagy et al. [47], but this time we
considered the orientation of the genes (they have ignored it in order to treat the
permutations as unsigned). Our obtained topology is similar to the one obtained by
them, but the distances calculated with our algorithm are more consistent with the
phylogeny obtained by Darling et al. [33]. Future work should include more experi-
ments on real data, possibly with genomes of not so closely related species.

152 Chapter 7. Concluding Remarks

Bibliography

[1] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric
interconnection networks. IEEE Transactions on Computers, 38(4):555–566,
1989.

[2] M. Alekseyev. Duplications and Genome Rearrangements. PhD thesis, Univer-
sity of California, San Diego, 2007.

[3] M. A. Alekseyev and P. A. Pevzner. Multi-break rearrangements and chromo-
somal evolution. Theoretical Computer Science, 395(2-3):193–202, 2008.

[4] J. Arndt. Matters Computational: Ideas, Algorithms, Source Code. Springer,
New York, USA, 2010.

[5] F. J. Ayala and W. M. Fitch. Genetics and the origin of species: An introduc-
tion. Proceedings of the National Academy of Sciences of the United States of
America, 94(15):7691–7697, 1997.

[6] L. Babai and Á. Seress. On the diameter of Cayley graphs of the symmetric
group. Journal of Combinatorial Theory, Series A, 49(1):175 – 179, 1988.

[7] L. Babai and Á. Seress. On the diameter of permutation groups. European
Journal of Combinatorics, 13(4):231–243, 1992.

[8] D. Bader, B. Moret, and M. Yan. A linear-time algorithm for computing inver-
sion distance between signed permutations with an experimental study. Journal
of Computational Biology, 8(5):483–491, 2001.

[9] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272–289, 1996.

[10] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240, 1998.

[11] C. Baudet. Enumeração de Traces e Identificação de Breakpoints: Estudos de
Aspectos da Evolução. PhD thesis, University of Campinas, 2010. In Portuguese.

153

154 BIBLIOGRAPHY

[12] T. R. Benavidez. Polynomial Formulae for the k-Slice of the Symmetric Group
under Various Genome Rearrangement Models. Honors math thesis, University
of Oklahoma, 2014.

[13] M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, S. Skiena, and F. Swidan.
Improved bounds on sorting by length-weighted reversals. Journal of Computer
and System Sciences, 74(5):744–774, 2008.

[14] M. Benôıt-Gagné and S. Hamel. A new and faster method of sorting by trans-
positions. In Proceedings of the 18th Annual Symposium on Combinatorial Pat-
tern Matching (CPM’2007), volume 4580 of Lecture Notes in Computer Science,
pages 131–141, London, Ontario, Canada, 2007. Springer-Verlag.

[15] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm
for sorting by reversals. In Proceedings of the 10th Annual European Symposium
on Algorithms (ESA’2002), volume 2461 of Lecture Notes in Computer Science,
pages 200–210, Rome, Italy, 2002. Springer-Verlag.

[16] M. Bernt. Gene order rearrangement methods for the reconstruction of phy-
logeny. PhD thesis, Universität Leipzig, 2010.

[17] K. I. Bos, V. J. Schuenemann, G. B. Golding, H. A. Burbano, N. Waglechner,
B. K. Coombes, J. B. McPhee, S. N. DeWitte, M. Meyer, S. Schmedes, J. Wood,
D. J. Earn, D. A. Herring, P. Bauer, H. N. Poinar, and J. Krause. A draft genome
of Yersinia pestis from victims of the black death. Nature, 478(7370):506–510,
2011.

[18] G. Bourque. Algorithms for phylogenetic tree reconstruction based on genome
rearrangements. PhD thesis, University of Southern California, 2002.

[19] M. D. V. Braga. Exploring the solution space of sorting by reversals when
analyzing genome rearrangements. PhD thesis, Université Lyon, 2009.

[20] L. Bulteau. Algorithmic Aspects of Genome Rearrangements. PhD thesis, Uni-
versité de Nantes, 2013.

[21] L. Bulteau, G. Fertin, and I. Rusu. Pancake flipping is hard. In Proceedings of
the 37th International Symposium on Mathematical Foundations of Computer
Science (MFCS’2012), volume 7464 of Lecture Notes in Computer Science, pages
247–258, Bratislava, Slovakia, 2012. Springer-Verlag.

[22] L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is difficult. SIAM
Journal on Discrete Mathematics, 26(3):1148–1180, 2012.

[23] A. Caprara. Sorting permutations by reversals and eulerian cycle decomposi-
tions. SIAM Journal on Discrete Mathematics, 12(1):91–110, 1999.

BIBLIOGRAPHY 155

[24] A. Cayley. Note on the theory of permutations. Philosophical Magazine, 34:527–
529, 1849.

[25] A. Cayley. Desiderata and suggestions: No. 2. The theory of groups: Graphical
representation. American Journal of Mathematics, 1(2):174–176, 1878.

[26] T. M. Chan and M. Pătraşcu. Counting inversions, offline orthogonal range
counting, and related problems. In Proceedings of the 21th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’10), pages 161–173, Philadelphia, PA,
USA, 2010. Society for Industrial and Applied Mathematics.

[27] X. Chen. On sorting unsigned permutations by double-cut-and-joins. Journal
of Combinatorial Optimization, 25:339–351, 2013.

[28] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. Shields, I. H. Sudborough, and
W. Voit. An (18/11)n upper bound for sorting by prefix reversals. Theoretical
Computer Science, 410(36):3372–3390, 2009.

[29] B. Chitturi and I. H. Sudborough. Bounding prefix transposition distance for
strings and permutations. Theoretical Computer Science, 421:15–24, 2012.

[30] D. A. Christie. Genome Rearrangement Problems. PhD thesis, University of
Glasgow, 1998.

[31] D. S. Cohen and M. Blum. On the problem of sorting burnt pancakes. Discrete
Applied Mathematics, 61(2):105–120, 1995.

[32] D. A. Dalevi, N. Eriksen, K. Eriksson, and S. G. E. Andersson. Measuring
genome divergence in bacteria: A case study using chlamydian data. Journal of
Molecular Evolution, 55(1):24–36, 2002.

[33] A. E. Darling, I. Miklós, and M. A. Ragan. Dynamics of genome rearrangement
in bacterial populations. PLoS Genetics, 4(7):e1000128, 2008.

[34] C. Darwin. On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. John Murray, London,
England, 1859.

[35] U. Dias. Problemas de Comparação de Genomas. PhD thesis, University of
Campina, 2012. In Portuguese.

[36] U. Dias and Z. Dias. Extending Bafna-Pevzner algorithm. In Proceedings of the
ACM International Symposium on Biocomputing (ISB’2010), pages 23:1–23:8,
Calicut, Kerala, India, 2010. ACM Press.

156 BIBLIOGRAPHY

[37] U. Dias and Z. Dias. An improved 1.375-approximation algorithm for the trans-
position distance problem. In Proceedings of the First ACM International Con-
ference on Bioinformatics and Computational Biology (BCB’2010), pages 334–
337, Niagara Falls, New York, 2010. ACM Press.

[38] U. Dias and Z. Dias. Heuristics for the transposition distance problem. Journal
of Bioinformatics and Computational Biology, 11:1350013, 2013.

[39] U. Dias, G. R. Galvão, C. N. Lintzmayer, and Z. Dias. A general heuristic for
genome rearrangement problems. Journal of Bioinformatics and Computational
Biology, 12(3):1450012, 2014.

[40] Z. Dias. Rearranjo de Genomas: uma Coletânea de Artigos. PhD thesis, Uni-
versity of Campinas, 2002.

[41] Z. Dias and U. Dias. Sorting by prefix reversals and prefix transpositions.
Discrete Applied Mathematics, 181:78–89, 2015.

[42] Z. Dias and J. Meidanis. Sorting by prefix transpositions. In Proceedings of the
9th International Symposium on String Processing and Information Retrieval
(SPIRE’2002), volume 2476 of Lecture Notes in Computer Science, pages 65–
76, Lisbon, Portugal, 2002. Springer-Verlag.

[43] T. Dobzhansky. Genetics and the Origin of Species. Columbia University Press,
New York, USA, 1937.

[44] T. Dobzhansky and A. H. Sturtevant. Inversions in the chromosomes of
Drosophila pseudoobscura. Genetics, 23(1):28–64, 1938.

[45] J. R. Driscoll and M. L. Furst. Computing short generator sequences. Informa-
tion and Computation, 72(2):117–132, 1987.

[46] H. Dweighter. Elementary problems and solutions, problem e2569. American
Mathematical Monthly, 82:1010, 1975.

[47] A. Egri-Nagy, V. Gebhardt, M. M. Tanaka, and A. R. Francis. Group-theoretic
models of the inversion process in bacterial genomes. Journal of Mathematical
Biology, 69(1):243–265, 2014.

[48] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 3(4):369–379, 2006.

[49] N. Eriksen. Combinatorial methods in comparative genomics. PhD thesis, Royal
Institute of Technology, 2003.

BIBLIOGRAPHY 157

[50] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wastlund. Sorting
a bridge hand. Discrete Mathematics, 241(1-3):289–300, 2001.

[51] S. Even and O. Goldreich. The minimum-length generator sequence problem is
NP-hard. Journal of Algorithms, 2(3):311–313, 1981.

[52] P. C. Feijão. On genome rearrangement models. PhD thesis, University of
Campinas, 2012.

[53] P. C. Feijão and J. Meidanis. SCJ: A breakpoint-like distance that simplifies
several rearrangement problems. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 8(5):1318–1329, 2011.

[54] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of
Genome Rearrangements. The MIT Press, Cambridge, MA, USA, 2009.

[55] J. Fischer and S. W. Ginzinger. A 2-approximation algorithm for sorting by
prefix reversals. In Proceedings of the 13th Annual European Symposium on
Algorithms (ESA’2005), volume 3669 of Lecture Notes in Computer Science,
pages 415–425, Mallorca, Spain, 2005. Springer-Verlag.

[56] G. R. Galvão. Uma Ferramenta de Auditoria para Algoritmos de Rearranjo de
Genomas. Master’s thesis, University of Campinas, 2012. In Portuguese.

[57] G. R. Galvão, C. Baudet, and Z. Dias. Sorting signed circular permutations by
super short reversals. In Proceedings of the 11th International Symposium on
Bioinformatics Research and Applications (ISBRA’2015), volume 9096 of Lec-
ture Notes in Computer Science, pages 272–283. Springer International Publish-
ing, 2015.

[58] G. R. Galvão and Z. Dias. On the performance of sorting permutations by
prefix operations. In Proceedings of the 4th International Conference on Bioin-
formatics and Computational Biology (BICoB’2012), pages 102–107, Las Vegas,
Nevada, USA, 2012. Curran Associates, Inc.

[59] G. R. Galvão and Z. Dias. Approximation algorithms for sorting by signed
short reversals. In Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB’2014), pages 360–
369, Newport Beach, California, USA, 2014. ACM Press.

[60] G. R. Galvão and Z. Dias. An audit tool for genome rearrangement algorithms.
ACM Journal of Experimental Algorithmics, 19:1.1–1.34, 2014.

[61] G. R. Galvão, O. Lee, and Z. Dias. Sorting signed permutations by short
operations. Algorithms for Molecular Biology, 10(12), 2015.

158 BIBLIOGRAPHY

[62] G. R. Galvão and Z. Dias. On alternative approaches for approximating the
transposition distance. Journal of Universal Computer Science, 20(9):1259–
1283, 2014.

[63] O. Gascuel. Mathematics of Evolution and Phylogeny. Oxford University Press,
Inc., New York, NY, USA, 2005.

[64] W. Gates and C. Papadimitriou. Bounds for sorting by prefix reversal. Discrete
Mathematics, 27:47–57, 1979.

[65] J. Gonçalves, L. R. Bueno, and R. A. Hausen. Assembling a new and im-
proved transposition distance database. In Anais do XLV Simpósio Brasileiro
de Pesquisa Operacional (SBPO’2013), pages 2355–2365, Natal, Brazil, 2013.

[66] A. J. F. Griffiths, W. M. Gelbart, J. H. Miller, and R. C. Lewontin. Modern Ge-
netic Analysis. W. H. Freeman, New York, USA, 1999. Chromosomal Rearrange-
ments. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21367/.

[67] S. Grusea and A. Labarre. The distribution of cycles in breakpoint graphs
of signed permutations. Discrete Applied Mathematics, 161(10-11):1448–1466,
2013.

[68] Q. Gu, S. Peng, and I. H. Sudborough. A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theoritical Computer Science,
210(2):327–339, 1999.

[69] S. A. Guyer, L. S. Heath, and J. P. C. Vergara. Subsequence and run heuristics
for sorting by transpositions. Technical Report TR-97-20, Virginia Polytechnic
Institute & State University, 1997.

[70] S. Hannenhalli. Computational theory of genome evolution via rearrangements.
PhD thesis, Pennsylvania State University, 1996.

[71] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial
algorithm for genomic distance problem). In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science (FOCS’1995), pages 581–592,
Washington, DC, USA, 1995. IEEE Computer Society.

[72] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. Journal of the
ACM, 46(1):1–27, 1999.

[73] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm
for sorting by transpositions. Information and Computation, 204(2):275–290,
2006.

http://www.ncbi.nlm.nih.gov/books/NBK21367/

BIBLIOGRAPHY 159

[74] T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by
transpositions and transreversals. Journal of Computer and System Sciences,
70(3):300–320, 2005.

[75] R. A. Hausen. Rearranjos de Genomas: Teoria e Aplicações. PhD thesis, Federal
University of Rio de Janeiro, 2007. In Portuguese.

[76] L. S. Heath and J. P. C. Vergara. Sorting by bounded block-moves. Discrete
Applied Mathematics, 88:181–206, 1998.

[77] L. S. Heath and J. P. C. Vergara. Sorting by short blockmoves. Algorithmica,
28(3):323–354, 2000.

[78] L. S. Heath and J. P. C. Vergara. Sorting by short swaps. Journal of Compu-
tational Biology, 10(5):775–789, 2003.

[79] M. H. Heydari and I. H. Sudborough. On the diameter of the pancake network.
Journal of Algorithms, 25(1):67–94, 1997.

[80] M. R. Jerrum. The complexity of finding minimum-length generator sequences.
Theoretical Computer Science, 36:265–289, 1985.

[81] H. Jiang, H. Feng, and D. Zhu. An 5/4-approximation algorithm for sorting per-
mutations by short block moves. In Proceedings of the 25th International Sym-
posium on Algorithms and Computation (ISAAC’2014), pages 491–503, Jeonju,
Korea, 2014. Springer International Publishing.

[82] H. Jiang, D. Zhu, and B. Zhu. A (1+ε)-approximation algorithm for sorting by
short block-moves. Theoretical Computer Science, 439:1–8, 2012.

[83] J. Kanai, S. V. Rice, T. A. Nartker, and G. Nagy. Automated evaluation of
OCR zoning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(1):86–90, 1995.

[84] J. D. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting
by reversals, with application to genome rearrangement. Algorithmica, 13(1-
2):80–110, 1995.

[85] B. M. Kiernan. The development of Galois theory from Lagrange to Artin.
Archive for History of Exact Sciences, 8(1-2):40–154, 1971.

[86] Y. Koh and S. Ree. Connected permutation graphs. Discrete Mathematics,
307(21):2628–2635, 2007.

[87] E. Konstantinova. Some problems on Cayley graphs. Linear Algebra and its
Applications, 429(11-12):2754–2769, 2008.

160 BIBLIOGRAPHY

[88] J. Kováč. Algorithms for Genome Rearrangements. PhD thesis, Comenius
University, 2013.

[89] A. Labarre. Combinatorial aspects of genome rearrangements and haplotype
networks. PhD thesis, Université Libre de Bruxelles, 2008.

[90] A. Labarre. Lower bounding edit distances between permutations. SIAM Jour-
nal on Discrete Mathematics, 27:1410–1428, 2013.

[91] S. Lakshmivarahan, J.-S. Jwo, and S. K. Dhall. Symmetry in interconnection
networks based on Cayley graphs of permutation groups: A survey. Parallel
Computing, 19(4):361–407, 1993.

[92] G. Lancia, F. Rinaldi, and P. Serafini. A unified integer programming model for
genome rearrangement problems. In Proceedings of the 3rd International Work-
Conference on Bioinformatics and Biomedical Engineering (IWBBIO’2015),
volume 9043 of Lecture Notes in Computer Science, pages 491–502, Granada,
Spain, 2015. Springer International Publishing.

[93] S. Latifi. How can permutations be used in the evaluation of zoning algo-
rithms? International Journal of Pattern Recognition and Artificial Intelligence,
10(3):223–237, 1996.

[94] J. F. Lefebvre, N. El-Mabrouk, E. Tillier, and D. Sankoff. Detection and vali-
dation of single gene inversions. Bioinformatics, 19(suppl 1):i190–i196, 2003.

[95] D. H. Lehmer. Teaching combinatorial tricks to a computer. Proceedings of
Symposia in Applied Mathematics, 10:179–193, 1960.

[96] P. Lemey, M. Salemi, and A. Vandamme. The Phylogenetic Handbook: A Prac-
tical Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge
University Press, Cambridge, UK, 2009.

[97] C. N. Lintzmayer and Z. Dias. On the diameter of rearrangement problems.
In Proceedings of the First International Conference on Algorithms for Com-
putational Biology (AlCoB’2014), volume 8542 of Lecture Notes in Computer
Science, pages 158–170, Tarragona, Spain, 2014. Springer International Pub-
lishing.

[98] C. N. Lintzmayer and Z. Dias. Sorting permutations by prefix and suffix versions
of reversals and transpositions. In Proceedings of the 11th Latin American The-
oretical Informatics Symposium (LATIN’2014), volume 8392 of Lecture Notes
in Computer Science, pages 1–12, Montevideo, Uruguay, 2014. Springer-Verlag.

[99] L. Lu and Y. Yang. A lower bound on the transposition diameter. SIAM Journal
on Discrete Mathematics, 24(4):1242–1249, 2010.

BIBLIOGRAPHY 161

[100] A. McLysaght, C. Seoighe, and K. H. Wolfe. High frequency of inversions during
eukaryote gene order evolution. In D. Sankoff and J. H. Nadeau, editors, Com-
parative Genomics, volume 1 of Computational Biology, pages 47–58. Springer
Netherlands, 2000.

[101] J. Meidanis, M. E. M. T. Walter, and Z. Dias. A lower bound on the reversal
and transposition diameter. Journal of Computational Biology, 9(5):743–745,
2002.

[102] C. Mira. Análise Algébrica de Problemas de Rearranjo em Genomas: Algoritmos
e Complexidade. PhD thesis, University of Campinas, 2008. In Portuguese.

[103] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of
permutations and functions. Theoretical Computer Science, 22:74–88, 2012.

[104] W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear
time. Information Processing Letters, 79(6):281–284, 2001.

[105] M. Ozery-Flato. Computational Problems in Genome Rearrangements: from
Evolution to Cancer. PhD thesis, Tel-Aviv University, 2009.

[106] R. Y. Pinter and S. Skiena. Genomic sorting with length-weighted reversals.
Genome Informatics, 13:103–111, 2002.

[107] A. Rahman, S. Shatabda, and M. Hasan. An approximation algorithm for sort-
ing by reversals and transpositions. Journal of Discrete Algorithms, 6(3):449–
457, 2008.

[108] N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(1):406–425,
1987.

[109] T. Schiavinotto and T. Stützle. A review of metrics on permutations for search
landscape analysis. Computers & Operations Research, 34(10):3143–3153, 2007.

[110] C. Seoighe, N. Federspiel, T. Jones, N. Hansen, V. Bivolarovic, R. Surzycki,
R. Tamse, C. Komp, L. Huizar, R. W. Davis, S. Scherer, E. Tait, D. J. Shaw,
D. Harris, L. Murphy, K. Oliver, K. Taylor, M. A. Rajandream, B. G. Barrell,
and K. H. Wolfe. Prevalence of small inversions in yeast gene order evolution.
Proceedings of the National Academy of Sciences USA, 97(26):14433–14437,
2000.

[111] M. Sharmin, R. Yeasmin, M. Hasan, A. Rahman, and M. S. Rahman. Pancake
flipping with two spatulas. Electronic Notes in Discrete Mathematics, 36:231–
238, 2010.

162 BIBLIOGRAPHY

[112] D. E. Smith. History of Mathematics, Vol. II. Ginn and Company, Boston,
USA, 1925.

[113] A. H. Sturtevant. The linear arrangement of six sex-linked factors in Drosophila.
Journal of Experimental Zoology, 14:43–59, 1913.

[114] A. H. Sturtevant. A case of rearrangement of genes in Drosophila. Proceedings of
the National Academy of Sciences of the United States of America, 7(8):235–237,
1921.

[115] A. H. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of
wild races of Drosophila pseudoobscura, and their use in the study of the history
of the species. Proceedings of the National Academy of Sciences of the United
States of America, 22(7):448–450, 1936.

[116] A. H. Sturtevant and E. Novitski. The homologies of the chromosome elements
in the genus Drosophila. Genetics, 26(5):517–541, 1941.

[117] K. Swenson. Evolution of whole genomes through inversions: models and algo-
rithms for duplicates, ancestors, and edit scenarios. PhD thesis, École Polytech-
nique Fédérale de Lausanne, 2009.

[118] F. Swidan, M. A. Bender, D. Ge, S. He, H. Hu, and R. Y. Pinter. Sorting by
length-weighted reversals: Dealing with signs and circularity. In Proceedings of
the 15th Annual Symposium on Combinatorial Pattern Matching (CPM’2004),
volume 3109 of Lecture Notes in Computer Science, pages 32–46, Istanbul,
Turkey, 2004. Springer Berlin Heidelberg.

[119] E. Tannier, A. Bergeron, and M. F. Sagot. Advances on sorting by reversals.
Discrete Applied Mathematics, 155(6-7):881–888, 2007.

[120] G. Tesler. GRIMM: genome rearrangements web server. Bioinformatics, 18:492–
493, 2002.

[121] J. P. C. Vergara. Sorting by Bounded Permutations. PhD thesis, Virginia
Polytechnic Institute & State University, 1998.

[122] M. E. M. T. Walter. Algoritmos para Problemas em Rearranjo de Genomas.
PhD thesis, University of Campinas, 1999. In Portuguese.

[123] M. E. M. T. Walter, Z. Dias, and J. Meidanis. Reversal and transposition dis-
tance of linear chromosomes. In Proceedings of the 5th International Symposium
on String Processing and Information Retrieval (SPIRE’1998), pages 96–102,
Santa Cruz, Bolivia, 1998. IEEE Computer Society.

BIBLIOGRAPHY 163

[124] M. E. M. T. Walter, Z. Dias, and J. Meidanis. A new approach for approxi-
mating the transposition distance. In Proceedings of the Seventh International
Symposium on String Processing Information Retrieval (SPIRE’2000), pages
199–208, Washington, DC, USA, 2000. IEEE Computer Society.

[125] M. E. M. T. Walter, M. C. Sobrinho, E. T. G. Oliveira, L. S. Soares, A. G.
Oliveira, T. E. S. Martins, and T. M. Fonseca. Improving the algorithm of
Bafna and Pevzner for the problem of sorting by transpositions: a practical
approach. Journal of Discrete Algorithms, 3(2-4):342–361, 2005.

[126] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome
inversion problem. Journal of Theoretical Biology, 99(1):1–7, 1982.

[127] A. Williams. O(1)-time unsorting by prefix-reversals in a boustrophedon linked
list. In Proceedings of the Fifth International Conference on Fun With Algo-
rithms (FUN’2010), volume 6099 of Lecture Notes in Computer Science, pages
368–379, Ischia Island, Italy, 2010. Springer Berlin Heidelberg.

[128] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

	Abstract
	Resumo
	Agradecimentos
	Introduction
	Permutations and Sorting Problems
	Evolution and Genome Rearrangement
	The Marriage Between Permutations and Genome Rearrangement
	Contributions and Organization

	An Audit Tool for Genome Rearrangement Algorithms
	Introduction
	Background
	Modeling Genomes and Rearrangement Events
	Pairwise Genome Rearrangement Problem and Sorting
	Variants of the Rearrangement Sorting Problem

	Implementation
	Algorithm for Computing Rearrangement Distances
	Computing Rearrangement Distances
	Implementation of GRAAu

	Application of GRAAu
	Sorting by Prefix Reversals
	Sorting by Prefix Transpositions

	Conclusion

	A General Heuristic for Genome Rearrangement Problems
	Introduction
	Background
	A General Heuristic
	Solution Database
	Experimental Results
	Conclusions

	On Alternative Approaches for Approximating the Transposition Distance
	Introduction
	Preliminaries
	Algorithms
	Algorithm based on the breakpoint diagram
	Algorithm based on permutation codes
	Algorithm based on the longest increasing subsequence

	Computing Permutation Codes in O(nlogn) Time
	Experimental Results and Discussion
	Experiments on small permutations
	Experiments on large permutations

	Conclusions

	Sorting Signed Permutations by Short Operations
	Background
	Preliminaries
	Sorting by Bounded Signed Reversals
	The Vector Diagram
	Sorting by Signed Super Short Reversals
	Sorting by Signed Short Reversals

	Sorting by Bounded Operations
	The Permutation Graph
	Sorting by Signed Super Short Operations
	Sorting by Signed Short Operations

	Experimental Results
	Conclusions

	Sorting Signed Circular Permutations by Super Short Reversals
	Introduction
	Sorting by Cyclic Super Short Reversals
	Sorting by Signed Cyclic Super Short Reversals
	Sorting Circular Permutations
	Experimental Results and Discussion
	Conclusions

	Concluding Remarks
	Bibliography

