
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Carla Negri Lintzmayer

The Problem of Sorting Permutations

by Prefix and Suffix Rearrangements

O Problema da Ordenação de Permutações

Usando Rearranjos de Prefixos e Sufixos

CAMPINAS

2016

Carla Negri Lintzmayer

The Problem of Sorting Permutations

by Prefix and Suffix Rearrangements

O Problema da Ordenação de Permutações

Usando Rearranjos de Prefixos e Sufixos

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutora em Ciência da Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Zanoni Dias

Este exemplar corresponde à versão final da
Tese defendida por Carla Negri Lintzmayer e
orientada pelo Prof. Dr. Zanoni Dias.

CAMPINAS

2016

Agência(s) de fomento e nº(s) de processo(s): FAPESP, 2013/01172-0; CNPq,

140017/2013-5

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 Lintzmayer, Carla Negri, 1990-

 L658p LinThe problem of sorting permutations by prefix and suffix rearrangements /

Carla Negri Lintzmayer. – Campinas, SP : [s.n.], 2016.

 LinOrientador: Zanoni Dias.

 LinTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Lin1. Rearranjo de genomas. 2. Biologia computacional. 3. Ordenação

(Computadores). 4. Permutações (Matemática). 5. Algoritmos de aproximação.

I. Dias, Zanoni,1975-. II. Universidade Estadual de Campinas. Instituto de

Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: O problema da ordenação de permutações usando rearranjos de

prefixos e sufixos

Palavras-chave em inglês:
Genome rearrangements

Computational biology

Sorting (Electronic computers)

Permutations

Approximation algorithms

Área de concentração: Ciência da Computação

Titulação: Doutora em Ciência da Computação

Banca examinadora:
Zanoni Dias [Orientador]

Maria Emília Machado Telles Walter

Cristina Gomes Fernandes

Eduardo Candido Xavier

Fábio Luiz Usberti

Data de defesa: 15-12-2016

Programa de Pós-Graduação: Ciência da Computação

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Carla Negri Lintzmayer

The Problem of Sorting Permutations

by Prefix and Suffix Rearrangements

O Problema da Ordenação de Permutações

Usando Rearranjos de Prefixos e Sufixos

Banca Examinadora:

• Prof. Dr. Zanoni Dias
Instituto de Computação – Universidade Estadual de Campinas

• Profa. Dra. Maria Emilia Machado Telles Walter
Instituto de Ciências Exatas – Universidade de Brasília

• Profa. Dra. Cristina Gomes Fernandes
Instituto de Matemática e Estatística – Universidade de São Paulo

• Prof. Dr. Eduardo Candido Xavier
Instituto de Computação – Unicamp

• Prof. Dr. Fábio Luiz Usberti
Instituto de Computação – Unicamp

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 15 de dezembro de 2016

Flipping Hell

Order from disorder.
The pancake stack’s in disarray.
How many flips to arrange the stack
back to an ordered way?
Jacob Goodman
(aka Harry Dweighter)
proposed the problem,
(so easy to state),
back in nineteen seventy-five.
But forty years later
it’s still very much alive and kicking,
it hasn’t been solved,
it needs some licking.

Bill Gates resolved to have a go
and showed with absolute certainty
an upper limit of ‘5n plus 5, all over three’.
But the problem persists,
no formula exists,
it resists the best minds in the game.
So if you’re seeking fame,
want to make your name,
make it next year’s resolution,
flipping pancakes ‘til you find a solution.

(Unknown authora)

aFound at pherecrates1.wordpress.com.

pherecrates1.wordpress.com
https://pherecrates1.wordpress.com/2013/11/15/flipping-pancakes-with-mathematics/

Agradecimentos

Em 30 de novembro de 2011 recebi um e-mail da Comissão de Pós-Graduação do Instituto
de Computação da Unicamp com o título “Parabéns! Você foi aceito no Mestrado do
IC/UNICAMP”. No início do primeiro semestre de 2012, portanto, saí da minha querida
cidade, fui para longe de tudo e todos que conhecia, e hoje, quatro anos depois, inúmeros
acontecimentos depois, saio daqui com o título de Doutora.

Aliás, meu pai, Pedrinho, sempre quis ter uma filha “doutora” e, de certa forma,
estou realizando esse sonho para ele. Ele pôde me visitar poucas vezes em Campinas,
infelizmente, mas jamais (e eu quero dizer jamais mesmo) eu teria chegado até aqui sem
ele. Sem todos dias e noites que ele pode trabalhar para que eu pudesse simplesmente
estudar e chegar onde cheguei. Foi também com ele que aprendi a me dedicar ao meu
trabalho. Obrigada, pai, por tudo!

Minha mãe, Marli, por outro lado, me visitou algumas vezes mais do que meu pai.
Foi em Campinas que pude realizar um sonho antigo que ela tinha de andar de trem
novamente. O que é muito pouco, considerando que graças a ela eu sempre pude chegar
em casa e trabalhar um pouco mais, sem ter outras preocupações. Sair de casa não foi
fácil! Com ela aprendi a vida. Obrigada, mãe!

Pelo menos eu não saí de casa sozinha. Meu marido, Maycon, também veio na
bagagem. Definitivamente, sem ele eu não teria conseguido obter esse título, mesmo
porque foi dele a ideia inicial que devíamos fazer pós-graduação. Obrigada por me aceitar
como sou, me ajudar, me aturar, e me completar.

E quando finalmente cheguei ao IC, tive a sorte de ser atribuída a um tutor muito
dedicado, Zanoni, que eventualmente se tornou meu orientador e amigo. Não tenho meios
de agradecer a confiança que ele depositou em mim desde o início e as inúmeras vezes em
que me ajudou, a crescer profissionalmente mas também de outras várias formas.

A mudança para Campinas foi um divisor de águas na minha vida. Cresci bastante,
viajei algumas vezes, conheci pessoas e tive novas experiências. Na mais importante destas
morei por seis meses sozinha em Nantes, França, onde tive a oportunidade de trabalhar
com Guillaume Fertin, ao qual tenho também muito a agradecer por toda dedicação.

Agradeço também à Fapesp, pelo essencial apoio financeiro concedido para a real-
ização deste doutorado tanto aqui no Brasil quanto na França (processos 2013/01172-
0 e 2014/20738-7) e ao CNPq, pelo apoio financeiro inicial (processo 140017/2013-5).
Agradeço ainda ao LOCo e ao CCES CEPID/FAPESP pelo recursos computacionais.

Muito do que sou hoje também é reflexo de quem conheci. Meus familiares e os amigos
que guardo até hoje são pessoas boas que fizeram a diferença. Não são muitos, mas citar
todos pode ser perigoso devido à minha leve falta de memória (e ao máximo de uma
página desta seção). Agradeço a todos de coração.

No final das contas, tenho muito a agradecer a Deus por todas as oportunidades que
tive e, principalmente, por todas essas pessoas que fazem parte da minha vida. Espero
ainda poder acrescentar mais pessoas e agradecimentos nessa história.

Resumo

O Problema das Panquecas tem como objetivo ordenar uma pilha de panquecas que
possuem tamanhos distintos realizando o menor número possível de operações. A operação
permitida é chamada reversão de prefixo e, quando aplicada, inverte o topo da pilha de
panquecas. Tal problema é interessante do ponto de vista combinatório por si só, mas ele
também possui algumas aplicações em biologia computacional. Dados dois genomas que
compartilham o mesmo número de genes, e assumindo que cada gene aparece apenas uma
vez por genoma, podemos representá-los como permutações (pilhas de panquecas também
são representadas por permutações). Então, podemos comparar os genomas tentando
descobrir como um foi transformado no outro por meio da aplicação de rearranjos de
genoma, que são eventos de mutação de grande escala. Reversões e transposições são os
tipos mais comumente estudados de rearranjo de genomas e uma reversão de prefixo (ou
transposição de prefixo) é um tipo de reversão (ou transposição) que é restrita ao início
da permutação. Quando o rearranjo é restrito ao final da permutação, dizemos que ele é
um rearranjo de sufixo.

Um problema de ordenação de permutações por rearranjos é, portanto, o problema de
encontrar uma sequência de rearranjos de custo mínimo que ordene a permutação dada.
A abordagem tradicional considera que todos os rearranjos têm o mesmo custo unitário,
de forma que o objetivo é tentar encontrar o menor número de rearranjos necessários para
ordenar a permutação. Vários esforços foram feitos nos últimos anos considerando essa
abordagem. Por outro lado, um rearranjo muito longo (que na verdade é uma mutação)
tem mais probabilidade de perturbar o organismo. Portanto, pesos baseados no com-
primento do segmento envolvido podem ter um papel importante no processo evolutivo.
Dizemos que essa abordagem é ponderada por comprimento e o objetivo nela é tentar
encontrar uma sequência de rearranjos cujo custo total (que é a soma do custo de cada
rearranjo, que por sua vez depende de seu comprimento) seja mínimo.

Nessa tese nós apresentamos os primeiros resultados que envolvem problemas de or-
denação de permutações por reversões e transposições de prefixo e sufixo considerando
ambas abordagens tradicional e ponderada por comprimento. Na abordagem tradicional,
consideramos um total de 10 problemas e desenvolvemos novos resultados para 6 deles.
Na abordagem ponderada por comprimento, consideramos um total de 13 problemas e
desenvolvemos novos resultados para todos eles.

Abstract

The goal of the Pancake Flipping problem is to sort a stack of pancakes that have dif-
ferent sizes by performing as few operations as possible. The operation allowed is called
prefix reversal and, when applied, flips the top of the stack of pancakes. Such problem
is an interesting combinatorial problem by itself, but it has some applications in compu-
tational biology. Given two genomes that share the same genes and assuming that each
gene appears only once per genome, we can represent them as permutations (stacks of
pancakes are also represented by permutations). Then, we can compare the genomes by
figuring out how one was transformed into the other through the application of genome
rearrangements, which are large scale mutations. Reversals and transpositions are the
most commonly studied types of genome rearrangements and a prefix reversal (or prefix
transposition) is a type of reversal (or transposition) which is restricted to the beginning
of the permutation. When the rearrangement is restricted to the end of the permutation,
we say it is a suffix rearrangement.

A problem of sorting permutations by rearrangements is, therefore, the problem to
find a sequence of rearrangements with minimum cost that sorts a given permutation.
The traditional approach considers that all rearrangements have the same unitary cost,
in which case the goal is trying to find the minimum number of rearrangements that
are needed to sort the permutation. Numerous efforts have been made over the past
years regarding this approach. On the other hand, a long rearrangement (which is in
fact a mutation) is more likely to disturb the organism. Therefore, weights based on the
length of the segment involved may have an important role in the evolutionary process.
We say this is the length-weighted approach and the goal is trying to find a sequence
of rearrangements whose total cost (the sum of the cost of each rearrangement, which
depends on its length) is minimum.

In this thesis we present the first results regarding problems of sorting permutations
by prefix and suffix reversals and transpositions considering both the traditional and
the length-weighted approach. For the traditional approach, we considered a total of 10
problems and developed new results for 6 of them. For the length-weighted approach, we
considered a total of 13 problems and developed new results for all of them.

List of Figures

4.1 Breakpoint graph for π = (1 9 3 4 8 5 7 12 11 10 2 6) and considering
SbPSR. Note that edge (0, 1) must always exist if prefix rearrangements
are involved and edge (6, 13) must always exist if suffix rearrangements are
involved. 31

4.2 Classification of gray edges. 31
4.3 Average approximation factors for 2-PR, 2-PRx, 2-PSR, and 2-PSRx when

the permutation size grows. 55
4.4 Average approximation factors for 2-PT, 2-PTx, 2-PST, and 2-PSTx when

the permutation size grows. 56
4.5 Average approximation factors for 2-PRT, 2-PRTx, 2-PSRT, and 2-PSRTx

when the permutation size grows. 57
4.6 Average approximation factors for 2-PR̄, 2-PR̄x, 2-PSR̄, and 2-PSR̄x when

the permutation size grows. 58
4.7 Average approximation factors for 2-PR̄T, 2-PR̄Tx, 2-PSR̄T, 2-PSR̄Tx when

the permutation size grows. 59

6.1 Format of the interval [1..n′] of a permutation after the partition algorithm
is called by the sorting algorithm. The left one is the result of an INC
partition, which is needed by a DEC sorting. The right one is the result of
a DEC partition, which is needed by an INC sorting. The median of the
elements contained in π1 through πn′ is m. 86

6.2 Main idea of the partition algorithm for SbWPR, regarding a pivot m,
over the interval from position 1 to n′ of a permutation. The left column
represents the partition of type INC while the right column represents the
partition of type DEC. 88

6.3 Base case of partitionWPR with pivot m. The left column represents the
partition of type INC while the right column represents the partition of
type DEC. 89

6.4 Average approximation factors for WPRg, WPRm, WPR, WPSRg, and WPSR when
α = 1 and the permutation size grows. 105

6.5 Average approximation factors for WPTg, WPT, WPSTg, and WPST when α = 1
and the permutation size grows. 106

6.6 Average approximation factors for WPRTg, WPRT, WPSRTg, and WPSRT when
α = 1 and the permutation size grows. 107

6.7 Average approximation factors for SbWPR and α ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}
while the size of the permutation increases. 108

List of Tables

1.1 Acronyms of the problems mentioned and studied on this thesis. 15
1.2 Percentage of permutations for which the distance using prefix and suffix

rearrangements is smaller than the distance using prefix rearrangements
only (considering the traditional approach). In parenthesis we show the
maximum difference between the two distances. Cells with “-” have un-
known values. 16

3.1 Summary of best-known results for genome rearrangement problems. A ‘-’
indicates that there is no known-result. 28

4.1 Average approximation factors (approx.) and average amount of rearrange-
ments (# rear.) used by algorithms 2-PSR, 2-PST, and 2-PSRT when the
number of permutations tested for each n increases as n increases. 54

4.2 Maximum approximation factors reached on all permutations tested of the
same size n for each algorithm. 61

4.3 Average number of rearrangements that 2-PRx, 2-PSRx, 2-PTx, 2-PSTx,
2-PRTx, and 2-PSRTx performed less than 2-PR, 2-PSR, 2-PT, 2-PST, 2-PRT,
and 2-PSRT, respectively (Sets U1 and U2). 63

4.4 Average number of rearrangements that 2-PR̄x, 2-PSR̄x, 2-PR̄Tx, and 2-PSR̄Tx

performed less than 2-PR̄, 2-PSR̄, 2-PR̄T, and 2-PSR̄T, respectively (Sets S1
and S2). 64

4.5 Diameter values for small values of n. 73
4.6 Summary of the results obtained for prefix and suffix rearrangement problems. 73

5.1 Summary of best-known results for length-weighted genome rearrangement
problems. A ‘-’ indicates that there is no known result. 75

6.1 Worst approximation factors for all tested permutations of a given size n
for SbWPR when α ∈ [2..10]. The theoretical approximation factor is
calculated with the formula 2α/(2α− 2)+ (22α+1)/(2α− 2)2 given in Equa-
tion (6.8). 109

6.2 Summary of the results obtained for length-weighted rearrangement prob-
lems. 116

7.1 Summary of the results obtained for length-weighted rearrangement prob-
lems when f(ℓ) = 2ℓ. 130

Contents

List of Figures 9

List of Tables 10

1 Introduction 13

2 Theoretical Fundaments 17
2.1 Breakpoints and Strips . 21
2.2 Binary Strings . 23
2.3 Approximation Algorithms . 25

3 Known Results for Traditional Approach 26
3.1 Summary of the Chapter . 28

4 Results Obtained for Traditional Approach 29
4.1 Sorting by Prefix and Suffix Reversals . 30
4.2 Sorting by Prefix and Suffix Transpositions 37
4.3 Sorting by Prefix and Suffix Reversals and Transpositions 38
4.4 Sorting by Signed Prefix and Suffix Reversals 42
4.5 Sorting by Signed Prefix Reversals and Transpositions and Sorting by

Signed Prefix and Suffix Reversals and Transpositions 45
4.6 Improving the Results in Practice . 52
4.7 Experimental Results . 53
4.8 Bounds on the Diameters . 62
4.9 Summary of the Chapter . 73

5 Known Results for Length-Weighted Approach 74
5.1 Summary of the Chapter . 75

6 Results Obtained for Length-Weighted Approach 76
6.1 Sorting Algorithms Considering α = 1 . 81

6.1.1 Sorting by Length-Weighted Prefix Reversals 85
6.1.2 Sorting by Length-Weighted Prefix and Suffix Reversals 90
6.1.3 Sorting by Length-Weighted Prefix Transpositions and Sorting by

Length-Weighted Prefix and Suffix Transpositions 93
6.1.4 Sorting by Length-Weighted Prefix Reversals and Transpositions

and Sorting by Length-Weighted Prefix and Suffix Reversals and
Transpositions . 94

6.2 Bounds on the Diameters . 96

6.2.1 Lower Bounds on the Diameters . 96
6.2.1.1 Considering 0 < α < 1 . 96
6.2.1.2 Considering α = 1 . 96
6.2.1.3 Considering α > 1 . 99

6.2.2 Upper Bounds on the Diameters . 99
6.3 Sorting Algorithms Considering 0 < α < 1 100
6.4 Sorting Algorithms Considering α > 1 . 102
6.5 Experimental Results . 104
6.6 Sorting by Length-Weighted Reversals . 110
6.7 Sorting by Length-Weighted Transpositions and Sorting by Length-Weighted

Reversals and Transpositions . 111
6.8 Sorting Signed Permutations and Signed Binary Strings by Length-Weighted

Prefix and Suffix Rearrangements . 113
6.9 Summary of the Chapter . 115

7 Results Obtained for Exponential Cost Function 117
7.1 Sorting by Length-Weighted Prefix Reversals, Sorting by Length-Weighted

Prefix Transpositions, and Sorting by Length-Weighted Prefix Reversals
and Transpositions . 117

7.2 Sorting by Length-Weighted Reversals . 121
7.3 Sorting by Length-Weighted Transpositions and Sorting by Length-Weighted

Reversals and Transpositions . 125
7.4 Sorting Signed Permutations and Signed Binary Strings by Length-Weighted

Prefix Rearrangements . 126
7.5 Summary of the Chapter . 130

8 Final Considerations 131

Bibliography 133

Chapter 1

Introduction

One of the challenges of modern science is to understand how evolution happened, consid-
ering that new organisms arise from mutations that occurred in others: different species
may share some similar genes that are not necessarily in the same order or even orien-
tation when they are compared. The evolutionary distance between two organisms may
be inferred through the genome rearrangement distance between them, which considers
a sequence of genome rearrangement events that occurred in the transformation of the
genome of one organism into the genome of another. A genome rearrangement is a type
of large scale mutation that can occur in a genome. A reversal, for instance, is a genome
rearrangement that inverts a segment of a genome. Another well-known rearrangement is
the transposition, which exchanges the position of two consecutive segments of a genome.

Depending on the assumptions that are made or the problems considered, different
models of genomes can be used. The simplest one considers that the genomes contain a
single copy of each gene and that all genomes consist of a single chromosome. This allows
us to model them as permutations. The unsigned variant considers that the orientation of
the genes is not known while the signed variant indicates it with ‘+’ or ‘-’ signs on each
element of the permutation. The goal then is to find a sequence of genome rearrangements
that occurred over one permutation so that it could be turned into the other. The use of
permutations allows us to consider that one of them is the identity so that we only need
to sort the other. We then call such problems of sorting by rearrangements.

For such problems, it is common to find in the literature two types of approaches.
The first one considers a given permutation and wants to find its distance, which is the
minimum cost of a sequence of rearrangements that sorts it. The second one considers all
permutations of a given size and wants to find the greatest distance between all of them,
which is called the diameter.

The study of problems of sorting permutations by rearrangements started being inter-
esting by itself, in such a way that some new variations of genome rearrangements started
to be considered, such as prefix reversals and prefix transpositions, which always involve
the first element of the permutation. The famous Pancake Flipping problem, for instance,
was introduced in 1975 by Harry Dweighter (pseudonym of Jacob Eli Goodman) [25] with
the story of a waiter that receives a stack of pancakes with different sizes and needs to
sort it in such a way that the smallest pancake ends up at the top, the second smallest
ends up below the smallest, and so on, until the largest pancake ends up at the bottom

13

CHAPTER 1. INTRODUCTION 14

of the stack. To do this sorting, the waiter can only flip a block of pancakes from the top
of the stack. He wants to know what is the maximum number of flips that he will ever
have to use to sort any stack of n pancakes. In other words, it describes the problem of
sorting permutations by prefix reversals. Even so, these variations can help us with some
insights into the non-restricted variations.

During the past years, there were several studies considering sorting permutations
by reversals [2, 7, 11], by signed reversals [1, 37, 55], by transpositions [9, 26, 27], by
reversals and transpositions [51, 56], by signed reversals and transpositions [56], by prefix
reversals [10, 15, 30, 34, 40], by signed prefix reversals [17, 18], by prefix transpositions [14,
24, 42], and by prefix reversals and transpositions [23, 53]. We say these belong to the
traditional approach of the sorting problems, where the distance of a permutation is the
minimum amount of rearrangements needed to sort it.

On the other hand, not so many studies consider the length-weighted approach, where
the cost function to calculate the distance depends on the length of the rearrangements [4,
5, 20, 49, 50, 54]. Such studies recognize that a very long rearrangement, which is in fact a
mutation, is more likely to disturb the organism. This is modeled by a cost function which
increases as the length of the rearrangement increases. Furthermore, some preliminary
results show that in some cases the reversals that happened during evolution indeed tend
not to be very long [8], which further indicates that weights based on the length of the
segment involved may have an important role in the evolutionary process. We call such
problems as sorting by length-weighted rearrangements.

During this doctorate, we mainly studied variants of rearrangements that are restricted
to the prefix and the suffix of a permutation, that is, variations of genome rearrangements
that always involve the first or the last element. This thesis describes our results for both
the traditional approach and the length-weighted approach. As it was shown by Ben-
der et al. [5], binary strings, which are strings that contain only the symbols 0 and 1,
are closely related to sorting permutations by length-weighted rearrangements. For this
reason, we also show some results for sorting binary strings by length-weighted rearrange-
ments. The names and acronyms of all the problems that we somehow considered are
listed in Table 1.1.

We note that the use of more than one type of rearrangement while doing the sorting
allows some reduction on the distance of the permutations, as one can see in Table 1.2,
which shows, for small values of n, the percentage of permutations for which the distance
when using prefix and suffix rearrangements is strictly smaller than the distance when
using only prefix rearrangements (considering the traditional approach). The number in
parenthesis in this table is the maximum difference between the prefix and suffix distance
and the prefix distance. We note that Fertin et al. [29] showed that, for infinitely many
values of n, there is a permutation of size n such that the difference between the prefix
reversal distance and the prefix and suffix reversal distance is Ω(n).

The rest of this thesis is divided as follows. Chapter 2 gives important definitions that
are used throughout the document. Chapters 3 and 4 consider the traditional approach,
that is, for which the cost of sorting a permutation is given by the amount of rearrange-
ments that were used to do it. The former gives a review of the literature while the
latter presents the results we obtained. Chapters 5 and 6 consider the length-weighted

CHAPTER 1. INTRODUCTION 15

Table 1.1: Acronyms of the problems mentioned and studied on this thesis.
Sorting by Reversals SbR

Sorting by Signed Reversals SbR̄

Sorting by Transpositions SbT

Sorting by Reversals and Transpositions SbRT

Sorting by Signed Reversals and Transpositions SbR̄T

Sorting by Prefix Reversals SbPR

Sorting by Signed Prefix Reversals SbPR̄

Sorting by Prefix Transpositions SbPT

Sorting by Prefix Reversals and Transpositions SbPRT

Sorting by Signed Prefix Reversals and Transpositions SbPR̄T

Sorting by Prefix and Suffix Reversals SbPSR

Sorting by Signed Prefix and Suffix Reversals SbPSR̄

Sorting by Prefix and Suffix Transpositions SbPST

Sorting by Prefix and Suffix Reversals and Transpositions SbPSRT

Sorting by Signed Prefix and Suffix Reversals and Transpositions SbPSR̄T

Sorting by Length-Weighted Reversals SbWR

Sorting by Length-Weighted Signed Reversals SbWR̄

Sorting by Length-Weighted Transpositions SbWT

Sorting by Length-Weighted Reversals and Transpositions SbWRT

Sorting by Length-Weighted Signed Reversals and Transpositions SbWR̄T

Sorting by Length-Weighted Prefix Reversals SbWPR

Sorting by Length-Weighted Signed Prefix Reversals SbWPR̄

Sorting by Length-Weighted Prefix Transpositions SbWPT

Sorting by Length-Weighted Prefix Reversals and Transpositions SbWPRT

Sorting by Length-Weighted Signed Prefix Reversals and Transpositions SbWPR̄T

Sorting by Length-Weighted Prefix and Suffix Reversals SbWPSR

Sorting by Length-Weighted Signed Prefix and Suffix Reversals SbWPSR̄

Sorting by Length-Weighted Prefix and Suffix Transpositions SbWPST

Sorting by Length-Weighted Prefix and Suffix Reversals and Transpositions SbWPSRT

Sorting by Length-Weighted Signed Prefix and Suffix Reversals and Transpositions SbWPSR̄T

Sorting Binary Strings by Length-Weighted Reversals SBbWR

Sorting Binary Strings by Length-Weighted Signed Reversals SBbWR̄

Sorting Binary Strings by Length-Weighted Transpositions SBbWT

Sorting Binary Strings by Length-Weighted Reversals and Transpositions SBbWRT

Sorting Binary Strings by Length-Weighted Signed Reversals and Transpositions SBbWR̄T

Sorting Binary Strings by Length-Weighted Prefix Reversals SBbWPR

Sorting Binary Strings by Length-Weighted Signed Prefix Reversals SBbWPR̄

Sorting Binary Strings by Length-Weighted Prefix Transpositions SBbWPT

Sorting Binary Strings by Length-Weighted Prefix Reversals and Transpositions SBbWPRT

Sorting Binary Strings by Length-Weighted Signed Prefix Reversals and Transpositions SBbWPR̄T

Sorting Binary Strings by Length-Weighted Prefix and Suffix Reversals SBbWPSR

Sorting Binary Strings by Length-Weighted Signed Prefix and Suffix Reversals SBbWPSR̄

Sorting Binary Strings by Length-Weighted Prefix and Suffix Transpositions SBbWPST

Sorting Binary Strings by Length-Weighted Prefix and Suffix Reversals and Transpositions SBbWPSRT

Sorting Binary Strings by Length-Weighted Signed Prefix and Suffix Reversals and Transpositions SBbWPSR̄T

CHAPTER 1. INTRODUCTION 16

Table 1.2: Percentage of permutations for which the distance using prefix and suffix
rearrangements is smaller than the distance using prefix rearrangements only (considering
the traditional approach). In parenthesis we show the maximum difference between the
two distances. Cells with “-” have unknown values.

SbPR vs. SbPT vs. SbPRT vs. SbPR̄ vs. SbPR̄T vs.
n

SbPSR SbPST SbPSRT SbPSR̄ SbPSR̄T

2 0.000% (0) 0.000% (0) 0.000% (0) 25.000% (2) 12.500% (2)
3 16.666% (2) 16.666% (1) 16.666% (1) 54.166% (2) 39.583% (2)
4 54.166% (2) 20.833% (1) 16.666% (1) 68.229% (4) 47.135% (2)
5 60.000% (2) 25.833% (1) 25.833% (2) 76.771% (4) 49.635% (2)
6 68.055% (3) 31.805% (1) 27.222% (2) 82.613% (6) 54.028% (2)
7 74.722% (4) 35.675% (2) 34.583% (2) 86.944% (6) 61.198% (2)
8 80.484% (4) 40.536% (2) 36.889% (2) 90.233% (7) 63.877% (3)
9 85.023% (4) 44.381% (2) 41.617% (2) 92.726% (7) 66.736% (3)
10 88.378% (4) 47.901% (2) 45.416% (2) - -

approach, for which the cost of sorting a permutation is calculated based on the length
of the rearrangements involved in the process. As before, the former gives a review of the
literature while the latter presents the results we obtained. Chapter 7 presents results
that we obtained when still considering the length of the rearrangements involved in the
sorting process, but with another cost function. Chapter 8 gives some final considerations
and summarizes our contributions.

Chapter 2

Theoretical Fundaments

This chapter gives some important definitions that will be used throughout this thesis
in more than one chapter. Some local definitions may still be given in future chapters,
whenever necessary.

Permutations are one of the mathematical models used to formalize the study of DNA
fragments [28]. They represent the chromosomes as sequences of segments that are being
shared by the genomes we are comparing, and if the orientation of the genes is known, a
signed permutation is normally used.

Definition 1. An unsigned permutation of size n is represented as π = (π1 π2 . . . πn),

where πi ∈ {1, 2, . . . , n} for all i such that 1 ≤ i ≤ n and πi 6= πj whenever i 6= j.

Definition 2. A signed permutation of size n is represented as π = (π1 π2 . . . πn), where

πi ∈ {−n, −(n−1), . . . , −1, 1, 2, . . . , n} for all i such that 1 ≤ i ≤ n and |πi| 6= |πj |

whenever i 6= j.

In order to simplify some computations, we always consider the extended version of a
permutation, in which there are elements π0 = 0 and πn+1 = n+ 1 that are fixed, even if
we do not show them explicitly.

There exist some special permutations that may be of importance in some occasions.
The identity permutation ιn = (1 2 3 . . . n), for instance, always represents the goal of
the sorting problems we will study. We also have the reverse permutation, ηn = (n n−1

n−2 . . . 1), and the signed reverse permutation, η̄n = (−n −(n−1) −(n−2) . . . −1).
The inverse permutation of π is π−1, for which π−1|πi|

= i, where 1 ≤ i ≤ n. We at last
define ϕa

k,n = (k k + 1 k + 2 . . . n 1 2 3 . . . k − 1) (where the a stands for ascending),
ϕd
k,n = (k− 1 k− 2 k− 3 . . . 1 n n− 1 n− 2 . . . k) (where the d stands for descending),

and ϕs
k,n = (−(k−1) −(k−2) −(k−3) . . . −1 −n −(n−1) −(n−2) . . . −k) (where

the s stands for signed), for any k such that 2 ≤ k ≤ n.

Definition 3. A composition of two permutations π and σ is the operation denoted by

“·”, for which π · σ = (πσ1 πσ2 . . . πσn). Note that π · π−1 = π−1 · π = ιn.

We also use permutations to represent the rearrangements so that a certain rear-
rangement λ transforms a permutation π into another permutation π · λ. Therefore, the
composition is used to indicate the occurrence of a rearrangement on a permutation.

17

CHAPTER 2. THEORETICAL FUNDAMENTS 18

Definition 4. A reversal ρ(i, j), for 1 ≤ i < j ≤ n, is the rearrangement (1 2 . . . i−1

j j−1 . . . i+1 i j+1 j+2 . . . n), which means that, when applied to a permutation π, it

inverts the segment that goes from position i to position j, transforming π into π · ρ(i, j)

= (π1 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn). We define a prefix reversal ρp(j) as the

reversal ρ(1, j), 1 < j ≤ n, and a suffix reversal ρs(i) as the reversal ρ(i, n), 1 ≤ i < n.

Definition 5. A signed reversal ρ̄(i, j), for 1 ≤ i ≤ j ≤ n, is the rearrangement (1 2 . . .

i−1 −j −(j−1) . . . −(i+1) −i j+1 j+2 . . . n), which means that, when applied to a

signed permutation π, it inverts the segment that goes from position i to position j and it

changes the signs of each element of the segment, transforming π into π · ρ̄(i, j) = (π1 . . .

πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn). We define a signed prefix reversal ρ̄p(j)
as the signed reversal ρ̄(1, j), 1 ≤ j ≤ n, and a signed suffix reversal ρ̄s(i) as the signed

reversal ρ̄(i, n), 1 ≤ i ≤ n.

Definition 6. A transposition τ(i, j, k), for 1 ≤ i < j < k ≤ n+ 1, is the rearrangement

(1 2 . . . i−1 j j+1 . . . k−1 i i+1 . . . j−1 k k+1 . . . n), which means that, when applied

to a permutation π, it exchanges the segment that goes from position i to j−1 with the

segment that goes from position j to k−1, transforming π into π · τ(i, j, k) = (π1 . . . πi−1

πj πj−1 . . . πk−1 πi πi+1 . . . πj−1 πk . . . πn). We define a prefix transposition τp(j, k) as

the transposition τ(1, j, k), 1 < j < k ≤ n + 1, and a suffix transposition τs(i, j) as the

transposition τ(i, j, n + 1), 1 ≤ i < j < n + 1.

We say that general rearrangements are those which are not constrained to be prefix
or suffix.

Example 1. Let π = (3 8 4 1 2 5 9 6 10 7). We have π · ρ(3, 7) = (3 8 9 5 2 1 4 6 10

7), π · ρ̄(3, 7) = (3 8 −9 −5 −2 −1 −4 6 10 7), and π · τ(2, 6, 8) = (3 5 9 8 4 1 2 6 10 7).

Note that there is not a signed version for transpositions, since this rearrangement
only exchanges the position of elements. From now on, we will make it clear only when
we are dealing with signed permutations or rearrangements (the “unsigned” terms will be
omitted).

A rearrangement model β is the set of rearrangements that are allowed during the
sorting process. In order to simplify, we do not use the usual set notation; instead, we
will write β as “(|p|ps)(r|r̄|t|rt|r̄t)” where p stands for prefix, ps for prefix and suffix, r for
reversals, r̄ for signed reversals, t for transpositions, rt for reversals and transpositions,
and r̄t for signed reversals and transpositions. For instance, if β = rt, then reversals
and transpositions are allowed, or if β = psrt, then prefix reversals, prefix transpositions,
suffix reversals, and suffix transpositions are allowed.

Definition 7. The length ℓ of a reversal ρ(i, j) is defined as j − i + 1 while the length

ℓ of a transposition τ(i, j, k) is defined as k − i. We define f(ℓ) = ℓα as the cost of a

rearrangement that has length ℓ, for α ≥ 0.

We say that a sequence of rearrangements is a sorting sequence for a permutation π if
they transform π into ιn when they are applied to π by composition. Consider a sorting
sequence for π of k rearrangements such that the lengths of these rearrangements are ℓ1,
ℓ2, . . ., ℓk. We define the cost of such sequence as f(ℓ1) + f(ℓ2) + · · · + f(ℓk).

CHAPTER 2. THEORETICAL FUNDAMENTS 19

Example 2. Let β = pr and π = (3 7 5 1 4 2 6). A possible sorting sequence for π is

shown next (each prefix reversal is underlined):

π = (3 7 5 1 4 2 6)
π←π·ρp(2) = (7 3 5 1 4 2 6)
π←π·ρp(3) = (5 3 7 1 4 2 6)
π←π·ρp(4) = (1 7 3 5 4 2 6)
π←π·ρp(2) = (7 1 3 5 4 2 6)
π←π·ρp(7) = (6 2 4 5 3 1 7)
π←π·ρp(3) = (4 2 6 5 3 1 7)
π←π·ρp(2) = (2 4 6 5 3 1 7)
π←π·ρp(4) = (5 6 4 2 3 1 7)
π←π·ρp(2) = (6 5 4 2 3 1 7)
π←π·ρp(6) = (1 3 2 4 5 6 7)
π←π·ρp(2) = (3 1 2 4 5 6 7)
π←π·ρp(3) = (2 1 3 4 5 6 7)
π←π·ρp(2) = (1 2 3 4 5 6 7)

For α = 0, the cost of this sorting sequence is 13 (there are 13 prefix reversals in it).

For α = 1, the cost is 42 (because 2 + 3 + 4 + 2 + 7 + 3 + 2 + 4 + 2 + 6 + 2 + 3 + 2

= 42). And when α = 5, the cost is 27, 552 (because 25 + 35 + 45 + 25 + 75 + 35 + 25

+ 45 + 25 + 65 + 25 + 35 + 25 = 27, 552).

The value of f(ℓ) has usually been considered as the polynomial function ℓα [5, 49, 54].
Below we give some properties of f(x) = xα, α ≥ 0, which will be useful during Chapter 6:

1. Unitary cost (α = 0): f(x) = 1;

2. Sub-additive cost (α < 1): f(x) + f(y) > f(x+ y);

3. Additive cost (α = 1): f(x) + f(y) = f(x+ y);

4. Super-additive cost (α > 1): f(x) + f(y) < f(x+ y).

In Chapter 7 we present some results considering an exponential cost function, namely
f(ℓ) = 2ℓ. Until there, we will always consider f(ℓ) = ℓα.

These definitions of cost finally allow us to define the goal of all the problems we will
deal with.

Definition 8. Consider a rearrangement model β and some α ≥ 0. The distance of a

permutation π is defined as the cost of a sorting sequence for π of minimum cost and it

is denoted as dαβ(π).

Definition 9. A problem of sorting permutations by a rearrangement model β receives as

input one permutation π (signed or unsigned) and a real α ≥ 0, and consists of finding the

minimum cost to transform π into the identity permutation. In other words, it consists

of finding the distance dαβ(π).

Example 3. Let β = pr and π = (3 7 5 1 4 2 6), as in Example 2. The sorting sequence

given there has the minimum cost neither when α = 0 nor when α = 1, for example.

However, it allows us to say that d0pr(π) ≤ 13 and d1pr(π) ≤ 42. On the other hand, that

sequence does have the minimum cost when α = 5. Therefore, d5pr(π) = 27, 552. Next we

CHAPTER 2. THEORETICAL FUNDAMENTS 20

give two minimum sorting sequences for α = 0 and α = 1:

π = (3 7 5 1 4 2 6) π = (3 7 5 1 4 2 6)
π←π·ρp(5) = (4 1 5 7 3 2 6) π←π·ρp(2) = (7 3 5 1 4 2 6)
π←π·ρp(4) = (7 5 1 4 3 2 6) π←π·ρp(7) = (6 2 4 1 5 3 7)
π←π·ρp(7) = (6 2 3 4 1 5 7) π←π·ρp(6) = (3 5 1 4 2 6 7)
π←π·ρp(6) = (5 1 4 3 2 6 7) π←π·ρp(2) = (5 3 1 4 2 6 7)
π←π·ρp(5) = (2 3 4 1 5 6 7) π←π·ρp(5) = (2 4 1 3 5 6 7)
π←π·ρp(3) = (4 3 2 1 5 6 7) π←π·ρp(2) = (4 2 1 3 5 6 7)
π←π·ρp(4) = (1 2 3 4 5 6 7) π←π·ρp(4) = (3 1 2 4 5 6 7)

π←π·ρp(3) = (2 1 3 4 5 6 7)
π←π·ρp(2) = (1 2 3 4 5 6 7)

For α = 0, the sequence at the left costs 7 and there does not exist a sequence with

less than 7 prefix reversals that sorts π (d0pr(π) = 7). Note that this sequence has a cost

of 34 when α = 1, but the distance in this case is 33 (d1pr(π) = 33) and the sequence at

the right has such cost.

Note that computing dαβ(π) for all permutations of a certain size n is not trivial,
specially as n grows. Galvão and Dias [31], for instance, presented an algorithm such
that, given a rearrangement model and considering α = 0, calculates the distance and
shows the sorting sequence of any permutation of a given size n. Considering the memory
limitation of the machines used, it currently has information for all unsigned permutations
with n ≤ 13 and for all signed permutations with n ≤ 11.

Definition 10. Consider a rearrangement model β and some α ≥ 0. The diameter
of a problem of sorting permutations is the largest distance among the distances of all

permutations of size n and it is denoted as Dα
β (n). Specifically, Dα

β (n) = max{dαβ(π) :

π has size n}.

As secondary goals, given a problem of sorting by genome rearrangements, we can also
study the diameters. Also note that computing Dα

β (n) is not trivial, specially if we note
that there are n! unsigned permutations of size n and 2nn! signed permutations of size n.
Such studies are of importance, for instance, in network design [40]. A pancake network
has n! processors, each one labeled with one of the possible permutations of size n, and
there is a link between two processors if the label of one of them is obtained through a
prefix reversal from the label of the other. The diameter of this network is the maximum
distance between any two processors while the distance between two given processor is
the length of the minimum path between both.

Example 4. Let n = 4, β = pr, and α = 0. For the 16 possible permutations of size 4,

we have that d0pr(1 2 3 4) = 0, d0pr(1 2 4 3) = 3, d0pr(1 3 2 4) = 3, d0pr(1 3 4 2) = 3,

d0pr(1 4 2 3) = 3, d0pr(1 4 3 2) = 3, d0pr(2 1 3 4) = 1, d0pr(2 1 4 3) = 3, d0pr(2 3 1 4) = 2,

d0pr(2 3 4 1) = 2, d0pr(2 4 1 3) = 4, d0pr(2 4 3 1) = 3, d0pr(3 1 2 4) = 2, d0pr(3 1 4 2) = 4,

d0pr(3 2 1 4) = 1, d0pr(3 2 4 1) = 3, d0pr(3 4 1 2) = 3, d0pr(3 4 2 1) = 2, d0pr(4 1 2 3) = 2,

d0pr(4 1 3 2) = 3, d0pr(4 2 1 3) = 3, d0pr(4 2 3 1) = 4, d0pr(4 3 1 2) = 2, and d0pr(4 3 2 1) = 1.

Since the maximum distance achieved is 4, the diameter is 4 (D0
pr(4) = 4).

Historically, the distance of a permutation when α = 0 (which means that f(ℓ) = 1)
is denoted as dβ(π) and the diameter for n is denoted as Dβ(n). We will maintain such
conventions by defining dβ(π) = d0β(π) and Dβ(n) = D0

β(n). Note that the distance in this
traditional approach is simply the minimum number of rearrangements needed to sort a
given permutation.

CHAPTER 2. THEORETICAL FUNDAMENTS 21

2.1 Breakpoints and Strips

The concept of breakpoints is very common for genome rearrangement problems. For this
thesis, we need to define eight types of breakpoints, being four of the unsigned types
and other four of the signed/transposition types. In general, breakpoints are pairs of
consecutive elements that should not be consecutive at the end of the sorting, that is, in
the identity permutation. If a pair of consecutive elements is not a breakpoint, then we
say that it is an adjacency.

Definition 11. For the unsigned types, the general idea is that a breakpoint is a pair

(πi, πi+1) of consecutive elements such that |πi+1−πi| 6= 1. Index i varies according to the

problem that we are dealing with:

• For SbR, SbRT, SbWR, and SbWRT we call them general reversal breakpoints,
or gr-breakpoints, and 0 ≤ i ≤ n;

• For SbPR, SbPRT, SbWPR, and SbWPRT we call them unsigned prefix reversal
breakpoints, or upr-breakpoints, and 1 ≤ i ≤ n. Note that (π0, π1) is, by definition,

not a upr-breakpoint;

• For SbPSR and SbWPSR, we call them unsigned prefix and suffix reversal break-
points, or upsr-breakpoints, and 1 ≤ i < n. Note that, by definition, neither (π0, π1)

nor (πn, πn+1) are upsr-breakpoints;

• For SbPSRT and SbWPSRT, we call them unsigned prefix and suffix reversal
and transposition breakpoints, or upsrt-breakpoints, and 1 ≤ i < n. Note that, by

definition, neither (π0, π1) nor (πn, πn+1) are upsrt-breakpoints. We also impose, by

definition, that (1, n) and (n, 1) are never upsrt-breakpoints.

We denote the number of gr-breakpoints, upr-breakpoints, upsr-breakpoints, and
upsrt-breakpoints in a permutation π as bgr(π), bupr(π), bupsr(π), and bupsrt(π), respec-
tively. We can easily see that bgr(ιn) = bupr(ιn) = bupsr(ιn) = bupsrt(ιn) = 0, bupsr(ηn) =
bupsrt(ηn) = 0, and bupsrt(ϕ

a
k,n) = bupsrt(ϕ

d
k,n) = 0 for any 2 ≤ k ≤ n. Note that these are

the only permutations with zero breakpoints in the unsigned types.

Example 5. Next we show, for each of the four types of breakpoints defined above, how

to count them over the same two permutations. A breakpoint is indicated by a “�”:

gr-breakpoints: (1 � 4 3 � 8 � 5 6 � 2 � 7 �) (� 5 6 � 2 � 8 � 1 � 4 3 � 7 �)
upr-breakpoints: (1 � 4 3 � 8 � 5 6 � 2 � 7 �) (5 6 � 2 � 8 � 1 � 4 3 � 7 �)

upsr-breakpoints: (1 � 4 3 � 8 � 5 6 � 2 � 7) (5 6 � 2 � 8 � 1 � 4 3 � 7)
upsrt-breakpoints: (1 � 4 3 � 8 � 5 6 � 2 � 7) (5 6 � 2 � 8 1 � 4 3 � 7)

Definition 12. For the signed/transposition types, the general idea is that a breakpoint

is a pair (πi, πi+1) of consecutive elements such that πi+1 − πi 6= 1. Again, index i varies

according to the problem that we are dealing with:

• For SbR̄, SbT, SbR̄T SbWR̄, SbWT, and SbWR̄T we call them general break-
points, or g-breakpoints, and 0 ≤ i ≤ n;

CHAPTER 2. THEORETICAL FUNDAMENTS 22

• For SbPT, SbPR̄, SbPR̄T, SbWPT, SbWPR̄, and SbWPR̄T we call them prefix
breakpoints, or p-breakpoints, and 1 ≤ i ≤ n. Note that (π0, π1) is never a p-

breakpoint;

• For SbPST, SbPSR̄, SbWPST, and SbWPSR̄ we call them prefix and suffix
breakpoints, or ps-breakpoints, and 1 ≤ i < n. Note that neither (π0, π1) nor

(πn, πn+1) are ps-breakpoints;

• For SbPSR̄T and SbWPSR̄T, we call them signed prefix and suffix reversal and
transposition breakpoints, or psrt-breakpoints, and 1 ≤ i < n. Note that neither

(π0, π1) nor (πn, πn+1) are psrt-breakpoints. We also impose, by definition, that

(−1,−n) and (n, 1) are never psrt-breakpoints.

We denote the number of g-breakpoints, p-breakpoints, ps-breakpoints, and psrt-
breakpoints in a permutation π as bg(π), bp(π), bps(π), and bpsrt(π), respectively. We
can easily see that bg(ιn) = bp(ιn) = bps(ιn) = bpsrt(ιn) = 0, bps(η̄n) = bpsrt(η̄n) = 0, and
bpsrt(ϕ

a
k,n) = bpsrt(ϕ

s
k,n) = 0 for any 2 ≤ k ≤ n. Note that these are the only permutations

with zero breakpoints in the signed/transposition types. Also note that bps(ηn) = n− 1.

Example 6. Next we show, for each of the four types of breakpoints defined above, how

to count them over the same four permutations (two of them are the same as the previous

example). A breakpoint is indicated by a “�”:

g-breakpoints: (1 � 4 � 3 � 8 � 5 6 � 2 � 7 �) (� 5 6 � 2 � 8 � 1 � 4 � 3 � 7 �)
p-breakpoints: (1 � 4 � 3 � 8 � 5 6 � 2 � 7 �) (5 6 � 2 � 8 � 1 � 4 � 3 � 7 �)

ps-breakpoints: (1 � 4 � 3 � 8 � 5 6 � 2 � 7) (5 6 � 2 � 8 � 1 � 4 � 3 � 7)
psrt-breakpoints: (1 � 4 � 3 � 8 � 5 6 � 2 � 7) (5 6 � 2 � 8 1 � 4 � 3 � 7)

g-breakpoints: (1 � −4 −3 � 8 � −5 � 6 � 2 � −7 �) (� 5 6 � −2 � −8 � −1 � 4 � 3 � 7 �)
p-breakpoints: (1 � −4 −3 � 8 � −5 � 6 � 2 � −7 �) (5 6 � −2 � −8 � −1 � 4 � 3 � 7 �)

ps-breakpoints: (1 � −4 −3 � 8 � −5 � 6 � 2 � −7) (5 6 � −2 � −8 � −1 � 4 � 3 � 7)
psrt-breakpoints: (1 � −4 −3 � 8 � −5 � 6 � 2 � −7) (5 6 � −2 � −8 � −1 � 4 � 3 � 7)

Note that, when prefix rearrangements are allowed in the rearrangement model, (π0, π1)

is never a breakpoint and, when suffix rearrangements are allowed, (πn, πn+1) is never a
breakpoint. This happens because prefix (resp. suffix) rearrangements are always moving
element π1 (resp. πn) and because π1 can be 1 (resp. πn can be n) several times before
the end of the sorting, so it is not worth considering these positions when we count the
number of breakpoints.

We define an x-move as a single rearrangement that removes x breakpoints from a
permutation. Because of the number of pairs of elements that each rearrangement affects,
it is easy to see that a prefix or a suffix reversal can be a 1-move, a prefix or a suffix
transposition or a reversal can be a 1 or a 2-move, and a transposition can be a 1, a 2, or
a 3-move. All of them can be 0-moves.

Definition 13. A strip is a sequence 〈πi . . . πj〉 of elements of π, with 1 ≤ i ≤ j ≤ n,

such that (i) either i = 1 or (πi−1, πi) is a breakpoint; (ii) either j = n or (πj , πj+1) is a

breakpoint; and (iii) no consecutive elements of the sequence are breakpoints.

CHAPTER 2. THEORETICAL FUNDAMENTS 23

For unsigned permutations, a strip of length greater than or equal to two is increasing

if πk+1 = πk + 1 for all i ≤ k < j (in the case of SbPSRT or SbWPSRT, also when
πk+1 = n while πk = 1), and it is decreasing if πk+1 = πk − 1 (in the case of SbPSRT or
SbWPSRT, also when πk+1 = 1 and πk = n). Note that, when considering the problems
SbPT, SbPST, SbWPT, and SbWPST, the permutations can only have increasing
strips. For signed permutations, we only differentiate positive or negative strips, when
they contain only positive or negative elements, respectively. In any case, a strip with
one element is called a singleton. Whenever it is convenient, we will underline the strips
of a permutation.

Example 7. Next we show, for each of the eight types of breakpoints defined, how to

identify strips over some permutations. The strips are underlined:

gr-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7)
upr-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7)

upsr-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7)
upsrt-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7)

g-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7) (1 −4 −3 8 −5 6 2 −7)
p-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7) (1 −4 −3 8 −5 6 2 −7)

ps-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7) (1 −4 −3 8 −5 6 2 −7)
psrt-breakpoints: (1 4 3 8 5 6 2 7) (5 6 2 8 1 4 3 7) (1 −4 −3 8 −5 6 2 −7)

2.2 Binary Strings

Bender et al. [5] showed that binary strings, which are strings that contain only the
symbols 0 and 1, are closely related to sorting permutations by length-weighted rear-
rangements. For this reason, we also consider results for sorting binary strings by length-
weighted rearrangements in Chapters 5, 6, and 7. In this section we present some impor-
tant concepts that will be necessary only in those chapters.

Definition 14. An unsigned binary string of size n is represented as T = t1t2 . . . tn,

where ti ∈ {0, 1} for all 1 ≤ i ≤ n.

Definition 15. A signed binary string of size n is represented as T = t1t2 . . . tn, where

ti ∈ {−1,−0, 0, 1} for all 1 ≤ i ≤ n.

We also always consider the extended binary string, which has t0 = 0 and tn+1 = 1 as
fixed elements.

A maximal contiguous substring of only 0’s or only 1’s is called a block of a string T

and the weight of a block is the number of bits in it. We will assume that the leading block
in a binary string is a block of 0’s and that the closing block is a block of 1’s. Therefore,
a binary string T with g + 1 blocks of 0’s and g + 1 blocks of 1’s can be represented as a
string of blocks T = 0w01w1 . . . 0w2g1w2g+1, meaning that T has w0 0’s, followed by w1 1’s,
followed by w2 0’s, and so on.

Definition 16. A binary string T is sorted if it consists of a block of 0’s followed by a

block of 1’s.

CHAPTER 2. THEORETICAL FUNDAMENTS 24

Reversals and transpositions over binary strings are defined exactly as they are de-
fined for permutations. A reversal ρ(i, j) acting on a string T transforms it into T · ρ(i, j)

= t1 . . . ti−1tj . . . titj+1 . . . tn, a signed reversal ρ̄(i, j) acting on a signed binary string T

transforms it into T · ρ̄(i, j) = t1 . . . ti−1−tj . . .− titj+1 . . . tn, and a transposition τ(i, j, k)

transforms T (signed or unsigned) into T · τ(i, j, k) = t1 . . . ti−1tj . . . tk−1 ti . . . tj−1tk . . . tn.
Prefix reversals, suffix reversals, prefix transpositions, suffix transpositions, and rearrange-
ment model also have the same definition.

Definition 17. Consider a rearrangement model β and some α ≥ 0. The distance of a

binary string T is defined as the cost of a sorting sequence for T of minimum cost and it

is denoted as cαβ(T).

Definition 18. Consider a rearrangement model β and some α ≥ 0. The diameter
of a problem of sorting binary strings is the biggest distance among the distances of all

binary strings of size n and it is denoted as Cα
β (n). Specifically, Cα

β (n) = max{cαβ(T) :

T has size n}.

We consider that the median of a set {a, a+ 1, a+ 2, . . . , a+ k} of integers is a− 1 +

⌈(a+ k − a+ 1)/2⌉.

Definition 19. A permutation π of size n is partitioned if all elements smaller than or

equal to (resp. greater than) the median ⌈n/2⌉ of [1..n] are located to its left (resp. right).

Note that an idea to sort a permutation π is to first partition it and then recursively
sort each of the halves. To perform the partition, we can map π = (π1 π2 . . . πn) to a
binary string T = t1t2 . . . tn such that, for all 1 ≤ i ≤ n,

ti =

{
0 if πi ≤

⌈
n
2

⌉

1 otherwise

and then sort T .
More generally, we can define a function M(n, p, π), where n is a positive integer,

p ∈ {0, 1, 2, . . . , n} is called a pivot, and π is a permutation of size n, which returns a
binary string T = t1t2 . . . tn of size n such that, for all 1 ≤ i ≤ n,

ti =

{
0 if πi ≤ p

1 otherwise

Let π be a permutation of size n, T = M(n, p, π) for some pivot p, β be a rearrangement
model, and α > 0 be a real number. We have that

cαβ(T) ≤ dαβ(π), (2.1)

because a sorting sequence for π also sorts T , but T could probably be sorted with a
smaller cost.

Example 8. Let π = (3 8 4 1 2 5 9 6 10 7), T = M(10, 6, π) = 0100001011, and

T ′ = M(10, 4, π) = 0100011111. Note that ρ(9, 10), ρ(7, 9), ρ(2, 6), ρ(6, 8), ρ(2, 5), ρ(1, 4),

CHAPTER 2. THEORETICAL FUNDAMENTS 25

ρ(1, 2), ρ(3, 4) is a valid sorting sequence of reversals for π. It also clearly sorts T ′.

However, a unique reversal ρ(2, 5) sorts T ′. Furthermore, it is easy to see that any sorting

sequence of reversals for π has to have more than one reversal.

Note that, through the transformation M , all permutations of size n can build all
binary strings of size n if we take all possible values of p. For instance, the identity
permutation ιn = (1 2 . . . n) itself can generate the n+1 binary strings 1n (when p = 0),
01n−1 (when p = 1), 021n−2 (when p = 2), and so on, until 0n (when p = n). The binary
string 021n−2, on the other hand, can also be generated by any permutation that starts
with 1 2 or 2 1 when p = 2.

Since all permutations of size n can build all binary strings of size n, as stated above,
and because of Equation (2.1), we have that

Cα
β (n) ≤ Dα

β (n). (2.2)

Therefore, any lower bound for Cα
β (n) is also a lower bound for Dα

β (n) and any upper
bound for Dα

β (n) is also an upper bound for Cα
β (n).

2.3 Approximation Algorithms

Many sorting by genome rearrangements problems are NP-hard. Therefore, in many cases
it is good enough to find solutions that are close to some optimal one. Approximation
algorithms can find such solutions and guarantee how close they are [19].

Definition 20. Let ALG be a polynomial-time algorithm on the size of the input I for a

minimization problem. Let ALG(I) and OPT (I) be the cost used by the algorithm and the

cost of an optimal solution for instance I, respectively. We say ALG is an a-approximation

algorithm for the problem if

ALG(I) ≤ a×OPT (I)

for all instances I. Note that OPT (I) ≤ ALG(I) always.

Chapter 3

Known Results for Traditional

Approach

This chapter presents a review of the existing results, to the best of our knowledge, for
the traditional approach, where the cost of sorting a permutation is given by the amount
of rearrangements that were used to do it. We consider related work only, namely those in
which the rearrangement model involves general or restricted versions of reversals and/or
transpositions.

One of the most studied problems in Genome Rearrangements is the problem of Sorting
by Reversals (SbR), for which there exist several results and approximation algorithms.
In 1993, Kececioglu and Sankoff [41] presented the first approximation algorithm, of factor
2, which consists in removing the largest possible amount of breakpoints prioritizing the
reversals that leave decreasing strips. Then, Bafna and Pevzner [2] introduced the idea of
breakpoint graphs, being able to give two other approximation algorithms of factor 1.8 and
1.75. In 1998, Christie [16] introduced the reversal graph and improved the approximation
factor to 1.5. At last, in 2002 Berman et al. [7] presented the algorithm that has the best-
known approximation factor so far, of 1.375. In the mean time, SbR was proved to be
NP-hard [11] and not approximable within a factor of 1.0008.

Bafna and Pevzner [2], with the introduction of breakpoint graphs, were also capable
of proving a conjecture that they credit to Holger Golan, which says that Dr(n) = n− 1

and that the only permutations with such reversal distance are γ(n) and its inverse, where

γ(n+1) =







(1) if n is zero,

(γ
(n)
1 γ

(n)
2 . . . γ

(n)
n−1 n+ 1 γ

(n)
n) if n is odd,

(γ
(n)
1 γ

(n)
2 . . . γ

(n)
n−2 n+ 1 γ

(n)
n γ

(n)
n−1) if n is even.

On the other hand, the problem of Sorting by Signed Reversals (SbR̄) is polynomially
solvable, as shown by Hannenhalli and Pevzner [37] who presented a O(n4) algorithm. The
theory involving such algorithm was explained in a much simpler manner by Bergeron [6].
Also, improvements have been made ever since to decrease this time complexity so that
the best-known is O(n3/2) [36]. Furthermore, there is a O(n) algorithm which is capable
of computing the sorting distance without showing the sorting sequence [1]. The diameter
of SbR̄ is, therefore, known to be n+ 1 [28].

26

CHAPTER 3. KNOWN RESULTS FOR TRADITIONAL APPROACH 27

Another important problem in Genome Rearrangements is Sorting by Transpositions
(SbT). It was introduced in 1998 by Bafna and Pevzner [3], which gave three approxima-
tion algorithms for it, with factors 2, 1.75, and 1.5. The best-known algorithm, though,
also has an approximation factor of 1.375 and it was given in 2006 by Elias and Hart-
man [26]. SbT was proved to be NP-hard in 2011 [9]. It is also NP-hard to decide if a
permutation π can be sorted with exactly bg(π)/3 transpositions.

Although the diameter of SbT is unknown, there are some results about it. Bafna and
Pevzner [3] showed that ⌊n/2⌋ ≤ Dt(n) ≤ 3n/4. The best lower and upper bounds are,
respectively, ⌊(n + 1)/2⌋+1 [26], for n ≥ 1, and ⌊(2n− 2)/3⌋, for n ≥ 9 [27]. In addition,
Christie [16], Eriksson et al. [27], Meidanis et al. [48] showed that dt(ηn) = ⌊n/2⌋+ 1.

Walter et al. [56] considered problems for which more than one type of rearrangement is
allowed, namely Sorting by Reversals and Transpositions (SbRT) and Sorting by Signed
Reversals and Transpositions (SbR̄T). They gave a 3-approximation algorithm for the
former and a 2-approximation algorithm for the latter. The best-known algorithm for
SbRT, however, is a 2k-approximation [51], where k is the approximation factor of the
algorithm for maximizing the number of cycles in a cycle decomposition of the cycle
graph [3]. The best-known value for k is 1.4167 + ǫ [12] for any positive ǫ.

Regarding unsigned permutations, Gu et al. [35] considered a third event along with
reversals and transpositions: the transreversal, which is a transposition where one of the
segments is reversed. They gave a 2-approximation algorithm when the three are allowed.
Lin and Xue [43] considered yet a fourth event that they called revrev, which consists in
a transposition where the two segments are reversed. When considering the four events,
they gave a 1.75-approximation algorithm but currently the best-known approximation
factor is 1.5 [38].

One can notice that in the first description of the Pancake Flipping problem, or the
Sorting by Prefix Reversals problem (SbPR), the concern was to find its diameter. In fact,
the first computational results for the Pancake Flipping problem were given by Gates and
Papadimitriou [34], who showed that Dpr(n) lies between 17n/16 and (5n+5)/3. Heydari
and Sudborough [40] improved the lower bound only eighteen years later to 15n/14, the
best-known so far. In 2009, the upper bound was improved to 18n/11 + O(1) [15], also
the best-known so far. SbPR was proved to be NP-hard by Bulteau et al. [10] and the
best-known approximation algorithm for it has factor 2, given by Fischer and Ginzinger
[30]. It is also NP-hard to decide if a given permutation π can be sorted by bupr(π) prefix
reversals.

The Sorting by Signed Prefix Reversals problem (SbPR̄), or the Burnt Pancake Flip-
ping problem, was introduced by Gates and Papadimitriou [34]. They were also concerned
about the diameter, and they showed that it lies between 3n/2 − 1 and 2n + 3. How-
ever, the best-known lower and upper bounds are, respectively, (3n+ 3)/2 [40] for any n,
and 2n − 6 [17] for n ≥ 16. Cohen and Blum [18] gave the best-known approximation
algorithm for this problem and it has factor 2. The complexity of SbPR̄ remains open.

In 2002, Dias and Meidanis [24] introduced the Sorting by Prefix Transpositions prob-
lem (SbPT), and gave a 2-approximation algorithm for it, which is the best-known
factor to the moment. The diameter of this problem is unknown, but it lies between
⌊(3n+ 1)/4⌋ [42], for n ≥ 2, and n − log7/2 n [13]. Also, the complexity of the problem

CHAPTER 3. KNOWN RESULTS FOR TRADITIONAL APPROACH 28

remains open.
Hasan et al. [39] considered Sorting by Prefix Reversals and Transpositions (SbPRT),

in which prefix reversals and prefix transpositions are allowed simultaneously, and gave a 3-
approximation algorithm with no considerations regarding the diameter. They also consid-
ered Sorting by Prefix Reversals and Prefix Transreversals, presenting a 2-approximation
algorithm for it. Currently, the best-known algorithm for SbPRT has an approximation
factor of 2 + 4/bupr(π) [23].

3.1 Summary of the Chapter

Table 3.1 summarizes the best-known approximation factors and the best-known bounds
for the diameters of the problems that were mentioned throughout this chapter.

Table 3.1: Summary of best-known results for genome rearrangement problems. A ‘-’
indicates that there is no known-result.

Diameter
Rearrangements Best Approx. Factor Complexity

Lower Bound Upper Bound

Reversals 1.375 [7] NP-hard [11] n− 1 [2]

Sig. Reversals 1 [37] P [37] n+ 1 [28]

Transpositions 1.375 [26] NP-hard [9]
⌊

n+1
2

⌋

+ 1 [26]
⌊

2n−2
3

⌋

[27]

Reversals and Transpositions 2.8334 [12, 51] Unknown - -

Sig. Reversals and Transpositions 2 [56] Unknown - -

Pref. Reversals 2 [30] NP-hard [10] 15n
14

[40] 18n
11

+ O(1) [15]

Sig. Pref. Reversals 2 [18] Unknown 3n+3
2

[40] 2n− 6 [17]

Pref. Transpositions 2 [24] Unknown
⌊

3n+1
4

⌋

[42] n− log7/2 n [13]

Pref. Reversals and Transpositions 2 + 4/bupr(π) [23] Unknown - -

Chapter 4

Results Obtained for Traditional

Approach

This chapter, as the previous one, also considers the traditional approach, where the
sorting distance of a permutation is given by the amount of rearrangements that were
used to sort it, but it presents the results that we obtained.

We start by noticing that the identity permutation has the smallest number of break-
points (although, as mentioned before, it is not always the only one that has the smallest
number). Therefore, we can see the sorting of a permutation π as a reduction of its num-
ber of breakpoints. This notion allows us to establish lower bounds on the rearrangement
distances.

Lemma 1. For any unsigned permutation π,

dpsr(π) ≥ bupsr(π), dpst(π) ≥

⌈
bps(π)

2

⌉

, and dpsrt(π) ≥

⌈
bupsrt(π)

2

⌉

.

Proof. A prefix reversal ρp(i) separates the pairs of elements (π0, π1) and (πi, πi+1), which
can reduce the number of breakpoints by at most one unit, since (π0, π1) is never a upsr-
breakpoint or a upsrt-breakpoint. A prefix transposition, on the other hand, separates
the pairs (π0, π1), (πi−1, πi) and (πj−1, πj), which can reduce the number of breakpoints by
at most two units, since (π0, π1) is never a ps-breakpoint or a upsrt-breakpoint. A similar
argument applies for a suffix reversal ρs(j) and a suffix transposition τs(j, k). Therefore,
if we always manage to remove the highest possible amount of breakpoints, we would
obtain the stated lower bounds as the distance.

Using arguments similar to those developed in the proof of Lemma 1, we can also
derive lower bounds for the distances in which signed permutations are considered.

Lemma 2. For any signed permutation π,

dpsr̄(π) ≥ bps(π), dpr̄t(π) ≥

⌈
bp(π)

2

⌉

, and dpsr̄t(π) ≥

⌈
bpsrt(π)

2

⌉

.

We will call 2-PR, 2-PT, 2-PRT, and 2-PR̄ the best-known algorithms that exist so far
in the literature for the problems SbPR [30], SbPT [24], SbPRT [23], and SbPR̄ [18],

29

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 30

respectively, which were mentioned in Chapter 3. It was proven that these algorithms
guarantee that

2-PR(π, n) ≤ 2bupr(π),

2-PT(π, n) ≤ bp(π)− 1,

2-PRT(π, n) ≤ bupr(π) + 2, and
2-PR̄(π, n) ≤ 2bp(π).

We first point out that they are also valid algorithms for SbPSR, SbPST, SbPSRT,
and SbPSR̄, respectively. Second, by our definition of breakpoints, when suffix rearrange-
ments are allowed (which means (πn, πn+1) is not a breakpoint), we have

bupr(π)− 1 ≤ bupsr(π) ≤ bupr(π),

bupr(π)− 1 ≤ bupsrt(π) ≤ bupr(π), and
bp(π)− 1 ≤ bps(π) ≤ bp(π).

This means that these four algorithms guarantee that

2-PR(π, n) ≤ 2bupsr(π) + 2,

2-PT(π, n) ≤ bps(π),

2-PRT(π, n) ≤ bupsrt(π) + 3, and
2-PR̄(π, n) ≤ 2bps(π) + 2.

Therefore, considering the lower bound given by Lemma 1, for instance, algorithm 2-PR

has an approximation factor of (2bupsr(π)+2)/bupsr(π) for SbPSR, which is 2+2/bupsr(π).
The same analysis can be made for the other three algorithms: using the upper bounds
given above along with the lower bounds given by Lemmas 1 and 2, 2-PRT and 2-PR̄

are (2 + 6/bupsrt(π))-approximation and (2 + 2/bps(π))-approximation for SbPSRT and
SbPSR̄, respectively, and 2-PT is a 2-approximation for SbPST.

In Sections 4.1 to 4.6 we will present specific algorithms for SbPSR, SbPST, SbPSRT,
and SbPSR̄, and also for SbPR̄T and SbPSR̄T, thanks to which we are able to decrease
the upper bounds given above. Furthermore, they take advantage of suffix rearrangements,
which makes them return better results, in practice, than just using the prefix ones. In
Section 4.7 we present some experimental results on these algorithms. In Section 4.8, we
additionally present bounds for the diameters of these problems. Lastly, in Section 4.9,
we give a summary of all results presented in this chapter.

4.1 Sorting by Prefix and Suffix Reversals

In this section we present an algorithm for SbPSR problem, which was recently proved
to be NP-hard by Fertin et al. [29]. The general idea of our algorithm is, while the
permutation is not sorted: try to apply a 1-move or else a 1-move followed by a 0-move;
if neither is possible, the permutation has a specific format that can be sorted with at
most its number of breakpoint operations.

We define now the breakpoint graph [2] of an unsigned permutation π, which is used
by 2-PR and it will be used in this section for SbPSR. The breakpoint graph is the graph

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 31

0 1 9 3 4 8 5 7 12 11 10 2 6 13

Figure 4.1: Breakpoint graph for π = (1 9 3 4 8 5 7 12 11 10 2 6) and considering SbPSR.
Note that edge (0, 1) must always exist if prefix rearrangements are involved and edge
(6, 13) must always exist if suffix rearrangements are involved.

(a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

Figure 4.2: Classification of gray edges.

G(π) = (V,E) in which V = {π0, π1, . . . , πn+1} and E contains black edges and gray edges.
A black edge e exists if and only if (i) e = (πi, πi+1) and πi and πi+1 form a breakpoint,
for 0 ≤ i ≤ n; (ii) e = (π0, π1) and the model includes prefix rearrangements; and (iii) e

= (πn, πn+1) and the model includes suffix rearrangements. A gray edge e exists if and
only if e = (πi, πj) for some i and j such that 0 ≤ i < j ≤ n + 1 with πj = πi ± 1 and j

6= i+1. In a graphic representation, we draw black edges as straight lines and gray edges
as dashed lines, as shown by Figure 4.1.

Let (πi, πj) be any edge of G(π). Although the graph is not directed, we will always
consider that i < j so that we can say that such edge begins at πi (or at position i) and
ends at πj (or at position j). If (πi, πj) is a gray edge, then we have πj = πi ± 1, which
means that there must be at least one black edge that begins or ends at πi as well as there
must be at least one black edge that begins or ends at πj . Hence, we can classify (πi, πj)

into at least one of the four types showed in Figure 4.2.
Lemma 3 defines what we call good edges: when they exist, it is always possible to

apply a 1-move or else a 0-move followed by a 1-move.

Lemma 3. Let π be any unsigned permutation. There is a sequence of at most two prefix

reversals or suffix reversals that removes one upsr-breakpoint if G(π) contains at least one

gray edge (πi, πj):

1. of type 1 with i = 1 and j ≤ n;

2. of type 2 with j = n and i ≥ 1;

3. of type 3 with i = 1 and j ≤ n;

4. of type 3 with j = n and i ≥ 1;

5. of type 2 with i ≥ 1 and j ≤ n;

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 32

6. of type 1 with j ≤ n and i ≥ 1;

7. of type 3 with i > 1 and j ≤ n;

8. of type 3 with j < n and i ≥ 1.

These eight categories of gray edges are called good edges. We call good prefix edges
(GPE) the ones presented on items 1, 3, 5, and 7. The others are called good suffix edges
(GSE).

Proof. If (πi, πj) is a gray edge, then πj = πi±1. In order to create an adjacency between
πi and πj without creating new upsr-breakpoints, one can perform, for each category:

1. one prefix reversal ρp(j − 1);

2. one suffix reversal ρs(i+ 1);

3. one prefix reversal ρp(j − 1);

4. one suffix reversal ρs(i+ 1);

5. two prefix reversals ρp(j) and ρp(j − i);

6. two suffix reversals ρs(i) and ρs(n+ 1− (j − i));

7. two prefix reversals ρp(i) and ρp(j − 1);

8. two suffix reversals ρs(j) and ρs(i+ 1).

We point out that algorithm 2-PR only deals with good prefix edges without consid-
ering the constraints over j.

We then propose algorithm 2-PSR, which searches for any of the eight categories of
good edges given by Lemma 3, in that order. In our implementation, the algorithm scans
the permutation from right to left when searching for good prefix edges and from left
to right when searching for good suffix edges; when considering a certain category, it
will use the first edge it finds. When a permutation does not contain a good edge, it is
characterized by Lemmas 4 and 5, and we can transform it into ιn with at most bupsr(π)+2

reversals, as Lemma 6 shows.

Lemma 4. For SbPSR, if π 6= ιn is an unsigned permutation that does not contain a

good edge, then π does not contain any singleton.

Proof. Suppose that π contains a singleton πi = k. Note that a black edge ends at k and
another black edge starts at k. In addition, two gray edges also start or end at k. If k+1

and k − 1 were to the right of k, then there would exist good prefix edges of types 2 or 3
in π, a contradiction. If k + 1 or k − 1 were to the left of k, then there would be good
suffix edges of types 1 or 3 in π, also a contradiction.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 33

Lemma 5. For SbPSR, if π 6= ιn is an unsigned permutation that does not contain a

good edge, then π is of one of the three forms:

1. ηn = (n n−1 n−2 . . . 1);

2. δab+1 = (p1 p1−1 . . . 1
︸ ︷︷ ︸

ℓ1

p2 p2−1 . . . p1+1
︸ ︷︷ ︸

ℓ2

. n n−1 . . . pb+1
︸ ︷︷ ︸

ℓb+1

);

3. δdb+1 = (pb+1 pb+2 . . . n
︸ ︷︷ ︸

ℓ1

. p1+1 p1+2 . . . p2
︸ ︷︷ ︸

ℓb

1 2 . . . p1
︸ ︷︷ ︸

ℓb+1

),

where b = bupsr(π) and ℓi ≥ 2 for all 1 ≤ i ≤ b+ 1.

Proof. If π = ηn, then π has only two black edges (0, n) and (1, n+1) and two gray edges
(0, 1) and (n, n+1), which are not considered good edges, due to the restrictions over the
indices, as given in Lemma 3.

We will show by induction on the number s of strips of π that if π does not contain a
good edge and it is not ηn, then it is either δab+1 or δdb+1. Note that s = b+ 1.

If s = 2 then bupsr(π) = 1, since neither (π0, π1) nor (πn, πn+1) are upsr-breakpoints,
by definition. Among all 6 possible forms of permutations with two strips1, the only ones
that do not contain good edges are (k k−1 . . . 1 n n−1 . . . k+1) and (k+1 k+2 . . . n

1 2 . . . k), which correspond to δa2 and δd2 , respectively.
Suppose that s ≥ 3 and that every permutation π 6= ηn without good edges and with

s− 1 strips is either of the form δab+1 or of the form δdb+1.
Let π be a permutation with s strips without good edges and let πw be the last

element of the first strip of π. Either πw−1 > πw and πw = 1 (otherwise there would
be some πi = πw − 1 with i > w and a good prefix edge of type 2 or 3 would exist) or
πw−1 < πw and πw = n (otherwise there would be some πi = πw+1 with i > w and a good
prefix edge of type 2 or 3 would exist). Note that 0 and n + 1 do not form good edges
with 1 and n, respectively, because prefix and suffix rearrangements are being allowed by
the rearrangement model.

Suppose first that πw = 1. Let π′ be the permutation built from π such that π′j =

πj+w−π1 for all 1 ≤ j ≤ n−w. Note that π′ has s−1 strips. In addition, it is easy to see
that if π′ contained good edges, then π would have them too. Therefore, by the induction
hypothesis, π′ is either of the form δab or δdb . Since π′ corresponds to π relabeled without
the first strip, which contains the element 1, if π′ = δdb then π = (p1 . . . 1 pb+1 . . . n

. p1+1 . . . p2). However, in this case a good prefix edge of type 1 would exist, which
is not possible. Therefore, π′ = δab and π = δab+1.

Suppose now that πw = n. Let π′ be the permutation built from π such that π′j = πj+w

for all 1 ≤ j ≤ n− w. Note that π′ has s− 1 strips. In addition, it is easy to see that if
π′ contained good edges, then π would have them too. Therefore, π′ is either of the form
δab or δdb . Since π′ corresponds to π without the first strip, which contains the element n,
if π′ = δab then π = (pb+1 . . . n p1 . . . 1 pb . . . pb−1+1). However, in this case
a good prefix edge of type 1 would exist, which is not possible. Therefore, π′ = δdb and
π = δdb+1.

1The 6 permutations with two strips for upsr-breakpoints are (1 . . . k n . . . k+1), (k . . . 1 k+1 . . . n),
(k . . . 1 n . . . k+1), (n . . . k+1 1 . . . k), (k+1 . . . n 1 . . . k), and (k+1 . . . n k . . . 1).

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 34

Lemma 6. Let π be any unsigned permutation without good edges, that is, of one of the

forms given by Lemma 5. If π = ηn, then one prefix reversal ρp(n) sorts it. Otherwise, at

most bupsr(π) + 2 prefix and suffix reversals sort it.

Proof. Let b = bupsr(π). First consider that π = δab+1 and b is an odd number. The b+ 1

reversals

ρs(ℓ1 + 1) · ρp(n− ℓ2) · ρs(ℓ3 + 1) · ρp(n− ℓ4) · · · · · ρs(ℓb + 1) · ρp(n− ℓb+1)

transform π into ιn, as we show next.
Let πk, 1 ≤ k ≤ (b−1)/2, be the permutation we obtain after applying the first 2k re-

versals of the sequence given above, namely ρs(ℓ1+1)·ρp(n−ℓ2) · · · · · ρs(ℓ2k−1+1) · ρp(n−

ℓ2k). It can easily be shown by induction that πk = (p2k+1 . . . p2k+1
︸ ︷︷ ︸

ℓ2k+1

p2k+2 . . . p2k+1+1)
︸ ︷︷ ︸

ℓ2k+2

. n . . . pb+1
︸ ︷︷ ︸

ℓb+1

1 2 . . . p2k−2+1 . . . p2k−1 p2k−1+1 . . . p2k
︸ ︷︷ ︸

ℓ1+ℓ2+...+ℓ2k

).

Thus, π(b−1)/2 = (pb . . . pb−1+1 n . . . pb+1 1 2 . . . pb−1) and ρs(ℓb+1) · ρp(n− ℓb+1)

finally sorts it.
If π = δdb+1 and b is odd, then one must apply ρp(n) to transform it into δab+1 followed

by the b+ 1 reversals given above.
If π = δdb+1 and b is an even number, then the b+ 1 reversals

ρp(n− ℓb+1) · ρs(ℓb + 1) · ρp(n− ℓb−1) · ρs(ℓb−2 + 1) · · · · · ρp(n− ℓ3) · ρs(ℓ2 + 1) · ρp(n− ℓ1)

sort π. This also can be shown by induction.
If π = δab+1 and b is even, then one must apply ρp(n) to transform it into δdb+1 followed

by the reversals given above.

One question that arises when we allow more than one rearrangement (in this case,
prefix reversals and suffix reversals) is which one should be applied at each iteration of
the algorithm, that executes while there is a breakpoint. We decided just to interpolate
the choices, as shown in Algorithm 1, which describes 2-PSR.

Example 9. The following example shows the execution of 2-PSR over π = (9 6 2 14 10

15 7 12 4 11 3 8 13 1 5). Recall that GPE and GSE stand for good prefix edges and good

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 35

suffix edges, respectively.

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(11) = (3 11 4 12 7 15 10 14 2 6 9 8 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(8) = (14 10 15 7 12 4 11 3 2 6 9 8 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1

π ← π·ρp(12) = (8 9 6 2 3 11 4 12 7 15 10 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(8) = (12 4 11 3 2 6 9 8 7 15 10 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(2) = (4 12 11 3 2 6 9 8 7 15 10 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(3) = (11 12 4 3 2 6 9 8 7 15 10 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1

π ← π·ρp(10) = (15 7 8 9 6 2 3 4 12 11 10 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(11) = (10 11 12 4 3 2 6 9 8 7 15 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1
π ← π·ρp(7) = (6 2 3 4 12 11 10 9 8 7 15 14 13 1 5) // (GPE type 1) 1-move to place π1 next to π1 − 1

π ← π·ρp(14) = (1 13 14 15 7 8 9 10 11 12 4 3 2 6 5) // (GPE type 2) first, a 0-move
π ← π·ρp(13) = (2 3 4 12 11 10 9 8 7 15 14 13 1 6 5) // then, a 1-move to place π1 next to π1 − 1
π ← π·ρp(12) = (13 14 15 7 8 9 10 11 12 4 3 2 1 6 5) // (GSE type 1) 0-move
π ← π·ρs(4) = (13 14 15 5 6 1 2 3 4 12 11 10 9 8 7) // 1-move to place πn next to πn − 1
π ← π·ρs(6) = (13 14 15 5 6 7 8 9 10 11 12 4 3 2 1) // (GSE type 1) 0-move
π ← π·ρs(4) = (13 14 15 1 2 3 4 12 11 10 9 8 7 6 5) // 1-move to place πn next to πn − 1
π ← π·ρs(8) = (13 14 15 1 2 3 4 5 6 7 8 9 10 11 12) // π = δdb+1 for b = 1 (b odd, so apply ρp(n) first)

π ← π·ρp(15) = (12 11 10 9 8 7 6 5 4 3 2 1 15 14 13) // apply ρs(ℓ1 + 1)
π ← π·ρs(13) = (12 11 10 9 8 7 6 5 4 3 2 1 13 14 15) // apply ρp(n− ℓ2)
π ← π·ρp(12) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Lemma 7 and Theorem 1 show that the approximation factor of our algorithm is 2.

Lemma 7. For any unsigned permutation π, 2-PSR(π, n) ≤ 2bupsr(π) + 1.

Proof. Starting from π, our algorithm greedily removes breakpoints (based on finding a
GPE or a GSE) until this is not possible anymore. At worse, it uses two prefix or two
suffix reversals to remove one breakpoint. Suppose it does this until some permutation π′

is reached. We have 2-PSR(π, n) ≤ 2(bupsr(π)− bupsr(π
′)) + 2-PSR(π′, n).

If bupsr(π′) = 0, then either π′ = ιn or π′ = ηn, which means 2-PSR(π, n) ≤ 2bupsr(π)+1.
If bupsr(π′) ≥ 1, then according to Lemma 6, 2-PSR(π′, n) ≤ bupsr(π

′) + 2. Therefore,
2-PSR(π, n) ≤ 2bupsr(π)− bupsr(π

′) + 2 ≤ 2bupsr(π) + 1.

Theorem 1. SbPSR is 2-approximable.

Proof. First note that 2-PSR has time complexity O(n2) where n is the size of the permu-
tation, because finding any good edge takes O(n), applying the corresponding rearrange-
ment takes O(n), and the distance is proportional to the number of breakpoints, which is
also O(n).

Regarding the approximation factor of 2-PSR, note that if the permutation π does not
have upsr-breakpoints, then it is either the identity or the reverse permutation. In any
case, 2-PSR uses the optimum amount of reversals to sort π (zero and one, respectively).
Therefore, suppose bupsr(π) ≥ 1.

Suppose that it is possible to apply a 1-move on π, generating π′. Since 2-PSR always
tries 1-moves first, we have that 2-PSR(π, n) ≤ 1 + 2-PSR(π′, n) and also bupsr(π

′) =

bupsr(π)− 1. By Lemma 7, we know that 2-PSR(π′, n) ≤ 2bupsr(π
′) + 1. Therefore,

2-PSR(π, n) ≤ 1 + 2-PSR(π′, n) ≤ 1 + 2(bupsr(π)− 1) + 1 = 2bupsr(π).

Using Lemma 1, which states that dpsr(π) ≥ bupsr(π), the approximation factor is

2bupsr(π)

bupsr(π)
= 2.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 36

Algorithm 1 A 2-approximation algorithm for SbPSR.
2-PSR(π, n)

Input : permutation π and its size n
Output : number of rearrangements used to sort π

1 d← 0
2 while π 6= ιn do // Apply rules from Lemma 3
3 if G(π) has a GPE (π1, πj) of type 1 and j ≤ n then

4 π ← π · ρp(j − 1)
5 d← d+ 1
6 else if G(π) has a GSE (πi, πn) of type 2 and i ≥ 1 then

7 π ← π · ρs(i+ 1)
8 d← d+ 1
9 else if G(π) has a GPE (π1, πj) of type 3 and j ≤ n then

10 π ← π · ρp(j − 1)
11 d← d+ 1
12 else if G(π) has a GSE (πi, πn) of type 3 and i ≥ 1 then

13 π ← π · ρs(i+ 1)
14 d← d+ 1
15 else if G(π) has a GPE (πi, πj) of type 2 and i 6= 0 and j ≤ n then

16 π ← π · ρp(j) · ρp(j − i)
17 d← d+ 2
18 else if G(π) has a GSE (πi, πj) of type 1 and j 6= n+1 and i ≥ 1 then

19 π ← π · ρs(i) · ρs(n+ 1− (j − i))
20 d← d+ 2
21 else if G(π) has a GPE (πi, πj) of type 3 and i > 1 and j ≤ n then

22 π ← π · ρp(i) · ρp(j − 1)
23 d← d+ 2
24 else if G(π) has a GSE (πi, πj) of type 3 and j < n and i ≥ 1 then

25 π ← π · ρs(j) · ρs(i+ 1)
26 d← d+ 2
27 else if π = ηn then

28 π ← π · ρp(n)
29 d← d+ 1
30 else // Then π = δab+1 or π = δdb+1 (Lemma 5)
31 b← bupsr(π)
32 if b mod 2 ≡ 1 then

33 if π = (pb+1 . . . n pb−1 . . . pb . . . 1 . . . p1) = δdb+1 then

34 π ← π · ρp(n)
35 d← d+ 1
36 Let ℓi be the size of the ith strip of π

// Apply the rearrangements from Lemma 6 for δab+1 when bupsr(π) is odd

37 π ← π · ρs(ℓ1 + 1) · ρp(n− ℓ2) · · ρs(ℓb + 1) · ρp(n− ℓb+1)
38 else

39 if π = (p1 . . . 1 p2 . . . p1+1 n . . . pb+1) = δab+1 then

40 π ← π · ρp(n)
41 d← d+ 1
42 Let ℓb+2−i be the size of the ith strip of π

// Apply the rearrangements from Lemma 6 for δdb+1 when bupsr(π) is even

43 π ← π · ρp(n−ℓ1) · ρs(ℓ2+1) · . . . · ρp(n−ℓb−1) · ρs(ℓb+1) · ρp(n−ℓb+1)
44 d← d+ b+ 1
45 return d

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 37

Now suppose that it is not possible to apply a 1-move on π. This means that the
lower bound given in Lemma 1 is not tight and dpsr(π) ≥ bupsr(π) + 1. Using Lemma 7,
the approximation factor is

2bupsr(π) + 1

bupsr(π) + 1
≤

2bupsr(π) + 2

bupsr(π) + 1
= 2.

4.2 Sorting by Prefix and Suffix Transpositions

The algorithm that we propose for SbPST is called 2-PST, and it works as follows. While
the permutation is not sorted, it first tries to apply a 2-move and, if this is not possible,
it applies a 1-move over the current permutation. Lemmas 8 and 9 analyze the existence
of such moves.

Lemma 8. Let π 6= ιn be any unsigned permutation. For SbPST, there exists at most

two 2-moves that can be applied to π.

Proof. Suppose that τp(i, j) is a 2-move. Note that we then must have 2 ≤ i < j ≤ n.
Also, π · τp(i, j) = (πi . . . πj−1 π1 . . . πi−1 πj . . . πn), where πi−1 = πj−1 6= πi−1 and πj−1

= π1 − 1 6= πj − 1. It is easy to see that π1 uniquely determines j and that j uniquely
determines i.

Now suppose that τs(i, j) is a 2-move. Again, 2 ≤ i < j ≤ n and π · τs(i, j) = (π1 . . .

πi−1 πj . . . πn πi . . . πj−1), where πi = πn + 1 6= πi−1 + 1 and πj = πi−1 + 1 6= πj−1 + 1.
It is also easy to see that πn uniquely determines i and that i uniquely determines j.

Lemma 9. Let π 6= ιn be any unsigned permutation. For SbPST, it is always possible

to apply a 1-move on π.

Proof. Let πi be the last element of the first strip of π (remember that when considering
SbPST the permutations can only have increasing strips). There must exist another strip
in π that starts with some πj such that πj = πi+1 and i < j, that is, πj is the element that
can increase the size of the first strip. If πi 6= n, then τp(i+ 1, j) is a 1-move. However, if
πi = n then j = n+1, which means that τp(i+1, j) would not remove any ps-breakpoint.
In this case, there must also exist a strip that ends with some πj such that πj = π1 − 1,
the previous element of the first strip, and so the transposition τp(i+1, j+1) is a 1-move.

Let πj be the first element of the last strip of π. There must exist another strip in π

that starts with some element πi such that πi = πj−1 and i < j, that is, πi is the element
that can increase the last strip. If πj 6= 1, then τs(i+1, j) is a 1-move. However, if πj = 1

then i = 0, which means that τs(i+ 1, j) would not remove any ps-breakpoint from π. In
this case, there must also exist a strip in π that ends with some πi such that πi = πn +1,
the next element of the last strip, and so the transposition τs(i, j) is a 1-move.

Regarding implementation issues, since Lemma 9 shows that more than one 1-move
is always possible, to break ties we decided to choose the 1-move that involves the least
number of elements. Likewise, if there exist two 2-moves, then we also break ties by

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 38

choosing the one that involves the least number of elements. Note that other 1-moves can
exist in π, apart from the ones described in Lemma 9. However, we decided to consider
only those ones, as Algorithm 2 shows.

Example 10. The following example shows the execution of 2-PST over π = (9 6 2 14

10 15 7 12 4 11 3 8 13 1 5):

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // 2-move with prefix (there is a 2-move with suffix)
π ← π·τp(9,13) = (4 11 3 8 9 6 2 14 10 15 7 12 13 1 5) // 2-move with suffix (there is not a 2-move with prefix)
π ← π·τs(6,9) = (4 11 3 8 9 10 15 7 12 13 1 5 6 2 14) // 1-move with suffix (involves less elements)

π ← π·τs(11,15) = (4 11 3 8 9 10 15 7 12 13 14 1 5 6 2) // 2-move with suffix
π ← π·τs(3,9) = (4 11 12 13 14 1 5 6 2 3 8 9 10 15 7) // 1-move with prefix (suffix would place 7 next to 6)
π ← π·τp(2,7) = (11 12 13 14 1 4 5 6 2 3 8 9 10 15 7) // 2-move with prefix

π ← π·τp(5,14) = (1 4 5 6 2 3 8 9 10 11 12 13 14 15 7) // 1-move with prefix (suffix would put 7 next to 6)
π ← π·τp(2,5) = (4 5 6 1 2 3 8 9 10 11 12 13 14 15 7) // 1-move with suffix (prefix would put 6 next to 7)
π ← π·τs(4,15) = (4 5 6 7 1 2 3 8 9 10 11 12 13 14 15) // 2-move with prefix
π ← π·τp(5,8) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Note that Lemma 9 directly yields the next lemma which, along with Lemma 1, directly
yields Theorem 2.

Lemma 10. For any unsigned permutation π, 2-PST(π, n) ≤ bps(π).

Theorem 2. SbPST is 2-approximable.

We point out that it is easy to implement 2-PST to run in O(n2) time, since determining
the right move to apply at each iteration takes O(n) time, applying a transposition also
takes O(n) time, and the distance is linear in the number of breakpoints. Rusu [52],
however, showed that it is possible to implement 2-PST in O(n logn) time with a structure
called log-list.

4.3 Sorting by Prefix and Suffix Reversals and Trans-

positions

The algorithm we propose for SbPSRT is called 2-PSRT and it works as follows. While
the permutation π has a upsrt-breakpoint, we try to apply a 2-move and, if this is not
possible, then we apply a 1-move (which can be done with either of the four available
rearrangements).

For this problem, due to the definition of upsrt-breakpoints (in which, in particular,
(1, n) and (n, 1) are not upsrt-breakpoints), we define the unitary increment of a positive
integer i as inc(i, n) = (i mod n)+1 and its unitary decrement as dec(i, n) = ((i+n−2)

mod n) + 1, for 1 ≤ i ≤ n.
To remove two upsrt-breakpoints we can use either a prefix or a suffix transposition,

as Lemma 11 shows.

Lemma 11. Let π 6= ιn be any unsigned permutation. For SbPSRT, there exist at most

eight 2-moves that can be applied to π.

Proof. Suppose that τp(i, j) is a 2-move. We then must have 2 ≤ i < j ≤ n. Also, π·τp(i, j)
= (πi . . . πj−1 π1 . . . πi−1 πj . . . πn), where πj−1 = inc(π1, n) or πj−1 = dec(π1, n) and
πi−1 = inc(πj , n) or πi−1 = dec(πj , n).

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 39

Algorithm 2 A 2-approximation algorithm for SbPST.
2-PST(π, n)

Input : permutation π and its size n
Output : number of rearrangements used to sort π

1 d← 0
2 while π 6= ιn do

3 Let jp = π−1π1−1
+ 1 and ip = π−1πjp−1

+ 1

4 Let is = π−1πn+1 and js = π−1πis−1+1

5 if 2 ≤ ip < jp ≤ n and 2 ≤ is < js ≤ n then // If a 2-move is possible with a
// prefix and a suffix transposition, apply the one that involves less elements

6 if jp − 1 ≤ n− is + 1 then

7 π ← π · τp(ip, jp)
8 else

9 π ← π · τs(is, js)
10 else if 2 ≤ ip < jp ≤ n then

11 π ← π · τp(ip, jp)
12 else if 2 ≤ is < js ≤ n then

13 π ← π · τs(is, js)
14 else // A 2-move is not possible, so apply a 1-move
15 Let ip be the position of the last element of the first strip
16 if πip = n then

17 jp ← π−1π1−1
+ 1

18 else

19 jp ← π−1πip+1

20 Let js be the position of the first element of the last strip
21 if πjs = 1 then

22 is ← π−1πn+1 − 1

23 else

24 is ← π−1πjs−1

// Choose the 1-move that involves less elements
25 if jp − 1 ≤ n− is then

26 π ← π · τp(ip + 1, jp)
27 else

28 π ← π · τs(is + 1, js)
29 d← d+ 1
30 return d

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 40

Now suppose that τs(i, j) is a 2-move. Again, 2 ≤ i < j ≤ n and π · τs(i, j) = (π1 . . .

πi−1 πj . . . πn πi . . . πj−1), where πi = inc(πn, n) or πi = dec(πn, n) and πj = inc(πi−1, n)

or πj = dec(πi−1, n).

It is not always possible to have a 2-move in a permutation that contains upsrt-
breakpoints, but a 1-move always appies, as Lemma 12 shows. Also, since for any permu-
tation there may exist several 1-moves, we break ties by performing the one that affects
the least number of elements. Algorithm 3 shows 2-PSRT.

Lemma 12. Let π be any unsigned permutation such that bupsrt(π) ≥ 1. For SbPSRT,

it is always possible to apply a 1-move on π.

Proof. If π1 is in a decreasing strip or if it is a singleton, then let πj = inc(π1, n). Now,
if πj is in an increasing strip or if it is a singleton, then the prefix reversal ρp(j − 1) is a
1-move; otherwise, let πi be the first element of the strip that contains πj . In this case,
the prefix transposition τp(i, j + 1) is a 1-move.

However, if π1 is in an increasing strip, then let πj = dec(π1, n). Now, if πj is in
a decreasing strip or if it is a singleton, then the prefix reversal ρp(j − 1) is a 1-move;
otherwise, let πi be the first element of the strip that contains πj . In this case, the prefix
transposition τp(i, j + 1) is a 1-move.

Similarly, if πn is in a decreasing strip or if it is a singleton, then let πi = dec(πn, n).
If πi is in an increasing strip or if it is a singleton, then the suffix reversal ρs(i + 1) is a
1-move; otherwise, let πj be the last element of the strip that contains πi. In this case,
the suffix transposition τs(i, j + 1) is a 1-move.

Finally, if πn is in an increasing strip, then let πi = inc(πn, n). Now, if πi is in
a decreasing strip or if it is a singleton, then the suffix reversal ρs(i + 1) is a 1-move;
otherwise, let πj be the last element of the strip that contains πi. In this case, the suffix
transposition τs(i, j + 1) is a 1-move.

Example 11. The following example shows the execution of 2-PSRT over π = (9 6 2 14

10 15 7 12 4 11 3 8 13 1 5):

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // 2-move with prefix (there is a 2-move with suffix)
π ← π·τp(9,13) = (4 11 3 8 9 6 2 14 10 15 7 12 13 1 5) // 2-move with suffix
π ← π·τs(6,9) = (4 11 3 8 9 10 15 7 12 13 1 5 6 2 14) // 1-move with prefix reversal (least # of elements)
π ← π·ρp(2) = (11 4 3 8 9 10 15 7 12 13 1 5 6 2 14) // 1-move with suffix reversal
π ← π·ρs(11) = (11 4 3 8 9 10 15 7 12 13 14 2 6 5 1) // 1-move with prefix transposition
π ← π·τp(2,7) = (4 3 8 9 10 11 15 7 12 13 14 2 6 5 1) // 2-move with prefix (places n close to 1)

π ← π·τp(8,15) = (7 12 13 14 2 6 5 4 3 8 9 10 11 15 1) // 2-move with suffix
π ← π·τs(5,14) = (7 12 13 14 15 1 2 6 5 4 3 8 9 10 11) // 2-move with suffix
π ← π·τs(2,8) = (7 6 5 4 3 8 9 10 11 12 13 14 15 1 2) // 1-move with prefix reversal
π ← π·ρp(5) = (3 4 5 6 7 8 9 10 11 12 13 14 15 1 2) // π = ϕa

k,n for k = 3
π ← π·τp(14,16) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Lemma 13 and Theorem 3 show how we can guarantee an approximation factor of
2 + 4/bupsrt(π) for 2-PSRT.

Lemma 13. For any unsigned permutation π, 2-PSRT(π, n) ≤ bupsrt(π) + 2.

Proof. Our algorithm always removes at least one upsrt-breakpoint from π with one rear-
rangement, which is possible according to Lemma 12. When π has no upsrt-breakpoints,
by the definition of breakpoints we know that π must be of one of the following four forms:

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 41

Algorithm 3 A (2 + 4/bupsrt(π))-approximation algorithm for SbPSRT.

2-PSRT(π, n)

Input : permutation π and its size n
Output : number of rearrangements used to sort π

1 d← 0
2 while π 6= ιn do

3 if π = ηn then

4 π ← π · ρp(n)
5 d← d+ 1
6 else if τp(i, j) is a 2-move where ((πj−1 = dec(π1, n) and πi−1 = dec(πj , n)) or

(πj−1 = dec(π1, n) and πi−1 = inc(πj , n)) or (πj−1 = inc(π1, n) and πi−1 = dec(πj , n))
or (πj−1 = inc(π1, n) and πi−1 = inc(πj , n))) then

7 π ← π · τp(i, j)
8 d← d+ 1
9 else if τs(i, j) is a 2-move where ((πi = dec(πn, n) and πj = dec(πi−1, n)) or

(πi = dec(πn, n) and πj = inc(πi−1, n)) or (πi = inc(πn, n) and πj = dec(πi−1, n))
or (πi = inc(πn, n) and πj = inc(πi−1, n))) then

10 π ← π · τs(i, j)
11 d← d+ 1
12 else // Otherwise, apply a 1-move

// First, find all possible positions to apply a 1-move with prefix

13 If π1 is in a decreasing strip or it is a singleton, let j1 = π−1inc(π1,n)
. If πj1 is in a

decreasing strip, then let i1 be the first element of the strip that contains πj1 ,
else let j2 = j1 − 1

14 If π1 is in an increasing strip, let j1 = π−1dec(π1,n)
. If πj1 is in an

increasing strip, then let i1 be the first element of the strip that contains πj1 ,
else let j2 = j1 − 1
// Now, find all possible positions to apply a 1-move with suffix

15 If πn is in a decreasing strip or it is a singleton, let i3 = π−1dec(πn,n)
. If πi3 is in a

decreasing strip, then let j3 be the last element of the strip that contains πi3 ,
else let i4 = i3 + 1

16 If πn is in an increasing strip, let i3 = π−1inc(πn,n)
. If πi3 is in an

increasing strip, then let j3 be the last element of the strip that contains πi3 ,
else let i4 = i3 + 1

17 Let λ be the rearrangement that involves the least number of elements among
τp(i1, j1 + 1), ρp(j2), τs(i3, j3 + 1), and ρs(i4) (for ix and jy that are defined)

18 if λ exists then

19 π ← π · λ
20 d← d+ 1
21 else if π = ϕa

k,n for some 2 ≤ k ≤ n then

22 π ← π · τp(π
−1
n + 1, n+ 1)

23 d← d+ 1
24 else // π = ϕd

k,n for some 2 ≤ k ≤ n

25 π ← π · τp(π
−1
n , n+ 1) · ρp(n)

26 d← d+ 2
27 return d

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 42

ιn, ηn, ϕa
k,n = (k k + 1 k + 2 . . . n 1 2 3 . . . k − 1), or ϕd

k,n = (k − 1 k − 2 k − 3 . . . 1 n

n− 1 n− 2 . . . k), for 2 ≤ k ≤ n in both cases.
It is easy to note that ιn is sorted (dpsrt(ιn) = 0), ηn is one reversal distant from being

sorted (dpsrt(ηn) = 1), ϕa
k,n is one transposition distant from being sorted (dpsrt(ϕa

k,n) = 1),
and ϕd

k,n is one transposition and one reversal distant from being sorted (dpsrt(ϕd
k,n) = 2).

Therefore, at most bupsrt(π) + 2 rearrangements can sort any permutation.

Theorem 3. SbPSRT is (2 + 4/bupsrt(π))-approximable.

Proof. First note that 2-PSRT, presented in Algorithm 3, can also be easily implemented
to run in O(n2) time, but the structure of log-lists presented by Rusu [52] can improve
this to O(n logn) time.

Now, from Lemmas 1 and 13, we have that the theoretical approximation factor for
2-PSRT is (bupsrt(π) + 2)/(bupsrt(π)/2) = 2 + 4/bupsrt(π).

4.4 Sorting by Signed Prefix and Suffix Reversals

We also propose an algorithm specific for SbPSR̄, called 2-PSR̄, which also greedily re-
moves breakpoints. The idea of 2-PSR̄ is somewhat similar to the idea of 2-PSR. First, we
try to find a 1-move; if this is not possible, then we try to remove one ps-breakpoint with
a 0-move followed by a 1-move; if this is not possible either, then the permutation has
a special format and we can use a specific sequence to sort it with few prefix and suffix
reversals. Lemmas 14 and 15 analyse how to remove one ps-breakpoint while Lemmas 16
and 17 show the special format and the specific sequence to sort it, respectively.

Lemma 14. Let π 6= ιn be any signed permutation. For SbPSR̄, there exists at most two

1-moves that can be applied to π.

Proof. If πj = −π1 + 1 for some 1 < j ≤ n, then ρ̄p(j − 1) is a 1-move. Likewise, if
πi = −πn − 1 for some 1 ≤ i < n, then ρ̄s(i+1) is a 1-move. No other 1-move is possible,
because the first or the last elements must be involved.

Lemma 15. Let π 6= ιn be any signed permutation. For SbPSR̄, there is a sequence of

at most two prefix or suffix reversals that removes one ps-breakpoint if there are πi and πj

such that at least one of the following cases happens:

1. πj = −πi − 1 for 1 ≤ i < j ≤ n;

2. πj = πi + 1 for 0 ≤ i+ 1 < j ≤ n;

3. πi = −πj + 1 for 1 ≤ i < j ≤ n.

Proof. If πi and πj exist such that

1. πj = −πi − 1 for 1 ≤ i < j ≤ n, then we have π = (. k −(k + 1))

and ρ̄p(j) · ρ̄p(j − i) is a 0-move followed by a 1-move;

2. πj = πi + 1 for 0 ≤ i + 1 < j ≤ n, then we have π = (. k k + 1)

and ρ̄p(i) · ρ̄p(j − 1) is a 0-move followed by a 1-move;

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 43

3. πi = −πj + 1 for 1 ≤ i < j ≤ n, then we have π = (. k −(k − 1))

and ρ̄s(i) · ρ̄s(n + 1− (j − i)) is a 0-move followed by a 1-move.

Lemma 16. For SbPSR̄, if π is any signed permutation for which it is not possible to

find a 1-move, or a 0-move followed by a 1-move, then π is of one of the three following

forms:

1. η̄n = (−n −(n−1) −(n−2) . . . −1);

2. δsab+1 = (pb+1 pb+2 . . . n
︸ ︷︷ ︸

ℓb+1

pb−1+1 pb−1+2 . . . pb
︸ ︷︷ ︸

ℓb

. 1 2 . . . p1
︸ ︷︷ ︸

ℓ1

);

3. δsdb+1 = (−p1 −(p1−1) . . . −1
︸ ︷︷ ︸

ℓ1

−p2 −(p2−1) . . . −(p1+1)
︸ ︷︷ ︸

ℓ2

.

−n −(n−1) . . . −(pb+1)
︸ ︷︷ ︸

ℓb+1

),

where b = bps(π) ≥ 1 and ℓi ≥ 1 for all 1 ≤ i ≤ bps(π) + 1.

Proof. It is easy to see that when π = η̄n the greedy part of the algorithm cannot turn
it into the identity, since a reversal ρ̄p(n) or ρ̄s(1) is necessary and neither removes a
ps-breakpoint, because bps(η̄n) is already zero.

Let πi = k be any element of π. If πj = −(k+1) with i < j, then ρ̄p(j)·ρ̄p(j−i) removes
one ps-breakpoint. If j < i, then ρ̄s(j) · ρ̄s(n + 1 − (i − j)) removes one ps-breakpoint.
Something similar happens when −(k− 1) exists in π. Therefore, the elements of π must
all have the same sign.

Suppose that π has only positive elements. If bps(π) = 1, it is trivial to see that π

must be of the form δsa2 , which contains s = 2 strips. Now assume that every permutation
with s − 1 ≥ 2 positive strips for which it is not possible to find a 1-move or a 0-move
followed by a 1-move is of the form δsas−1. Note that s = b+ 1.

Let π be a permutation with s positive strips for which it is not possible to find a
1-move or a 0-move followed by a 1-move and let πw, for 1 < w ≤ n, be the first element
of the last strip of π. Note that we must have πw = 1, otherwise we would have a
πi = πw − 1 for some i + 1 < w, which is a contradiction, since ρ̄p(i) · ρ̄p(w − 1) could
remove a ps-breakpoint.

Let π′ be a permutation with w − 1 elements built from π such that π′i = πi − πn for
all 1 ≤ i < w (in other words, π′ is π without the last strip and relabeled accordingly). It
is easy to see that π′ has s− 1 positive strips and one can see that if it would be possible
to remove one ps-breakpoint from π′, then it would also be possible to remove it from π.
By induction hypothesis, π′ is of the form δsas−1. Since π′ is π relabeled without the last
strip, which has the element 1, it follows that π is also of the form δsas .

When π only contains negative elements, a similar proof applies to show that π is of
the form δsdb+1.

Lemma 17. Let π be one of the signed permutations described in Lemma 16. If π = η̄n,

then one signed prefix reversal ρ̄p(n) sorts it. Otherwise, at most bps(π) + 2 prefix and

suffix reversals sort it.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 44

Proof. Let b = bps(π) for simplicity. If π = δsab+1 and b is an even number, then the b+ 1

reversals

ρ̄p(n− ℓ1) · ρ̄s(ℓ2 + 1) · ρ̄p(n− ℓ3) · ρ̄s(ℓ4 + 1) · . . . · ρ̄p(n− ℓb−1) · ρ̄s(ℓb + 1) · ρ̄p(n− ℓb+1)

sort π, as we show next.
Let πk, 1 ≤ k ≤ b/2, be the permutation we obtain after applying the first 2k reversals

ρ̄p(n−ℓ1) · ρ̄s(ℓ2+1) · . . . · ρ̄p(n−ℓ2k−1) · ρ̄s(ℓ2k+1) of the sequence given above. We will
show by induction on k that πk is of the form (−p2k . . .−(p2k−1+1)−p2k−1 . . .−(p2k−2+1)

.−p1 . . .−1 pb+1 . . . n p2k+1+1 . . . p2k+2 p2k+1 . . . p2k+1), where 〈−p2k . . .−1〉
has size ℓ2k+ ℓ2k−1+ . . .+ ℓ1, 〈pb+1 . . . n〉 has size ℓb+1, 〈p2k+1+1 . . . p2k+2〉 has size ℓ2k+2,
and 〈p2k + 1 . . . p2k+1〉 has size ℓ2k+1.

It is easy to see that πk has this form when k = 1. Now, assume that πk−1, for
k− 1 ≥ 1, is of this form. Since πk = πk−1 · ρ̄p(n− ℓ2k−1) · ρ̄s(ℓ2k + 1), the result follows.

Now, when k = b/2, πb/2 = (−pb . . .− (pb−1 + 1) . . . −p1 . . . −1 pb + 1 . . . n) and one
reversal, namely the last reversal of the sequence, ρ̄p(n− ℓb+1), sorts πb/2.

If π = δsdb+1 and b is an even number, then one can apply ρ̄p(n) to transform it into
δsab+1 followed by the b+ 1 reversals given above.

If π = δsdb+1 and b is an odd number, then the b+ 1 reversals

ρ̄s(ℓ1 + 1) · ρ̄p(n− ℓ2) · ρ̄s(ℓ3 + 1) · ρ̄p(n− ℓ4) · . . . · ρ̄s(ℓb + 1) · ρ̄p(n− ℓb+1)

sort π. This can be shown by a similar induction as the one done above.
If π = δsab+1 and b is odd, then one can apply ρ̄p(n) to transform it into δsdb+1 followed

by the reversals above.

Since it is possible to have both prefix reversals and suffix reversals for the 1-move or
for the 0-move followed by the 1-move, we decided to interpolate the choices, as shown in
Algorithm 4, which presents 2-PSR̄.

Example 12. The following example shows the execution of 2-PSR̄ over π = (−9 −7 −8

−15 4−12 6 3−14−11−5−13 10 2−1):

π = (−9 −7 −8 −15 4 −12 6 3 −14 −11 −5 −13 10 2 −1) // 1-move with prefix
π ← π·ρ̄p(12) = (13 5 11 14 −3 −6 12 −4 15 8 7 9 10 2 −1) // 0-move (π has πj = πi + 1)
π ← π·ρ̄p(1) = (−13 5 11 14 −3 −6 12 −4 15 8 7 9 10 2 −1) // 1-move with prefix (following the 0-move)
π ← π·ρ̄p(3) = (−11 −5 13 14 −3 −6 12 −4 15 8 7 9 10 2 −1) // 1-move with prefix
π ← π·ρ̄p(6) = (6 3 −14 −13 5 11 12 −4 15 8 7 9 10 2 −1) // 0-move (π has πj = πi + 1)
π ← π·ρ̄p(1) = (−6 3 −14 −13 5 11 12 −4 15 8 7 9 10 2 −1) // 1-move with prefix (following the 0-move)

π ← π·ρ̄p(10) = (−8 −15 4 −12 −11 −5 13 14 −3 6 7 9 10 2 −1) // 1-move with prefix
π ← π·ρ̄p(11) = (−7 −6 3 −14 −13 5 11 12 −4 15 8 9 10 2 −1) // 1-move with prefix
π ← π·ρ̄p(10) = (−15 4 −12 −11 −5 13 14 −3 6 7 8 9 10 2 −1) // 0-move (π has πj = −πi − 1)
π ← π·ρ̄p(7) = (−14 −13 5 11 12 −4 15 −3 6 7 8 9 10 2 −1) // 1-move with prefix (following the 0-move)
π ← π·ρ̄p(6) = (4 −12 −11 −5 13 14 15 −3 6 7 8 9 10 2 −1) // 1-move with prefix
π ← π·ρ̄p(7) = (−15 −14 −13 5 11 12 −4 −3 6 7 8 9 10 2 −1) // 0-move (π has πj = −πi − 1)
π ← π·ρ̄p(6) = (−12 −11 −5 13 14 15 −4 −3 6 7 8 9 10 2 −1) // 1-move with prefix (following the 0-move)
π ← π·ρ̄p(3) = (5 11 12 13 14 15 −4 −3 6 7 8 9 10 2 −1) // 1-move with prefix
π ← π·ρ̄p(6) = (−15 −14 −13 −12 −11 −5 −4 −3 6 7 8 9 10 2 −1) // 0-move (π has πj = −πi − 1)

π ← π·ρ̄p(13) = (−10 −9 −8 −7 −6 3 4 5 11 12 13 14 15 2 −1) // 1-move with prefix (following the 0-move)
π ← π·ρ̄p(8) = (−5 −4 −3 6 7 8 9 10 11 12 13 14 15 2 −1) // 1-move with prefix
π ← π·ρ̄p(3) = (3 4 5 6 7 8 9 10 11 12 13 14 15 2 −1) // 0-move (π has πi = −πj + 1)
π ← π·ρ̄s(14) = (3 4 5 6 7 8 9 10 11 12 13 14 15 1 −2) // 1-move with suffix (following the 0-move)
π ← π·ρ̄s(15) = (3 4 5 6 7 8 9 10 11 12 13 14 15 1 2) // π = δsab+1 for b = 1 (odd, so apply ρ̄p(n))
π ← π·ρ̄p(15) = (−2 −1 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3) // apply ρ̄s(ℓ1 + 1)
π ← π·ρ̄s(3) = (−2 −1 3 4 5 6 7 8 9 10 11 12 13 14 15) // apply ρ̄p(n− ℓ2)
π ← π·ρ̄p(2) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 45

Lemma 18 and Theorem 4 show that 2-PSR̄ is a 2-approximation.

Lemma 18. For any signed permutation π, 2-PSR̄(π, n) ≤ 2bps(π) + 1.

Proof. Starting from π, our algorithm iterates by doing a greedy removal of breakpoints
until this is not possible anymore. At worse, it uses two prefix or suffix reversals to
remove one breakpoint, as Lemma 15 shows. Suppose it does this until π′ is reached. If
bps(π

′) = 0, then either π′ = ιn or π′ = η̄n. Since dpsr̄(ιn) = 0 and dpsr̄(η̄n) = 1, we have
2-PSR̄(π, n) ≤ 2bps(π) + 1.

If bps(π
′) ≥ 1, then 2-PSR̄(π, n) ≤ 2(bps(π) − bps(π

′)) + 2-PSR̄(π′, n). According to
Lemma 17, 2-PSR̄(π′, n) ≤ bps(π

′) + 2. Therefore, 2-PSR̄(π, n) ≤ 2bps(π) − bps(π
′) + 2 ≤

2bps(π) + 1.

Theorem 4. SbPSR̄ is 2-approximable.

Proof. First note that it is easy to implement 2-PSR̄ to run in O(n2) time.
Now, if the input permutation π is such that bps(π) = 0, then either π = ιn or π = η̄n.

In any case, 2-PSR̄ is optimal. Therefore, suppose bps(π) ≥ 1.
Suppose that it is possible to apply a 1-move on π, generating a permutation π′. It is

easy to see that 2-PSR̄(π) ≤ 1 + 2-PSR̄(π′) and bps(π
′) = bps(π) − 1. By Lemma 18, we

know that 2-PSR̄(π′) ≤ 2bps(π
′) + 1. Therefore,

2-PSR̄(π) ≤ 1 + 2-PSR̄(π′) ≤ 1 + 2(bps(π)− 1) + 1 = 2bps(π).

By Lemma 2, we know that dpsr̄(π) ≥ bps(π), and therefore 2-PSR̄ is a 2-approximation
algorithm in that case.

Now suppose that it is not possible to apply a 1-move on π. This means that the
lower bound given in Lemma 2 is not tight, which implies that dpsr̄(π) ≥ bps(π)+1. Using
Lemma 18, we have that the theoretical approximation factor of 2-PSR̄ is

2bps(π) + 1

bps(π) + 1
≤

2bps(π) + 2

bps(π) + 1
= 2.

4.5 Sorting by Signed Prefix Reversals and Transposi-

tions and Sorting by Signed Prefix and Suffix Re-

versals and Transpositions

The two algorithms we developed for SbPR̄T and SbPSR̄T, called 2-PR̄T and 2-PSR̄T,
are very similar to 2-PRT and 2-PSRT, respectively. For 2-PSR̄T, we also use inc(i, n) and
dec(i, n) as defined in Section 4.3 to increment and decrement positive integers, but we
need to define such functions for negative integers. The unitary increment for a negative
integer i is inc(i, n) = −(((−i + n − 2) mod n) + 1) while its unitary decrement is
dec(i, n) = −((−i mod n) + 1), for −n ≤ i ≤ −1.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 46

Algorithm 4 A 2-approximation algorithm for SbPSR̄.

2-PSR̄(π, n)

Input : permutation π and its size n
Output : number of rearrangements used to sort π

1 d← 0
2 while π 6= ιn do

3 if πj = −πi + 1 for 1 < j ≤ n then

4 π ← π · ρ̄p(j − 1)
5 d← d+ 1
6 else if πi = −πn − 1 for 1 ≤ i < n then

7 π ← π · ρ̄s(i+ 1)
8 d← d+ 1
9 else if πj = −πi − 1 for 1 ≤ i < j ≤ n then

10 π ← π · ρ̄p(j) · ρ̄p(j − i)
11 d← d+ 2
12 else if πj = πi + 1 for 0 ≤ i+ 1 < j ≤ n then

13 π ← π · ρ̄p(i) · ρ̄p(j − 1)
14 d← d+ 2
15 else if πi = −πj + 1 for 1 ≤ i < j ≤ n then

16 π ← π · ρ̄s(i) · ρ̄s(n+ 1− (j − i))
17 d← d+ 2
18 else if π = η̄n then

19 π ← π · ρ̄s(1)
20 d← d+ 1
21 else // π = δsab+1 or π = δsdb+1 (Lemma 16)

22 b← bps(π)
23 if b mod 2 ≡ 1 then

24 if π = (pb+1 . . . n pb−1+1 . . . pb 1 . . . p1) = δsab+1 then

25 π ← π · ρ̄p(n)
26 d← d+ 1
27 Let ℓb+2−i be the size of the ith strip of π

// Apply the rearrangements from Lemma 17 for δsdb+1 when bps(π) is odd

28 π ← π · ρ̄p(n− ℓ1) · ρ̄s(ℓ2 + 1) · · · · · ρ̄p(n− ℓb−1) · ρ̄s(ℓb + 1) · ρ̄p(n− ℓb+1)
29 else

30 if π = (−p1 . . . −1 −p2 . . . −(p1+1)−n . . .−(pb+1)) = δsdb+1 then

31 π ← π · ρ̄p(n)
32 d← d+ 1
33 Let ℓi be the size of the ith strip of π

// Apply the rearrangements from Lemma 17 for δsab+1 when bps(π) is even

34 π ← π · ρ̄s(ℓ1 + 1) · ρ̄p(n− ℓ2) · · · · · ρ̄s(ℓb + 1) · ρ̄p(n− ℓb+1)
35 d← d+ b+ 1
36 return d

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 47

First we discuss algorithm 2-PR̄T, which we propose for SbPR̄T. It works as follows
while the permutation is not sorted: if π1 = 1, we move the first strip to the end of the
permutation with a prefix transposition; otherwise, we try to apply a 2-move in the form
of a prefix transposition τp(i, j) where πi 6= 1, as shown in Lemma 19, and, if such 2-move
is not possible, we apply a 1-move, which is always possible, as shown by Lemma 20. We
show 2-PR̄T in Algorithm 5.

Example 13. The following example shows the execution of 2-PR̄T over π = (−9 −7 −8

−15 4−12 6 3−14−11−5−13 10 2−1):

π = (−9 −7 −8 −15 4 −12 6 3 −14 −11 −5 −13 10 2 −1) // πi = −π1 + 1 exists (so pref. rev.)
π ← π·ρ̄p(12) = (13 5 11 14 −3 −6 12 −4 15 8 7 9 10 2 −1) // πj−1 = π1 − 1 exists (so pref. transp.)
π ← π·τp(2,8) = (5 11 14 −3 −6 12 13 −4 15 8 7 9 10 2 −1) // 1-move with prefix reversal
π ← π·ρ̄p(7) = (−13 −12 6 3 −14 −11 −5 −4 15 8 7 9 10 2 −1) // 2-move

π ← π·τp(3,6) = (6 3 −14 −13 −12 −11 −5 −4 15 8 7 9 10 2 −1) // 1-move with prefix reversal
π ← π·ρ̄p(6) = (11 12 13 14 −3 −6 −5 −4 15 8 7 9 10 2 −1) // 1-move with prefix transposition

π ← π·τp(5,14) = (−3 −6 −5 −4 15 8 7 9 10 11 12 13 14 2 −1) // 1-move with prefix transposition
π ← π·τp(2,5) = (−6 −5 −4 −3 15 8 7 9 10 11 12 13 14 2 −1) // 1-move with prefix reversal
π ← π·ρ̄p(6) = (−8 −15 3 4 5 6 7 9 10 11 12 13 14 2 −1) // 1-move with prefix reversal
π ← π·ρ̄p(7) = (−7 −6 −5 −4 −3 15 8 9 10 11 12 13 14 2 −1) // 1-move with prefix reversal
π ← π·ρ̄p(6) = (−15 3 4 5 6 7 8 9 10 11 12 13 14 2 −1) // 1-move with prefix reversal

π ← π·ρ̄p(15) = (1 −2 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 15) // π starts at 1, so send first strip to end
π ← π·τp(2,16) = (−2 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 15 1) // 1-move with prefix transposition
π ← π·τp(2,14) = (−14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 15 1) // 1-move with prefix reversal
π ← π·ρ̄p(13) = (2 3 4 5 6 7 8 9 10 11 12 13 14 15 1) // only time n and 1 are separated

π ← π·τp(15,16) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Algorithm 5 A (2 + 4/bp(π))-approximation algorithm for SbPR̄T.

2-PR̄T(π, n)

Input : permutation π and its size n
Output : number of rearrangements used to sort π

1 d← 0
2 while π 6= ιn do

3 if π1 = 1 then

4 Let πi be the last element of the first strip of π
5 π ← π · τp(i+ 1, n+ 1)
6 else if πj−1 = π1−1 and πi−1 = πj−1 and 2 ≤ i < j and πi 6= 1 then

7 π ← π · τp(i, j)
8 else if πj−1 = π1 − 1 then

9 Let πi be the last element of the first strip
10 π ← π · τp(i+ 1, j)
11 else

12 Let πi = −π1 + 1
13 π ← π · ρ̄p(i− 1)
14 d← d+ 1
15 return d

Lemmas 19 to 23 will be used by Lemma 24 and Theorem 5 to show how this algorithm
guarantees an approximation factor of 2 + 4/bp(π).

Lemma 19. Let π 6= ιn be any signed permutation with π1 6= 1. For SbPR̄T, there exists

at most one 2-move that can be applied to π.

Proof. Suppose that τp(i, j) is a 2-move. Note that we then must have 2 ≤ i < j ≤ n+1.
Also, π · τp(i, j) = (πi . . . πj−1 π1 . . . πi−1 πj . . . πn), where πi−1 = πj−1 6= πi−1 and πj−1

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 48

= π1 − 1 6= πj − 1. It is easy to see that π1 uniquely determines j and that j uniquely
determines i. Note that π1 − 1 or πj − 1 do not necessarily exist in π.

Lemma 20. Let π 6= ιn be any signed permutation with π1 6= 1. For SbPR̄T, it is always

possible to apply a 1-move on π.

Proof. Consider the first element π1 = k of the permutation and let πi be the last element
of the first strip of π. We must have that either k − 1 or −(k − 1) exists in π at some
position j > 1, since k 6= 1. If k − 1 exists, then either it is a singleton or it is located
at the end of some strip. In both cases, a transposition τp(i+ 1, j + 1) puts k − 1 and k

together and removes one p-breakpoint. If −(k− 1) exists, then either it is a singleton or
it is located at the beginning of some strip. In both cases, a prefix reversal ρ̄p(j− 1) puts
k and −(k − 1) together and removes one p-breakpoint.

Lemma 21. Let π be a signed permutation of the form π = (. πn−i 1 2 . . . i), for

1 ≤ i < n and πn−i 6= n, where s = 〈1 2 . . . i〉 is the last strip. During the execution of

2-PR̄T, s will be removed from its location only when the element n is sent to position n.

Proof. Since π1 6= 1, at each iteration 2-PR̄T will try to remove two or one p-breakpoints.
We describe now what happens in each one of these cases.

If a transposition τp(i, j) removes two p-breakpoints, then we must have πi = πj − 1.
If s is involved in this transposition, then necessarily j = n+1. But then πi−1 = n, which
is sent to position n.

Let πi be the last element of the first strip of π and let τp(i, j) be a transposition that
removes one p-breakpoint. So, we have πj−1 = π1−1. If s is involved in this transposition,
then πj−1 should be the last element of s, which would mean that j = n+1. However, in
this case, s would only be increasing in length and it would not be removed from there.

Finally, if a reversal ρ̄p(j) removes one p-breakpoint, we must have πj+1 = −π1+1. If
s is involved in this reversal, one must have j = n, in which case π1 = −n and n is sent
to position n.

Lemma 22. Let π be a signed permutation of the form π = (. n 1 2 . . . i), for

1 ≤ i < n, where s = 〈1 2 . . . i〉 is the last strip. During the execution of 2-PR̄T,

elements n and 1 remain adjacent until π can be sorted by one transposition.

Proof. We have that π1 6= 1, so 2-PR̄T will first try to apply a 2-move τp(i, j). As we
mentioned, in this 2-move we must have πi 6= 1. Therefore, if τp(i, j) separates n and 1,
we should have that πj = 1 and πj−1 = n. However, π1 would have to be n + 1, which is
impossible.

Now we will try to apply a 1-move τp(i, j) by increasing the length of the first strip,
which ends at πi−1. To separate n and 1, we could have two possibilities. First, if πi = 1,
it would mean that the first strip ends at n and this transposition would sort π and remove
two p-breakpoints at once. Second, if πj = 1, then either πi−1 would have to be 0 or π1

would have to be n+ 1, which is impossible.
Finally, we will try to perform a 1-move of the form ρ̄p(j). To separate n and 1, we

would need to have πj+1 = 1, which would mean that π1 = 0, also impossible.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 49

We can see that the only way that 2-PR̄T can separate elements 1 and n is if the
permutation is of the form ((i+1) (i+2) . . . n 1 2 . . . i). In this case, one transposition
sorts it.

Lemma 23. During the execution of 2-PR̄T, π1 will be 1 at most twice.

Proof. When π1 = 1 and πn 6= n, the first strip is sent to the end of the permutation by
2-PR̄T. As Lemma 21 shows, it will only be removed from there when n goes to position n.
Since 2-PR̄T is always trying to remove breakpoints, n will not be removed from the end
until π1 = 1 again. At this point, π = (1 2 . . . i πi+1 n), so elements n and 1 are
put together because the first strip is placed at position n. However, the algorithm will
not separate them until the permutation is sorted, as shown by Lemma 22.

Lemma 24. For any signed permutation π, 2-PR̄T(π, n) ≤ bp(π) + 2.

Proof. Starting from π, while the first element is not 1, 2-PR̄T always applies 2-moves or
1-moves. Besides, 1-moves are always possible, as Lemma 20 shows. At worse, it only
applies 1-moves until some permutation π′, for which π′1 = 1, is reached. So, 2-PR̄T(π, n) ≤
(bp(π)− bp(π

′)) + 2-PR̄T(π′, n).
If π′ = ιn, the sorting ends and 2-PR̄T(π, n) ≤ bp(π). Otherwise, since π′1 = 1, we put

the first strip in the end. There are two possibilities: π′n 6= n or π′n = n.
If π′n 6= n, moving the first strip to the end does not create nor remove a p-breakpoint.

Suppose it generates π′′. So, 2-PR̄T(π, n) ≤ (bp(π)− bp(π
′)) + 1 + 2-PR̄T(π′′, n).

Now suppose that from π′′ we keep applying 2-moves or 1-moves until π′′′, for which
π′′′1 = 1, is reached. We have 2-PR̄T(π, n) ≤ (bp(π) − bp(π

′)) + 1 + (bp(π
′′) − bp(π

′′′)) +

2-PR̄T(π′′′, n).
If π′′′ = ιn, the sorting ends and 2-PR̄T(π, n) ≤ (bp(π)−bp(π

′))+1+bp(π
′′) ≤ bp(π)+1,

because bp(π
′) = bp(π

′′). Otherwise, we must also have π′′′n = n, as Lemma 23 shows, and
sending the first strip to the end creates one p-breakpoint and generates π′′′′. We have
2-PR̄T(π, n) ≤ (bp(π)− bp(π

′)) + 1 + (bp(π
′′)− bp(π

′′′)) + 1 + 2-PR̄T(π′′′′, n).
Again, we will keep applying 2-moves or 1-moves on π′′′′ until a permutation of the form

(k k+1 . . . n 1 2 . . . k−1), which has two p-breakpoints, is reached, as Lemma 22 shows.
Since the transposition to sort this permutation is a 2-move, 2-PR̄T(π′′′′, n) ≤ bp(π

′′′′)− 1.
We have 2-PR̄T(π, n) ≤ (bp(π)− bp(π

′)) + 1 + (bp(π
′′)− bp(π

′′′)) + 1 + (bp(π
′′′′)− 1).

Since bp(π
′) = bp(π

′′) and bp(π
′′′) = bp(π

′′′′)− 1, we have that 2-PR̄T(π, n) ≤ (bp(π)−

bp(π
′)) + 1 + (bp(π

′)− bp(π
′′′)) + 1 + (bp(π

′′′) + 1− 1) = bp(π) + 2.
Now for the second possibility, suppose π′n = n. So, moving the first strip of π′ to

the end creates one p-breakpoint. Suppose it generates π′′. So, 2-PR̄T(π, n) ≤ (bp(π) −

bp(π
′)) + 1 + 2-PR̄T(π′′, n). Now, we will keep applying 2-moves or 1-moves on π′′ until a

permutation of the form (k k + 1 . . . n 1 2 . . . k − 1) is reached, as Lemma 22 shows.
Since the transposition to sort this permutation is a 2-move, 2-PR̄T(π′′, n) ≤ bp(π

′′) − 1.
Since bp(π

′) = bp(π
′′)−1, we have that 2-PR̄T(π, n) ≤ (bp(π)− bp(π

′))+1+(bp(π
′′)−1) =

bp(π) + 1.

Theorem 5. SbPR̄T is (2 + 4/bp(π))-approximable.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 50

Proof. From Lemmas 1 and 24, we have that the theoretical approximation factor for
2-PR̄T is (bp(π) + 2)/(bp(π)/2) = 2 + 4/bp(π).

Now we discuss the algorithm we propose for SbPSR̄T, which we call 2-PSR̄T. It works
as follows while the permutation is not sorted: we try to apply a 2-move to π and, if this
is not possible, we apply a 1-move, which is always possible, as shown in Lemma 25. Since
there might exist more than one 1-move, we break ties by choosing the one that involves
the least number of elements. If there is still a tie, we choose the prefix one.

Lemma 25. Let π be any signed permutation with at least one psrt-breakpoint. For

SbPSR̄T, it is always possible to apply a 1-move on π.

Proof. Consider the first element π1 = k of the permutation and let πi be the last element
of the first strip of π. We must have that either πj = dec(k, n) or πj = −dec(k, n) for
some j > 1. If dec(k, n) exists in π, then either it is a singleton, or it is at the end of
some strip. In both cases, a transposition τp(i+ 1, j + 1) puts πj = dec(k, n) and π1 = k

together and removes one psrt-breakpoint. If −dec(k, n) exists in π, then either it is a
singleton, or it is at the beginning of some strip. In both cases, a prefix reversal ρ̄p(j− 1)

puts π1 = k and πj = −dec(k, n) together and removes one psrt-breakpoint.
Consider the last element πn = k of the permutation and let πj be the first element

of the last strip of π. Now we must have that either πi = inc(k, n) or πi = −inc(k, n) for
some i < n. If inc(k, n) exists in π, then either it is a singleton, or it is at the beginning of
some strip. In both cases, a transposition τs(i, j) puts πi = inc(k, n) and π1 = k together
and removes one psrt-breakpoint. If −inc(k, n) exists in π, then either it is a singleton,
or it is at the end of some strip. In both cases, a suffix reversal ρs(i+ 1) puts π1 = k and
πi = −inc(k, n) together and removes one psrt-breakpoint.

We point out that a 2-move for SbPSR̄T can be found the same way that a 2-move
for SbPST can be found, which can be seen in Lemma 8. However, one must be careful
with the fact that dec(π1, n), for instance, not necessarily exists in π. We show 2-PSR̄T

in Algorithm 6.

Example 14. The following example shows the execution of 2-PSR̄T over π = (−9−7−8

−15 4−12 6 3−14−11−5−13 10 2−1):

π = (−9 −7 −8 −15 4 −12 6 3 −14 −11 −5 −13 10 2 −1) // no 2-move possible; −dec(π1, n) exists
π ← π·ρ̄p(12) = (13 5 11 14 −3 −6 12 −4 15 8 7 9 10 2 −1) // −inc(πn, n) exists (least # of elements)
π ← π·ρ̄s(10) = (13 5 11 14 −3 −6 12 −4 15 1 −2 −10 −9 −7 −8) // inc(πn, n) exists

π ← π·τs(14,15) = (13 5 11 14 −3 −6 12 −4 15 1 −2 −10 −9 −8 −7) // 2-move with suffix
π ← π·τs(6,11) = (13 5 11 14 −3 −2 −10 −9 −8 −7 −6 12 −4 15 1) // −inc(πn, n) exists

π ← π·ρ̄s(7) = (13 5 11 14 −3 −2 −1 −15 4 −12 6 7 8 9 10) // 2-move with suffix
π ← π·τs(3,11) = (13 5 6 7 8 9 10 11 14 −3 −2 −1 −15 4 −12) // −inc(πn, n) exists

π ← π·ρ̄s(9) = (13 5 6 7 8 9 10 11 12 −4 15 1 2 3 −14) // dec(π1, n) exists
π ← π·τp(2,10) = (5 6 7 8 9 10 11 12 13 −4 15 1 2 3 −14) // −inc(πn, n) exists
π ← π·ρ̄s(10) = (5 6 7 8 9 10 11 12 13 14 −3 −2 −1 −15 4) // dec(π1, n) exists

π ← π·τp(15,16) = (4 5 6 7 8 9 10 11 12 13 14 −3 −2 −1 −15) // −inc(πn, n) exists
π ← π·ρ̄s(12) = (4 5 6 7 8 9 10 11 12 13 14 15 1 2 3) // π = ϕa

k,n for k = 4
π ← π·τp(13,16) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Lemma 26 and Theorem 6 show that an approximation factor of 2 + 4/bpsrt(π) is
guaranteed by 2-PSR̄T.

Lemma 26. For any signed permutation π, 2-PSR̄T(π, n) ≤ bpsrt(π) + 2.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 51

Algorithm 6 A (2 + 4/bpsrt(π))-approximation algorithm for SbPSR̄T.

2-PSR̄T(π, n)

Input : permutation π and its size n
Output : number of rearrangements used to sort π

1 d← 0
2 while π 6= ιn do

3 if π = η̄n then

4 π ← π · ρ̄p(n)
5 d← d+ 1
6 else if τp(i, j) is a 2-move with πj−1 = dec(π1, n) and πi−1 = dec(πj , n) then

7 π ← π · τp(i, j)
8 d← d+ 1
9 else if τs(i, j) is a 2-move with πi = dec(πn, n) and πj = dec(πi−1, n) then

10 π ← π · τs(i, j)
11 d← d+ 1
12 else // Otherwise, apply a 1-move

// First, find all possible positions to apply a 1-move with prefix
13 if dec(π1, n) exists in π then

14 j1 ← π−1dec(π1, n) + 1
15 Let πi1 be the last element of the first strip of π
16 else

17 j2 ← π−1−dec(π1, n)− 1
// Find all possible positions to apply a 1-move with suffix

18 if inc(πn, n) exists in π then

19 i3 ← π−1inc(πn, n)
20 Let πj3 be the first element of the last strip of π
21 else

22 i4 ← π−1−inc(πn, n) + 1
23 Let λ be the rearrangement that involves the least number of elements between

τp(i1 + 1, j1), ρ̄p(j2), τs(i3, j3), and ρ̄s(i4) (for ix and jy that are defined)
24 if λ exists then

25 π ← π · λ
26 d← d+ 1
27 else if π = ϕa

k,n for some 2 ≤ k ≤ n then

28 π ← π · τp(π
−1
n + 1, n+ 1)

29 d← d+ 1
30 else // π = ϕs

k,n for some 2 ≤ k ≤ n

31 π ← π · τp(π
−1
n , n+ 1) · ρ̄p(n)

32 d← d+ 2
33 return d

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 52

Proof. According to Lemma 25, it is always possible to apply a 1-move in π. When π has
no psrt-breakpoints, by the definition of breakpoints it must be of one of the four forms:
ιn, η̄n, ϕa

k,n = (k k+1 k+2 . . . n 1 2 3 . . . k−1), or ϕs
k,n = (−(k−1) −(k−2) −(k−3) . . .

−1 −n −(n−1) −(n−2) . . . −k), for 2 ≤ k ≤ n in both cases.
It is easy to note that ιn is sorted (dpsr̄t(ιn) = 0), η̄n is one reversal distant from being

sorted (dpsr̄t(η̄n) = 1), ϕa
k,n is one transposition distant from being sorted (dpsr̄t(ϕa

k,n) = 1),
and ϕs

k,n is one transposition and one reversal distant from being sorted (dpsr̄t(ϕs
k,n) = 2).

Therefore, in at most bpsrt(π) iterations 2-PSR̄T ends up with a permutation with 0

psrt-breakpoints and at most two extra rearrangements will finish the sorting.

Theorem 6. SbPSR̄T is (2 + 4/bpsrt(π))-approximable.

Proof. From Lemmas 1 and 26, we have that the theoretical approximation factor for
2-PSR̄T is (bpsrt(π) + 2)/(bpsrt(π)/2) = 2 + 4/bpsrt(π).

The algorithms 2-PR̄T and 2-PSR̄T presented in this section can also be easily imple-
mented to run in O(n2) time or in O(n logn) time with the structure of log-lists [52].

4.6 Improving the Results in Practice

All the algorithms described in Sections 4.1 to 4.5 have a similar behavior: when we are
trying to remove a certain amount of breakpoints, we search for the first opportunity to
do so. For instance, consider 2-PSR̄, which was described in Section 4.4. Our first step in
this algorithm is trying to remove one ps-breakpoint from π with one prefix reversal by
placing π1 before −π1+1. If this is not possible, we try to remove one ps-breakpoint with
a suffix reversal by placing πn after −πn − 1. If the two possibilities of removing one ps-
breakpoint exist, we always use the prefix reversal. The same occurs with the several ways
of removing one ps-breakpoint with two reversals. In fact, all other algorithms present,
in a sense, this feature.

Now note that 2-PSR̄ sorts the permutation π = (2 3 −4 5 1) with 6 rearrangements:
ρ̄p(3) · ρ̄p(1) · ρ̄p(3) · ρ̄p(5) · ρ̄s(2) · ρ̄p(1). The two first rearrangements were chosen because
π has a πi = 3 and a πj = −πi− 1 = −4 such that i < j (item 3 of Lemma 15). However,
π also has a πj = 5 and a πi = −πj+1 = −4 such that i < j (item 4 of Lemma 15), which
can be put together with two suffix reversals. Furthermore, when these suffix reversals
are performed over π first, the sorting can be done with 5 rearrangements: ρ̄s(3) · ρ̄s(5) ·

ρ̄p(2) · ρ̄s(4) · ρ̄p(3).
Considering this, we developed new algorithms, which in theory have the same ap-

proximation factors than the previous algorithms, but in practice will have the chance
to find better results. They use the already existing algorithms to help them to decide
which rearrangement to perform, as we explain below. They are algorithms for SbPR,
SbPSR, SbPT, SbPST, SbPRT, SbPSRT, SbPSR̄, SbPR̄T, and SbPSR̄T and are
called, respectively, 2-PRx, 2-PSRx, 2-PTx, 2-PSTx, 2-PRTx, 2-PSRTx, 2-PSR̄x, 2-PR̄Tx,
and 2-PSR̄Tx.

The new algorithms act similarly and their idea can be seen as a general heuristic
for genome rearrangement problems. Previous works have already shown some heuristics

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 53

for this kind of problems [21, 22], but in our case we guarantee the approximation factor,
since we still use the greedy idea of removing the maximum amount of breakpoints at each
iteration. In general, each one of the new algorithms searches for all the rearrangements
that can remove the maximum amount of breakpoints from the current permutation π.
Each one of these rearrangements is then performed over π and, among all the resulting
permutations π′, the adequate approximation algorithm is applied (for instance, 2-PSRTx
uses 2-PSRT) so that we obtain an upper bound on the distance of π′. Note that there
is no need for doing this if there is only one rearrangement that removes the maximum
amount of breakpoints. After that, we choose the permutation π′ whose upper bound on
the distance is the smallest to be the next permutation of the sorting.

Example 15. The following example shows the execution of 2-PSRTx over π = (9 6 2

14 10 15 7 12 4 11 3 8 13 1 5):

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // 2-move with suffix (2-PSRT chooses prefix first)
π ← π·τs(2,12) = (9 8 13 1 5 6 2 14 10 15 7 12 4 11 3) // 2-move with prefix
π ← π·τp(9,10) = (10 9 8 13 1 5 6 2 14 15 7 12 4 11 3) // 2-move with prefix

π ← π·τp(14,15) = (11 10 9 8 13 1 5 6 2 14 15 7 12 4 3) // 2-move with suffix
π ← π·τs(9,12) = (11 10 9 8 13 1 5 6 7 12 4 3 2 14 15) // 2-move with suffix (n and 1 are an adjacency)
π ← π·τs(6,10) = (11 10 9 8 13 12 4 3 2 14 15 1 5 6 7) // 1-move with prefix transposition
π ← π·τp(5,7) = (13 12 11 10 9 8 4 3 2 14 15 1 5 6 7) // 1-move with prefix reversal
π ← π·ρp(9) = (2 3 4 8 9 10 11 12 13 14 15 1 5 6 7) // 2-move with prefix

π ← π·τp(4,13) = (8 9 10 11 12 13 14 15 1 2 3 4 5 6 7) // π = ϕa
k,n for k = 8

π ← π·τp(9,16) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

In Example 11, we showed 2-PSRT executing over the same permutation. It used 10

rearrangements to sort it there.

All these new algorithms have time complexity O(n4) or O(n3 log n): the main loop is
executed while the permutation is not sorted, and we know that the distance is O(n); at
each loop, we can have O(n) possible rearrangements that remove the maximum amount
of breakpoints; for each of these rearrangements, we apply the approximation algorithms
showed in the previous sections, which have O(n2) or O(n logn) time.

4.7 Experimental Results

All the algorithms presented in Sections 4.1 to 4.6 as well as algorithms 2-PR, 2-PT,
2-PRT, and 2-PR̄ were implemented in C language and executed over the same instances.
We created Set U1, which contains all 4,037,912 unsigned permutations of size n for
2 ≤ n ≤ 10, Set U2, which contains 1,990,000 unsigned permutations, Set S1, which
contains all 196,811,960 signed permutations of size n for 2 ≤ n ≤ 9, and Set S2, which
also contains 1,990,000 signed permutations. Sets U2 and S2 contain 10,000 different and
randomly generated permutations of each size n, with n varying between 10 and 1,000
in intervals of 5; all these permutations only contain singletons (considering the most
restrict kind of breakpoints, i. e., upsr-breakpoints), which means that they always have
the maximum amount of breakpoints and should be more difficult to be sorted.

As we mentioned at the end of Section 4.6, the algorithms that we presented in that
section have time complexity O(n4). Because of this, considering Sets U2 and S2, the
algorithms were executed over all the 590,000 permutations of sizes up to 300, over 40,000

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 54

Table 4.1: Average approximation factors (approx.) and average amount of rearrange-
ments (# rear.) used by algorithms 2-PSR, 2-PST, and 2-PSRT when the number of
permutations tested for each n increases as n increases.

Number of permutations

Alg. n 10, 000 1, 000× n 10, 000 × n

approx. # rear. approx. # rear. approx. # rear.

10 1.149 10.339 1.149 10.339 1.149 10.341

50 1.133 55.536 1.133 55.516 1.133 55.511

100 1.124 111.298 1.124 111.311 1.125 111.327
2-PSR

150 1.122 167.126 1.121 167.045 1.121 167.033

200 1.119 222.607 1.119 222.667 1.119 222.688

250 1.118 278.314 1.118 278.295 1.118 278.326

10 1.327 5.971 1.327 5.971 1.328 5.977

50 1.317 32.267 1.317 32.255 1.316 32.249

100 1.311 64.905 1.311 64.884 1.311 64.890
2-PST

150 1.307 97.339 1.307 97.360 1.307 97.363

200 1.305 129.798 1.304 129.738 1.304 129.732

250 1.302 162.070 1.301 162.044 1.302 162.040

10 1.553 6.813 1.553 6.813 1.554 6.817

50 1.372 33.595 1.373 33.605 1.373 33.598

100 1.353 66.939 1.353 66.935 1.353 66.944
2-PSRT

150 1.347 100.309 1.346 100.282 1.346 100.278

200 1.343 133.621 1.343 133.599 1.343 133.608

250 1.341 166.913 1.341 166.931 1.341 166.926

permutations of sizes between 305 and 500 (1,000 for each size n), and over 10,000 per-
mutations of sizes between 505 and 1,000 (100 for each size n). For Sets U1 and S1, we
were able to execute the algorithms over all permutations. In order to perform a fair
comparison, however, for the algorithms in Section 4.6 we will consider only the results
regarding permutations of size up to 300.

The experimental results for all these algorithms are shown in Figures 4.3 to 4.7. The x-
axis represents the values of n while the y-axis represents the average of the approximation
factor between the permutations of that size. For Sets U1 and S1, the approximation
factors were calculated using the exact distances of the permutations and for Sets U2 and
S2 they were calculated using the theoretical lower bounds of the distances, which were
given in Lemmas 1 and 2.

Note that 10,000 permutations for each size of n in Sets U2 and S2 is a small number
when we think of n! of 2nn!. However, we point out in Table 4.1 that larger amounts of
permutations for each n do not change considerably the average approximation factors
nor the average amount of rearrangements used to sort the permutations. For this reason,
we decided to keep all tests with 10, 000 random permutations for each size n.

Since some of the algorithms that we developed are (2 + B)-approximations, where
B is a constant divided by the number of breakpoints, it was expected that sometimes
their approximation factor were above 2 (but never surpassing, of course, the theoretical
upper bounds we proved). This happened for 2-PSRT in 0.027% of the permutations of
Set U1 (for all 4 ≤ n ≤ 10) and in 0.001% of the permutations of Set U2 (for n = 10

only), for 2-PSR̄ in one permutation of Set S2 (for n = 10), for 2-PR̄T in 0.314% of the
permutations of Set S2 (for 10 ≤ n ≤ 85), for 2-PSR̄T in 0.001% of the permutations of
Set S1 (for 2 ≤ n ≤ 9) and in 0.445% of the permutations of Set S2 (for 10 ≤ n ≤ 75), for
2-PRTx in 0.001% of the permutations of Set U1 (for 5 ≤ n ≤ 10), for 2-PR̄Tx in 0.006%
of the permutations of Set S2 (for n = 10 and n = 15 only), and for 2-PSR̄Tx in 0.003%

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 55

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-PR
2-PRx
2-PSR
2-PSRx

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-PR
2-PRx
2-PSR
2-PSRx

Figure 4.3: Average approximation factors for 2-PR, 2-PRx, 2-PSR, and 2-PSRx when the
permutation size grows.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 56

1.00

1.02

1.04

1.06

1.08

1.10

1.12

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-PT
2-PTx
2-PST
2-PSTx

1.10

1.15

1.20

1.25

1.30

1.35

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-PT
2-PTx
2-PST
2-PSTx

Figure 4.4: Average approximation factors for 2-PT, 2-PTx, 2-PST, and 2-PSTx when the
permutation size grows.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 57

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-PRT
2-PRTx
2-PSRT

2-PSRTx

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-PRT
2-PRTx
2-PSRT
2-PSRTx

Figure 4.5: Average approximation factors for 2-PRT, 2-PRTx, 2-PSRT, and 2-PSRTx when
the permutation size grows.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 58

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

2 3 4 5 6 7 8 9

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-SPR
2-SPRx
2-SPSR
2-SPSRx

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-SPR
2-SPRx
2-SPSR

2-SPSRx

Figure 4.6: Average approximation factors for 2-PR̄, 2-PR̄x, 2-PSR̄, and 2-PSR̄x when the
permutation size grows.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 59

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

2 3 4 5 6 7 8 9

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-SPRT
2-SPRTx
2-SPSRT
2-SPSRTx

1.50

1.60

1.70

1.80

1.90

2.00

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

2-SPRT
2-SPRTx
2-SPSRT
2-SPSRTx

Figure 4.7: Average approximation factors for 2-PR̄T, 2-PR̄Tx, 2-PSR̄T, 2-PSR̄Tx when the
permutation size grows.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 60

of the permutations of Set S2 (for n = 10 and n = 15 only).
Table 4.2 shows the maximum approximation factors computed for each value of n and

each algorithm. Regarding the factors obtained for Sets U2 and S2, we give them only
for some values of n. One must remember that these last ones were computed using the
theoretical lower bound on the distances of the problems and, although they do not show
the real approximation factors and cannot really demonstrate how close to the theoretical
factors the algorithms might be, they can help us compare the algorithms. In this table,
we can see that the maximum factor obtained by 2-PSRT over Set U1 is 3. This happened,
for instance, with permutation π = (1 2 5 4 3). Clearly, dpsrt(π) = 1, but 2-PSRT uses
ρp(2), τp(3, 6), and ρp(5) to sort it. Despite the fact that both ρp(2) and ρs(3) can remove
one upsr-breakpoint each, our implementation decision was to choose the one that involves
less elements.

We expected that algorithms that allow only prefix rearrangements would usually
return bigger values for the size of the sorting sequences when compared to the algorithms
that allow suffix rearrangements along with prefix rearrangements, because that is what
happens with the real distances, as we showed in Chapter 1. In fact, by looking at the
graphics of Figures 4.3 to 4.7 we can see that this indeed happens for all the permutations
of Sets U2 and S2. However, we can also see that it does not happen for the permutations
of Sets U1 and S1. In order to establish a more fair comparison, we individually checked
the number of rearrangements returned by the algorithms for each permutation. We say
that an algorithm X is better than another algorithm Y for a permutation π if X(π) <

Y (π). In our comparisons we saw that, for example, considering n = 10 on Set U1, 2-PSR
was better than 2-PR in 51.952% of the 10! permutations while 2-PR was better than
2-PSR in only 7.772% of these permutations. For this reason, we say that 2-PSR was
better than 2-PR more times than the contrary.

What we found out in these individual comparisons was that all algorithms with
both prefix and suffix rearrangements were better than the algorithms with only prefix
rearrangements more times than the contrary, when considering all the permutations
tested. We also point out that when n = 1000, 2-PSR, 2-PST, 2-PSRT, 2-PSR̄, and 2-PSR̄T

performed, in average, 100.32, 25.72, 39.84, 123.29, 21.66 less rearrangements than 2-PR,
2-PT, 2-PRT, 2-PR̄, and 2-PR̄T, respectively.

The most probable cause for the behavior of the average approximation factors showed
in the graphics for the permutations of Sets U1 and S1 is very simple: for small values
of n, the algorithms tend to return similar results but the distances tend to decrease.
For example, consider permutation π = (6 3 4 5 1 2). We can check that dpr(π) = 5

and dpsr(π) = 3. However, both 2-PR and 2-PSR sort π with 5 rearrangements. For this
reason, the approximation factor for the former is smaller than the approximation factor
for the latter.

When we consider only the average approximation factor of the algorithms for each
value of n (as shown in the graphics of Figures 4.3 to 4.7), we can see that, for n ≥ 100,
the average factors for 2-PSR are always below 1.124, for 2-PST are always below 1.311, for
2-PSRT are always below 1.353, for 2-PSR̄ are always below 1.381, for 2-PR̄T are always
below 1.810, and for 2-PSR̄T are always below 1.764. For the algorithms presented in
Section 4.6, the average factors are even smaller: for 2-PSRx they are always below 1.041,

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 61

Table 4.2: Maximum approximation factors reached on all permutations tested of the
same size n for each algorithm.

Sets U1 and S1, values for n
Algorithm

2 3 4 5 6 7 8 9 10

2-PR 1.000 1.000 1.333 1.333 1.400 1.600 1.714 1.857 1.857

2-PRx 1.000 1.000 1.333 1.333 1.400 1.500 1.500 1.571 1.571

2-PSR 1.000 1.000 1.500 2.000 2.000 2.000 2.000 2.000 2.000

2-PSRx 1.000 1.000 1.500 1.666 1.666 1.750 1.750 1.750 1.833

2-PT 1.000 1.000 1.000 1.333 1.333 1.500 1.500 1.600 1.600

2-PTx 1.000 1.000 1.000 1.000 1.000 1.200 1.200 1.200 1.333

2-PST 1.000 1.000 1.500 1.500 1.666 1.666 1.750 1.750 1.800

2-PSTx 1.000 1.000 1.000 1.333 1.333 1.333 1.333 1.500 1.500

2-PRT 1.000 1.000 1.500 2.500 2.500 2.500 2.500 2.500 2.500

2-PRTx 1.000 1.000 1.500 2.500 2.500 2.500 2.500 2.500 2.500

2-PSRT 1.000 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

2-PSRTx 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000

2-PR̄ 1.000 1.250 1.400 1.666 1.714 1.750 1.777 1.800

2-PR̄x 1.000 1.250 1.333 1.500 1.500 1.555 1.555 1.600

2-PSR̄ 1.000 1.333 1.750 1.800 1.833 1.857 1.875 1.888

2-PSR̄x 1.000 1.333 1.750 1.750 1.833 1.857 1.875 1.888

2-PR̄T 1.000 1.500 1.666 1.750 2.000 2.000 2.000 2.000

2-PR̄Tx 1.000 1.500 1.500 1.500 1.750 1.750 1.800 1.833

2-PSR̄T 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

2-PSR̄Tx 1.000 1.500 1.500 1.666 1.666 1.750 1.750 1.800

Sets U2 and S2, values for n
Algorithm

25 50 75 100 125 250 500 750 1000

2-PR 1.480 1.420 1.413 1.350 1.328 1.304 1.276 1.265 1.264

2-PRx 1.200 1.180 1.160 1.160 1.152 1.152 1.160 1.158 1.168

2-PSR 1.500 1.346 1.364 1.323 1.298 1.269 1.264 1.236 1.235

2-PSRx 1.125 1.081 1.081 1.080 1.072 1.064 1.060 1.057 1.062

2-PT 1.680 1.600 1.600 1.560 1.536 1.496 1.444 1.426 1.414

2-PTx 1.360 1.320 1.280 1.260 1.248 1.248 1.256 1.248 1.258

2-PST 1.833 1.673 1.621 1.555 1.516 1.461 1.406 1.385 1.377

2-PSTx 1.333 1.265 1.216 1.232 1.209 1.196 1.198 1.198 1.213

2-PRT 1.840 1.680 1.626 1.600 1.584 1.536 1.512 1.482 1.470

2-PRTx 1.440 1.360 1.333 1.320 1.312 1.328 1.332 1.336 1.338

2-PSRT 1.833 1.632 1.567 1.555 1.516 1.461 1.422 1.409 1.391

2-PSRTx 1.416 1.306 1.297 1.313 1.274 1.269 1.266 1.260 1.271

2-PR̄ 1.840 1.760 1.733 1.690 1.680 1.628 1.590 1.574 1.561

2-PR̄x 1.520 1.440 1.400 1.410 1.408 1.424 1.430 1.424 1.428

2-PSR̄ 1.833 1.693 1.648 1.646 1.620 1.574 1.555 1.544 1.539

2-PSR̄x 1.375 1.285 1.256 1.232 1.233 1.240 1.228 1.241 1.247

2-PR̄T 2.160 2.080 2.026 2.000 1.968 1.904 1.900 1.853 1.852

2-PR̄Tx 1.920 1.720 1.706 1.700 1.680 1.680 1.676 1.674 1.682

2-PSR̄T 2.173 2.081 2.054 1.979 1.967 1.887 1.843 1.839 1.825

2-PSR̄Tx 1.833 1.673 1.648 1.636 1.612 1.630 1.607 1.602 1.615

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 62

for 2-PSTx they are always below 1.139, for 2-PSRTx they are always below 1.212, for
2-PSR̄x they are always below 1.180, for 2-PR̄Tx they are always below 1.598, and for
2-PSR̄Tx they are always below 1.523 (recall we are considering n up to 300).

We also point out that the algorithms developed in Section 4.6 indeed used a num-
ber of rearrangements smaller than or equal to the number of rearrangements for each
permutation when compared to the number of rearrangements returned by the previ-
ous algorithms, except for 2-PSRT vs. 2-PSRTx. Specifically, this happened only in
Set U2 and for two permutations when n ∈ {20, 35} and for one permutation when
n ∈ {30, 45, 65, 85, 100, 140, 195}. Tables 4.3 and 4.4 show the average amount of rear-
rangements that the “x” algorithms used less than the other algorithms, for each size n.
We reinforce that the x algorithms did not always used a strictly smaller amount of rear-
rangements when compared to the previous algorithms (they also used equal amounts),
but when they did, they did it for a very large amount of permutations. For n ≥ 30,
2-PRx, 2-PSRx, 2-PTx, 2-PSTx, 2-PRTx, 2-PSRTx, 2-PR̄x, 2-PSR̄x, 2-PR̄Tx, and 2-PSR̄Tx

were better than 2-PR, 2-PSR, 2-PT, 2-PST, 2-PRT, 2-PSRT, 2-PR̄, 2-PSR̄, 2-PR̄T, and
2-PSR̄T, respectively, in more than 92.91%, 93.43%, 87.87%, 91.95%, 91.15%, 92.84%,
98.26%, 98.23%, 98.28%, and 98.79% of the permutations in each size n.

4.8 Bounds on the Diameters

In this section we present bounds for the diameters concerning the problems SbPSR,
SbPST, SbPSRT, SbPR̄T, SbPSR̄, and SbPSR̄T. We first show families of permuta-
tions which will be useful for that purpose.

For SbPSR, let

πpsr
n =

{
(n 1 n−2 n−4 . . . 4 2 n−3 n−5 . . . 3 n−1) if n is even
(n 1 n−2 n−4 . . . 5 3 n−3 n−5 . . . 2 n−1) if n is odd.

(4.1)

Lemma 27. For n ≥ 8, n− 1 ≤ dpsr(π
psr
n) ≤ n.

Proof. The lower bound is valid because dpsr(π) ≥ bupsr(π) for any π, according to
Lemma 1, and bupsr(π

psr
n) = n− 1.

Now we show that Algorithm 7 sorts πpsr
n with n rearrangements. The proofs for n

odd and n even are similar, so we show here only the proof for n even. The loop invariant
for the while loop in line 2 is the following: before the ith iteration, elements from n−3−i

to n are in the correct positions, and we are in one of the two following situations: (i)
either i is odd and all other odd elements are in decreasing order in the beginning of
the permutation followed by all other even elements in increasing order, or (ii) i is even
and all other even elements are in decreasing order in the beginning of the permutation
followed by all other odd elements in increasing order.

It is easy to note that before the first iteration π = (n−5 n−7 . . . 1 2 4 6 . . . n−4

n−3 n−2 n−1 n), because the six first reversals lead πpsr
n to it. Here, i = 1 and elements

from n−4 to n are in the correct positions. Also, all other odd elements are in decreasing
order in the beginning followed by all other even elements in increasing order.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 63

Table 4.3: Average number of rearrangements that 2-PRx, 2-PSRx, 2-PTx, 2-PSTx,
2-PRTx, and 2-PSRTx performed less than 2-PR, 2-PSR, 2-PT, 2-PST, 2-PRT, and 2-PSRT,
respectively (Sets U1 and U2).

n 2-PRx × 2-PR 2-PSRx × 2-PSR 2-PTx × 2-PT 2-PSTx × 2-PST 2-PRTx × 2-PRT 2-PSRTx × 2-PSRT

2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.208 0.000 0.125 0.041 0.291
5 0.041 0.333 0.025 0.166 0.158 0.400
6 0.127 0.423 0.047 0.262 0.248 0.497
7 0.233 0.537 0.091 0.324 0.345 0.587
8 0.356 0.662 0.136 0.418 0.445 0.663
9 0.487 0.793 0.194 0.496 0.542 0.753
10 0.625 0.927 0.255 0.591 0.641 0.831

50 5.920 5.049 4.031 4.705 4.774 4.234
55 6.527 5.461 4.615 5.216 5.257 4.638
60 7.076 5.773 5.102 5.715 5.714 5.011
65 7.599 6.233 5.605 6.146 6.161 5.365
70 8.153 6.726 6.073 6.695 6.634 5.799
75 8.711 7.057 6.487 7.138 7.060 6.153
80 9.171 7.466 6.997 7.596 7.518 6.480
85 9.677 7.794 7.422 8.130 7.899 6.783
90 10.191 8.209 7.903 8.610 8.315 7.214
95 10.655 8.601 8.345 9.019 8.723 7.593
100 11.140 8.953 8.720 9.529 9.055 7.887
105 11.612 9.269 9.236 9.923 9.508 8.206
110 12.140 9.680 9.579 10.349 9.953 8.596
115 12.534 10.053 9.999 10.839 10.247 8.904
120 12.992 10.489 10.414 11.313 10.566 9.180
125 13.433 10.844 10.810 11.694 10.930 9.543
130 13.972 11.251 11.202 12.060 11.318 9.882
135 14.309 11.668 11.655 12.493 11.684 10.125
140 14.768 11.853 11.986 12.872 12.074 10.450
145 15.292 12.501 12.416 13.332 12.419 10.739
150 15.746 12.761 12.803 13.651 12.788 11.090
155 16.063 12.973 13.180 14.016 13.066 11.307
160 16.471 13.418 13.560 14.414 13.431 11.685
165 16.956 13.719 13.898 14.884 13.671 11.987
170 17.285 14.076 14.244 15.183 14.122 12.242
175 17.767 14.401 14.590 15.628 14.403 12.531
180 18.101 14.832 14.971 15.892 14.625 12.881
185 18.587 15.140 15.299 16.433 15.013 13.031
190 18.915 15.398 15.624 16.739 15.346 13.404
195 19.256 15.958 15.986 17.099 15.587 13.714
200 19.649 16.145 16.384 17.485 15.990 13.995
205 20.009 16.523 16.685 17.769 16.287 14.268
210 20.468 16.992 17.046 18.164 16.508 14.576
215 20.904 17.282 17.360 18.434 16.856 14.806
220 21.136 17.480 17.715 18.892 17.125 15.010
225 21.631 17.911 17.991 19.274 17.391 15.309
230 22.099 18.147 18.344 19.521 17.765 15.602
235 22.389 18.493 18.585 19.839 18.009 15.848
240 22.839 19.030 18.951 20.174 18.289 16.130
245 23.255 19.229 19.292 20.539 18.630 16.382
250 23.411 19.627 19.553 20.857 18.808 16.624
255 23.942 20.038 19.891 21.210 19.102 16.883
260 24.342 20.296 20.222 21.557 19.467 17.167
265 24.665 20.529 20.600 21.862 19.651 17.305
270 24.888 20.919 20.950 22.122 20.023 17.663
275 25.419 21.207 21.140 22.497 20.161 17.944
280 25.640 21.517 21.531 22.815 20.442 18.053
285 25.821 21.945 21.756 23.162 20.712 18.320
290 26.267 22.294 21.999 23.332 21.028 18.590
295 26.701 22.569 22.307 23.757 21.377 18.865
300 27.173 22.974 22.738 24.101 21.571 19.167

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 64

Table 4.4: Average number of rearrangements that 2-PR̄x, 2-PSR̄x, 2-PR̄Tx, and 2-PSR̄Tx

performed less than 2-PR̄, 2-PSR̄, 2-PR̄T, and 2-PSR̄T, respectively (Sets S1 and S2).
n 2-PR̄x × 2-PR̄ 2-PSR̄x × 2-PSR̄ 2-PR̄Tx × 2-PR̄T 2-PSR̄Tx × 2-PSR̄T

2 0.000 0.000 0.000 0.250
3 0.020 0.083 0.041 0.479
4 0.101 0.205 0.153 0.585
5 0.218 0.368 0.283 0.701
6 0.373 0.554 0.423 0.803
7 0.555 0.755 0.567 0.918
8 0.758 0.966 0.714 1.037
9 0.977 1.186 0.863 1.163

50 10.364 10.688 6.764 7.264
55 11.241 11.826 7.412 7.949
60 12.203 12.851 8.006 8.624
65 13.153 14.178 8.639 9.303
70 14.044 15.137 9.240 9.931
75 14.886 16.244 9.772 10.573
80 15.834 17.146 10.270 11.202
85 16.556 18.346 10.899 11.864
90 17.391 19.308 11.416 12.431
95 18.250 20.400 11.975 13.070
100 18.986 21.465 12.453 13.662
105 19.856 22.406 13.005 14.280
110 20.572 23.612 13.443 14.853
115 21.319 24.418 13.965 15.430
120 22.154 25.545 14.367 16.020
125 22.739 26.451 14.914 16.568
130 23.460 27.616 15.339 17.117
135 24.199 28.468 15.952 17.636
140 24.824 29.304 16.358 18.207
145 25.702 30.455 16.844 18.760
150 26.327 31.227 17.245 19.231
155 26.798 32.346 17.689 19.820
160 27.638 33.295 18.219 20.353
165 28.446 34.002 18.534 20.816
170 28.991 34.927 19.106 21.436
175 29.636 35.947 19.464 21.929
180 30.229 37.023 19.935 22.390
185 30.863 37.767 20.314 22.858
190 31.483 38.633 20.707 23.380
195 32.102 39.664 21.062 23.865
200 32.744 40.572 21.636 24.401
205 33.344 41.422 22.020 24.858
210 33.967 42.386 22.436 25.310
215 34.439 43.484 22.777 25.838
220 35.152 43.872 23.124 26.293
225 35.627 45.085 23.649 26.776
230 36.438 45.814 23.966 27.278
235 36.817 46.840 24.268 27.867
240 37.492 47.721 24.716 28.271
245 38.155 48.476 25.111 28.704
250 38.551 49.329 25.484 28.954
255 39.145 50.439 25.793 29.586
260 39.708 51.194 26.250 29.986
265 40.363 51.930 26.618 30.466
270 40.872 52.692 27.043 30.943
275 41.125 53.607 27.510 31.549
280 42.201 54.647 27.777 31.805
285 42.423 55.536 28.093 32.271
290 43.103 55.927 28.469 32.840
295 43.587 57.026 28.840 33.215
300 44.194 57.992 29.079 33.618

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 65

Let i be even. Note that elements from n−3−i to n are in the correct order, the first
element is n−4− i, an even element, followed by all other even elements in decreasing
order, followed by all other odd elements in increasing order. During the ith iteration,
ρp(π

−1
π1+1 − 1) is applied, which puts n−4− i before n−3− i. This puts elements from

n−4−i to n in the correct position, puts all other odd elements in decreasing order in
the beginning of the permutation followed by all other even elements in increasing order,
which keeps the invariant valid for iteration i+1. If i is odd, the argument is similar.

Note that, for each iteration, element π1 is one unit less than the element that was
in π1 in the previous iteration. Therefore, eventually we have π1 = 1. Since for the first
iteration we have π1 = n−5, the while loop has exactly n−6 iterations. Before the (n−6)th
iteration, which is an even number, we must have elements from n−3−(n−6) = 3 to n

in the correct position and element 2 in the first position followed by element 1. Since
ρp(π

−1
πi+1 − 1) is applied, after this iteration the permutation will be sorted.

Since there are n−6 rearrangements on the while loop and 6 rearrangements previous
to it, the algorithm uses a total of n rearrangements to sort πpsr

n , which means that
dpsr(π

psr
n) ≤ n.

Algorithm 7 An algorithm to sort πpsr
n with prefix reversals and suffix reversals.

Sort_family_SbPSR(π, n)

Input : permutation π = πpsr
n and its size n ≥ 8

Output : number of rearrangements used to sort π

1 π ← π · ρp(n− 1) · ρp(n− 3) · ρs(2) · ρs(π
−1
πn+1 + 1) · ρp(π

−1
π1−1

− 1) · ρs(π
−1
n)

2 d← 6
3 while π1 6= 1 do

4 π ← π · ρp(π
−1
π1+1 − 1)

5 d← d+ 1
6 return d

For SbPST, let
πpst
n = ηn = (n n−1 n−2 . . . 2 1). (4.2)

Lemma 28. For n ≥ 3,
⌈
n−1
2

⌉
+ 1 ≤ dpst(π

pst
n) ≤ n−

⌊
n
4

⌋
.

Proof. First note that the lower bound is valid because dpst(π) ≥ ⌈bps(π)/2⌉ for any π,
according to Lemma 1, and bps(π

pst
n) = n− 1. However, this lower bound is not tight, as

we show next, and the distance of πpst
n is at least ⌈(n− 1)/2⌉+ 1.

If ⌈bps(π)/2⌉ was a tight lower bound, then when n is even the sorting should have
⌈(n− 1)/2⌉ − 1 2-moves and one 1-move. We can see that applying a 2-move in πpst

n is
already not possible. Also, the 1-moves that are possible will either place n after n−1

or place 1 before 2. In any case, it is not possible to apply a 2-move in the generated
permutation. When n is odd, the sorting should only contain 2-moves, which is not
possible.

The upper bound is valid because of the algorithm presented by Dias and Meidanis
[24] that sorts ηn using at most n− ⌊n/4⌋ prefix transpositions.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 66

For SbPRT, let

πprt
n =

{
(n−1 n−2 n n−4 n−6 . . . 2 n−3 n−5 . . . 1) if n is even
(n n−3 n−1 n−5 n−7 . . . 2 n−2 n−4 . . . 1) if n is odd.

(4.3)

Lemma 29. For n ≥ 7,
⌈
n
2

⌉
≤ dprt(π

prt
n) ≤

⌈
n
2

⌉
+ 1.

Proof. First note that dprt(π
prt
n) ≥ ⌈n/2⌉ [39] because bupr(π

prt
n) = n − 1 when n is even

and ⌈(n− 1)/2⌉ = ⌈n/2⌉, and bupr(π
prt
n) = n when n is odd.

Now we show that Algorithm 8 sorts πprt
n with ⌈n/2⌉+ 1 rearrangements. The proofs

for n odd and n even are similar, so we will show here only the proof for n odd. The
loop invariant for the while loop in line 5 of Algorithm 8 is the following: before the ith
iteration, π = ((n−5−2(i−1)) (n−7−2(i−1)) . . . 2 n−2 n−1 n n−3 n−4 . . . (n−4−2(i−1))

(n−6−2(i−1)) (n−8−2(i−1)) . . . 1). Note that n−5−2(i−1), n−7−2(i−1), . . . , 2 are
even numbers in decreasing order, n−3, n−4, . . . , n−4−2(i−1) are sorted in decreasing
order, and n−6−2(i−1), n−8−2(i−1), . . . , 1 are odd numbers in decreasing order.

It is easy to note that before the first iteration, that is, for i = 1, π = (n−5 n−7 . . .

2 n−2 n−1 n n−3 n−4 n−6 n−8 . . . 1), because the two first prefix transpositions take
πprt
n to it.

During the ith iteration, τp(2, π
−1
π1−1) is applied, which moves only the first element

n− 5 − 2(i − 1) and puts it between the odd elements n−4−2(i−1) and n−6−2(i−1)

because π1− 1 = n−5−2(i−1)−1 = n−6−2(i−1). This transforms the permutation into
((n−7−2(i−1)) (n−9−2(i−1)) . . . 2 (n−2) (n−1) n (n−3) (n−4) . . . (n−4−2(i−1))

(n−5−2(i−1)) (n−6−2(i−1)) (n−8−2(i−1)) . . . 1) = ((n−5−2i) (n−7−2i) . . . 2 (n−2)

(n−1) n (n−3) (n−4) . . . (n−4−2i) (n−6−2i) (n−8−2i) . . . 1), which keeps the invariant
valid for iteration i+ 1.

Note that at each iteration, the first element, and only it, is moved. Since the first
elements are even numbers in decreasing order, eventually we have π1 = 2. Also, since for
the first iteration we have π1 = n−5, the while loop has exactly ⌈n/2⌉−4 iterations, which
is the number of even elements between n−5 and 4. Note that after the (⌈n/2⌉ − 4)th
iteration we must have π = (2 n−2 n−1 n n−3 n−4 n−5 . . . 5 4 3 1). It is easy to see
that the three extra rearrangements in line 7 of Algorithm 8 sort π.

Since there are ⌈n/2⌉ − 4 rearrangements in the while loop, two rearrangements pre-
vious to it, and three rearrangements after it, the algorithm uses a total of ⌈n/2⌉ + 1

rearrangements to sort πprt
n , which means dprt(π

prt
n) ≤ ⌈n/2⌉+ 1.

For SbPSRT, let

πpsrt
n =

{
(n−1 n−3 n−5 . . . 5 3 6 8 10 . . . n 2 4 1) if n is even
(n n−2 n−4 . . . 5 3 6 8 10 . . . n−1 2 4 1) if n is odd.

(4.4)

Lemma 30. For n ≥ 6,
⌈
n−1
2

⌉
≤ dpsrt(π

psrt
n) ≤

⌈
n
2

⌉
+ 1.

Proof. First note that dpsrt(π
psrt
n) ≥ ⌈(n− 1)/2⌉ according to Lemma 1 and because

bupsrt(π
psrt
n) = n− 1.

Now we show that Algorithm 9 sorts πpsrt
n with ⌈n/2⌉+1 rearrangements, which shows

the upper bound on the distance. Again, the proofs for n odd and n even are similar, so

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 67

Algorithm 8 An algorithm to sort πprt
n with prefix reversals and prefix transpositions.

Sort_family_SbPRT(π, n)

Input : permutation π = πprt
n and its size n ≥ 7

Output : number of rearrangements used to sort π
1 if n mod 2 ≡ 0 then

2 π ← π · ρp(2) · τp(5, π
−1
n−3 + 1)

3 else

4 π ← π · τp(3, π
−1
n−4) · τp(2, π

−1
n)

5 d← 2
6 while π1 6= 2 do

7 π ← π · τp(2, π
−1
π1−1

)

8 d← d+ 1

9 π ← π · τp(π
−1
n + 1, n + 1) · ρp(π

−1
2) · ρp(2)

10 return d+ 3

we will show here only the proof for n even. The loop invariant for the while loop in line
2 is the following: before the ith iteration, π = ((n−1−2(i−1)) (n−3−2(i−1)) . . . 3 6 8

. . . (n−4−2(i−1)) (n−2−2(i−1)) (n−2(i−1)) (n+1−2(i−1)) . . . n 2 4 1).
It is easy to note that, before the first iteration, where i = 1, π = (n−1 n−3 n−5 . . .

3 6 8 . . . n−4 n−2 n 2 4 1), because that is the input permutation πpsrt
n .

During the ith iteration, τp(2, π
−1
π1+1) is applied, which moves only the first element

n−1−2(i−1) and puts it between the even elements n−2−2(i−1) and n−2(i−1), because
π1+1 = n−1−2(i−1)+1 = n−2(i−1). This transforms the permutation into ((n−3−2(i−1))

(n−5−2(i−1)) . . . 3 6 8 . . . (n−4−2(i−1)) (n−2−2(i−1)) (n−1−2(i−1)) (n−2(i−1))

(n+1−2(i−1)) . . . n 2 4 1), which keeps the invariant valid for iteration i+ 1.
Note that, for each iteration, the first element, and only it, is moved. Since the first

elements of πpsrt
n are the odd elements in decreasing order, we eventually have π1 = 5. As

in the first iteration we have π1 = n−1, the while loop has exactly ⌈n/2⌉ − 3 iterations,
which is the number of odd elements between n−1 and 7. Note that after the (⌈n/2⌉−3)th
iteration we must have π = (5 3 6 7 8 9 . . . n 2 4 1). It is easy to see that the four extra
rearrangements on line 6 sort it.

Since there are ⌈n/2⌉ − 3 rearrangements on the while loop and four rearrangements
after it, the algorithm uses a total of ⌈n/2⌉+1 rearrangements to sort πpsrt

n , which means
dpsrt(π

psrt
n) ≤ ⌈n/2⌉ + 1.

For SbPSR̄, let

πspsr
n = ((−1n)n (−1n−1)(n− 1) (−1n−2)(n− 2) . . . + 2 − 1). (4.5)

Lemma 31. For n ≥ 5, n ≤ dpsr̄(π
spsr
n) ≤ n+

⌊
n−1
2

⌋
.

Proof. First note that n−1 is a valid lower bound according to Lemma 2 and because
bps(π

spsr
n) = n−1. However, this lower bound is not tight, because if it were, this would

imply that a 1-move would always exist. If n is even, then πspsr
n = (+n −(n−1) +(n−2)

−(n−3) . . . +2 −1) and it is easy to see that there is only one possible 1-move, which will
lead to π′ = (−n −(n−1) +(n−2) −(n−3) . . . +2 −1). On the other hand, it is not possible

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 68

Algorithm 9 An algorithm to sort πpsrt
n with prefix reversals, prefix transpositions, suffix

reversals, and suffix transpositions.
Sort_family_SbPSRT(π, n)

Input : permutation π = πpsrt
n and its size n ≥ 6

Output : number of rearrangements used to sort π
1 d← 0
2 if n mod 2 ≡ 0 then

3 while π1 6= 5 do

4 π ← π · τp(2, π
−1
π1+1)

5 d← d+ 1
6 π ← π · τp(n− 1, n) · τp(3, 4) · τp(n− 1, n + 1) · ρp(2)
7 d← d+ 4
8 else

9 π ← π · τp(π
−1
3 , π−14) · τs(π

−1
2 , π−1n−2) · τp(2, π

−1
1)

10 d← d+ 3
11 while π1 6= n− 1 do

12 π ← π · τp(2, π
−1
π1−1

)

13 d← d+ 1
14 π ← π · ρp(n − 1) · ρp(2)
15 d← d+ 2
16 return d

to apply a 1-move in π′. If n is odd, then πspsr
n = (−n +(n−1) −(n−2) +(n−3) . . . +2

−1), for which we already cannot find a 1-move. Therefore, the distance is at least n.
Now we show that Algorithm 10 sorts πspsr

n with n+⌊(n− 1)/2⌋ rearrangements. The
proofs for n odd and n even are similar, so we will show here only the one for n odd. In
the rest of the proof, we consider the strips xj = 〈(n−2j+1) (n−2j+2)〉, −xj = 〈−(n−2j+2)

−(n−2j+1)〉, yj = 〈−(n−2j+2) (n−2j+1)〉, and −yj = 〈−(n−2j+1) (n−2j+2)〉. Let
h = (n− 1)/2. Note that πspsr

n = (y1 y2 . . . yh −1).
First we consider the for loop in line 4. Its loop invariant is the following: if i is odd,

then before the ith iteration π = (xi xi−2 xi−4 . . . x1 −x2 −x4 −x6 . . . −xi−1 yi+1 yi+2 . . .

yh −1), and if i is even, then before the ith iteration π = (xi xi−2 xi−4 . . . x2 −x1 −x3 −x5

. . . −xi−1 yi+1 yi+2 . . . yh −1).
It is easy to note that before the first iteration, π = (x1 y2 y3 . . . yh −1), because the

two first rearrangements take πspsr
n to such π.

Now note that the for loop runs from j = 4 to n−1 with step 2, which means that
in the ith iteration, j = 2i+2. Also, reversal ρ̄p(j) involves the j first elements of π, or
the j/2 = i+1 first strips of size 2. Let i be even. During the ith iteration, reversal ρ̄p(j)
generates π = (−yi+1 xi−1 xi−3 . . . x2 −x1 −x3 . . . −xi yi+2 yi+3 . . . yh −1) while reversal
ρ̄p(1) generates π = (−xi+1 xi−1 xi−3 . . . x2 −x1 −x3 . . . −xi yi+2 yi+3 . . . yh −1), which
keeps the invariant valid for iteration i+1. If i is odd, the argument is similar.

Note that, at each iteration, yi+1 is brought to the beginning of the permutation and
transformed into xi+1. Also, there are exactly h − 1 iterations. After the last iteration,
we have either π = (xh xh−2 xh−4 . . . x1 −x2 −x4 . . . −xh−1 −1) if h is odd or π = (xh xh−2

xh−4 . . . x2 −x1 −x3 . . . −xh−1 −1) if h is even. In any case, note that xh = 〈2 3〉.
Now we consider the for loop in line 7 when h is odd; the even case is similar. The

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 69

loop invariant in this case is: if i is odd, then before the ith iteration π = (1 xh xh−1

. . . xh−i+2 xh−i xh−i−2 . . . x2 −x1 −x3 . . . −xh−i+1), and if i is even, then before the ith
iteration π = (1 xh xh−1 . . . xh−i+2 xh−i xh−i−2 . . . x1 −x2 −x4 . . . −xh−i+1).

Before the first iteration, it is easy to note that π = (1 xh−1 xh−3 . . . x2 −x1 −x3 . . .

−xh). Now note that the for loop runs from j = 2 to n−1 with step 2, which means that,
in the ith iteration, j = 2i. Also, reversal ρ̄s(j) involves the n−j+1 last elements of π, or
the (n−j+1)/2 = h−i−1 last strips of size 2. Let i be even. During the ith iteration, ρs(i)
is applied, generating π = (1 xh xh−1 . . . xh−i+2 xh−i+1 xh−i−1 xh−i−3 . . . x4 x2 −x1 −x3

. . . −xh−i), which keeps the invariant valid for iteration i+ 1. If i is odd, the argument is
similar.

Note that there are exactly h iterations. Before the last iteration, we have π = (1 xh

xh−1 xh−2 . . . x2 −x1), and the reversal ρ̄s(n− 1) sorts it.
Since there are h− 1 iterations in the first loop, each one with two prefix reversals, h

iterations in the second loop, each one with one suffix reversal, and two rearrangements
out of the loops, the algorithm uses a total of 2h−2+h+3 = 2(n−1)/2+1+(n−1)/2 =

n+(n−1)/2 rearrangements to sort πspsr
n , which means dpsr̄(πspsr

n) ≤ n+⌊(n− 1)/2⌋.

Algorithm 10 An algorithm to sort πspsr
n with signed prefix reversals and signed suffix

reversals.
Sort_family_SbPSR̄(π, n)

Input : permutation π = πspsr
n and its size n ≥ 5

Output : number of rearrangements used to sort π
1 d← 0
2 if n mod 2 = 0 then

3 π ← π · ρ̄p(1)
4 d← 1
5 π ← π · ρ̄p(3 − (n mod 2)) · ρ̄p(1)
6 d← d+ 2
7 for j ← 5− (n mod 2) to n− 1 by 2 do

8 π ← π · ρ̄p(j) · ρ̄p(1)
9 d← d+ 1

10 π ← π · ρ̄p(n)
11 d← d+ 1
12 for j ← 2 to n− 1− (1− (n mod 2)) by 2 do

13 π ← π · ρ̄s(j)
14 d← d+ 1
15 return d

For SbPR̄T, let

πsprt
n = (+4 +3 +2 +1 −5 −6 −7 . . . −(n−1) −n). (4.6)

Lemma 32. For n ≥ 5,
⌈
n
2

⌉
+ 1 ≤ dpr̄t(π

sprt
n) ≤ n + 2−

⌊
n
4

⌋
.

Proof. First note that ⌈n/2⌉ is a valid lower bound according to Lemma 2 and because
bp(π

sprt
n) = n, but it is not a tight lower bound. If it was, then when n is even the sorting

should only have 2-moves, but it is easy to see that this is not possible. When n is odd,

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 70

the sorting would need to have ⌈n/2⌉− 1 2-moves and one 1-move. Applying a 2-move in
πsprt
n is not possible, and the only 1-move that exists places 4 after 3. However, now it is

not possible to find a 2-move either. Therefore, the distance is at least ⌈n/2⌉+ 1.
There is a simple algorithm that sorts πsprt

n : it reverts the segment +4,+3,+2,+1

generating (−1 −2 −3 . . . −n), reverts the whole permutation, and then uses the algorithm
presented by Dias and Meidanis [24], which uses at most n− ⌊n/4⌋ prefix transpositions
to sort (n n−1 . . . 1). Therefore, it uses at most n + 2 − ⌊n/4⌋ rearrangements to sort
πsprt
n , and dpr̄t(π

sprt
n) ≤ n + 2− ⌊n/4⌋.

For SbPSR̄T, let

πspsrt
n = (−1 + 2 − 3 + 4 . . . − (n− 1) + n). (4.7)

Lemma 33. For n ≥ 6 and even, n
2
≤ dpsr̄t(π

spsrt
n) ≤ n.

Proof. First note that the lower bound is valid because dpsr̄t(π) ≥ bpsrt(π)/2 for all π,
according to Lemma 2, and because bpsrt(π

spsrt
n) = n− 1.

Now we show that Algorithm 11 sorts πspsrt
n with n rearrangements. The loop invariant

for the for loop is: before the ith iteration, π = (−(2i−1) (2i) −(2i+1) (2i+2) . . . −(n−1)

n 1 2 3 . . . (2i−2)).
It is easy to see that before the first iteration the permutation is of the claimed format

because no rearrangement was applied yet. During the ith rearrangement, we have ρ̄p(1)

applied, generating ((2i−1) (2i) −(2i+1) (2i+2) . . . −(n−1) n 1 2 3 . . . (2i−2)), and then
τp(3, n+ 1), generating (−(2i+1) (2i+2) −(2i+3) (2i+4) . . . −(n−1) n 1 2 3 . . . (2i−2)

(2i−1) (2i)), which keeps the invariant valid for iteration i+1.
Note that the for loop has exactly n/2 iterations (one for each odd number between 1

and n−1). Before the (n/2)th iteration, we must have π = (−(n−1) n 1 2 3 . . . (n−2)),
and the two rearrangements inside the iteration sort it.

Since there are n/2 iterations and each of them has two rearrangements, the algorithm
uses a total of n rearrangements to sort πspsrt

n , which means dpsr̄t(π
spsrt
n) ≤ n.

Algorithm 11 An algorithm to sort πspsrt
n with signed prefix reversals, prefix transposi-

tions, signed suffix reversals, and suffix transpositions when n is even.

Sort_family_SbPSR̄T_even(π, n)

Input : permutation π = πspsrt
n and its size n ≥ 8

Output : number of rearrangements used to sort π
1 d← 0
2 for i← 1 to n− 1 by 2 do

3 π ← π · ρ̄p(1) · τp(3, n + 1)
4 d← d+ 1
5 return d

Lemma 34. For n ≥ 5 and odd, n−1
2
≤ dpsr̄t(π

spsr
n) ≤ n.

Proof. First note that the lower bound is valid because dpsr̄t(π) ≥ bpsrt(π)/2 for all π,
according to Lemma 2, and because bpsrt(π

spsr
n) = n− 1.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 71

Now we show that Algorithm 12 sorts πspsr
n with n rearrangements. The loop invariant

for the for loop is: before the ith iteration, π = ((n−5−2(i−1))−(n−6−2(i−1)) (n−7−2(i−1))

−(n−8−2(i−1)) . . . 2 −1 −n −(n−1) −(n−2) (n−3) −(n−4)) −(n−5) . . . −(n−4−2(i−1))).
Note that −(n−4),−(n−5), . . . ,−(n−4−2(i−1)) only contains negative elements.

It is easy to see that before the first iteration π = ((n−5) −(n−6) (n−7) −(n−8) . . . 2

−1 −n −(n−1) −(n−2) (n−3) −(n−4)), because the three first rearrangements take πspsr
n

to it.
During the ith iteration, ρ̄p(1) is applied, generating (−(n−5−2(i−1)) −(n−6−2(i−1))

(n−7−2(i−1)) −(n−8−2(i−1)) . . . 2 −1 −n −(n−1) −(n−2) (n−3) −(n−4) −(n−5) . . .

−(n−4−2(i−1))), and then τp(3, n+1) is applied, generating ((n−7−2(i−1))−(n−8−2(i−1)))

. . . 2 −1 −n −(n−1) −(n−2) (n−3) −(n−4) −(n−5) . . . −(n−4−2(i−1)) −(n−5−2(i−1))

−(n−6−2(i−1))). This means that the invariant is valid for iteration i+1.
Note that the for loop has exactly (n− 1)/2− 3 iterations (one for each even number

between 4 and n−5). Before the ((n − 1)/2− 3)th iteration, we must have π = (4 −3 2

−1 −n −(n−1) −(n−2) (n−3) −(n−4) −(n−5) . . . −6 −5), and the four rearrangements
of line 4 sort it.

Since there are (n− 1)/2− 3 iterations, each of which has two rearrangements, three
rearrangements previous to it, and four rearrangements after it, the algorithm uses a total
of 2(n− 1)/2− 6 + 7 = n rearrangements to sort πspsr

n , which means dpsr̄t(πspsr
n) ≤ n.

Algorithm 12 An algorithm to sort πspsr
n with signed prefix reversals, prefix transposi-

tions, signed suffix reversals, and suffix transpositions when n is odd.

Sort_family_SbPSR̄T_odd(π, n)

Input : permutation π = πspsr
n and its size n ≥ 7

Output : number of rearrangements used to sort π

1 π ← π · τp(2, n + 1) · ρ̄p(1) · τp(π
−1
n−5, n+ 1)

2 d← 3
3 for i← n− 5 downto 4 by −2 do

4 π ← π · ρ̄p(1) · τp(3, n + 1)
5 d← d+ 1

6 π ← π · ρ̄p(1) · τp(π
−1
n−3 + 1, n + 1) · ρ̄p(n− 1) · τp(π

−1
1 , n+ 1)

7 return d+ 4

The next lemmas give lower and upper bounds for the diameters of the problems that
involve prefix and suffix rearrangements addressed by us, considering the presented fami-
lies and the already existing bounds for problems that involve only prefix rearrangements.

Lemma 35. For n ≥ 8, Dpsr(n) ≥ n− 1 and for n ≥ 1, Dpsr(n) ≤
18n
11

+O(1).

Proof. The lower bound is valid due to family πpsr
n , as Lemma 27 shows. The upper

bound is valid because Dpsr(n) ≤ Dpr(n), since dpsr(π) ≤ dpr(π) for any π, and Dpr(n) ≤

18n/11 +O(1) [15].

Lemma 36. For n ≥ 3,
⌈
n−1
2

⌉
+ 1 ≤ Dpst(n) ≤ n− log7/2 n.

Proof. The lower bound is valid due to family πpst
n , as Lemma 28 shows. The upper

bound is valid because Dpst(n) ≤ Dpt(n), since dpst(π) ≤ dpt(π) for any π, and Dpt(n) ≤

n− log7/2 n [13].

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 72

Lemma 37. For n ≥ 7, Dprt(n) ≥
⌈
n
2

⌉
and for n ≥ 1, Dprt(n) ≤ n− log7/2 n.

Proof. The lower bound is valid due to family πprt
n , as Lemma 29 shows. The upper bound

is valid because Dprt(n) ≤ min{Dpr(n), Dpt(n)}, since dprt(π) ≤ min{dpr(π), dpt(π)} for
any π, Dpr(n) ≤ 18n/11 +O(1) [15], and Dpt(n) ≤ n− log7/2 n [13].

Lemma 38. For n ≥ 6, Dpsrt(n) ≥
⌈
n−1
2

⌉
and for n ≥ 1, Dpsrt(n) ≤ n− log7/2 n.

Proof. The lower bound is valid due to family πpsrt
n , as Lemma 30 shows. The upper bound

is valid because Dpsrt(n) ≤ min{Dpsr(n), dpst(n)} ≤ min{Dpr(n), Dpt(n)}, since dpsrt(π)

≤ min{dpsr(π), dpst(π)} ≤ min{dpr(π), dpt(π)} for any π, Dpr(n) ≤ 18n/11 + O(1) [15],
and Dpt(n) ≤ n− log7/2 n [13].

Lemma 39. For n ≥ 5, Dpsr̄(n) ≥ n and for n ≥ 16, Dpsr̄(n) ≤ 2n− 6.

Proof. The lower bound is valid because of family πspsr
n , as Lemma 31 shows. The upper

bound is valid because Dpsr̄(n) ≤ Dpr̄(n), since dpsr̄(π) ≤ dpr̄(π) for any π, and Dpr̄(n) ≤

2n− 6 [17]. This is true because any sorting sequence for SbPR̄ is valid for SbPSR̄.

Lemma 40. For n ≥ 5, Dpr̄t(n) ≥
⌈
n
2

⌉
+ 1 and for n ≥ 16, Dpr̄t(n) ≤ 2n− 6.

Proof. The lower bound is valid because of family πsprt
n , as Lemma 32 shows. The upper

bound is valid because Dpr̄t(n) ≤ Dpr̄(n), since dpr̄t(π) ≤ dpr̄(π) for any π, and Dpr̄(n) ≤

2n− 6 [17]. Note that a sorting sequence for SbPT is not always valid for this problem,
since it deals only with unsigned permutations.

Lemma 41. For n ≥ 5, Dpsr̄t(n) ≥
⌈
n−1
2

⌉
and for n ≥ 1, Dpsr̄t(n) ≤ 2n− 6.

Proof. The lower bound is valid because of families πspsrt
n and πspsr

n , as Lemmas 33 and
34 show. The upper bound is true because Dpsr̄t(n) ≤ Dpsr̄(n) ≤ Dpr̄(n), since dpsr̄t(π) ≤

dpsr̄(π) ≤ dpr̄(π) for any π, and Dpr̄(n) ≤ 2n− 6 [17].

Table 4.5 shows some exact values for the diameter of the studied problems. It has
been obtained from the results given by the Rearrangement Distance Database tool2 of
Galvão and Dias [31]. From this table we can see that Dpsr(n) = n for 7 ≤ n ≤ 13,
Dpst(n) = dpst(π

pst
n = ηn) for 1 ≤ n ≤ 12, Dpsrt(n) = ⌈n/2⌉ + 1 for 6 ≤ n ≤ 13,

Dpsr̄(n) = n + ⌊(n− 1)/2⌋ for 5 ≤ n ≤ 10, Dpr̄t(n) = dpr̄t(π
sprt
n) for 2 ≤ n ≤ 10, and

Dpsr̄t(n) = dpsr̄t(π
spsrt
n) for n ∈ {8, 10} and Dpsr̄t(n) = dpsr̄t(π

spsr
n) for n ∈ {7, 9}. We

can also show that dpsr(π
psr
n) = n for 8 ≤ n ≤ 15 and dpsr̄(π

spsr
n) = n + ⌊(n− 1)/2⌋ for

5 ≤ n ≤ 12.
It is worth noticing that, for n = 7, the only two permutations for which dpr̄t(π) =

Dpr̄t(7) = 8 are π = πsprt
7 and π = (+3 +2 +1 −4 −5 −6 −7), and the only two

permutations for which dpsr(π) = Dpsr(7) = 7 are π = (7 3 5 2 6 4 1) and π = (7 4 2 6 3

5 1).
The next conjectures are directly based on the results mentioned above.

Conjecture 1. For n ≥ 8, Dpsr(n) = dpsr(π
psr
n) = n.

2Available at http://mirza.ic.unicamp.br:8080/bioinfo.

CHAPTER 4. RESULTS OBTAINED FOR TRADITIONAL APPROACH 73

Table 4.5: Diameter values for small values of n.
n Dprt(n) Dpsr(n) Dpst(n) Dpsrt(n) Dpr̄t(n) Dpsr̄(n) Dpsr̄t(n)

1 0 0 0 0 1 1 1

2 1 1 1 1 3 3 2

3 2 2 2 1 4 4 3

4 2 3 3 2 5 6 4

5 3 4 3 3 6 7 5

6 4 5 4 4 7 8 6

7 5 7 5 5 8 10 7

8 5 8 6 5 8 11 7

9 6 9 6 6 9 13 8

10 7 10 7 6 10 14 9

11 7 11 8 7 - - -

12 8 12 8 7 - - -

13 9 13 9 8 - - -

Conjecture 2. For n ≥ 1, Dpst(n) = dpst(ηn) = n−
⌊
n
4

⌋
.

Conjecture 3. For n ≥ 6, Dpsrt(n) = dpsrt(π
psrt
n) =

⌈
n
2

⌉
+ 1.

Conjecture 4. For n ≥ 5, Dpr̄t(n) = dpr̄t(π
sprt
n).

Conjecture 5. For n ≥ 5, Dpsr̄(n) = dpsr̄(π
spsr
n) = n +

⌊
n−1
2

⌋
.

Conjecture 6. For n ≥ 8 and n even, Dpsr̄t(n) = dpsr̄t(π
spsrt
n). For n ≥ 7 and n odd,

Dpsr̄t(n) = dpsr̄t(π
spsr
n).

4.9 Summary of the Chapter

Table 4.6 summarizes the best approximation factors and the bounds for the diameters
of the problems that were studied in this chapter.

Table 4.6: Summary of the results obtained for prefix and suffix rearrangement problems.
Diameter

Rearrangements Approx. Factor
Lower Bound Upper Bound

Pref. and Suf. Reversals 2 (Thm. 1) n− 1 (Lem. 35) 18n
11

+ O(1) (Lem. 35)

Pref. and Suf. Transpositions 2 (Thm 2)
⌈

n−1
2

⌉

+ 1 (Lem. 36) n− log7/2 n (Lem. 36)

Pref. Reversals and Transpositions 2 + 4
bupr(π)

[23]
⌈

n
2

⌉

(Lem. 37) n− log7/2 n (Lem. 37)

Pref. and Suf. Reversals and Transp. 2 + 4
bupsrt(π)

(Thm 3)
⌈

n−1
2

⌉

(Lem. 38) n− log7/2 n (Lem. 38)

Sig. Pref. and Suf. Reversals 2 (Thm 4) n (Lem. 39) 2n− 6 (Lem. 39)

Sig. Pref. Reversals and Transpositions 2 + 4
bp(π)

(Thm 5)
⌈

n
2

⌉

+ 1 (Lem. 40) 2n− 6 (Lem. 40)

Sig. Pref. and Suf. Reversals and Transp. 2 + 4
bupr(π)

(Thm 6)
⌈

n−1
2

⌉

(Lem. 41) 2n− 6 (Lem. 41)

Chapter 5

Known Results for Length-Weighted

Approach

This chapter presents a review of the existing results, to the best of our knowledge, for
the length-weighted approach, where the cost of sorting a permutation is calculated based
on the length of the rearrangements involved in the process (specifically, f(ℓ) = ℓα with
α > 0). We consider related work only, namely those in which the rearrangement model
involves general or restricted versions of reversals and/or transpositions.

Pinter and Skiena [50] gave the first results on length-weighted rearrangements. They
presented a O(lg2 n)-approximation algorithm for the problem of Sorting by Length-
Weighted Reversals (SbWR) for α = 1. They also gave a O(n lg2 n) upper bound on
the diameter for this variation.

Bender et al. [5] then presented an analysis for several values of α > 0, also for SbWR.
They started relating the sorting of a binary string with the sorting of a permutation
and, therefore, also gave results for Sorting Binary Strings by Length-Weighted Reversals
(SBbWR). All of their results are given in Table 5.1, but we highlight here that, for
SbWR and α = 1, they guaranteed an approximation factor of O(lgn) and they showed
a lower bound on the diameter of Ω(n lg n). Bender et al. [5] also showed that, for α ≥ 3,
SbWR becomes polynomially solvable because it suffices to use Bubble Sort to solve it. In
general, they showed that reversals of length greater than 2 can be replaced by reversals
of length equal to 2 while decreasing the sorting cost and that Bubble Sort is optimal
among all algorithms that use only reversals of length 2.

Swidan et al. [54] considered Sorting by Signed Length-Weighted Reversals (SbWR̄),
also relating it to the sorting of binary strings by considering the problem of Sorting
Binary Strings by Signed Length-Weighted Reversals (SBbWR̄). All of their results are
also given in Table 5.1 and we highlight that they were able to guarantee an approximation
factor of O(lgn) when α = 1 for SbWR̄.

To our knowledge, there is no result regarding Sorting by Length-Weighted Transpo-
sitions (SbWT) or Sorting by Length-Weighted Reversals and Transpositions (SbWRT).
However, we point out that both the O(lg2 n)-approximation presented by Pinter and
Skiena [50] and the O(lgn)-approximation presented by Bender et al. [5] can be easily
adapted to use only transpositions or reversals and transpositions. More than that, the
algorithm of Pinter and Skiena [50] would have the same approximation factor for both

74

CHAPTER 5. KNOWN RESULTS FOR LENGTH-WEIGHTED APPROACH 75

SbWT and SbWRT because the analysis would be identical.
Nguyen et al. [49] considered a slightly different variant of SBbWR and SbWR.

Given an integer k, no reversal can have length greater than k. All of their results are
summarized in Table 5.1 as well.

5.1 Summary of the Chapter

Table 5.1 summarizes the best-known approximation factors and the best-known bounds
for the diameters of the problems that were mentioned throughout this chapter.

Table 5.1: Summary of best-known results for length-weighted genome rearrangement
problems. A ‘-’ indicates that there is no known result.

Best Approx. Factor Diameter

Rearrangements Parameter
Bin. Str. Perm. Bin. Str. Perm. (Lower) Perm. (Upper)

0 < α < 1 O(1) - θ(n) Ω(n) O(n lgn)

α = 1 1 O(lgn) θ(n lgn) Ω(n lgn) O(n lg2 n)

Reversals [5] 1 < α < 2 O(1) O(lgn) θ(nα) θ(nα)

2 ≤ α < 3 2

α ≥ 3
1

1
θ(n2) θ(n2)

0 < α < 1 O(1) - θ(n) Ω(n) O(n lgn)

α = 1 3 O(lgn) θ(n lgn) Ω(n lgn) O(n lg2 n)

Sig. Reversals [54]
1 < α < 2 O(1) O(lgn) θ(nα) θ(nα)

α ≥ 2 O(1) O(1) θ(n2) θ(n2)

0 < α < 1 - - θ(n+ n2kα−2) Ω(n+ n2kα−2) O(n logn+ n2kα−2)

α = 1 - - θ(n log k + n2

k
) Ω(n logn+ n2

k
) O(n logn log k + n2

k
)

Reversals of
1 < α < 2 - - θ(n2

kα−2
) Ω(n2kα−2)

length at
α ≥ 2 - - θ(n2) θ(n2)

most k [49]
k = Ω(n) O(1) O(logn) - - -

k = o(n) 2 lgn+ 1 2 lg2 n+ lgn - - -

Chapter 6

Results Obtained for Length-Weighted

Approach

This chapter also considers the length-weighted approach, where the sorting distance of
a permutation is calculated based on the length of the rearrangements involved in the
process, but it presents the results that we obtained. If necessary, review the notation
and definitions on binary strings given in Section 2.2.

Whenever dealing with sorting by length-weighted rearrangement problems, we con-
sider that n̄ is the size of a permutation π or of a binary string T (that is, their total
number of elements) and that n is their number of valid elements, which are defined next.
The valid elements are those which can be affected by the rearrangements, i.e, it is valid
to apply rearrangements over such elements.

Definition 21. When only prefix rearrangements are being considered, the number n of

valid elements in a permutation π is the maximum value i, for 0 ≤ i ≤ n̄, such that πi 6= i.

The number n of valid elements in a binary string T either is the maximum value i, for

1 ≤ i ≤ n̄, such that ti 6= 1, or is 0, if T = 0k1n̄−k for some k ≥ 0.

Definition 22. When prefix and suffix rearrangements are being considered, let positions

i and j be such that (i) 0 ≤ i < j ≤ n̄ + 1, (ii) for all ℓ ∈ [i + 1..j − 1] we have πℓ = ℓ,

(iii) for all ℓ ∈ [1..i] we have πℓ ≤ i, (iv) for all ℓ ∈ [j..n̄] we have πℓ ≥ j, (v) j − i is

maximum, and (vi) if j = i+ 1 then i 6= 0 and i 6= n̄. If positions i and j exist, then the

number of valid elements in a permutation π is n = i + n̄ − j + 1 and we say that the

permutation is separated by i and j. If they do not exist, then n = n̄ and the permutation

is not separated.

For prefix and suffix rearrangements, note that n = n̄ can happen even if the per-
mutation is separated by i and j. Also note that condition (vi) exists because otherwise
every permutation would be separated.

Definition 23. When general rearrangements are being considered, the number of valid
elements in a permutation π (resp. in a binary string T) is the maximum value n = j−i−1,

for 0 ≤ i < j ≤ n̄+1, such that πk = k for 0 ≤ k ≤ i and for j ≤ k ≤ n̄+1 (resp. tk = 0

for 0 ≤ k ≤ i and tk = 1 for j ≤ k ≤ n̄ + 1).

76

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 77

Note that, by definition, the number of valid elements in the sorted binary string and
in the identity permutation is zero. Also note that, even if n = n̄ in a permutation, we
can have other elements in the correct position, that is, πt = t for some t.

Example 16. Let π = (1 2 4 3 5 6 7 9 8 10 11). We have that n̄ = 11 but for prefix

rearrangements n = 9 (despite the fact that 1, 2, 5, 6, and 7 are in their correct position),

for prefix and suffix rearrangements n = 8 (because 5, 6, and 7 are in their correct position,

there is no other such strip with greater size, all elements less than 5 are before it, and

all elements greater than 7 are after it), and for general rearrangements n = 7 (because

of 1, 2, 10, and 11).

Example 17. Consider prefix and suffix rearrangements. Permutation (1 2 4 3 5 6 7 9 8

10 11), of the previous example, is separated by positions 4 and 8 because segment 5, 6, 7

is in its correct position and is the biggest one with such feature. Permutation (5 1 4 3 2

7 6 9 8 15 13 14 12 10 11), on the other hand, does not have any element in its correct

position. However, by Definition 22, it is separated by positions 5 and 6 (also by positions

7 and 8, as well as 9 and 10). Note that in this case the number of valid elements is

n = n̄ = 15. Permutation (6 4 3 1 2 5) is not separated by any pair of positions, even

though element 3 is in its correct position, so n = n̄ = 6.

The intuition between our definition of valid elements comes from the fact that, when
α > 0 and when prefix or general rearrangements are being considered, we can act only
over the valid elements, as Lemma 42 shows. Basically, the other elements are already
in their correct positions, thus there is no need to involve them in the sorting process.
Note that this is not necessarily true when we consider prefix and suffix rearrangements,
that is, if the permutation is separated by some i and j, an optimal solution may have to
involve elements between i+ 1 and j − 1 (specially if j − i is small and i or j are close to
1 or to n̄, respectively). Despite that, the definition of valid elements for this case will be
useful afterwards.

Lemma 42. Let α > 0 and let π (resp. T) be a permutation (resp. a binary string) with

n̄ elements. Considering prefix rearrangements, any optimal sorting sequence for π (resp.

for T) does not affect elements between n + 1 and n̄, where n is as in Definition 21.

Considering general rearrangements, any optimal sorting sequence for π (resp. for T)

does not affect elements between 1 and i and between j and n̄, where i and j are as in

Definition 23.

Proof. In order to prove the result for the prefix case, let S = (λ1, λ2, . . . , λq) be a sequence
of prefix rearrangements that optimally sorts π (resp. T) where λk ∈ {ρp, τp} for 1 ≤ k ≤ q.
Let λℓ be a prefix rearrangement of this sequence that affects a segment that contains a
subsegment s of elements from n + 1 to n̄. Exclude s from λℓ and from all subsequent
rearrangements. This modified sequence also sorts π (resp. T) but with a smaller cost,
which is a contradiction to the fact that the original sequence was optimal.

A similar analysis can be done to prove the case for general rearrangements.

Now we start by giving some lower bounds on the distance of permutations and binary
strings. For prefix rearrangements, there exists a trivial lower bound for both permuta-

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 78

tions and binary strings, as Lemma 43 shows. For prefix and suffix rearrangements, there
exists a similar result for α = 1, as Lemma 44 shows.

Lemma 43. Let β ∈ {pr, pt, prt} and α > 0. For any unsigned permutation π and

unsigned binary string T with n valid elements,

cαβ(T) ≥ nα and dαβ(π) ≥ nα.

Proof. For binary strings, since tn 6= 1 by Definition 21, at some point one rearrangement
of length n will have to be performed in order to sort the binary string, which will cost
f(n) = nα.

Likewise, for permutations, at least one rearrangement that places the element n in
its right position should be done, which will also cost f(n) = nα.

Lemma 44. Let β ∈ {psr, pst, psrt} and α = 1. For any unsigned permutation π with n

valid elements and n̄ elements,

dαβ(π) ≥ n.

Proof. If π is not separated, then n = n̄ and every element of the permutation will be
affected by at least one rearrangement at some point (to put the element in its correct
position), which would contribute with a cost of one for each element; therefore, at least a
total cost of n will be necessary. This is true because either π does not have any element
such that πk = k (therefore no element is in its correct position) or π has at least one
element k such that πk = k and another element ℓ such that π−1ℓ < k but ℓ > k (or
π−1ℓ > k but ℓ < k). Note that such ℓ must exist, otherwise the permutation would be
separated. In this last case, the rearrangement(s) needed to move ℓ to its correct position
would involve k at some point, which means that, indeed, every element will be affected
at least once.

If π is separated by positions i and j (that is, n = i + n̄ − j + 1), then each element
between 1 and i and between j and n̄ will be affected by at least one rearrangement at
some point so that it can be put in its correct position (an argument similar to the one
given above shows this). Therefore, each will contribute with a cost of at least one unit,
which means that at least a cost of (i) + (n̄− j − 1) = n will be necessary.

Given any binary string T = 0w01w1 . . . 0w2g1w2g+1, we define P (T) = (
∑2g

i=0w
α
i)/4.

Lemma 45 shows a lower bound of P (T) for cαβ(T) when β ∈ {pr, pt, prt} and when
0 < α < 1.

Lemma 45. Let β ∈ {pr, pt, prt} and 0 < α < 1. For any unsigned binary string T =

0w01w1 . . . 0w2g1w2g+1 that is not sorted,

cαβ(T) ≥ P (T).

Proof. To show that cαpt(T) ≥ P (T), we will prove by induction on q that if a solution
uses exactly q prefix transpositions, then the cost is at least P (T).

For the base case, q = 1, the original sequence must be 0w01w10w21w3 . The minimum
cost to finish the sorting with a prefix transposition is (w0+w1+w2)

α (it will exchange the

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 79

first two blocks with the third one). When 0 < α < 1, it is valid that (a+b)α ≥ (aα+bα)/2.
Therefore,

cαpt(T) = (w0+w1+w2)
α ≥

((w0+w1)
α+wα

2)

2
≥

(
(wα

0+w
α
1)

2
+wα

2

)

2
≥

(wα
0 +wα

1 +wα
2)

4
= P (T).

Suppose now that for all integers less than or equal to q the claim holds. So, for
q+1, assume that the first prefix transposition τp of an optimal solution has length ℓ and
transforms T into T ·τp. Thus, cαpt(T) = cαpt(T ·τp)+ℓα. Also, by the induction hypothesis,
cαpt(T · τp) ≥ P (T · τp). Therefore,

cαpt(T) = cαpt(T · τp) + ℓα ≥ P (T · τp) + ℓα.

It suffices then to show that P (T · τp) + ℓα ≥ P (T) to finish the proof. We will show,
equivalently, that P (T)− P (T · τp) ≤ ℓα.

Suppose that τp = τp(i, j). As depicted in Equation (6.1), let x be the maximum
position such that t1 = th for all 1 ≤ h ≤ x, y be the minimum position such that
ti−1 = th for all y ≤ h ≤ i − 1, z be the maximum position such that ti = th for all
i ≤ h ≤ z, w be the minimum position such that tj−1 = th for all w ≤ h ≤ j − 1, and k

be the maximum position such that tj = th for all j ≤ h ≤ k. So, let a, b, c, d, and e be
the amount of elements between t1 and tx, ty and ti−1, ti and tz, tw and tj−1, and tj and
tk, respectively:

T =

a
︷ ︸︸ ︷

t1 . . . tx

b
︷ ︸︸ ︷

ty . . . ti−1

c
︷ ︸︸ ︷

ti . . . tz

d
︷ ︸︸ ︷

tw . . . tj−1
︸ ︷︷ ︸

ℓ

e
︷ ︸︸ ︷

tj . . . tk tn. (6.1)

With the previous notation, we have that

T · τp =

c
︷ ︸︸ ︷

ti . . . tz

d
︷ ︸︸ ︷

tw . . . tj−1

a
︷ ︸︸ ︷

t1 . . . tx

b
︷ ︸︸ ︷

ty . . . ti−1

e
︷ ︸︸ ︷

tj . . . tk tn.

We say that τp caused a split if ti−1 = ti or tj−1 = tj , and we say that it caused a merge

if tj−1 = t1 or ti−1 = tj . Therefore, there can be at most 2 splits and 2 merges when τp
happens. We will analyse what happens with ∆ = P (T)− P (T · τp) in each combination
of splits and merges. For now, we will consider that either there is at least one block
between tx and ty or tx = ty − 1 (that is, a and b do not overlap) and that either there
is at least one block between tz and tw or tz = tw − 1 (that is, c and d do not overlap).
It is easy to see that ∆ depends only on the values of a, b, c, d, and e. In the following,
all conclusions are obtained considering that (x + y)α ≤ xα + yα, xα − (x + y)α ≤ 0,
aα + bα + cα + dα ≤ ℓα, and (a+ b+ c+ d)α ≤ ℓα:

1. 2 splits and 2 merges: ∆ = 1
4
(aα + (b+ c)α + (d+ e)α − cα − (d+ a)α − (b+ e)α)

≤ 1
4
(aα + (b+ c)α + dα + eα − cα − (d+ a)α − (b+ e)α) ≤ 1

4
(aα + (b+ c)α − cα)

≤ 1
4
(aα + bα) ≤ 1

4
(2ℓα) < ℓα;

2. 2 splits and 1 merge:

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 80

(a) tj−1 = t1 and ti−1 6= tj : ∆ = 1
4
(aα + (b+ c)α + (d+ e)α − cα − (d+ a)α − bα

− eα) ≤ 1
4
((b+ c)α + (d+ e)α − cα − bα − eα) ≤ 1

4
((d+ e)α − eα) ≤ 1

4
(dα) <

ℓα;

(b) tj−1 6= t1 and ti−1 = tj : ∆ = 1
4
(aα + (b + c)α + (d + e)α − cα − dα − aα −

(b+ e)α) ≤ 1
4
(bα + eα − (b+ e)α) ≤ 1

4
(bα) < ℓα;

3. 1 split and 2 merges:

(a) ti−1 = ti and tj−1 6= tj : ∆ = 1
4
(aα + (b + c)α + dα + eα − cα − (d + a)α −

(b+ e)α) ≤ 1
4
(aα + (b+ c)α − cα) ≤ 1

4
(aα + bα) ≤ 1

4
(2ℓα) < ℓα;

(b) ti−1 6= ti and tj−1 = tj : ∆ = 1
4
(aα + bα + cα + (d + e)α − cα − (d + a)α −

(b+ e)α) ≤ 1
4
(aα + bα + dα + eα − (d+ a)α − (b+ e)α) ≤ 1

4
(aα + bα) < ℓα;

4. 1 split and 1 merge:

(a) ti−1 = ti, tj−1 6= tj , tj−1 = t1, and ti−1 6= tj: ∆ = 1
4
(aα + (b+ c)α + dα + eα −

cα − (d+ a)α − bα − eα) ≤ 1
4
((b+ c)α + dα − cα − bα) ≤ 1

4
(dα) < ℓα;

(b) ti−1 = ti, tj−1 6= tj , tj−1 6= t1, and ti−1 = tj: ∆ = 1
4
(aα + (b+ c)α + dα + eα −

cα − dα − aα − (b+ e)α) ≤ 1
4
((b+ c)α + eα − cα − (b+ e)α) ≤ 1

4
((b+ c)α −

cα) ≤ 1
4
(bα) < ℓα;

(c) ti−1 6= ti, tj−1 = tj , tj−1 = t1, and ti−1 6= tj: ∆ = 1
4
(aα + bα + cα + (d+ e)α −

cα − (d+ a)α − bα − eα) ≤ 1
4
((d+ e)α − eα ≤ 1

4
(dα) < ℓα;

(d) ti−1 6= ti, tj−1 = tj , tj−1 6= t1, and ti−1 = tj: ∆ = 1
4
(aα + bα + cα + (d+ e)α −

cα − dα − aα − (b+ e)α) ≤ 1
4
(bα + (d+ e)α − dα − (b+ e)α) ≤ 1

4
(bα + eα −

(b+ e)α) ≤ 1
4
(bα) < ℓα;

5. 0 splits and 2 merges: ∆ = 1
4
(aα + bα + cα + dα + eα − cα − (d+ a)α − (b+ e)α)

≤ 1
4
(aα + bα) < ℓα;

6. 0 splits and 1 merge:

(a) tj−1 = t1 and ti−1 6= tj : ∆ = 1
4
(aα + bα + cα + dα + eα − cα − (d+ a)α − bα

− eα) ≤ 1
4
(aα) < ℓα;

(b) tj−1 6= t1 and ti−1 = tj : ∆ = 1
4
(aα + bα + cα + dα + eα − cα − dα − aα −

(b+ e)α) ≤ 1
4
(bα) < ℓα.

Cases with 2 or 1 splits and 0 merges clearly evaluate ∆ ≤ 0, while a 0 split with a 0
merge evaluates ∆ = 0. Cases where a and b or c and d overlap are very similar to and
easier than the cases above.

We can use this same approach to prove that cαpr(T) ≥ P (T) and cαprt(T) ≥ P (T).

Breakpoints and strips are extensively used when α = 0, as we could see in Chap-
ters 3 and 4. Lemma 46 shows that we can also give lower bounds using the number of
breakpoints when α > 0.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 81

Lemma 46. For any unsigned permutation π and α > 0,

dαpr(π) ≥ 2αbupr(π), dαpt(π) ≥ 2α
bp(π)

2
, and dαprt(π) ≥ 2α

bupr(π)

2
.

Proof. One prefix reversal can remove at most one upsr-breakpoint. Therefore, to sort
a permutation only with prefix reversals, at least bupr(π) such rearrangements will be
needed. Since each of these reversals will have length ℓ ≥ 2, the cost of each of them
should also be ℓα ≥ 2α. Therefore, to sort π the cost is at least 2αbupr(π).

A similar analysis can be done for sorting only with prefix transpositions or sorting
with both prefix reversals and transpositions. In these cases, since one prefix transposition
can remove at most two prefix breakpoints, at least bp(π)/2 or bupr(π)/2 rearrangements
will be needed in each of these two problems.

In the next sections we will present specific algorithms for SbWPR, SbWPSR, Sb-

WPT, SbWPST, SbWPRT, and SbWPSRT, and then show how they can be adapted
to the signed problems SbWPR̄, SbWPSR̄, SbWPR̄T, and SbWPSR̄T. In Section 6.1
we show approximation algorithms for unsigned permutations when α = 1. In Section 6.2
we present bounds for the diameters of some problems considering α > 0. In Sections 6.3
and 6.4 we show that the algorithms of Section 6.1 can also guarantee an approximation
factor when α 6= 1. We also show in Section 6.3 that an algorithm for the Pancake Flip-
ping problem can be used when 0 < α < 1 and can guarantee an approximation factor. In
Section 6.5 we present some experimental results that we ran over some of the presented
algorithms. In Section 6.6 we present some new results for SbWR in order to fulfill the
known results for such problem. In Section 6.7 we show results for SbWT and SbWRT.
In Section 6.8 we show results for sorting by length-weighted prefix and suffix versions of
reversals and transpositions when signed permutations are being considered. Lastly, in
Section 6.9 we give a summary of all results presented in this chapter.

6.1 Sorting Algorithms Considering α = 1

First, one should note that a sorting sequence for the traditional SbPR is also a valid sort-
ing sequence for SbWPR, although it is not necessarily the optimal sequence. For SbPR,
the identity permutation is the only permutation with zero upr-breakpoints, which indi-
cates that to sort a permutation one must reduce its amount of breakpoints. Now notice
that this also happens for SbWPR. Therefore, our first idea is to adapt the algorithms
for SbPR that already exist.

There is a simple 3-approximation algorithm for SbPR called 3-PR which, at each step
while the permutation is not sorted, finds the highest element that is not in the correct
position, brings the strip that contains it to the beginning of the permutation if necessary,
inverts the strip if necessary, and puts the strip in the correct place. Such algorithm and
its general idea will be used in some of the next sections, so we present it on Algorithm 13.

If we simply use 3-PR for SbWPR and consider that there are n valid elements, it
is easy to see that it performs O(n) main steps (the while loop on Algorithm 13), each
one costing at most 3n (because there are at most three prefix reversals on each main

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 82

Algorithm 13 A 3-approximation algorithm for SbPR.
3-PR(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let i be the highest element such that πi 6= i
4 Let b be the position of the first element of the strip that contains i
5 Let e be the position of the last element of the strip that contains i
6 if b 6= 1 then // Bring the strip to the beginning if necessary
7 π ← π · ρp(e)
8 c← c+ f(e)
9 if π1 6= i then // Put i in the first position if necessary

10 π ← π · ρp(e− b+ 1)
11 c← c+ f(e− b+ 1)

// Move i to its right position
12 π ← π · ρp(i)
13 c← c+ f(i)
14 return c

step), thus guaranteeing that dαpr(π) is O(n2), which, along with the lower bound given in
Lemma 43, shows that this is a O(n)-approximation. On the other hand, the permutation
π20
∗ = (11 6 12 2 13 7 14 4 15 8 16 1 17 9 18 5 19 10 20 3) is sorted by this algorithm

with a total cost of exactly 202 − 1. In fact, Algorithm 14 shows how to build πn
∗ for any

n ≥ 3, a family of permutations that are sorted with a cost of n2 − 1 by this algorithm,
showing that its approximation factor is also Ω(n) due to the lower bound.

Algorithm 14 Algorithm to build πn
∗ , for n ≥ 3.

Build_Permutation_πn
∗ (n)

Input : integer n ≥ 3
Output : permutation of the form πn

∗

1 π ← (2 1 3 4 5 . . . n)
2 for i← 3 to n do

3 π ← π · ρp(i) · ρp(i− 1)
4 return π

In order to improve the results, we thought about compensating a big prefix reversal
that is needed to put an element k in its position by performing smaller prefix rever-
sals that increase the strip that contains k, if these elements show up before k in the
permutation. This led to the recursive algorithm WPRm, shown in Algorithms 15 and 16.

Example 18. The following example shows the execution of WPRm over π = (5 3 4 7 6 1

2). The highest element that is not in its correct position is 7 and its strip also contains the

element 6. Therefore, the algorithm will try to put the element 5 next to them. Recursively,

the algorithm will try to increase the strip that contains 5 with elements that come before

it, which is not possible since it is already in the beginning. Since there is no need to invert

its strip, it will just put 5 next to 7, generating π = (4 3 5 7 6 1 2). The recursive call for

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 83

5 returns, and now the algorithm must bring the strip with 7 to the beginning, invert it,

and then move it to position 7, generating π = (2 1 4 3 5 6 7). Now, the highest element

that is not in the correct position is 4, whose strip contains 3. In order to put 2 next to

this strip, it suffices to invert the strip that contains 2, so the next permutation is π = (1

2 4 3 5 6 7). After the recursive call, the algorithm only has to put the strip that contains

4 in the right position by bringing it to the beginning, inverting it, and finally putting it

in position 4, generating the identity. Note that the sequence used by WPRm to sort this

permutation has a cost of 29.

Algorithm 15 Sorting algorithm for SbWPR.
WPRm(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let k be the highest element such that πk 6= k
4 c← c+ recWPRm(π, n, k, k) // cost of placing k at position k
5 return c

Algorithm 16 Auxiliary algorithm for WPRm.
recWPRm(π, n, k, p)

Input : permutation π, its size n, element k, and position p
Output : cost to put k in position p

1 if p < 1 or k < 1 then // Base case: values of position and element only
// decrease, so stop if any of them becomes zero

2 return 0
3 Let ini and end be the first and last positions of the strip that contains k
4 if end > p then // Base case: we only try to increase the strip if element

// k appears before position p, where it should be put at
5 return 0
6 k′ ← min{πini, πend} − 1
7 c← recWPRm(π, n, k′, ini− 1) // Increase the strip that contains k
8 if ini 6= 1 then // Bring the strip with k to the beginning if necessary
9 π ← π · ρp(end)

10 c← c+ f(end)
11 if πend−ini+1 > π1 then // Revert strip if necessary
12 π ← π · ρp(end− ini+ 1)
13 c← c+ f(end− ini+ 1)
14 if p > 1 then // Move strip with k to position p
15 π ← π · ρp(p)
16 c← c+ f(p)
17 return c

Consider now the permutation π20
⋆ = (15 18 11 14 7 10 3 6 2 4 1 8 5 12 9 16 13 20

17 19). Note that WPRm cannot increase the strip that contains 20 because the element
19 appears after it. Therefore, it will just bring 20 to the beginning of the permutation
and put it in its correct position. This will put 19 in position 1 of the permutation,

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 84

so that in the next step the algorithm will just put it in its correct position. Now the
permutation is (13 16 9 12 5 8 1 4 2 6 3 10 7 14 11 18 15 17 19 20) and something similar
happens: it is not possible to increase the strip that contains 18, so WPRm brings it to the
beginning and puts it in position 18; so, 17 is in the first position and it is just placed in
its correct position. It is not hard to see that this will happen for all other values of i, for
i ∈ {16, 14, 12, . . . , 6, 4}. After this, the permutation will be (2 1 3 4 5 . . . n) and one extra
prefix reversal is needed to finish the sorting. The total cost used by WPRm to sort π20

⋆ was
of 299. Now note that it is possible to find permutations πn

⋆ for any even value of n ≥ 6

for which the cost that WPRm will use to sort it is exactly 3n2/4− 1 (Algorithm 17 shows
how to build πn

⋆). This family of permutations shows that the approximation factor of
this algorithm, considering the lower bound of n, is also in Ω(n) (more precisely, it cannot
be better than 3n/4− 1/n).

Algorithm 17 Algorithm to build πn
⋆ , for n ≥ 6 and even.

Build_Permutation_πn
⋆ (n)

Input : an even integer n ≥ 6
Output : permutation of the form πn

⋆

1 πn−2 ← n; πn ← n− 1; π2 ← n− 2; πn−1 ← n− 3
2 e← 1; d← n− 4; i← n− 4
3 while i > 4 do

4 πd ← i; πe ← i− 1; πe+3 ← i− 2; πd+1 ← i− 3
5 d← d− 2; e← e+ 2; i← i− 4
6 if n ≡ 0 (mod 4) then

7 πd ← 4; πe ← 3; πe+2 ← 2; πd+1 ← 1
8 else

9 πe ← 1; πd+1 ← 2
10 return π

While the permutation is not sorted, the algorithm 2-PR for SbPR [30], mentioned in
Section 4.1, first tries to apply a 1-move and, if that is not possible, then it tries to apply
a 0-move followed by a 1-move. If none of these is possible, then the permutation has a
special format, which can be sorted with twice its number of breakpoints. The algorithm
we adapt considering this one is called WPRg: it first searches for all sequences of one or
two prefix reversals that remove one breakpoint and, if there is at least one sequence, it
chooses the one with minimum cost; otherwise, the special format is reached and it uses
the same sequence of rearrangements described by Fischer and Ginzinger [30].

Example 19. The following example shows the execution of WPRg over π = (5 3 4 7 6

1 2) of the previous example. No 1-move can be applied, so the sequence ρp(3), ρp(2) is

chosen because it has the minimum cost among the other sequences of two prefix reversals

that remove one upr-breakpoint. So, we have (3 4 5 7 6 1 2) and the sequence ρp(5), ρp(2)

is chosen, generating (7 6 5 4 3 1 2). At last, sequence ρp(7), ρp(2) is chosen, we finish

the sorting, and a total cost of 21 was used by the algorithm.

Note that WPRg also uses O(n) main steps, each one with a cost of at most 2n. There-
fore, WPRg(π, n) ≤ 2nO(n) = O(n2). Considering the lower bound of n, WPRg’s approxi-
mation factor is O(n2)/n, which is O(n).

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 85

Based on the algorithms for the traditional problems SbPT, SbPRT, SbPSR, SbPST,
SbPSRT, SbPR̄, SbPR̄T SbPSR̄, and SbPSR̄T, and based on the idea described for
WPRg, we can developed O(n)-approximation algorithms for all the other problems we are
considering (called WPTg, WPRTg, WPSRg, WPSTg, WPSRTg, WPR̄g, WPR̄Tg, WPSR̄g, and WPSR̄Tg,
respectively). These algorithms are greedy in the sense of removal of breakpoints and of
cost of the rearrangement(s) performed, and that is why their names end with a “g”.

For the rest of this section, we describe algorithms which are not adaptations of existing
algorithms. We used a divide-and-conquer strategy in order to improve the approximation
factors to O(lg2 n).

6.1.1 Sorting by Length-Weighted Prefix Reversals

In a similar way regarding the algorithms presented by Pinter and Skiena [50] and by
Bender et al. [5], the main idea of our algorithm is to partition the permutation in two
halves and to use the algorithm itself to sort each part. Unlike them, we can only do this
by using prefix reversals and, since a reversal can be mimicked by at most three prefix
reversals, a simple adaptation of their algorithms is not viable for this specific problem,
as the following example shows. Consider again π = (5 3 4 7 6 1 2). One of the reversals
performed by the algorithm of Pinter and Skiena [50] is ρ(5, 7). This specific reversal is
mimicked by the three prefix reversals ρp(7), ρp(3), and ρp(7). Therefore, what before had
a cost of 3, now has a cost of 17, which notably is more than three times worse.

Given a permutation π with n valid elements, we can transform it into the identity per-
mutation by moving the elements that are greater than the median

⌈
n
2

⌉
to the beginning

of the permutation, moving the elements that are less than or equal to the median to the
end of the permutation, and then we can sort the first half in decreasing order, reverse the
whole permutation, and sort the second half (now in the beginning) in increasing order.

Therefore, we have that such an algorithm should be able to do two types of sorting:
one that leaves an interval of the permutation in increasing order (INC) and one that
leaves an interval in decreasing order (DEC). From the explanation above, we can see
that whenever a sorting in increasing order needs to be done, we want to partition the
permutation so that the elements that are greater than the median stay at the beginning
of the interval and the ones that are less than or equal to the median stay at the end.
We will say that this kind of partition is of type DEC, because regarding the median the
values will be decreasing. Equivalently, when a decreasing sorting needs to be done, we
want the elements that are less than or equal to the median at the beginning and the
ones that are greater than the median at the end. We will say that this partition is of
type INC, again because regarding the median the values will be increasing. Figure 6.1
reinforces the idea of how an interval from 1 to some n′ of a permutation must be returned
by the partition algorithm to the sorting algorithm.

Since both partition and sorting algorithms are recursive, they must act on an interval
of the permutation (which, of course, always starts at 1). We will say that n is the size
of the permutation (valid elements) and n′ is the final position of the interval where the
algorithms must act. Algorithm 18 presents our sorting algorithm, WPR. We are considering
that INC and DEC are represented by constants 0 and 1, respectively. Note that the first

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 86

INC n′
⌈

n′

2

⌉

≤ m > m

DEC n′n′
−

⌈

n′

2

⌉

> m ≤ m

Figure 6.1: Format of the interval [1..n′] of a permutation after the partition algorithm is
called by the sorting algorithm. The left one is the result of an INC partition, which is
needed by a DEC sorting. The right one is the result of a DEC partition, which is needed
by an INC sorting. The median of the elements contained in π1 through πn′ is m.

call to our algorithm must be WPR(π, n, INC) if one wants to transform π into the identity
permutation.

Algorithm 18 An O(lg2 n)-approximation algorithm for SbWPR.

WPR(π, n′, type)

Input : permutation π, integer n′, and type of the sorting (INC=0 or DEC=1)
Output : cost to sort the interval from 1 to n′ of π according to the type required

1 if π1, π2, . . . , πn′ is sorted in type form then

// Base case: interval from 1 to n′ is already sorted according to type
2 return 0
3 if n′ ≤ 1 then // Base case: permutation with one or no element
4 return 0
5 if n′ = 2 then // Base case: permutation with two elements
6 if (π1 > π2 and type = INC) or (π1 < π2 and type = DEC) then

7 π ← π · ρp(2)
8 return f(2)
9 return 0

10 m← min{π1, π2, . . . , πn′} − 1 + ⌈n′/2⌉
11 c← partitionWPR(π, n′, 1− type,m) // Partition π using median m as the pivot
12 if type = INC then // Calculating size d of the first part
13 d← n′ − ⌈n′/2⌉
14 else

15 d← ⌈n′/2⌉
16 c← c+ WPR(π, d, 1 − type) // Sort from 1 to d with opposite type
17 π ← π · ρp(n

′)
18 c← c+ f(n′)
19 c← c+ WPR(π, n′ − d, type) // Sort from 1 to n′ − d with the same type
20 return c

Example 20. The following example shows the execution of WPR over π = (9 6 2 14 10

15 7 12 4 11 3 8 13 1 5) (the detail of the first partition call will be given in the next

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 87

example). We will say that the first call, which is WPR(π,15,INC) is call (0).

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // no base case applies, so calls partition
π←partitionWPR(π,15,DEC,8) = (15 10 9 14 12 13 11 4 3 8 7 2 6 1 5) // (1) calls WPR(π,7,DEC); no base case
π←partitionWPR(π,7,INC,12) = (10 9 12 11 13 15 14 4 3 8 7 2 6 1 5) // (2) calls WPR(π,4,INC); no base case
π←partitionWPR(π,4,DEC,10) = (11 12 9 10 13 15 14 4 3 8 7 2 6 1 5) // (3) calls WPR(π,2,DEC); has base case

π ← π·ρp(2) = (12 11 9 10 13 15 14 4 3 8 7 2 6 1 5) // returns to (2); reverse whole interval
π ← π·ρp(4) = (10 9 11 12 13 15 14 4 3 8 7 2 6 1 5) // (4) calls WPR(π,4,DEC); has base case
π ← π·ρp(2) = (9 10 11 12 13 15 14 4 3 8 7 2 6 1 5) // returns to (1); reverse whole interval
π ← π·ρp(7) = (14 15 13 12 11 10 9 4 3 8 7 2 6 1 5) // (5) calls WPR(π,3,DEC); no base case

π←partitionWPR(π,3,INC,14) = (13 14 15 12 11 10 9 4 3 8 7 2 6 1 5) // (6) calls WPR(π,2,INC); is INC sorted
π = (13 14 15 12 11 10 9 4 3 8 7 2 6 1 5) // returns to (5); reverse whole interval

π ← π·ρp(3) = (15 14 13 12 11 10 9 4 3 8 7 2 6 1 5) // (7) calls WPR(π,1,DEC); is DEC sorted
π = (15 14 13 12 11 10 9 4 3 8 7 2 6 1 5) // returns to (0); reverse whole interval

π ← π·ρp(15) = (5 1 6 2 7 8 3 4 9 10 11 12 13 14 15) // (8) calls WPR(π,8,INC); no base case
π←partitionWPR(π,8,DEC,4) = (5 6 8 7 2 1 3 4 9 10 11 12 13 14 15) // (9) calls WPR(π,4,DEC); no base case
π←partitionWPR(π,4,INC,6) = (5 6 8 7 2 1 3 4 9 10 11 12 13 14 15) // (10) calls WPR(π,2,INC); is INC sorted

π = (5 6 8 7 2 1 3 4 9 10 11 12 13 14 15) // returns to (9); reverse whole interval
π ← π·ρp(4) = (7 8 6 5 2 1 3 4 9 10 11 12 13 14 15) // (11) calls WPR(π,2,DEC); has base case
π ← π·ρp(2) = (8 7 6 5 2 1 3 4 9 10 11 12 13 14 15) // returns to (8); reverse whole interval
π ← π·ρp(8) = (4 3 1 2 5 6 7 8 9 10 11 12 13 14 15) // (12) calls WPR(π,4,INC); no base case

π←partitionWPR(π,4,DEC,2) = (4 3 1 2 5 6 7 8 9 10 11 12 13 14 15) // (13) calls WPR(π,2,DEC); is DEC sorted
π = (4 3 1 2 5 6 7 8 9 10 11 12 13 14 15) // returns to (12); reverse whole interval

π ← π·ρp(4) = (2 1 3 4 5 6 7 8 9 10 11 12 13 14 15) // (14) calls WPR(π,2,INC); has base case
π ← π·ρp(2) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Figure 6.2 shows the main features of the partition algorithm, explained next. The
idea is (1) to partition the first half of the given interval with the opposite type considering
the type that was given (that is, if one asks for an INC partition, we partition the first
half with the type DEC), (2) to reverse the entire interval, (3) to partition the other half
also with the opposite type, and (4) if m is the pivot of the partition, after the recursive
calls one must find positions j and k for which πℓ ≤ m (resp. πℓ > m) for all j ≤ ℓ ≤ k,
if the partition type is INC (resp. DEC), and apply a rearrangement ρp(k), if j > 1, to
finish the partition of the interval from 1 to n′. We point out that the partition algorithm
considers the set of elements EP of a given interval and it must partition it regarding a
pivot m that is not necessarily the median of EP or even is in EP . However, such pivot
is the median of the set of elements ES of the interval that is being considered by the
sorting algorithm.

The first base case of the partition is trivial: we do nothing if n′ ≤ 1. In order
to improve the performance, we added a second case that tries to discover whether the
permutation is almost partitioned, as shown in Figure 6.3 and described next. If the
partition is of type INC (resp. DEC), (1) we find a position x ≥ 0 for which πℓ ≤ m

(resp. πℓ > m) for all 1 ≤ ℓ ≤ x and a position y ≤ n′ + 1 for which πℓ > m (resp.
πℓ ≤ m) for all y ≤ ℓ ≤ n′. Note that x and y always exist, because one can always have
x = 0 and/or y = n′ + 1. So, (2) we try to find a position z for which πℓ > m (resp.
πℓ ≤ m) for all x < ℓ ≤ z and πℓ ≤ m (resp. πℓ < m) for all z < ℓ < y. If position z

exists, then rearrangements (3) ρp(z) (if x > 0) and (4) ρp(y − 1) are sufficient to finish
the partition. Otherwise, we can at least update n′ to y − 1. Algorithm 19 shows the
partition algorithm, partitionWPR, described above.

Example 21. The following example shows the execution of partitionWPR over π = (9

6 2 14 10 15 7 12 4 11 3 8 13 1 5). We are considering the previous example, so the first

call (call (0)) is partitionWPR(π, 15, DEC, 8). Also, note that if no base case occurs,

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 88

(1) Partition from 1 to
⌈
n′

2

⌉

:

INC n′

>m ≤m
DEC n′

≤m >m

(2) Reverse the whole interval:

n′

≤m >m
n′

>m ≤m

(3) Partition from 1 to n′ −
⌈
n′

2

⌉

:

n′j k
>m ≤m ≤m >m

n′j k
≤m >m >m ≤m

(4) Apply ρp(k) if j > 1:

n′

≤m >m
n′

>m ≤m

Figure 6.2: Main idea of the partition algorithm for SbWPR, regarding a pivot m, over the
interval from position 1 to n′ of a permutation. The left column represents the partition
of type INC while the right column represents the partition of type DEC.

then the end of the interval may be updated:

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // (1) calls partitionWPR(π,7,INC,8); no base case
π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // (2) calls partitionWPR(π,4,DEC,8); has base case

π ← π·ρp(3) = (2 6 9 14 10 15 7 12 4 11 3 8 13 1 5) // still treating base case
π ← π·ρp(4) = (14 9 6 2 10 15 7 12 4 11 3 8 13 1 5) // returns to (1); reverses whole interval
π ← π·ρp(7) = (7 15 10 2 6 9 14 12 4 11 3 8 13 1 5) // (3) calls partitionWPR(π,3,DEC,8); has base case
π ← π·ρp(3) = (10 15 7 2 6 9 14 12 4 11 3 8 13 1 5) // returns to (1); finishes partition until position 7
π ← π·ρp(5) = (6 2 7 15 10 9 14 12 4 11 3 8 13 1 5) // returns to (0); reverses whole interval

π ← π·ρp(13) = (13 8 3 11 4 12 14 9 10 15 7 2 6 1 5) // (4) calls partitionWPR(π,6,INC,8); no base case
π = (13 8 3 11 4 12 14 9 10 15 7 2 6 1 5) // (5) calls partitionWPR(π,3,DEC,8); is DEC partitioned
π = (13 8 3 11 4 12 14 9 10 15 7 2 6 1 5) // returns to (4); reverses whole interval

π ← π·ρp(5) = (4 11 3 8 13 12 14 9 10 15 7 2 6 1 5) // (6) calls partitionWPR(π,2,DEC,8); has base case
π ← π·ρp(2) = (11 4 3 8 13 12 14 9 10 15 7 2 6 1 5) // returns to (4); finishes partition until position 6
π ← π·ρp(4) = (8 3 4 11 13 12 14 9 10 15 7 2 6 1 5) // returns to (0); finishes partition until position 15

π ← π·ρp(10) = (15 10 9 14 12 13 11 4 3 8 7 2 6 1 5)

Lemma 47 analyses the cost used by WPR to sort any permutation and Theorem 7
shows that the approximation fator of WPR is O(lg2 n).

Lemma 47. For any unsigned permutation π with n valid elements and for α = 1,

partitionWPR(π, n) is O(n lgn) and WPR(π, n) is O(n lg2 n).

Proof. It is easy to see that WPR(π, n) ≤ 2× WPR(π, n/2) + partitionWPR(π, n) + O(n).
Furthermore, partitionWPR(π, n) ≤ 2 × partitionWPR(π, n/2) + O(n). Therefore, we
have that partitionWPR(π, n) = O(n lgn), which means that WPR(π, n) = O(n lg2 n).

Theorem 7. For α = 1, SbWPR is O(lg2 n)-approximable.

Proof. Regarding the time complexity, first note that a prefix reversal takes time O(n)

to be done. In Algorithm 19, which shows the partition algorithm, lines 4, 7, and 19 are
all O(n). All other steps from the partition algorithm or the sorting algorithm (except
for the recursive calls) are either O(1) or prefix reversals. Therefore, if T ′(n) is the time
used by WPR to sort π and T ′′(n) is the time used by partitionWPR to partition π, then

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 89

(1) Find positions x and y:
INC

x y
≤m >m

DEC
x y

>m ≤m

(2) Find a position z:
x yz

≤m >m>m ≤m
x yz

>m ≤m≤m >m

(3) If x > 0, apply ρp(z):
y
>m>m ≤m

y
≤m≤m >m

(4) Apply ρp(y − 1):

>m≤m ≤m>m

Figure 6.3: Base case of partitionWPR with pivot m. The left column represents the
partition of type INC while the right column represents the partition of type DEC.

Algorithm 19 Partition algorithm for WPR.
partitionWPR(π, n′, type, m)

Input : permutation π, integer n′, type (INC/DEC) of the partition, and integer m
Output : cost to partition interval from 1 to n′ of π according to type and pivot m

1 if n′ ≤ 1 then // Base case: permutation with one or no element
2 return 0
3 c← 0
4 Let x ≥ 0 be the highest integer such that, for all i ∈ [1..x], πi ≤ m if type = INC (resp.

πi > m if type = DEC) and let y ≤ n′ be the smallest integer such that, for all i ∈ [y..n′],
πi > m if type = INC (resp. πi ≤ m if type = DEC)

5 if x = y − 1 then // Base case: permutation is already partitioned
6 return 0
7 if there is an integer z such that πi > m and πj ≤ m if type = INC (resp. πi ≤ m and

πj > m if type = DEC) for all i ∈ [x+ 1..z] and j ∈ [z + 1..y − 1] then

// Base case: permutation is partitioned in at most four parts
8 if x > 0 then

9 π ← π · ρp(z)
10 c← c+ f(z)
11 π ← π · ρp(y − 1)
12 c← c+ f(y − 1)
13 return c
14 n′ ← y − 1

15 c← c+ partitionWPR(π,
⌈
n′

2

⌉

, 1− type,m) // Partition from 1 to
⌈
n′

2

⌉

considering m

16 π ← π · ρp(n
′)

17 c← c+ f(n′)

18 c← c+ partitionWPR(π, n′−
⌈
n′

2

⌉

, 1−type,m) // Partition from 1 to n′−
⌈
n′

2

⌉

19 Let j and k be the first and last positions, respectively, of the interval that contains only
elements that are less than or equal to m if type = INC or greater than m if type = DEC

20 if j > 1 and j ≤ k then

21 π ← π · ρp(k)
22 c← c+ f(k)
23 return c

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 90

T ′(n) ≤ 2 × T ′(n/2) + T ′′(n) + O(n) and T ′′(n) ≤ 2 × T ′′(n/2) + O(n). Therefore,
T ′′(n) = O(n logn) and T ′(n) = O(n log2 n) and the time complexity of WPR is O(n lg2 n).

Using Lemmas 43 and 47, the approximation factor is O(n lg2 n)/n, which is O(lg2 n).
Because n is O(n̄), we can also say that SbWPR is O(lg2 n̄)-approximable.

Note that the partition algorithm can be adapted to sort binary strings, since it
separates the permutation in two parts. Furthermore, it guarantees an approximation
factor of O(lgn) for this problem, as Theorem 8 shows.

Theorem 8. For α = 1, SBbWPR is O(lgn)-approximable.

Proof. As mentioned in Lemma 47 and Theorem 7, the cost used by partitionWPR is
O(n lgn) and it runs in O(n lgn) time. Using Lemma 43, the lower bound to sort any
binary string is n. Therefore, the approximation factor of such algorithm is O(n lgn)/n,
which is O(lgn).

6.1.2 Sorting by Length-Weighted Prefix and Suffix Reversals

It is not difficult to adapt algorithms WPR and partitionWPR into WSR and partitionWSR,
which use only suffix reversals. The important difference is that, instead of receiving the
end of the interval, now they receive its beginning. With these four algorithms we can
make an algorithm called WPSR for SbWPSR: if the permutation is separated by positions
i and j, as stated in Definition 22, then one can sort from 1 to i in increasing order with
WPR and sort from j to n in increasing order with WSR; if the permutation is not separated,
then one can explicitly partition the permutation and let the elements less than or equal
to the median at the beginning of the permutation and the ones greater than the median
at the end, sort the first half in increasing order with WPR, and sort the second half in
increasing order with WSR.

As Example 17 showed, in the case where the number of valid elements is n = n̄

and the permutation is separated, the separation can happen for more than one pair of
positions i and j. For implementation purposes we decided to choose the pair for which
the distance from i to the median ⌈n̄/2⌉ is the smallest.

The partition algorithm for this problem, called partitionWPSR, works as follows. If
no base case happens (the permutation is already partitioned or is partitioned in at most
four parts), then we can partition the first half of the permutation in an INC form with
partitionWPR and considering ⌈n/2⌉ as the pivot, and then partition the second half
with partitionWSR in a DEC form also considering ⌈n/2⌉ as the pivot. This will leave
the permutation with at most three parts (the first and the last ones with elements less
than or equal to ⌈n/2⌉ and the second one with elements greater than ⌈n/2⌉), and an
extra suffix reversal can finish the partition.

Example 22. The following example shows the execution of WPSR over π = (9 6 2 14 10

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 91

15 7 12 4 11 3 8 13 1 5). We refer to the first call, WPSR(π,15,INC), as call (0).

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // no base case and not separated
π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // (1) calls partitionWPSR(π,15); no base case
π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // (2) calls partitionWPR(π,8,INC,8)

π ← π·ρp(3) = (2 6 9 14 10 15 7 12 4 11 3 8 13 1 5)
π ← π·ρp(4) = (14 9 6 2 10 15 7 12 4 11 3 8 13 1 5)
π ← π·ρp(7) = (7 15 10 2 6 9 14 12 4 11 3 8 13 1 5)
π ← π·ρp(3) = (10 15 7 2 6 9 14 12 4 11 3 8 13 1 5)
π ← π·ρp(5) = (6 2 7 15 10 9 14 12 4 11 3 8 13 1 5) // returns to (1); (3) calls partitionWSR(π,9,DEC,8)
π ← π·ρs(13) = (6 2 7 15 10 9 14 12 4 11 3 8 5 1 13)
π ← π·ρs(9) = (6 2 7 15 10 9 14 12 13 1 5 8 3 11 4)

π ← π·ρs(14) = (6 2 7 15 10 9 14 12 13 1 5 8 3 4 11)
π ← π·ρs(10) = (6 2 7 15 10 9 14 12 13 11 4 3 8 5 1) // returns to (1); finishes the partition
π ← π·ρs(4) = (6 2 7 1 5 8 3 4 11 13 12 14 9 10 15) // returns to (0); (4) calls WPR(π,8,INC)
π ← π·ρp(2) = (2 6 7 1 5 8 3 4 11 13 12 14 9 10 15)
π ← π·ρp(6) = (8 5 1 7 6 2 3 4 11 13 12 14 9 10 15)
π ← π·ρp(3) = (1 5 8 7 6 2 3 4 11 13 12 14 9 10 15)
π ← π·ρp(5) = (6 7 8 5 1 2 3 4 11 13 12 14 9 10 15)
π ← π·ρp(3) = (8 7 6 5 1 2 3 4 11 13 12 14 9 10 15)
π ← π·ρp(4) = (5 6 7 8 1 2 3 4 11 13 12 14 9 10 15)
π ← π·ρp(4) = (8 7 6 5 1 2 3 4 11 13 12 14 9 10 15)
π ← π·ρp(9) = (4 3 2 1 5 6 7 8 11 13 12 14 9 10 15)
π ← π·ρp(4) = (1 2 3 4 5 6 7 8 11 13 12 14 9 10 15) // returns to (0); (5) calls WSR(π,9,INC)
π ← π·ρs(9) = (1 2 3 4 5 6 7 8 15 10 9 14 12 13 11)

π ← π·ρs(12) = (1 2 3 4 5 6 7 8 15 10 9 11 13 12 14)
π ← π·ρs(14) = (1 2 3 4 5 6 7 8 15 10 9 11 13 14 12)
π ← π·ρs(13) = (1 2 3 4 5 6 7 8 15 10 9 11 12 14 13)
π ← π·ρs(10) = (1 2 3 4 5 6 7 8 15 13 14 12 11 9 10)
π ← π·ρs(12) = (1 2 3 4 5 6 7 8 15 13 14 10 9 11 12)
π ← π·ρs(12) = (1 2 3 4 5 6 7 8 15 13 14 12 11 9 10)
π ← π·ρs(14) = (1 2 3 4 5 6 7 8 15 13 14 12 11 10 9)
π ← π·ρs(9) = (1 2 3 4 5 6 7 8 9 10 11 12 14 13 15)

π ← π·ρs(13) = (1 2 3 4 5 6 7 8 9 10 11 12 15 13 14)
π ← π·ρs(14) = (1 2 3 4 5 6 7 8 9 10 11 12 15 14 13)
π ← π·ρs(13) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Algorithms 20 and 21 show WPSR and partitionWPSR. Theorem 9 shows that WPSR is
a O(lg2 n)-approximation.

Algorithm 20 An O(lg2 n)-approximation algorithm for SbWPSR.

WPSR(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 if n ≤ 1 then

2 return 0
3 if n = 2 then

4 if π1 > π2 then

5 π ← π · ρp(2)
6 return f(2)
7 return 0
8 if π is separated by i and j then// According to Definition 22
9 c← c+ WPR(π, i, INC) // Sort from 1 to i in increasing order

10 c← c+ WSR(π, j, INC) // Sort from j to n in increasing order
11 else

12 c← partitionWPSR(π, n)
13 c← c+ WPR(π,

⌈
n
2

⌉
, INC) // Sort from 1 to

⌈
n
2

⌉
in increasing order

14 c← c+ WSR(π,
⌈
n
2

⌉
+ 1, INC) // Sort from

⌈
n
2

⌉
+ 1 to n in increasing order

15 return c

Theorem 9. For α = 1, SbWPSR is O(lg2 n)-approximable.

Proof. Let π be a permutation with n̄ elements and n valid elements. If π is separated
by positions i and j (n = i + n̄ − j + 1), according to Definition 22, then WPSR depends

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 92

on WPR over the segment from 1 to i, and on WSR over the segment from j to n̄. Since WSR

is equivalent to WPR, these two use a cost of at most O(n lg2 n) each to sort π.
If π is not separated, then n = n̄ and WPSR depends on partitionWPSR over the whole

permutation, on WPR over the first half, and on WSR over the second half. Again, WSR and
WPR have a cost of O(n lg2 n) to sort π. The partition algorithm depends on the cost of
partitionWPR over half the permutation, on the cost partitionWSR over the other half,
and a suffix reversal over the whole permutation, which means that the cost to partition
the permutation using our algorithm is O(n lgn).

Therefore, the cost of WPSR to sort a permutation is O(n lg2 n). Along with Lemma 44,
this algorithm is a O(lg2 n)-approximation. Also, note that the time complexity of WPSR
is O(n lg2 n) (an analysis similar to the one presented on Theorem 7 can be done).

Algorithm 21 Partition algorithm for WPSR.
partitionWPSR(π, n)

Input : permutation π and its size n
Output : cost used to partition π

1 Let x ≥ 0 be the highest integer such that, for all i ∈ [1..x], πi ≤
⌈
n
2

⌉
and let y ≤ n′ be the

smallest integer such that, for all i ∈ [y..n′], πi >
⌈
n
2

⌉

2 if x = y − 1 then // Base case: permutation is already partitioned
3 return 0
4 c← 0
5 if there is an integer z such that πi >

⌈
n
2

⌉
and πj ≤

⌈
n
2

⌉
for all i ∈ [x+ 1..z] and

j ∈ [z + 1..y − 1] then // Base case: permutation is partitioned in at most four parts
6 if x > 0 then

7 π ← π · ρp(z)
8 c← c+ f(z)
9 π ← π · ρp(y − 1)

10 c← c+ f(y − 1)
11 return c
12 c← partitionWPR(π,

⌈
n
2

⌉
, INC,

⌈
n
2

⌉
)

// Partition from 1 to
⌈
n
2

⌉
with INC type considering pivot

⌈
n
2

⌉

13 c← c+ partitionWSR(π,
⌈
n
2

⌉
+ 1, DEC,

⌈
n
2

⌉
)

// Partition from
⌈
n
2

⌉
+1 to n with DEC type considering pivot

⌈
n
2

⌉

14 Let j and k be the first and the last position, respectively, of the interval that contains only
elements greater than

⌈
n
2

⌉

15 if k < n then

16 π ← π · ρs(j)
17 c← c+ f(n− j + 1)
18 return c

Similarly to what was done regarding SBbWPR, we can use partitionWPSR as an
algorithm for SBbWPSR and it can guarantee an approximation factor of O(lgn) for
this problem, as stated in Theorem 10.

Theorem 10. For α = 1, SBbWPSR is O(lgn)-approximable.

Proof. This proof is similar to the one of Theorem 8.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 93

6.1.3 Sorting by Length-Weighted Prefix Transpositions and Sort-

ing by Length-Weighted Prefix and Suffix Transpositions

We can also adapt WPR to use only prefix transpositions and make an algorithm for Sb-

WPT. When prefix reversals are allowed, a decreasing interval can be turned into an
increasing interval with one rearrangement, which cannot be done with prefix transpo-
sitions only. Therefore, the main difference is that the sorting algorithm does not need
a “type” anymore, because it only tries to sort the intervals in increasing order. This
means that the partition algorithm will always leave the elements that are greater than
the median at the beginning and the elements less than or equal to the median at the
end. We then must sort the first half in increasing order, exchange it with the second
half, and also sort it in increasing order. Algorithms 22 and 23 show the sorting (WPT)
and the partition (partitionWPT) algorithms for SbWPT, respectively.

Algorithm 22 An O(lg2 n)-approximation algorithm for SbWPT.

WPT(π, n′)

Input : permutation π and integer n′

Output : cost to sort π from position 1 to n′

1 if π1, π2, . . . , πn′ is sorted in increasing form then

2 return 0
3 if n′ ≤ 1 then

4 return 0
5 if n′ = 2 then

6 if π1 > π2 then

7 π ← π · τp(2, 3)
8 return f(2)
9 return 0

10 m← min{π1, π2, . . . , πn′} − 1 + ⌈n′/2⌉
11 c← partitionWPT(π, n′,m) // Partition π regarding the median m
12 c← c+ WPT(π, n′ − ⌈n′/2⌉) // Sort from 1 to n′−⌈n′/2⌉ (elements greater than m)
13 π ← π · τp(n

′ − ⌈n′/2⌉+ 1, n′ + 1)
14 c← c+ f(n′)
15 c← c+ WPT(π, ⌈n′/2⌉) // Sort from 1 to ⌈n′/2⌉
16 return c

Again, we can adapt WPT to use only suffix transpositions and use both to make an
algorithm for SbWPST. With the same idea we used for WPSR, we can create WPST and
partitionWPST.

Theorems 11 and 12 show that the approximation factor of algorithms WPT and WPST

is O(lg2 n).

Theorem 11. For α = 1, SbWPT is O(lg2 n)-approximable.

Proof. According to Algorithm 22, it is easy to see that WPT(π, n) ≤ 2 × WPT(π, n/2) +

partitionWPT(π, n) + O(n). Also, partitionWPT(π, n) ≤ 2 × partitionWPT(π, n/2)

+ O(n), which leads us to partitionWPT(π, n) being O(n lgn) and WPT(π, n) being
O(n lg2 n). Using Lemma 43, the approximation factor of WPT is O(n lg2 n)/n, which
is O(lg2 n).

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 94

Theorem 12. For α = 1, SbWPST is O(lg2 n)-approximable.

Proof. This proof can be done by using similar arguments as in proof of Theorem 9.

Algorithm 23 Partition algorithm for WPT.
partitionWPT(π, n′, m)

Input : permutation π, integer n′, and integer m
Output : cost to partition interval from 1 to n′ of π according to pivot m

1 if n′ ≤ 1 then

2 return 0
3 Let x be the highest integer such that, for all i ∈ [1..x], πi > m
4 Let y be the smallest integer such that, for all i ∈ [y..n′], πi ≤ m
5 if x = y − 1 then

6 return 0
7 if there is an integer z such that πi ≤ m for all i ∈ [x+ 1..z] and πj > m for all j ∈

[z + 1..y − 1] then

8 π ← π · τp(z + 1, y)
9 return f(y − 1)

10 n′ ← y − 1

11 c← partitionWPT(π,
⌈
n′

2

⌉

,m)

12 π ← π · τp(
⌈
n′

2

⌉

+ 1, n′ + 1)

13 c← c+ f(n′)

14 c← c+ partitionWPT(π, n′ −
⌈
n′

2

⌉

,m)

15 if there are two intervals that contain only elements greater than m, with j (resp. k)
being the first (resp. last) position of the second interval then

16 π ← π · τp(j, k + 1)
17 c← c+ f(k)
18 return c

Similarly to what was done regarding SBbWPR, we can use both partitionWPT and
partitionWPST as algorithms for SBbWPT and SBbWPST, respectively, and they can
guarantee an approximation factor of O(lgn) for these problems, as stated in Theorem 13.

Theorem 13. For α = 1, SBbWPT and SBbWPST are O(lgn)-approximable.

Proof. This proof is similar to the one of Theorem 8.

6.1.4 Sorting by Length-Weighted Prefix Reversals and Transpo-

sitions and Sorting by Length-Weighted Prefix and Suffix

Reversals and Transpositions

For SbWPRT, the two rearrangements available act only over the prefix of the permuta-
tion. Therefore, we designed a slightly different approach, although the idea is still very
similar to the previous one. First note that partitionWPR has two important parts when
acting on an interval from 1 to n′ of a permutation π: (i) a call to partitionWPR(π,

⌈
n′

2

⌉
,

1− type, m) followed by ρp(n
′); and (ii) a call to partitionWPR(π, n′−

⌈
n′

2

⌉
, 1− type, m)

followed by a prefix reversal that finishes the partition. In each of these parts, we have

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 95

a moment when we perform one rearrangement, which in the case of SbWPRT could be
adapted so that either a prefix reversal or a prefix transposition could be used. Because
of this, there are four possibilities for partitionWPRT:

1. a call to partitionWPRT(π,
⌈
n′

2

⌉
, type,m) followed by τp(

⌈
n′

2

⌉
+ 1, n′ + 1); and (ii)

a call to partitionWPRT(π, n′ −
⌈
n′

2

⌉
, type,m) followed by a prefix transposition to

finish the partition;

2. a call to partitionWPRT(π,
⌈
n′

2

⌉
, type,m) followed by τp(

⌈
n′

2

⌉
+ 1, n′ + 1); and (ii)

a call to partitionWPRT(π, n′ −
⌈
n′

2

⌉
, 1 − type,m) followed by a prefix reversal to

finish the partition;

3. a call to partitionWPRT(π,
⌈
n′

2

⌉
, 1 − type,m) followed by ρp(n

′); and (ii) a call to
partitionWPRT(π, n′−

⌈
n′

2

⌉
, type,m) followed by a prefix transposition to finish the

partition;

4. a call to partitionWPRT(π,
⌈
n′

2

⌉
, 1 − type,m) followed by ρp(n

′); and (ii) a call to
partitionWPRT(π, n′ −

⌈
n′

2

⌉
, 1− type,m) followed by a prefix reversal to finish the

partition.

Note that depending on which rearrangement is performed, the recursive calls vary
using type or 1 − type, where type can be INC= 1 or DEC= 0. Also, note that any of
these possibilities can be used, but the experimental results (Section 6.5) indicates that
the second one performs better than the others.

For the main algorithm, WPRT, although we could use a prefix transposition between its
recursive calls, we decided to keep it exactly as WPR, only adapting it to use partitionWPRT.

In a similar manner, we have four options for the partition when only suffix reversals
and suffix transpositions are allowed. With this partition algorithm, the sorting variation
that uses only suffix reversals and transpositions, and the algorithms for SbWPRT, we can
make an algorithm for SbWPSRT (called WPSRT) in the same way we did for SbWPSR

and SbWPST: explicitly partition the permutation, if it is not already separated as stated
in Definition 22, and then use the prefix algorithm to sort the beginning and the suffix
algorithm to sort the end of the permutation.

Regardless of which of the four possibilities is chosen for partitionWPRT or its suffix
version, the algorithms for SbWPRT and for SbWPSRT are also O(lg2 n)-approximations,
as shown in Theorems 14 and 15.

Theorem 14. For α = 1, SbWPRT is O(lg2 n)-approximable.

Proof. Note that all the rearrangements performed by WPRT or partitionWPRT, regardless
of which of the four possibilities of the partition is used, have the same cost of O(n), where
n is the amount of valid elements. Therefore, the analysis for this problem is similar to
the analysis for WPR or WPT, which are shown by Theorems 7 and 11.

Theorem 15. For α = 1, SbWPSRT is O(lg2 n)-approximable.

Proof. This proof is similar to the ones of Theorems 9, 12, and 14.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 96

Again, we can use partitionWPRT and partitionWPSRT to sort binary strings and
guarantee an approximation factor of O(lgn) for these problems, as stated in Theorem 16.

Theorem 16. For α = 1, SBbWPRT and SBbWPSRT are O(lgn)-approximable.

Proof. This proof is similar to the one for Theorem 8.

6.2 Bounds on the Diameters

We divided this section in two main parts, in order to show how to obtain lower bounds for
the diameters and then upper bounds for them. In the second part, we use the algorithms
defined in Section 6.1.

6.2.1 Lower Bounds on the Diameters

In this section we show bounds to transform the binary string T ′ = 0101...01 into T ′s =

0n/21n/2 (that is, to sort T ′), in order to give lower bounds on Cα
β (n) and, consequently,

on Dα
β (n).

6.2.1.1 Considering 0 < α < 1

Bender et al. [5] showed that Cα
r (n) and Dα

r (n) are in Ω(n). The fact that Cα
r (n) ≤ Cα

pr(n)

and Dα
r (n) ≤ Dα

pr(n) leads directly to Lemma 48.

Lemma 48. For 0 < α < 1, Cα
pr(n) and Dα

pr(n) are Ω(n).

For any binary string T = t1t2 . . . tn, let P0<α<1(T) =
∑n−1

i=1 |ti− ti+1|. Lemma 49 gives
a lower bound on Cα

pt(n) and Dα
pt(n).

Lemma 49. For 0 < α < 1, Cα
pt(n) and Dα

pt(n) are Ω(n).

Proof. It is easy to see that P0<α<1(T
′) = n − 1 and P0<α<1(T

′
s) = 1. Since a prefix

transposition changes P0<α<1(T) by at most 2, at least ((n− 1)− 1)/2 = n/2− 1 of them
are needed to sort T ′. Since any transposition has length greater than or equal to 2, the
cost to sort T ′ is at least Ω(2αn) = Ω(n).

The arguments given in Lemma 49 can be directly used for the case when prefix
reversals are allowed along with prefix transpositions (because a prefix reversal can change
P0<α<1(T) by at most 1). This leads to Lemma 50.

Lemma 50. For 0 < α < 1, Cα
prt(n) and Dα

prt(n) are Ω(n).

6.2.1.2 Considering α = 1

Bender et al. [5] showed that Cα
r (n) and Dα

r (n) are in Ω(n lg n). The fact that Cα
r (n) ≤

Cα
pr(n) and Dα

r (n) ≤ Dα
pr(n) leads directly to Lemma 51.

Lemma 51. For α = 1, Cα
pr(n) and Dα

pr(n) are Ω(n lg n).

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 97

Given any binary string T that has the same amount of 0’s and 1’s, match the kth
0 with the kth 1, for 1 ≤ k ≤ n/2, and keep this matching during the sorting process
of such sequence. Let T ∗ be a binary string that can be generated from T by applying
on it some allowed prefix rearrangements. We define the separation measure d(T, T ∗, k)

between the kth 0 and the kth 1 of T as the number of bits between them plus one unit
considering their positions in T ∗.

Example 23. Let T = 0001011110 and T ∗ = T · τp(3, 7) = 0101001110. Due to the

matching we make in T , we can rewrite them as T = 01020311041213141505 and T ∗ =

03110412010213141505 in order to facilitate the computation of the separation measures.

Thus, we have d(T, T ∗, 1) = 3, d(T, T ∗, 2) = 2, d(T, T ∗, 3) = 6, d(T, T ∗, 4) = 5, and

d(T, T ∗, 5) = 1.

Now let Pα=1(T, T
∗) =

∑n/2
k=1 lg d(T, T

∗, k). Lemma 54 gives a lower bound on Cα
pt(n)

and Cα
prt(n), and, consequently, on Dα

pt(n) and Dα
prt(n). It uses Lemmas 52 and 53 pre-

sented next.

Lemma 52. Pα=1(T
′, T ′s) = Ω(n lg n).

Proof. In T ′s, the distance from each of the n/4 first 0’s to its matched 1 is at least n/4.
Therefore,

Pα=1(T
′, T ′s) ≥

n/4
∑

k=1

lg
n

4
≥

n

4
lg

n

4
,

which is Ω(n lg n).

Lemma 53. Let λ be a prefix reversal or a prefix transposition of length ℓ. For any

binary string T with the same amount of 0’s and 1’s and T ∗ that can be generated from T

by applying some allowed prefix rearrangements on it, we have that Pα=1(T, T
∗ · λ) −

Pα=1(T, T
∗) ≤ qℓ, where q is a constant.

Proof. Let T ∗ = t1 t2 . . . tn. Note that if λ is a prefix reversal ρp(i), then d(T, T ∗ ·ρp(i), k)

only changes if the position of one element of the kth 0/1 pair is less than or equal to i

and the position of the other element of the pair is greater than i. A prefix transposition
τp(i, j), however, exchanges two segments of the sequence, which means that d(T, T ∗ ·

τp(i, j), k) can change in two manners: (1) one element of the kth 0/1 pair is in a position
less than j and the other is in a position greater than or equal to j, or (2) one element of
the kth 0/1 pair is in a position less than i and the other is between i and j − 1.

Assume λ = τp(i, j) first and consider that case (1) above happens. Without loss
of generality, choose some k where the 0 appears inside the prefix transposition (before
position j) and the 1 appears outside it (after or at position j) in T ∗, and denote as x the
distance between the 1 and position j − 1:

T ∗ = t1 t2 . . . 0
︸ ︷︷ ︸

d(T,T ∗,k)

. . . ti−1ti ti+1 . . . tj−1

x
︷ ︸︸ ︷

tj . . . 1 . . . tn

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 98

Note that x ≤ d(T, T ∗, k). Also, note that d(T, T ∗ · λ, k) ≤ d(T, T ∗, k) + ℓ, because
then 0 can be placed at most ℓ bits away from where it is in T ∗. Therefore, the contri-
bution of the distance of this pair to the function Pα=1 is less than lg(ℓ + d(T, T ∗, k)) −

lg(d(T, T ∗, k)) = lg(1 + ℓ/d(T, T ∗, k)) ≤ lg(1 + ℓ/x).
Now consider that case (2) happens. Again, without loss of generality, assume that

the 0 appears inside the first segment of the prefix transposition (before position i) and
the 1 appears in the second segment (between positions i and j − 1) in T ∗, and assume
that x is the distance between the 1 and position i− 1:

T ∗ = t1 t2 . . . 0
︸ ︷︷ ︸

d(T,T ∗,k)

. . . ti−1

x
︷ ︸︸ ︷

ti ti+1 . . . 1 . . . tj−1 tj . . . 1 . . . tn

Note that x ≤ d(T, T ∗, k) and that d(t, T ∗ · λ, k) ≤ d(T, T ∗, k) + ℓ, which can be tight
if we consider both elements of the pair as close to position i as possible. Therefore, the
contribution of the distance of this pair to the function Pα=1 is less than lg(ℓ+d(T, T ∗, k))−

lg(d(T, T ∗, k)) = lg(1 + ℓ/d(T, T ∗, k)) ≤ lg(1 + ℓ/x).
Now we have two important facts. The first one is that the maximum change that

can occur in the function Pα=1 will happen if all ℓ bits of the segment affected by the
rearrangement contribute to the change. Second, note that the more x decreases, the
higher lg(1 + ℓ/x) gets: for case (1) this means that the bit that is outside the prefix
transposition has to be as close as possible to position j while for case (2) this means that
the bit in the second segment has to be as close as possible to position i.

Assume then that t of the ℓ bits are of case (1) and that the other ℓ − t are of case
(2). This means that the highest change in Pα=1 will have (ℓ − t)/2 bits of case (2) in
each segment of the prefix transposition. According to all these facts, we have that

Pα=1(T, T
∗ · τp(i, j))− Pα=1(T, T

∗) ≤

t∑

j=1

lg

(

1 +
ℓ

j

)

+

(ℓ−t)/2
∑

j=1

lg

(

1 +
ℓ

j

)

.

It is easy to see that the right side of the expression above is maximum when t = ℓ,
which leads us to

Pα=1(T, T
∗ · τp(i, j))− Pα=1(T, T

∗) ≤
∑ℓ

j=1 lg
(

1 + ℓ
j

)

≤
∑ℓ

j=1

(

1 + lg
(

ℓ
j

))

= ℓ+
∑ℓ

j=1 lg
(

ℓ
j

)

= ℓ+ lg
(

ℓℓ

ℓ!

)

≤ ℓ+ lg eℓ = (1 + lg e)ℓ.

When λ = ρp, the proof is very similar, being sufficient to use the same considerations
made for case (1).

Lemma 54. For α = 1, Cα
pt(n), D

α
pt(n), C

α
prt(n), and Dα

prt(n) are Ω(n lg n).

Proof. Note that Pα=1(T
′, T ′) = 0 and Pα=1(T

′, T ′s) = Ω(n lg n) (see Lemma 52). Also,
a prefix transposition or a prefix reversal of length ℓ increases Pα=1 by at most qℓ where

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 99

q = O(1) (see Lemma 53).
Consider an optimal sequence that sorts T ′ and contains d rearrangements (prefix

transpositions or prefix reversals) λ1, λ2, . . . , λd of lengths ℓ1, ℓ2, . . . , ℓd. We know that
Pα=1(T

′, T ′ · λ1)− Pα=1(T
′, T ′) ≤ qℓ1, Pα=1(T

′, T ′ · λ1 · λ2)− Pα=1(T
′, T ′ · λ1) ≤ qℓ2, and

so on, until Pα=1(T
′, T ′s)− Pα=1(T

′, T ′ · λ1 · · ·λd−1) ≤ qℓd. All these together show that

Pα=1(T
′, T ′s)− P (T ′, T ′) ≤

d∑

i=1

qℓi = q
d∑

i=1

ℓi = q
d∑

i=1

f(ℓi) = qbαβ(T
′),

for β ∈ {τp, ρpτp}.
Therefore, cαβ(T

′) ≥ (Pα=1(T
′, T ′s)− Pα=1(T

′, T ′))/q = (Ω(n lg n)− 0)/q, which means
that cαβ(T

′) is Ω(n lg n) and, thus, Cα
β (n) = Ω(n lg n) and Dα

β (n) = Ω(n lg n).

6.2.1.3 Considering α > 1

From Lemma 43 we know that dαβ(π) ≥ nα and cαβ(T) ≥ nα for β ∈ {pr, pt, prt}. This
leads directly to Lemma 55.

Lemma 55. For α = 1, Cα
pr(n), D

α
pr(n), C

α
pt(n), D

α
pt(n), C

α
prt(n), and Dα

prt(n) are Ω(nα).

6.2.2 Upper Bounds on the Diameters

The algorithms presented in Section 6.1 actually can sort permutations and binary strings
for any α ≥ 0. Therefore, they can give upper bounds on the diameters, as we show next.

Let Sβ(n) (resp. Pβ(n)) be the cost used by the sorting (resp. partition) algorithm
to sort (resp. partition) any permutation with n valid elements. It is easy to see that
Dα

β (n) ≤ Sβ(n). We also have that Cα
β (n) ≤ Pβ(n), because the partition algorithm for

a permutation π can be used as a sorting algorithm for any binary string T = M(n, p, π)

for any pivot 0 ≤ p ≤ n, even though the sorting algorithms use the partition algorithms
only to sort T = M(n, ⌈n/2⌉ , π). Lemma 56 shows upper bounds on the diameter for the
problems of sorting permutations or binary strings by length-weighted prefix rearrange-
ments.

Lemma 56. For β ∈ {pr, pt, prt},

Pβ(n) and Cα
β (n) are







O(n) if 0 < α < 1

O(n lgn) if α = 1

O(nα) if α > 1.

(6.2)

and

Sβ(n) and Dα
β (n) are







O(n lgn) if 0 < α < 1

O(n lg2 n) if α = 1

O(nα) if α > 1.

(6.3)

Proof. From the algorithms given in Section 6.1, we can see that

Pβ(n) ≤ 2Pβ

(n

2

)

+ 2nα (6.4)

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 100

and
Sβ(n) ≤ 2Sβ

(n

2

)

+ Pβ(n) + nα. (6.5)

Using the Master Theorem [19, Sec. 4.5] over Equations (6.4) and (6.5), we can easily
find the stated upper bounds.

The lower bounds given in Section 6.2.1 along with the upper bounds given in Lemma 56
directly give us the following theorems.

Theorem 17. For β ∈ {pr, pt, prt},

Cα
β (n) is







Θ(n) if 0 < α < 1

Θ(n lgn) if α = 1

Θ(nα) if α > 1.

(6.6)

Theorem 18. For β ∈ {pr, pt, prt} and α > 1, Dα
β (n) is Θ(nα).

6.3 Sorting Algorithms Considering 0 < α < 1

As we already mentioned, the partition algorithms for prefix rearrangements described
in Section 6.1 for α = 1 can be used to sort binary strings and guarantee approximation
factors of O(lgn) in this case. Now we show, in Theorem 19, that they can also guarantee
an approximation factor of O(lgn) when 0 < α < 1.

Theorem 19. For 0 < α < 1, problems SBbWPR, SBbWPT, SBbWPRT are O(lgn)-

approximable.

Proof. Let T = 0w01w1 . . . 0w2g1w2g+1 be a binary string. Create string T ′ by mapping
each block of T (of 0’s or 1’s) into one element in T ′ (a 0 or a 1, accordingly). Now, we
use partitionWPR, partitionWPT, or partitionWPRT (depending on the rearrangement
model) to sort T ′ and then we map back each rearrangement, according to the initial
mapping, in order to sort T . Note that none of these algorithms will consider the last
block of 1’s (because the goal is to obtain 1’s at the end of the string).

The first important observation is that each element of T ′ takes part in at most
2 lgn rearrangements in any of the algorithms. This happens because each recursive step
contains two rearrangements and there are at most lg n recursive steps.

Now consider a prefix reversal or a prefix transposition of length ℓ that contains the
q first blocks of T . So, ℓ = w0 + w1 + . . . + wq. Since 0 < α < 1, we have that
ℓα ≤ wα

0 + wα
1 + · · ·+ wα

q =
∑q

i=0w
α
i . Since q ≤ 2g, the total cost used by any of these

algorithms is at most
(

2g
∑

i=0

wα
i

)

× (2 lgn).

We defined, for Lemma 45, that P (T) = (
∑2g

i=0w
α
i)/4, and we showed that cαβ(T) ≥

P (T) for β ∈ {ρp, τp, ρpτp}. Therefore, the total cost of any of the algorithms is at most

(4P (T))× (2 lgn) = 8 lg nP (T) ≤ 8 lgncαβ(T),

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 101

which indicates that they are O(lgn)-approximations.

Consider again algorithm 3-PR for SbPR described in the beginning of Section 6.1
(Algorithm 13). Such algorithm is a O(nα)-approximation for SbWPR when 0 < α < 1,
as Theorem 20 shows.

Theorem 20. For 0 < α < 1, SbWPR is O(nα)-approximable.

Proof. Note that algorithm 3-PR performs at most bupr(π) steps and each step contains
at most three prefix reversals. As a high estimative, we could say that each prefix reversal
has length n, thus costing nα. Therefore, such algorithm uses a cost of at most 3nαbupr(π)

to sort a permutation using only prefix reversals. The lower bound given by Lemma 46
shows that

3nαbupr(π) ≤ 3nα

(
dαpr(π)

2α

)

≤
3nα

2α
dαpr(π),

and we can see that it is a (3/2α)nα-approximation.

We can adapt algorithm 3-PR for SbWPT and SbWPRT (see Algorithms 24 and 25)
in order to also have O(nα)-approximations for both problems, as Theorem 21 shows.

Algorithm 24 Algorithm 3-PR adapted for SbWPT.
3-PR-for-SbWPT(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let i be the highest element such that πi 6= i
4 Let ℓ be the position of the last element of the strip that contains i
5 π ← π · τp(ℓ+ 1, i+ 1)
6 c← c+ f(i)
7 return c

Algorithm 25 Algorithm 3-PR adapted for SbWPRT.
3-PR-for-SbWPRT(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let i be the highest element such that πi 6= i
4 Let b be the position of the first element of the strip that contains i
5 Let e be the position of the last element of the strip that contains i
6 if πb = i then // If the strip is decreasing, transform it into an increasing one
7 π ← π · ρp(e)
8 c← c+ f(e); e← b− e+ 1; b← 1
9 π ← π · τp(b− e+ 2, i+ 1)

10 c← c+ f(i)
11 return c

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 102

Theorem 21. For 0 < α < 1, SbWPT and SbWPRT are O(nα)-approximable.

Proof. In the case of SbWPT, since the concept of decreasing strip does not exist, it
is possible to put the strip that contains the highest element out of order in its correct
position with only one prefix transposition, as Algorithm 24 shows. Therefore, such
algorithm would use a cost of at most nαbp(π) to sort a permutation. Due to the lower
bound given by Lemma 46, we can see that this is a (2/2α)nα-approximation.

When both prefix reversals and prefix transpositions are allowed, decreasing strips
can exist. Therefore, if the strip that contains the highest element that is out of order is
increasing or it is a singleton, then the algorithm can use one prefix transposition to put
it in the correct position. However, if the strip is decreasing, then the algorithm must
reverse it first, and then put it into the correct position, which means that at most two
rearrangements will be used. Algorithm 25 shows this behavior. Therefore, at most a
cost of 2nαbupr(π) will be used by this algorithm to sort π, and due to the lower bound
given by Lemma 46, we can see that it is a (4/2α)nα-approximation.

6.4 Sorting Algorithms Considering α > 1

In this section we show, in Theorem 22, that the algorithms given in Section 6.1 are
O(1)-approximations for sorting permutations or binary strings by length-weighted prefix
rearrangements for α > 1.

Theorem 22. For α > 1, SbWPR, SbWPT, SbWPRT, SBbWPR, SBbWPT, and

SBbWPRT are O(1)-approximable.

Proof. Directly from the lower bounds given by Lemma 43 and the upper bounds given
by Lemma 56.

We would like now to determine more precisely this constant approximation factor.
Consider once again Sβ(n) (resp. Pβ(n)) as the cost used by the sorting (resp. partition)
algorithm to sort any permutation (resp. partition any permutation or sort any binary
string) with n valid elements. From Lemma 56, we know that Pβ(n) and Sβ(n) are O(nα).
Therefore, we may assume that Pβ(n) ≤ fPn

α and Sβ(n) ≤ fSn
α for some constants fP

and fS. Due to the lower bound of nα, it is easy to see that fP is the approximation
factor for partitioning permutations/sorting binary strings and fS is the approximation
factor for sorting permutations.

We start by expanding the recurrences given in Equations (6.4) and (6.5). For the

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 103

former, we have

Pβ(n) ≤ 2
[

2Pβ

(n

4

)

+ 2
(n

2

)α]

+ 2nα = 4Pβ

(n

4

)

+ 4
(n

2

)α

+ 2nα

≤ 4
[

2Pβ

(n

8

)

+ 2
(n

4

)α]

+ 4
(n

2

)α

+ 2nα

= 8Pβ

(n

8

)

+ 8
(n

4

)α

+ 4
(n

2

)α

+ 2nα

...

≤ nPβ

(n

n

)

+ n

(
n

n/2

)α

+
n

2

(
n

n/4

)α

+ . . .+ 4
(n

4

)α

+ 2nα

= 0 +
lgn∑

i=1

n

2i−1
2iα =

2α+1

2α − 2
(nα − n) ≤

2α+1

2α − 2
nα.

(6.7)

Note that fP = (2α+1)/(2α− 2), as defined before, is the approximation factor for sorting
binary strings.

For Equation (6.5), we have

Sβ(n) ≤ 2
[

2Sβ

(n

4

)

+ Pβ

(n

2

)

+
(n

2

)α]

+ Pβ(n) + nα

= 4Sβ

(n

4

)

+
[

2Pβ

(n

2

)

+ Pβ(n)
]

+
[

2
(n

2

)α

+ nα
]

...

≤ nSβ

(n

n

)

+
[n

2
Pβ(2) +

n

4
Pβ(4) + . . .+ 2Pβ

(n

2

)

+ Pβ(n)
]

+
[n

2
(2)α +

n

4
(4)α + . . .+ 2

(n

2

)α

+ nα
]

= 0 +
lgn∑

i=1

n

2i
Pβ(2

i) +
lgn∑

i=1

n

2i
2iα

=

(
2α

2α−2
+

22α+1

(2α−2)2

)

nα −

(
2α

2α−2
+

22α+1

(2α−2)2

)

n−

(
2α+1

2α−2

)

n lgn

≤

(
2α

2α−2
+

22α+1

(2α−2)2

)

nα.

(6.8)

As defined before, we take fS = 2α/(2α−2)+(22α+1)/(2α−2)2, which is the approximation
factor for sorting permutations.

From the expressions obtained above, we have the following results, which lead to
Corollary 23:

1. If α ≥ 2, then fP ≤ 4 and fS ≤ 10;

2. If α ≥ 3, then fP ≤ 8/3 < 3 and fS ≤ 44/9 < 5;

3. If α ≥ 4, then fP ≤ 16/7 < 2.5 and fS ≤ 184/49 < 4;

4. as α increases, fP tends to 2 and fS tends to 3.

Corollary 23. For α ≥ 2, SbWPR, SbWPT, and SbWPRT are 10-approximable while

SBbWPR, SBbWPT, and SBbWPRT are 4-approximable. For α ≥ 3, SbWPR, Sb-

WPT, and SbWPRT are 5-approximable while SBbWPR, SBbWPT, and SBbWPRT

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 104

are 3-approximable. For large values of α, SbWPR, SbWPT, and SbWPRT are (3+ǫ)-

approximable while SBbWPR, SBbWPT, and SBbWPRT are (2 + ǫ)-approximable.

6.5 Experimental Results

All the algorithms presented in Section 6.1 (for α = 1) were implemented in C language
and executed over the same sets U1 and U2 introduced in Section 4.7. The experimental
results are shown in Figures 6.4 to 6.6. The x-axis represents the values of n while the y-
axis represents the average of the approximation factor between the permutations of that
size. For Set U1 the approximation factors were calculated using the exact distances of
the permutations and for Set U2 they were calculated using the theoretical lower bounds
on the distances, which were given in Lemmas 43 and 44.

We point out that we implemented the four possibilities of the partition algorithm for
SbWPRT and the results we presented are from the approach that gave better results,
which is: a call to partitionWPRT(π,

⌈
n′

2

⌉
, type, m) followed by τp(

⌈
n′

2

⌉
+ 1, n′ + 1); and

(ii) a call to partitionWPRT(π, n′ −
⌈
n′

2

⌉
, 1 − type, m) followed by a prefix reversal to

finish the partition. For the suffix variation the best possibility was the equivalent, that
is, we use a suffix transposition after the first recursive call and a suffix reversal after the
second call.

Also note that the greedy algorithms mentioned just before the beginning of Sec-
tion 6.1.1 (those whose names end with “g”) always performed better than the O(lg2 n)-
approximation algorithms when executed over Set U1. For bigger permutations, however,
the contrary clearly happens and our algorithms outperform the others. In particular,
note that WPRm is the best for permutations of size 2 to 10, but it is by far the worst for
long permutations.

Figure 6.7 shows some experimental results for SbWPR when α ∈ {2, 3, 4, 5, 6, 7,

8, 9, 10} over Sets U1 and U2 also. Table 6.1 considers some of the values for n that
were tested and for each of them we present the worst approximation factors that were
calculated for all permutations of that size (n! permutations when n ≤ 10 and 10, 000

permutations otherwise). The last line of this table shows the theoretical approximation
factors, for each value of α, calculated with the formula 2α/(2α − 2) + (22α+1)/(2α − 2)2

given in Equation (6.8) of Section 6.4.
The graph that presents the results for Set U1 shows that the average approximation

factor tends to be really smaller than the expected for each value of α. More than that,
we can see in Table 6.1 that even the worst approximation factors for all n! permutations
are still smaller than the expected. Although the graph for Set U2 only presents an
average approximation factor for the 10, 000 permutations of each size and this set cannot
completely represent the behavior of the algorithms over permutations with big sizes, we
can see that the curves tend to stabilize at small values of approximation factors. We
can also observe such stabilization in Table 6.1, because the more the permutation size
increases, the less the approximation factors increase.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 105

1.00

1.10

1.20

1.30

1.40

1.50

1.60

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

WPRg
WPRm
WPR

WPSRg
WPSR

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

WPRg
WPRm
WPR

WPSRg
WPSR

Figure 6.4: Average approximation factors for WPRg, WPRm, WPR, WPSRg, and WPSR when
α = 1 and the permutation size grows.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 106

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

WPTg
WPT

WPSTg
WPST

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

WPTg
WPT

WPSTg
WPST

Figure 6.5: Average approximation factors for WPTg, WPT, WPSTg, and WPST when α = 1
and the permutation size grows.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 107

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

WPRTg
WPRT

WPSRTg
WPSRT

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

WPRTg
WPRT

WPSRTg
WPSRT

Figure 6.6: Average approximation factors for WPRTg, WPRT, WPSRTg, and WPSRT when
α = 1 and the permutation size grows.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 108

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

α = 2
α = 3
α = 4
α = 5
α = 6
α = 7
α = 8
α = 9
α = 10

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

ap
pr

ox
im

at
io

n
fa

ct
or

Permutation size

α = 2
α = 3
α = 4
α = 5
α = 6
α = 7
α = 8
α = 9
α = 10

Figure 6.7: Average approximation factors for SbWPR and α ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}
while the size of the permutation increases.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 109

Table 6.1: Worst approximation factors for all tested permutations of a given size n for
SbWPR when α ∈ [2..10]. The theoretical approximation factor is calculated with the
formula 2α/(2α − 2) + (22α+1)/(2α − 2)2 given in Equation (6.8).

n α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8 α = 9 α = 10

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.960 1.879 1.855 1.859 1.875 1.896 1.916 1.934 1.949
5 2.133 1.909 1.855 1.859 1.875 1.896 1.916 1.934 1.949
6 2.538 2.336 2.250 2.213 2.192 2.176 2.160 2.144 2.128
7 2.590 2.336 2.250 2.213 2.192 2.176 2.168 2.159 2.147
8 2.806 2.574 2.466 2.409 2.370 2.337 2.305 2.275 2.247
9 2.865 2.574 2.466 2.409 2.370 2.338 2.319 2.297 2.274

10 5.240 3.591 3.049 2.776 2.620 2.521 2.452 2.398 2.354
15 5.858 3.751 3.030 2.700 2.523 2.415 2.342 2.288 2.245
20 6.182 3.874 3.123 2.905 2.795 2.726 2.677 2.637 2.602
25 6.355 3.805 3.063 2.735 2.561 2.455 2.382 2.328 2.284
30 6.597 3.905 3.077 2.717 2.530 2.418 2.343 2.288 2.245
35 6.632 3.872 3.083 2.750 2.577 2.472 2.400 2.346 2.302
40 6.742 3.913 3.060 2.720 2.544 2.438 2.365 2.311 2.268
45 6.800 3.924 3.073 2.715 2.530 2.418 2.343 2.288 2.245
50 6.918 3.943 3.073 2.704 2.514 2.400 2.325 2.270 2.227
100 7.316 3.955 3.015 2.631 2.437 2.324 2.250 2.199 2.161
150 7.524 3.935 2.999 2.619 2.427 2.315 2.243 2.192 2.155
200 7.626 3.936 2.973 2.586 2.392 2.281 2.211 2.162 2.128
250 7.717 3.924 2.955 2.570 2.381 2.274 2.205 2.158 2.124
300 7.777 3.921 2.942 2.552 2.363 2.255 2.187 2.141 2.109
350 7.798 3.907 2.936 2.550 2.359 2.251 2.183 2.138 2.106
400 7.868 3.908 2.939 2.553 2.361 2.253 2.185 2.139 2.107
450 7.891 3.910 2.934 2.555 2.367 2.259 2.192 2.146 2.113
500 7.904 3.914 2.928 2.543 2.355 2.248 2.182 2.137 2.105
600 7.957 3.914 2.937 2.550 2.358 2.250 2.182 2.137 2.105
700 8.001 3.906 2.921 2.532 2.342 2.234 2.168 2.125 2.094
800 8.005 3.900 2.917 2.530 2.340 2.233 2.167 2.124 2.093
900 8.019 3.898 2.909 2.521 2.330 2.224 2.159 2.116 2.087
1000 8.035 3.900 2.912 2.525 2.335 2.229 2.163 2.120 2.090

Theor.
Factor

≤ 10 4.889 3.756 3.343 3.164 3.080 3.040 3.020 3.010

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 110

6.6 Sorting by Length-Weighted Reversals

Bender et al. [5] extensively studied sorting permutations and binary strings by length-
weighted reversals for f(ℓ) = ℓα when α > 0. However, they did not present any approx-
imation algorithm for sorting permutations when 0 < α < 1.

Our idea here is similar to the one presented in Section 6.3, that is, to adapt algorithm
3-PR. Therefore, the first step is to note that it is possible to give a lower bound that
depends on the number of breakpoints of a permutation, as Lemma 57 shows.

Lemma 57. For any unsigned permutation π and α > 0,

dαr (π) ≥ 2α
bgr(π)

2
.

Proof. First note that one reversal can remove at most two breakpoints. Therefore, to sort
a permutation only with reversals at least bgr(π)/2 such rearrangements will be needed.
Since each of these reversals will have length ℓ ≥ 2, the cost of each of them should also
be ℓα ≥ 2α. Hence, to sort π the cost is at least 2αbgr(π)/2.

Now consider an algorithm that uses the same idea as 3-PR, but uses only reversals:
while the permutation is not sorted, at each step find the highest element that is out
of order, reverse the strip that contains this element to turn it into a decreasing strip
if necessary, and put this string in the correct position. Such algorithm is showed in
Algorithm 26 and it is an O(nα)-approximation for SbWR when 0 < α < 1, as Theorem 24
shows.

Algorithm 26 Algorithm 3-PR adapted for SbWR.
3-PR-for-SbWR(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let i be the highest element such that πi 6= i
4 Let b be the position of the first element of the strip that contains i
5 Let e be the position of the last element of the strip that contains i
6 if πb 6= i then // If the strip is increasing, transform it into a decreasing one
7 π ← π · ρ(b, e)
8 c← c+ f(e− b+ 1)
9 π ← π · ρ(b, i)

10 c← c+ f(i− b+ 1)
11 return c

Theorem 24. For 0 < α < 1, SbWR is O(nα)-approximable.

Proof. In Algorithm 26 we can see that at most two reversals are used to put the strip
that contains the highest element in its right position at each iteration. This removes at
least one breakpoint. Since each reversal will have a cost of at most nα, this implies a cost

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 111

of at most 2nαbgr(π) to sort the permutation π. By the lower bound given in Lemma 57,

2nαbgr(π) ≤ 2nα 2d
α
r (π)

2α
=

4nα

2α
dαr (π),

which means that such algorithm is a (4/2α)nα-approximation for SbWR.

6.7 Sorting by Length-Weighted Transpositions and

Sorting by Length-Weighted Reversals and Trans-

positions

In this section we show that all the known results for SbWR and SBbWR can be used
for SbWT and SBbWT or for SbWRT and SBbWRT.

First, we present the algorithms given by Bender et al. [5] for SBbWR and SbWR.
For the former problem, ZerOneSort_DivideConquer was given and it is showed in Al-
gorithm 27. For the latter, PermutationSort_DivideConquer was given and it is showed
in Algorithm 28. Recall the definition of the operator M given in Section 2.2.

Algorithm 27 Sorting algorithm for SBbWR.
ZerOneSort_DivideConquer(T , n)

Input : binary string T and its size n
Output : cost used to sort T

1 if T is sorted then

2 return 0
3 x← ⌊n/2⌋
4 c1 ← ZerOneSort_DivideConquer(t1t2 . . . tx, x)
5 c2 ← ZerOneSort_DivideConquer(tx+1tx+2 . . . tn, n− x)

// Now T is of the form 0w11w20w31w4

6 Let i be the smallest position such that πi = 1
7 Let j be the highest position such that πj = 0
8 T ← T · ρ(i, j)
9 return c1 + c2 + f(j − i+ 1)

We can see that these algorithms can be adapted straightforwardly when transpositions
are allowed: note that the reversal on ZerOneSort_DivideConquer results in exchanging
a block of 1’s with a block of 0’s, which can be easily mimicked by a transposition that has
the same length. This means that the upper bounds for the diameter of sorting binary
strings and permutations by reversals that are given by such algorithms for 0 < α < 2

are the same for sorting when transpositions are allowed. This leads to Lemma 58.

Lemma 58. For β ∈ {t, rt} and 0 < α < 2,

Cα
β (n) is







O(n) if 0 < α < 1

O(n lgn) if α = 1

O(nα) if 1 < α < 2

(6.9)

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 112

Algorithm 28 Sorting algorithm for SbWR.
PermutationSort_DivideConquer(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 if n ≤ 1 or π is sorted then

2 return 0
3 T ←M(n, ⌈n/2⌉ , π) // Section 2.2
4 c← ZeroOneSort_DivideConquer(T, n)
5 Apply reversals that sorted T on π
6 x← ⌈n/2⌉
7 c1 ← PermutationSort_DivideConquer((π1, π2, . . . , πx), x)
8 c2 ← PermutationSort_DivideConquer((πx+1, πx+2, . . . , πn), n − x)
9 return c+ c1 + c2

and

Dα
β (n) is







O(n lgn) if 0 < α < 1

O(n lg2 n) if α = 1

O(nα) if 1 < α < 2.

(6.10)

In fact, except for the approximation algorithms for α = 1, all other results given by
Bender et al. [5] regarding approximation algorithms and bounds for the diameter can
be quite easily adapted for the cases when transpositions are allowed. For α = 1, the
approximation algorithms given by Pinter and Skiena [50] can be used.

Lemmas 46 and 57 showed lower bounds on the number of breakpoints for the other
problems, which also holds when transpositions are allowed, as Lemma 59 shows. There-
fore, for 0 < α < 1, the O(nα)-approximation algorithms we presented in Sections 6.3 and
6.6 can also be adapted for sorting when transpositions are allowed.

Lemma 59. For any unsigned permutation π and α > 0,

dαt (π) ≥ 2α
bg(π)

3
and dαrt(π) ≥ 2α

bgr(π)

3
.

Proof. First note that one transposition can remove at most three breakpoints. Hence,
to sort a permutation only with transpositions at least bg(π)/3 such rearrangements will
be needed. Since each of these transpositions will have length ℓ ≥ 2, the cost of each of
them should also be ℓα ≥ 2α. Therefore, to sort π the cost is at least 2αbg(π)/3.

When both reversals and transpositions are allowed, at least bgr(π)/3 rearrangements
are needed, each one with cost at least 2α, which means that the cost to sort π is also at
least 2αbg(π)/3.

These adaptations guarantee the results in Theorem 25.

Theorem 25. For β ∈ {t, rt}:

1. Cα
β (n) is







Θ(n) if 0 < α < 1

Θ(n lgn) if α = 1

Θ(nα) if 1 < α < 2

Θ(n2) if α ≥ 2.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 113

2. Dα
β (n) is







Ω(n) and O(n lgn) if 0 < α < 1

Ω(n lg n) and O(n lg2 n) if α = 1

Θ(nα) if 1 < α < 2

Θ(n2) if α ≥ 2.

3. For 0 < α < 1, there is a O(1)-approximation algorithm for SBbWT and SBb-

WRT and there is a O(nα)-approximation for SbWT and SbWRT;

4. For α = 1, there is a O(lgn)-approximation for SBbWT and SBbWRT, and there

is a O(lg2 n)-approximation algorithm for SbWT and SbWRT;

5. For 1 < α < 2, there is a O(1)-approximation algorithm for SBbWT and SBb-

WRT, and there is a O(lgn)-approximation algorithm for SbWT and SbWRT;

6. For α ≥ 2, SBbWT and SBbWRT are polynomial and there is a 2-approximation

for SbWT and SbWRT;

7. When α ≥ 3, SbWT and SbWRT are polynomially solvable.

6.8 Sorting Signed Permutations and Signed Binary

Strings by Length-Weighted Prefix and Suffix Re-

arrangements

In order to use the algorithms already developed in the previous sections over signed
permutations, we will use the concept of image of a signed permutation [37].

Definition 24. The image of a signed permutation π is defined as the unsigned permu-

tation π′ = (π′1 . . . π′2n), where π′2i−1 = 2πi − 1 and π′2i = 2πi if πi > 0 or π′2i−1 = −2πi

and π′2i = −2πi − 1 if πi < 0.

If π′ is the image of a signed permutation π, then it is easy to see that any sorting
sequence for π′ can be mimicked over π if we never separate elements π′2i−1 and π′2i.

Example 24. Let π = (4 6 −3 −5 2 −1). So, the image of π is π′ = (7 8 11 12 6 5

10 9 3 4 2 1). Note that the sequence ρp(4), ρp(12), ρp(4), ρp(2), ρp(6), ρp(10), and ρp(8)

sorts π′. Also, all prefix reversals are applied over even positions, which means it does

not separate elements π′2i−1 and π′2i. Based on this sequence, we create ρ̄p(2), ρ̄p(6), ρ̄p(2),

ρ̄p(1), ρ̄p(3), ρ̄p(5), and ρ̄p(4) by dividing by 2 each position of the previous sequence. It

is easy to see that this new sequence sorts π.

With the concept of image, we can use the algorithms presented in Section 6.1 to create
algorithms for SbWPR̄, SBbWPR̄, SbWPSR̄, SBbWPSR̄, SbWPR̄T, SBbWPR̄T,
SbWPSR̄T, and SBbWPSR̄T when α = 1. The only difference is that if the median
of the interval is not an even number, we increase it by one unit, so that the algorithms
can act over intervals that also exist in the signed permutation. Also, the lengths of the
rearrangements must always be divided by 2 before we apply the cost function. It is easy
to see that these slightly-changed algorithms are still O(lg2 n)-approximation algorithms
when α = 1 for signed permutations.

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 114

Example 25. The following example shows the execution of the adaptation of WPR over

π′ = (7 8 11 12 6 5 10 9 3 4 2 1), which is the image of π = (4 6 −3 −5 2 −1) given

in the previous example. We will refer to such adaptation as WPR̄ and the adaptation

of the partition algorithm as partitionWPR̄. We will say that the first call, which is

WPR̄(π,12,INC), is call (0).

π′ = (7 8 11 12 6 5 10 9 3 4 2 1) // no base case applies, so calls partition
π′ ← partitionWPR̄(π′,12,DEC,6) = (9 10 7 8 11 12 6 5 3 4 2 1) // (1) calls WPR̄(π′,6,DEC); no base case
π′ ← partitionWPR̄(π′,6,INC,10) = (9 10 7 8 11 12 6 5 3 4 2 1) // (2) calls WPR̄(π′,4,INC); no base case
π′ ← partitionWPR̄(π′,4,DEC,8) = (9 10 7 8 11 12 6 5 3 4 2 1) // (3) calls WPR̄(π′,2,DEC); has base case

π′ ← π′·ρp(2) = (10 9 7 8 11 12 6 5 3 4 2 1) // returns to (2); reverse whole interval
π′ ← π′·ρp(4) = (8 7 9 10 11 12 6 5 3 4 2 1) // (4) calls WPR̄(π′,2,INC); has base case
π′ ← π′·ρp(2) = (7 8 9 10 11 12 6 5 3 4 2 1) // returns to (2); returns to (1); reverse interval
π′ ← π′·ρp(6) = (12 11 10 9 8 7 6 5 3 4 2 1) // (5) calls WPR̄(π′,2,DEC); is DEC sorted

π′ = (12 11 10 9 8 7 6 5 3 4 2 1) // returns to (0); reverse whole interval
π′ ← π′·ρp(12) = (1 2 4 3 5 6 7 8 9 10 11 12) // (6) calls WPR̄(π′,6,INC); no base case

π′ ← partitionWPR̄(π′,6,DEC,4) = (6 5 3 4 2 1 7 8 9 10 11 12) // (7) calls WPR̄(π′,2,DEC); is DEC sorted
π′ = (6 5 3 4 2 1 7 8 9 10 11 12) // returns to (6); reverse whole interval

π′ ← π′·ρp(6) = (1 2 4 3 5 6 7 8 9 10 11 12) // (8) calls WPR̄(π′,4,INC); no base case
π′ ← partitionWPR̄(π′,4,DEC,2) = (3 4 2 1 5 6 7 8 9 10 11 12) // (9) calls WPR̄(π′,2,DEC); has base case

π′ ← π′·ρp(2) = (4 3 2 1 5 6 7 8 9 10 11 12) // returns to (8); reverse whole interval
π′ ← π′·ρp(4) = (1 2 3 4 5 6 7 8 9 10 11 12) // (10) calls WPR̄(π′,2,INC); is INC sorted

π′ = (1 2 3 4 5 6 7 8 9 10 11 12) // returns to (8); returns to (0)

Note that calls (7) and (8) should actually be WPR̄(π′, 3, INC/DEC), since we want to

sort an interval with 6 elements, but this would create rearrangements that are invalid over

the signed permutation. Therefore, the algorithm considers the median of the interval [1..6]

in permutation (1 2 4 3 5 6 7 8 9 10 11 12) as 4. The partition call over this permutation

generates (6 5 3 4 2 1 7 8 9 10 11 12), the first recursive call (7) to WPR̄ is over interval [1..2]

(elements greater than the median) and it does not change the permutation, and the second

recursive call (8) to WPR̄ is over interval [1..4] of permutation (1 2 4 3 5 6 7 8 9 10 11 12)

(elements less than or equal to the median).

The use of those algorithms means that the upper bound on the diameters given in
Lemma 56 are also valid for the problems that we are considering in this section.

Also note that, if π is a signed permutation and πu is π without the signs (i.e, πu

is unsigned), then dαβ(π) ≥ dαβ(π
u), which means that every lower bound that we found

for the unsigned case is also valid for the signed case. This is also true for signed binary
strings.

It is also fairly easy to see that the approximation algorithms given in Sections 6.3
and 6.4 can be adapted for signed problems that consider prefix rearrangements if we take
care of not separating elements π′2i−1 and π′2i and divide the lengths of the rearrangements
before applying the cost function.

These adaptations guarantee the results in Theorems 26 and 27.

Theorem 26. For β ∈ {pr̄, pr̄t}:

1. For 0 < α < 1, Cα
β (n) is Θ(n) while Dα

β (n) is Ω(n) and O(n lgn), there is a

O(lgn)-approximation algorithm for sorting binary strings, and there is a O(nα)-

approximation for sorting permutations;

2. For α = 1, Cα
β (n) is Θ(n lgn) while Dα

β (n) is in Ω(n lg n) and O(n lg2 n), there is a

O(lgn)-approximation algorithm for sorting binary strings, and there is a O(lg2 n)-

approximations for sorting permutations;

CHAPTER 6. RESULTS OBTAINED FOR LENGTH-WEIGHTED APPROACH 115

3. For α > 1, both Cα
β (n) and Dα

β (n) are Θ(nα) and there are O(1)-approximation

algorithms for sorting both binary strings and permutations.

Theorem 27. For β ∈ {psr̄, psr̄t}, there exists a O(lgn)-approximation algorithm for

sorting binary strings and there exists a O(lg2 n)-approximation for sorting permutations.

6.9 Summary of the Chapter

Table 6.2 summarizes the best approximation factors and bounds for the diameters of the
problems that were studied in this chapter. Note that the results for sorting by prefix
and suffix rearrangements are the approximation algorithms with factor O(lgn) for binary
strings and O(lg2 n) for permutations and they are valid only for α = 1. There are no
results for other values of α because we were not able to find good lower bounds on the
distance for such problems yet.

C
H

A
P

T
E

R
6
.

R
E

S
U

L
T

S
O

B
T
A

IN
E

D
F
O

R
L
E

N
G

T
H

-W
E

IG
H

T
E

D
A

P
P

R
O

A
C

H
116

Table 6.2: Summary of the results obtained for length-weighted rearrangement problems.
Approximation Factor Diameter

Rearrangements α

Bin. Str. Perm. Bin. Str. Perm. (Lower Bound) Perm. (Upper Bound)

O(lgn) O(nα) Θ(n) Ω(n) O(n lgn)
0 < α < 1

(Thm. 19) (Thms. 20 and 21) (Thm. 17) (Lems. 48, 49, and 50) (Lem. 56)

O(lgn) O(lg2 n) Θ(n lgn) Ω(n lgn) O(n lg2 n)

Pref. Reversals,
α = 1

(Thms. 8, 13, and 16) (Thms. 7, 11, and 14) (Thm. 17) (Lems. 51 and 54) (Lem. 56)

Pref. Transpositions, O(1) O(1)

and Pref. Reversals
1 < α < 2

(Thm. 22) (Thm. 22)

and Transpositions 4 10
2 ≤ α < 3

(Cor. 23) (Cor. 23) Θ(nα) Θ(nα)

3 5 (Thm. 17) (Thm. 18)
α ≥ 3

(Cor. 23) (Cor. 23)

(2α+1)/(2α − 2) 2α/(2α − 2) + (22α+1)/(2α − 2)2
α→∞

(Cor. 23) (Cor. 23)

Pref. and Suf. Reversals,

Pref. and Suf. Transpositions, O(lgn) O(lg2 n)

and Pref. and Suf. Reversals
α = 1

(Thms. 10, 13 and 16) (Thms. 9, 12, and 15)
- - -

and Transpositions

Reversals 0 < α < 1 - O(nα) - - -

0 < α < 1 O(1) O(nα) Θ(n) Ω(n) O(n lgn)

Transpositions, α = 1 O(lgn) O(lg2 n) Θ(n lgn) Ω(n lgn) O(n lg2 n)

Reversals and Transpositions 1 < α < 2 O(1) O(lgn) Θ(nα) Θ(nα)

(Sec. 6.7) 2 ≤ α < 3 2

α ≥ 3
1

1
Θ(n2) Θ(n2)

Sig. Pref. Reversals and 0 < α < 1 O(lgn) O(nα) Θ(n) Ω(n) O(n lgn)

Sig. Pref. Reversals and α = 1 O(lgn) O(lg2 n) Θ(n lgn) Ω(n lgn) O(n lg2 n)

Transpositions (Sec. 6.8) α > 1 O(1) O(1) Θ(nα) Θ(nα)

Sig. Pref. and Suf. Reversals

and Sig Pref. and Suf. Reversals α = 1 O(lgn) O(lg2 n) - - -

and Transpositions (Sec. 6.8)

Chapter 7

Results Obtained for Exponential Cost

Function

We acknowledge that the usual cost function when length-weighted rearrangements are
considered is the polynomial cost function that was used so far. In this chapter, however,
we present results for an exponential cost function f(ℓ) = 2ℓ. Unless specified otherwise,
all problems mentioned in this chapter consider such cost function. Our motivation in
doing so is based on the studies that exist over short and super short rearrangements [32,
33]. Such types of rearrangements are restricted to a very small portion of the permutation
and, due to this cost function, using bigger rearrangements is not so preferred either.

For this new cost function, the only adaptation on the definitions that were given so
far is related to some notation, as given next.

Definition 25. Given a rearrangement model β, the distance to sort a permutation π is

denoted as deβ(π), the distance to sort a binary string T is ceβ(T), the diameter for sorting

permutations is denoted as De
β(n), and the diameter for sorting binary strings is Ce

β(n).

In Section 7.1 we present results for sorting binary strings and permutations when pre-
fix rearrangements are being considered. In Section 7.2 we present results for SbWR and
SBbWR. In Section 7.3 we present results for SbWT, SbWRT, SBbWT, and SBbWRT.
In Section 7.4 we present results for the signed variants of sorting by prefix rearrange-
ments. Lastly, in Section 7.5 we give a summary of all results presented in this chapter.

7.1 Sorting by Length-Weighted Prefix Reversals, Sort-

ing by Length-Weighted Prefix Transpositions, and

Sorting by Length-Weighted Prefix Reversals and

Transpositions

We start by giving a lower bound on the distance in Lemma 60.

Lemma 60. Let β ∈ {pr, pt, prt}. For any permutation π and binary string T with n

valid elements,

ceβ(T) ≥ 2n and deβ(π) ≥ 2n.

117

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 118

Proof. For binary strings, since tn 6= 1 by Definition 21, at some point one rearrangement
of length n will have to be performed in order to sort the binary string, which will cost
at least f(n) = 2n.

Likewise, for permutations, at least one rearrangement that places the element n in
its right position should be done, which will also cost f(n) = 2n.

Consider Algorithm 29, which sorts a binary string by always placing the rightmost 1
which is not in the last block of 1’s next to such block. Such algorithm is a 3-approximation
for SBbWPR, as Theorem 28 shows.

Algorithm 29 A 3-approximation algorithm for SBbWPR.
3-BWPR(T , n)

Input : binary string T and its size n
Output : cost used to sort T

1 c← 0
2 while π 6= ιn do

3 Let y be the highest position such that ty = 0
4 Let x < y be the highest position such that tx = 1 and ti = 0 for all x+ 1 ≤ i ≤ y
5 if x is not the last position of the first block then

6 T ← T · ρp(x)
7 c← c+ f(x)
8 T ← T · ρp(y)
9 c← c+ f(y)

10 return c

Theorem 28. For f(ℓ) = 2ℓ, SBbWPR is 3-approximable.

Proof. Suppose that T = t1t2 . . . tn has k 0’s and, therefore, n − k 1’s. Note that Algo-
rithm 29 sorts T by performing at most n− k iterations and that each iteration contains
at most two prefix reversals. The maximum cost is reached when it performs the prefix
reversals with the largest length possible. In a given iteration, the algorithm places at
least one 1 at a certain position y, which is defined as the highest position before the
last block of 1’s; for the second prefix reversal of such iteration to have the largest length
possible, such 1 must be in position y − 1 at the beginning of the iteration. Therefore,
this algorithm will sort a bit sequence T with a cost of at most

n∑

i=k+1

(f(i− 1) + f(i)) =
n∑

i=k+1

(2i−1 + 2i) = 3× 2n − 3× 2k ≤ 3× 2n,

which means that, according to the lower bound given in Lemma 60, this is an approxi-
mation algorithm of factor 3 for SBbWPR.

Example 26. The following example shows the execution of Algorithm 29 over T =

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 119

011000110111010:

T = 011000110111010 // y = 15 and x = 14; bring rightmost 1 to beginning
T ← T ·ρp(14) = 101110110001100 // put first 1 in the end
T ← T ·ρp(15) = 001100011011101 // y = 14 and x = 13; bring rightmost 1 (not in the last block) to beginning
T ← T ·ρp(13) = 111011000110001 // put first 1 in the end (before last block)
T ← T ·ρp(14) = 000110001101111 // y = 11 and x = 10
T ← T ·ρp(10) = 110001100001111 // put first 1 in the end
T ← T ·ρp(14) = 000011000111111 // y = 9 and x = 6
T ← T ·ρp(6) = 110000000111111 // put first 1 in the end
T ← T ·ρp(9) = 000000011111111

When prefix transpositions are allowed, it suffices for the algorithm to perform only
one prefix transposition to place the rightmost 1 which is not in the last block of 1’s near
to such block, as Algorithm 30 shows. This guarantees an approximation factor of 2 for
SBbWPT and for SBbWPRT, as Theorem 29 shows.

Algorithm 30 A 2-approximation algorithm for both SBbWPT and SBbWPRT.
2-BWPT/2-BWPRT(T , n)

Input : binary string T and its size n
Output : cost used to sort T

1 c← 0
2 while π 6= ιn do

3 Let y be the highest position such that ty = 0
4 Let x < y be highest the position such that tx = 1 and ti = 0 for all x+ 1 ≤ i ≤ y
5 T ← T · τp(x+ 1, y + 1)
6 c← c+ f(y)
7 return c

Theorem 29. For f(ℓ) = 2ℓ, SBbWPT and SBbWPRT are 2-approximable.

Proof. The adapted algorithm given in Algorithm 30 sorts a bit sequence T that has k

0’s and n− k 1’s with a cost of at most

n∑

i=k+1

f(i) =

n∑

i=k+1

2i = 2× 2n − 2× 2k ≤ 2× 2n.

Therefore, according do the lower bound given in Lemma 60, this is a 2-approximation
algorithm for SBbWPT and for SBbWPRT.

A similar approach can be used for sorting permutations: at each step, bring the
highest element that is out of order to the beginning of the permutation and put this
element in its correct position (see Algorithm 31). This is in fact a 4-approximation
algorithm for SbPR. Also, it is a 3-approximation for SbWPR, as Theorem 30 shows.

Theorem 30. For f(ℓ) = 2ℓ, SbWPR is 3-approximable.

Proof. In Algorithm 31, note that if element i is the highest out of order, then its position
is at most i − 1. Therefore, considering length-weighted prefix reversals, this algorithm
will sort a permutation π with a cost of at most

n∑

i=2

(f(i− 1) + f(i)) =

n∑

i=2

(2i−1 + 2i) = 3× 2n − 6 ≤ 3× 2n.

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 120

Algorithm 31 A 3-approximation algorithm for SbWPR.
3-WPR(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let πj = i be the highest element such that πi 6= i
4 if j 6= 1 then // Bring the element to the beginning if necessary
5 π ← π · ρp(j)
6 c← c+ f(j)

// Move i to its right position
7 π ← π · ρp(i)
8 c← c+ f(i)
9 return d

Therefore, according to the lower bound given in Lemma 60, it is a 3-approximation
algorithm.

Example 27. The following example shows the execution of Algorithm 31 over π = (9 6

2 14 10 15 7 12 4 11 3 8 13 1 5):

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // π6 = 15 is the highest out of place; bring it to beginning
π ← π·ρp(6) = (15 10 14 2 6 9 7 12 4 11 3 8 13 1 5) // put it in its right position

π ← π·ρp(15) = (5 1 13 8 3 11 4 12 7 9 6 2 14 10 15) // π13 = 14 is the highest out of place
π ← π·ρp(13) = (14 2 6 9 7 12 4 11 3 8 13 1 5 10 15) // put it in its right position
π ← π·ρp(14) = (10 5 1 13 8 3 11 4 12 7 9 6 2 14 15) // π4 = 13 is the highest
π ← π·ρp(4) = (13 1 5 10 8 3 11 4 12 7 9 6 2 14 15) // put it in its right position

π ← π·ρp(13) = (2 6 9 7 12 4 11 3 8 10 5 1 13 14 15) // π5 = 12 is the highest
π ← π·ρp(5) = (12 7 9 6 2 4 11 3 8 10 5 1 13 14 15) // put it in its right position

π ← π·ρp(12) = (1 5 10 8 3 11 4 2 6 9 7 12 13 14 15) // π6 = 11 is the highest
π ← π·ρp(6) = (11 3 8 10 5 1 4 2 6 9 7 12 13 14 15) // put it in its right position

π ← π·ρp(11) = (7 9 6 2 4 1 5 10 8 3 11 12 13 14 15) // π8 = 10 is the highest
π ← π·ρp(8) = (10 5 1 4 2 6 9 7 8 3 11 12 13 14 15) // put it in its right position

π ← π·ρp(10) = (3 8 7 9 6 2 4 1 5 10 11 12 13 14 15) // π4 = 9 is the highest
π ← π·ρp(4) = (9 7 8 3 6 2 4 1 5 10 11 12 13 14 15) // put it in its right position
π ← π·ρp(9) = (5 1 4 2 6 3 8 7 9 10 11 12 13 14 15) // π7 = 8 is the highest
π ← π·ρp(7) = (8 3 6 2 4 1 5 7 9 10 11 12 13 14 15) // put it in its right position
π ← π·ρp(8) = (7 5 1 4 2 6 3 8 9 10 11 12 13 14 15) // π1 = 7 is the highest; already in the beginning
π ← π·ρp(7) = (3 6 2 4 1 5 7 8 9 10 11 12 13 14 15) // π2 = 6 is the highest
π ← π·ρp(2) = (6 3 2 4 1 5 7 8 9 10 11 12 13 14 15) // put it in its right position
π ← π·ρp(6) = (5 1 4 2 3 6 7 8 9 10 11 12 13 14 15) // π1 = 5 is the highest; already in the beginning
π ← π·ρp(5) = (3 2 4 1 5 6 7 8 9 10 11 12 13 14 15) // π3 = 4 is the highest
π ← π·ρp(3) = (4 2 3 1 5 6 7 8 9 10 11 12 13 14 15) // put it in its right position
π ← π·ρp(4) = (1 3 2 4 5 6 7 8 9 10 11 12 13 14 15) // π2 = 3 is the highest
π ← π·ρp(2) = (3 1 2 4 5 6 7 8 9 10 11 12 13 14 15) // put it in its right position
π ← π·ρp(3) = (2 1 3 4 5 6 7 8 9 10 11 12 13 14 15) // π1 = 2 is the highest; already in the beginning
π ← π·ρp(2) = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Again, if we adapt this last algorithm to use prefix transpositions, then only one
operation is needed to put the highest element in its correct position (see Algorithm 32).
Theorem 31 shows that this is a 2-approximation algorithm for SbWPT and SbWPRT.

Theorem 31. For f(ℓ) = 2ℓ, SbWPT and SbWPRT are 2-approximable.

Proof. Since only one operation is needed to put the highest element in its correct place
at each iteration, the algorithm will sort a permutation π with a cost of at most

n∑

i=2

f(i) =

n∑

i=2

2i = 2× 2n − 4 ≤ 2× 2n,

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 121

Algorithm 32 A 2-approximation algorithm for both SbWPT and SbWPRT.
2-WPT/2-WPRT(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let πj = i be the highest element such that πi 6= i
4 π ← π · τp(j + 1, i + 1)
5 c← c+ f(i)
6 return c

which means that it is, according do the lower bound given in Lemma 60, an approximation
algorithm of factor 2 for SbWPT and for SbWPRT.

Note that these algorithms given so far show that Ce
β(n) and De

β(n) are both O(2n),
for β ∈ {pr, pt, prt}. The lower bounds given in Lemma 60, on the other hand, show that
Ce

β(n) and De
β(n) are both Ω(2n). This leads us directly to the following theorem.

Theorem 32. For β ∈ {pr, pt, prt} and f(ℓ) = 2ℓ, Ce
β(n) and De

β(n) are Θ(2n).

7.2 Sorting by Length-Weighted Reversals

We will now show that the algorithm Bubble Sort is an approximation algorithm for
SBbWR and SbWR. We will consider that if S is a set of rearrangements, then the cost
of S is the sum of the cost of every rearrangement in it and it is denoted by f(S).

We define 2-reversals as reversals of length 2. Lemma 61 (resp. Lemma 62) shows
that, given an optimal solution that costs c for SBbWR (resp. SbWR), it is possible to
build a solution that costs at most d × c and uses only 2-reversals, for some constant
d. Note that this does not necessarily give an algorithm to sort binary strings (resp.
permutations), because we do not know how to build an optimal solution in the first
place. However, this indicates that there is an algorithm that uses only 2-reversals and
can guarantee an approximation factor of d. On the other hand, Lemma 63 shows that
Bubble Sort is optimal among all algorithms that only use 2-reversals. All these results
lead to Corollary 33.

Lemma 61. There exists a solution S ′ that costs at most 1.125f(S) and uses only 2-

reversals, where S is an optimal solution that sorts a binary string T with reversals and

has cost f(S).

Proof. Consider a reversal ρ(i, j) from solution S. Assume that it has length ℓ and that
it contains k 1’s and ℓ− k 0’s. Note that we can move an element from a position a to a
position b with 2-reversals by successively exchanging such element with the element to
its right (when a < b), which takes an amount of b− a 2-reversals. Also note that we can
mimic the result of ρ(i, j) with at most k(ℓ − k) 2-reversals, because each of the ℓ − k

elements 0 will be exchanged with at most k elements 1 (see Example 28).

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 122

Now suppose S can be divided into S1, which contains all 2-reversals from S, and S2,
which contains the other reversals that have length ℓ ≥ 3. We can build a solution S ′ from
S by using the reversals from S1 and by replacing the reversals from S2 with 2-reversals as
mentioned above. Let S ′2 contain such 2-reversals. Note that S ′ contains only 2-reversals
and also sorts T . Let ℓρ denote the length of a reversal ρ and kρ denote the amount of
1’s that ρ contains. We have that

f(S ′) = f(S1) + f(S ′2) = f(S1) +
∑

ρ∈S2

f(2)kρ(ℓρ − kρ)

≤ f(S1) +
∑

ρ∈S2

22
ℓρ
2

ℓρ
2

= f(S1) +
∑

ρ∈S2

ℓ2ρ

≤ f(S1) +
∑

ρ∈S2

1.125× 2ℓρ = f(S1) + 1.125f(S2)

≤ 1.125(f(S1) + f(S2)) = 1.125f(S)

where the inequality from the third line is true because x2 ≤ 1.125(2x) for any x ≥ 3.

Example 28. Let T = 011000110111010. Reversal ρ(5, 14) transforms T into T ′ =

011010111011000. We can mimic ρ(5, 14) with 2-reversals over T in the following manner:

consider all elements 1 from left to right and move them to the left towards their final

position.
T = 011000110111010 // move leftmost 1 to position 5

T ← T ·ρ(6,7) = 011001010111010

T ← T ·ρ(5,6) = 011010010111010 // move leftmost 1 to position 7

T ← T ·ρ(7,8) = 011010100111010 // move leftmost 1 to position 8

T ← T ·ρ(9,10) = 011010101011010

T ← T ·ρ(8,9) = 011010110011010 // move leftmost 1 to position 9

T ← T ·ρ(10,11) = 011010110101010

T ← T ·ρ(9,10) = 011010111001010 // move leftmost 1 to position 11

T ← T ·ρ(11,12) = 011010111010010 // move leftmost 1 to position 12

T ← T ·ρ(13,14) = 011010111010100

T ← T ·ρ(12,13) = 011010111011000

Note that each of the six 1’s present in the segment from 5 to 14 in T exchanged position

with some of the four 0’s and none of them exchanged position with another 1. Indeed, at

most 6× 4 2-reversals were made, as mentioned in Lemma 61.

Lemma 62. There exists a solution S ′ that costs at most 1.5f(S) and uses only 2-

reversals, where S is an optimal solution that sorts a permutation π with reversals and

has cost f(S),

Proof. Consider a reversal ρ(i, j) from solution S and assume that it has length ℓ. Note
that we can move an element from a position a to a position b > a with 2-reversals by
successively exchanging such element with the element to its right, which takes b − a

2-reversals. In order to mimic the result of reversal ρ(i, j) with 2-reversals, we will: move
πi to position j (this takes ℓ − 1 2-reversals and brings πi+1 to position i); then move
πi+1 to position j − 1 (this takes ℓ− 2 2-reversals and brings πi+2 to position i), and so
on, until we only need one 2-reversal to move πj−1 to position i+ 1, which would put πj

in position i as well (see Example 29). Therefore, the reversal ρ(i, j) of length ℓ can be
mimicked by

∑ℓ−1
k=1 k = ℓ(ℓ− 1)/2 2-reversals.

Now suppose S can be divided into S1, which contains all 2-reversals of S, and S2,
which contains the other reversals that have length ℓ ≥ 3. We can build a solution S ′ from

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 123

S by using the reversals from S1 and by replacing the reversals from S2 with 2-reversals as
mentioned above. Let S ′2 contain such 2-reversals. Note that S ′ contains only 2-reversals
and sorts π. Let ℓρ denote the length of a reversal ρ. We have that

f(S ′) = f(S1) + f(S ′2) = f(S1) +
∑

ρ∈S2

f(2)
ℓρ(ℓρ − 1)

2

= f(S1) +
∑

ρ∈S2

22
ℓρ(ℓρ − 1)

2
= f(S1) +

∑

ρ∈S2

2(ℓ2ρ − ℓρ)

≤ f(S1) +
∑

ρ∈S2

1.5× 2ℓρ = f(S1) + 1.5f(S2)

≤ 1.5(f(S1) + f(S2)) = 1.5f(S)

where the inequality from the third line is true because 2(x2−x) ≤ 1.5×2x for x > 0.

Example 29. Let π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5). Reversal ρ(5, 11) transforms

π into π′ = (9 6 2 14 3 11 4 12 7 15 10 8 13 1 5). We can mimic ρ(5, 11) with 2-reversals

over π in the following manner: let j = 11; while element 3 is not at position 5, move the

current element that is in position 5 to position j and decrement j.

π = (9 6 2 14 10 15 7 12 4 11 3 8 13 1 5) // move element 10 to position 11

π ← π·ρ(5,6) = (9 6 2 14 15 10 7 12 4 11 3 8 13 1 5)

π ← π·ρ(6,7) = (9 6 2 14 15 7 10 12 4 11 3 8 13 1 5)

π ← π·ρ(7,8) = (9 6 2 14 15 7 12 10 4 11 3 8 13 1 5)

π ← π·ρ(8,9) = (9 6 2 14 15 7 12 4 10 11 3 8 13 1 5)

π ← π·ρ(9,10) = (9 6 2 14 15 7 12 4 11 10 3 8 13 1 5)

π ← π·ρ(10,11) = (9 6 2 14 15 7 12 4 11 3 10 8 13 1 5) // move element 15 to position 10

π ← π·ρ(5,6) = (9 6 2 14 7 15 12 4 11 3 10 8 13 1 5)

π ← π·ρ(6,7) = (9 6 2 14 7 12 15 4 11 3 10 8 13 1 5)

π ← π·ρ(7,8) = (9 6 2 14 7 12 4 15 11 3 10 8 13 1 5)

π ← π·ρ(8,9) = (9 6 2 14 7 12 4 11 15 3 10 8 13 1 5)

π ← π·ρ(9,10) = (9 6 2 14 7 12 4 11 3 15 10 8 13 1 5) // move element 7 to position 9

π ← π·ρ(5,6) = (9 6 2 14 12 7 4 11 3 15 10 8 13 1 5)

π ← π·ρ(6,7) = (9 6 2 14 12 4 7 11 3 15 10 8 13 1 5)

π ← π·ρ(7,8) = (9 6 2 14 12 4 11 7 3 15 10 8 13 1 5)

π ← π·ρ(8,9) = (9 6 2 14 12 4 11 3 7 15 10 8 13 1 5) // move element 12 to position 8

π ← π·ρ(5,6) = (9 6 2 14 4 12 11 3 7 15 10 8 13 1 5)

π ← π·ρ(6,7) = (9 6 2 14 4 11 12 3 7 15 10 8 13 1 5)

π ← π·ρ(7,8) = (9 6 2 14 4 11 3 12 7 15 10 8 13 1 5) // move element 4 to position 7

π ← π·ρ(5,6) = (9 6 2 14 11 4 3 12 7 15 10 8 13 1 5)

π ← π·ρ(6,7) = (9 6 2 14 11 3 4 12 7 15 10 8 13 1 5) // move element 11 to position 6

π ← π·ρ(5,6) = (9 6 2 14 3 11 4 12 7 15 10 8 13 1 5)

The following definition will be useful in Lemma 63.

Definition 26. For a binary string T = t1t2 . . . tn, the number of inversions is defined as

I(T) =
∑

1≤i<j≤n

I(i, j), where I(i, j) =

{
0 if ti ≤ tj
1 otherwise

For a permutation π = (π1 π2 . . . πn), the number of inversions is defined similarly:

I(π) =
∑

1≤i<j≤n

I(i, j), where I(i, j) =

{
0 if πi ≤ πj

1 otherwise

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 124

Lemma 63. Bubble Sort is optimal among all algorithms that only use 2-reversals.

Proof. Note that, for either binary strings or permutations, a 2-reversal can decrease the
number of inversions by at most one unit. This means that at least I(T) reversals are
needed to sort T and at least I(π) reversals are needed to sort π. Since we are considering
only 2-reversals, this means that to sort T or π the cost is at least f(2)I(T) = 4I(T) or
4I(π), respectively. On the other hand, Bubble Sort only exchanges two adjacent elements
if they are in the wrong order, which means that each 2-reversal of Bubble Sort (which
costs f(2)) decreases the number of inversions by exactly one unit. Therefore, Bubble
Sort costs exactly 4I(T) or 4I(π) to sort T or π, respectively, that is, it is optimal for
sorting using only 2-reversals.

Corollary 33. For f(ℓ) = 2ℓ, Bubble Sort is a 1.125-approximation algorithm for SBbWR

and a 1.5-approximation algorithm for SbWR.

Regarding the diameters Ce
r (n) and De

r(n), Theorem 34 shows that they are Θ(n2).

Theorem 34. For f(ℓ) = 2ℓ, Ce
r (n) and De

r(n) are Θ(n2).

Proof. First note that Bubble Sort gives an upper bound of O(n2): it performs at most
n(n − 1)/2 reversals to sort a permutation π, each of them with a cost of 22. Since
Ce

r(n) ≤ De
r(n), this upper bound is valid for both diameters.

The lower bound, given next, uses the function I(T) from Definition 26, which gives
the number of inversions of a bit sequence T .

Let T ′ = 1010 . . . 10 and T ′s = 0n/21n/2. It is easy to see that I(T ′s) = 0 and I(T ′) =

n(n+ 2)/8 (because each 1 of T ′ forms an inversion with every 0 that appears after it).
Now note that a reversal of length ℓ decreases the number of inversions by at most

ℓ(ℓ− 1)/2: considering positions i and j that are used by the definition of I(T), there are
exactly ℓ(ℓ− 1)/2 pairs (i, j) inside such reversal and one reversal can change the order
of elements only if they are affected by it.

Consider an optimal sequence that sorts T ′ and contains q reversals ρ1, ρ2, . . . , ρq of
lengths ℓ1, ℓ2, . . . , ℓq. We know that I(T ′)− I(T ′ · ρ1) ≤ ℓ1(ℓ1− 1)/2 ≤ ℓ21, I(T

′ · ρ1)− I(T ′ ·

ρ1 · ρ2) ≤ ℓ22, and so on, until I(T ′ · ρ1 · · · ρq−1)− I(T ′s) ≤ ℓ2q. All these together show that

I(T ′)− I(T ′s) ≤

q
∑

i=1

ℓ2i ≤

q
∑

i=1

2× 2ℓi = 2

q
∑

i=1

f(ℓi) = 2der(T
′),

because x2 ≤ 2× 2x for all x ∈ N.
Therefore, der(T

′) ≥ (I(T ′) − I(T ′s))/2, which means that cer(T
′) is Ω(n2) and, thus,

Ce
r(n) as well as De

r(n) are Ω(n2).

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 125

7.3 Sorting by Length-Weighted Transpositions and

Sorting by Length-Weighted Reversals and Trans-

positions

We define 2-transpositions as transpositions of length 2. Bubble Sort also helps us to
find similar results as we gave in Section 7.2 when transpositions are allowed in the
rearrangement model, because the result of a 2-reversal is exactly the same as the result
of a 2-transposition. We can, therefore, adapt Lemmas 61 and 62 in order to show results
for SBbWT, SBbWRT, SbWT, and SbWRT. Lemmas 64 and 65 do that.

Lemma 64. There exists a solution S ′ that costs at most 1.125f(S) and uses only 2-

transpositions (resp. 2-reversals and 2-transpositions), where S is an optimal solution

that sorts a binary string T with transpositions (resp. reversals and transpositions) and

has cost f(S).

Proof. Lemma 61 already showed how to mimic a reversal with 2-reversals over binary
strings. The same analysis can be done for transpositions, because a transposition of
length ℓ that contains k 1’s and ℓ − k 0’s can also be mimicked by at most k(ℓ − k)

2-transpositions (each of the ℓ− k 0’s will be exchanged with at most k elements 1’s).
The rest of the proof is similar to the proof of Lemma 61.

Lemma 65. There exists a solution S ′ that costs at most 1.125f(S) and uses only 2-

transpositions (res. 2-reversals and 2-transpositions), where S is an optimal solution that

sorts a permutation π with transpositions (resp. reversals and transpositions) and has

cost f(S).

Proof. Lemma 62 already showed how to mimic a reversal with 2-reversals over permu-
tations. Now consider a transposition τ(i, j, k) from solution S and assume that it has
length ℓ, the first segment has length ℓ1, and the second segment has length ℓ2 (i.e.,
ℓ = ℓ1+ ℓ2). Note that we can move an element from a position a to a position b > a with
2-transpositions by successively exchanging such element with the element to its right,
which takes b− a 2-transpositions. In order to mimic the result of transposition τ(i, j, k)

with 2-transpositions, we will: move πj−1 to position k− 1 (this takes ℓ2 2-transpositions
and does not change the order inside the second segment); then move πj−2 to position
k− 2 (this takes ℓ2 2-transpositions and also does not change the order inside the second
segment); and so on, until we use ℓ2 2-transpositions to move πi to position k − (j − i),
which would make the whole second segment start at i as well. Therefore, the transposi-
tion τ(i, j, k) of length ℓ = ℓ1+ ℓ2 can be mimicked by ℓ1× ℓ2 2-transpositions. Note that
ℓ1 × ℓ2 ≤ ℓ/2× ℓ/2 = ℓ2/4.

First we consider SbWT. Suppose S can be divided into S1, which contains all 2-
transpositions of S, and S2, which contains the other transpositions that have length
ℓ ≥ 3. We can build a solution S ′ from S by using the transpositions from S1 and by
replacing the transpositions from S2 with 2-transpositions as mentioned above. Let S ′2
contain such 2-transpositions. Note that S ′ contains only 2-transpositions and sorts π.

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 126

Let ℓτ denote the length of a transposition τ . We have that

f(S ′) = f(S1) + f(S ′2) ≤ f(S1) +
∑

τ∈S2

f(2)
ℓ2τ
4

= f(S1) +
∑

τ∈S2

22
ℓ2τ
4

= f(S1) +
∑

τ∈S2

ℓ2τ

≤ f(S1) +
∑

τ∈S2

1.125× 2ℓτ = f(S1) + 1.125f(S2)

≤ 1.125(f(S1) + f(S2)) = 1.125f(S)

where the inequality from the third line is true because x2 ≤ 1.125(2x) for any x ≥ 3.
We can show the same result for SbWRT with very similar arguments.

These two lemmas along with Lemma 63 (which can be directly adapted to 2-trans-
positions) lead to the following corollary. Theorem 36 shows that the diameters of the
problems considered in this section are also Θ(n2).

Corollary 35. For f(ℓ) = 2ℓ, Bubble Sort is a 1.125-approximation algorithm for the

problems SBbWT, SBbWRT, SbWT, and SbWRT.

Theorem 36. For f(ℓ) = 2ℓ, Ce
t (n), C

e
rt(n), D

e
t (n), and De

rt(n) are Θ(n2).

Proof. Similar to Theorem 34.

7.4 Sorting Signed Permutations and Signed Binary

Strings by Length-Weighted Prefix Rearrangements

We also start by giving a lower bound on the distances in Lemma 66.

Lemma 66. Let β ∈ {pr̄, pr̄t}. For any signed permutation π and signed binary string T

with n valid elements,

ceβ(T) ≥ 2n and deβ(π) ≥ 2n.

Proof. Similar to the proof of Lemma 60.

We use here the same idea presented in Section 7.1, with some adaptations. The
algorithms to sort binary strings first place the rightmost 1 or −1 together with the last
block of 1’s until we have only one block of 1’s in the end; after this, we may still have
−0 at some positions in the beginning of the string, so the algorithms fix the sign of the
rightmost −0 until we have only positive 0’s. The algorithms to sort permutations always
place the highest element that is out of order (in absolute value) in its correct position.

Algorithms 33 and 34 show the algorithms for SBbWPR̄ and SbWPR̄, respectively,
while Algorithms 35 and 36 show the algorithms for SBbWPR̄T and SbWPR̄T, respec-
tively. Theorem 37 shows that such algorithms are (4+n/2n−1)-approximation algorithms
for the four problems being considered in this chapter.

Theorem 37. For f(ℓ) = 2ℓ, SBbWPR̄, SBbWPR̄T, SbWPR̄, and SbWPR̄T are

(4 + n/2n−1)-approximable.

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 127

Proof. Note that for both permutations and binary strings, any of the Algorithms 33,
35, 34, or 36 need at most three rearrangements at each iteration of their while loops.
Consider that, at each iteration, the algorithms will place an element at position y. As
a high estimative, we can consider that every possible position will be considered, so
1 ≤ y ≤ n. Note that position y may itself contain the element that we want to place
there (it can be negative). Also note that once an element is placed at position y, such
position will never be considered again by the algorithms. Therefore, these algorithms
will sort a binary string or a permutation with n valid elements with a cost of at most

f(1) +

n∑

i=2

(f(i) + f(1) + f(i)) = 2 +

n∑

i=2

(2i+1 + 2) = 4× 2n + 2n− 8 < 4× 2n + 2n,

which, according to the lower bound given in Lemma 66, gives the approximation factor
of (4× 2n + 2n)/2n = 4 + n/2n−1.

Algorithm 33 A (4 + n/2n−1)-approximation algorithm for SBbWPR̄.

4-BWPR̄(T , n)

Input : binary string T and its size n
Output : cost used to sort T

1 c← 0
2 while T does not have only one block of 1’s in the end do

3 Let y be the smallest position such that ti = 1 for all y ≤ i ≤ n+ 1
4 Let x < y be the highest position such that tx = ±1
5 if x 6= 1 then // Bring tx to the beginning if necessary
6 T ← T · ρ̄p(x)
7 c← c+ f(x)
8 if t1 6= −1 then // The first element should be a −1
9 T ← T · ρ̄p(1)

10 c← c+ f(1)
// Put the first element next to the last block (of 1’s)

11 T ← T · ρ̄p(y)
12 c← c+ f(y)
13 while there is at least one −0 in T do

14 Let y be the highest position such that ty = −0
15 if y 6= 1 then

16 T ← T · ρ̄p(y − 1)
17 c← c+ f(y − 1)
18 if there is another −0 in T then

19 T ← T · ρ̄p(1) · ρ̄p(y)
20 c← c+ f(1) + f(y)
21 return c

Similarly to what happened for the unsigned problems, these algorithms given so far
show that Ce

β(n) and De
β(n) are both O(2n), for β ∈ {pr̄, pr̄t}. The lower bounds given in

Lemma 66, on the other hand, show that Ce
β(n) and De

β(n) are both Ω(2n), which leads
us directly to the following theorem.

Theorem 38. For β ∈ {pr̄, pr̄t} and f(ℓ) = 2ℓ, Ce
β(n) and De

β(n) are Θ(2n).

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 128

Example 30. The following example shows the execution of Algorithm 33 over T =

−0−1−1+0−0−0 +1+1+0+1−1−1+0+1−0. The first part leaves T with a unique

block of +1’s in the end:

T = −0−1−1+0−0−0+1+1+0+1−1−1+0+1−0 // bring rightmost +1 to beginning
T ← T ·ρ̄p(14) = −1−0+1+1−1−0−1−1+0+0−0+1+1+0−0 // t1 is negative, so put it in the end
T ← T ·ρ̄p(15) = +0−0−1−1+0−0−0+1+1+0+1−1−1+0+1 // bring rightmost −1 to beginning
T ← T ·ρ̄p(13) = +1+1−1−0−1−1+0+0−0+1+1+0−0+0+1 // t1 is positive, so reverse it
T ← T ·ρ̄p(1) = −1+1−1−0−1−1+0+0−0+1+1+0−0+0+1 // and put it next to the last block

T ← T ·ρ̄p(14) = −0+0−0−1−1+0−0−0+1+1+0+1−1+1+1 // bring rightmost −1 to beginning
T ← T ·ρ̄p(13) = +1−1−0−1−1+0+0−0+1+1+0−0+0+1+1 // t1 is positive, so reverse it
T ← T ·ρ̄p(1) = −1−1−0−1−1+0+0−0+1+1+0−0+0+1+1 // and put it next to the last block

T ← T ·ρ̄p(13) = −0+0−0−1−1+0−0−0+1+1+0+1+1+1+1 // bring rightmost +1 (not in last block) to beginning
T ← T ·ρ̄p(10) = −1−1+0+0−0+1+1+0−0+0+0+1+1+1+1 // t1 is negative, so put it next to the last block
T ← T ·ρ̄p(11) = −0−0+0−0−1−1+0−0−0+1+1+1+1+1+1 // bring rightmost −1 to beginning
T ← T ·ρ̄p(6) = +1+1+0−0+0+0+0−0−0+1+1+1+1+1+1 // t1 is positive, so reverse it
T ← T ·ρ̄p(1) = −1+1+0−0+0+0+0−0−0+1+1+1+1+1+1 // and put it next to the last block
T ← T ·ρ̄p(9) = +0+0−0−0−0+0−0−1+1+1+1+1+1+1+1 // bring rightmost −1 to beginning
T ← T ·ρ̄p(8) = +1+0−0+0+0+0−0−0+1+1+1+1+1+1+1 // t1 is positive, so reverse it
T ← T ·ρ̄p(1) = −1+0−0+0+0+0−0−0+1+1+1+1+1+1+1 // and put it next to the last block
T ← T ·ρ̄p(8) = +0+0−0−0−0+0−0+1+1+1+1+1+1+1+1 //

The second part leaves T with a unique block of +0: in the beginning:

T = +0+0−0−0−0+0−0+1+1+1+1+1+1+1+1 // bring the rightmost −0 to beginning
T ← T ·ρ̄p(7) = +0−0+0+0+0−0−0+1+1+1+1+1+1+1+1 // there are other −0’s, so reverse it
T ← T ·ρ̄p(1) = −0−0+0+0+0−0−0+1+1+1+1+1+1+1+1 // and put it back in its original position
T ← T ·ρ̄p(7) = +0+0−0−0−0+0+0+1+1+1+1+1+1+1+1 // bring the rightmost −0 to beginning
T ← T ·ρ̄p(5) = +0+0+0−0−0+0+0+1+1+1+1+1+1+1+1 // there are other −0’s, so reverse it
T ← T ·ρ̄p(1) = −0+0+0−0−0+0+0+1+1+1+1+1+1+1+1 // and put it back in its original position
T ← T ·ρ̄p(5) = +0+0−0−0+0+0+0+1+1+1+1+1+1+1+1 // bring the rightmost −0 to beginning
T ← T ·ρ̄p(4) = +0+0−0−0+0+0+0+1+1+1+1+1+1+1+1 // there are other −0’s, so reverse it
T ← T ·ρ̄p(1) = −0+0−0−0+0+0+0+1+1+1+1+1+1+1+1 // and put it back in its original position
T ← T ·ρ̄p(4) = +0+0−0+0+0+0+0+1+1+1+1+1+1+1+1 // bring the rightmost −0 to beginning
T ← T ·ρ̄p(3) = +0−0−0+0+0+0+0+1+1+1+1+1+1+1+1 // there are other −0’s, so reverse it
T ← T ·ρ̄p(1) = −0−0−0+0+0+0+0+1+1+1+1+1+1+1+1 // and put it back in its original position
T ← T ·ρ̄p(3) = +0+0+0+0+0+0+0+1+1+1+1+1+1+1+1

Algorithm 34 A (4 + n/2n−1)-approximation algorithm for SbWPR̄.

4-WPR̄(π, n)

Input : permutation π and its size n
Output : number of operations used to sort π

1 c← 0
2 while π 6= ιn do

3 Let πj = i be the highest element such that π|i| 6= |i|

4 if j 6= 1 then // Bring the element to the beginning if necessary
5 π ← π · ρ̄p(j)
6 c← c+ f(j)
7 if π1 > 0 then // The element should be negative
8 π ← π · ρ̄p(1)
9 c← c+ f(1)

// Move i to its right position
10 π ← π · ρ̄p(|i|)
11 c← c+ f(|i|)
12 return c

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 129

Algorithm 35 A (4 + n/2n−1)-approximation algorithm for SBbWPR̄T.

4-BWPR̄T(T , n)

Input : binary string T and its size n
Output : cost used to sort T

1 c← 0
2 while T does not have only one block of 1’s in the end do

3 Let y be the smallest position such that ti = 1 for all y ≤ i ≤ n+ 1
4 Let x < y be the highest position such that tx = ±1
5 if tx = 1 then

6 T ← T · τp(x+ 1, y)
7 c← c+ f(y − 1)
8 else

9 if x 6= 1 then

// Bring tx to the beginning if necessary
10 T ← T · ρ̄p(x)
11 c← c+ f(x)
12 T ← T · ρ̄p(1) · ρ̄p(y − 1)
13 c← c+ f(1) + f(y − 1)
14 if T is sorted then

15 return c
16 while T does not have only one block of −0’s in the beginning do

17 Let y be the highest position such that ty = −0
18 Let x be the first position of the block that contains ty

// Bring such block to the beginning
19 T ← T · τp(x, y + 1)
20 c← c+ f(y)
21 Let x be the last position of the first block (of −0’s)
22 T ← T · ρ̄p(x)
23 c← c+ f(x)
24 return c

Algorithm 36 A (4 + n/2n−1)-approximation algorithm for SbWPR̄T.

4-WPR̄T(π, n)

Input : permutation π and its size n
Output : cost used to sort π

1 c← 0
2 while π 6= ιn do

3 Let πj = i be the highest element such that π|i| 6= |i|

4 if πj > 0 then

5 π ← π · τp(j + 1, i + 1)
6 c← c+ f(i)
7 else

8 if j 6= 1 then // Bring the element to the beginning if necessary
9 π ← π · ρ̄p(j)

10 c← c+ f(j)
11 π ← π · ρ̄p(1) · ρ̄p(|i|)
12 c← c+ f(1) + f(|i|)
13 return c

CHAPTER 7. RESULTS OBTAINED FOR EXPONENTIAL COST FUNCTION 130

7.5 Summary of the Chapter

Table 7.1 summarizes the best approximation factors and bounds for the diameters of the
problems that were studied in this chapter.

Table 7.1: Summary of the results obtained for length-weighted rearrangement problems
when f(ℓ) = 2ℓ.

Approximation Factor Diameter
Rearrangements

Bin. Str. Perm. Bin. Str. Perm.

Pref. Reversals 3 (Thm. 28) 3 (Thm. 30) Θ(2n) (Thm. 32) Θ(2n) (Thm. 32)

Pref. Transpositions and

Pref. Reversals and Transp.
2 (Thm. 29) 2 (Thm. 31) Θ(2n) (Thm. 32) Θ(2n) (Thm. 32)

Reversals 1.125 (Cor. 33) 1.5 (Cor. 33) Θ(n2) (Thm. 34) Θ(n2) (Thm. 34)

Transpositions and

Reversals and Transpositions
1.125 (Cor. 35) 1.125 (Cor. 35) Θ(n2) (Thm. 36) Θ(n2) (Thm. 36)

Sig. Pref. Reversals and

Sig. Pref. Reversals and Transp.
4+ n

2n−1
(Thm. 37) 4+ n

2n−1
(Thm. 37) Θ(2n) (Thm. 38) Θ(2n) (Thm. 38)

Chapter 8

Final Considerations

This thesis presented the most important results obtained during the period of the doc-
torate. For all problems considered, there has been an initial and extensive study of them.
For the traditional approach, we considered a total of 10 problems and developed algo-
rithms and bounds for the distance and diameter for 6 of them. For the length-weighted
approach, we considered a total of 13 problems and also developed algorithms and bounds
for the distance and diameter for all of them. We also considered a new cost function
over 7 of the studied problems. All results obtained are summarized in Sections 4.9, 6.9,
and 7.5.

We were able to produce the following contributions to the academic area during this
period:

1. a paper entitled “Sorting Permutations by Prefix and Suffix Versions of Reversals and
Transpositions” [44], presented during the Latin American Theoretical Informatics
Symposium in 2014;

2. a paper entitled “On Sorting of Signed Permutations by Prefix and Suffix Reversals
and Transpositions” [45], presented during the International Conference on Algo-
rithms for Computational Biology in 2014;

3. a paper entitled “On the Diameter of Rearrangement Problems” [46], also presented
during the International Conference on Algorithms for Computational Biology in
2014;

4. a paper entitled “Approximation Algorithms for Sorting by Length-Weighted Prefix
and Suffix Operations” [47], published in the journal Theoretical Computer Science
in 2015.

We also contributed with the paper entitled “A General Heuristic for Genome Rear-
rangement Problems” [22], published in the Journal of Bioinformatics and Computational
Biology in 2014. This paper presents an heuristic that receives a sorting sequence and
tries to decrease its size by using the optimal sorting sequence of small permutations.

The first important future work is developing good lower bounds for the distance
and approximation algorithms for the case where α > 0 when considering both prefix
and suffix rearrangements. Another possible future direction is trying to improve the

131

CHAPTER 8. FINAL CONSIDERATIONS 132

approximation factors for sorting by transpositions and sorting by prefix rearrangements
when α = 1 in the same way that was done for sorting by reversals, or trying to improve the
results for signed permutations and binary strings by designing specific algorithms for such
problems. Furthermore, many questions remain unanswered concerning the complexities
of the problems we mentioned: for α = 0 some of them were already shown to be NP-hard,
for α = 1 SBbWR is polynomial, and for α ≥ 3 SbWR and SBbWR are polynomial; all
other cases remain open.

Bibliography

[1] D. A. Bader, B. M. E. Moret, and M. Yan. A Linear-Time Algorithm for Comput-
ing Inversion Distance Between Signed Permutations with an Experimental Study.
Journal of Computational Biology, 8:483–491, 2001.

[2] V. Bafna and P. A. Pevzner. Genome Rearrangements and Sorting by Reversals.
SIAM Journal on Computing, 25(2):272–289, 1996.

[3] V. Bafna and P. A. Pevzner. Sorting by Transpositions. SIAM Journal on Discrete

Mathematics, 11(2):224–240, 1998.

[4] C. Baudet, U. Dias, and Z. Dias. Length and Symmetry on the Sorting by Weighted
Inversions Problem. In S. Campos, editor, Advances in Bioinformatics and Compu-

tational Biology, volume 8826 of Lecture Notes in Computer Science, pages 99–106.
Springer International Publishing, Switzerland, 2014.

[5] M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, S. S. Skiena, and F. Swidan.
Improved Bounds on Sorting by Length-Weighted Reversals. Journal of Computer

and System Sciences, 74(5):744–774, 2008.

[6] A. Bergeron. A Very Elementary Presentation of the Hannenhalli-Pevzner Theory.
Discrete Applied Mathematics, 146(2):134–145, 2005.

[7] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-Approximation Algorithm for
Sorting by Reversals. In R. Möhring and R. Raman, editors, Proceedings of the 10th

Annual European Symposium on Algorithms (ESA’2002), volume 2461 of Lecture

Notes in Computer Science, pages 200–210. Springer-Verlag Berlin Heidelberg New
York, Berlin/Heidelberg, Germany, 2002.

[8] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric Genome Rearrangement.
Gene, 172(1):GC11–GC17, 1996.

[9] L. Bulteau, G. Fertin, and I. Rusu. Sorting by Transpositions is Difficult. SIAM

Journal on Computing, 26(3):1148–1180, 2012.

[10] L. Bulteau, G. Fertin, and I. Rusu. Pancake Flipping is Hard. Journal of Computer

and System Sciences, 81(8):1556–1574, 2015.

[11] A. Caprara. Sorting Permutations by Reversals and Eulerian Cycle Decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91–110, 1999.

133

BIBLIOGRAPHY 134

[12] X. Chen. On Sorting Unsigned Permutations by Double-Cut-and-Joins. Journal of

Combinatorial Optimization, 25(3):339–351, 2013.

[13] B. Chitturi. Tighter Upper Bound for Sorting Permutations with Prefix Transposi-
tions. Theoretical Computer Science, 602:22–31, 2015.

[14] B. Chitturi and I. H. Sudborough. Bounding Prefix Transposition Distance for Strings
and Permutations. Theoretical Computer Science, 421:15–24, 2012.

[15] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. O. Shields, I. H. Sudborough, and
W. Voit. An (18/11)n Upper Bound for Sorting by Prefix Reversals. Theoretical

Computer Science, 410(36):3372–3390, 2009.

[16] D. A. Christie. A 3/2-Approximation Algorithm for Sorting by Reversals. In
H. Karloff, editor, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA’1998), pages 244–252, Philadelphia, PA, USA, 1998. Society for
Industrial and Applied Mathematics.

[17] J. Cibulka. On Average and Highest Number of Flips in Pancake Sorting. Theoretical

Computer Science, 412(8-10):822–834, 2011.

[18] D. S. Cohen and M. Blum. On the Problem of Sorting Burnt Pancakes. Discrete

Applied Mathematics, 61(2):105–120, 1995.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, London, England, 3rd edition, 2009.

[20] T. da S. Arruda, U. Dias, and Z. Dias. Heuristics for the Sorting by Length-Weighted
Inversions Problem on Signed Permutations. In A.-H. Dediu, C. Martín-Vide, and
B. Truthe, editors, Algorithms for Computational Biology, volume 8542 of Lecture

Notes in Computer Science, pages 59–70. Springer International Publishing, Switzer-
land, 2014.

[21] U. Dias and Z. Dias. Heuristics for the Transposition Distance Problem. Journal of

Bioinformatics and Computational Biology, 11(5):17, 2013.

[22] U. Dias, G. R. Galvão, C. N. Lintzmayer, and Z. Dias. A General Heuristic for
Genome Rearrangement Problems. Journal of Bioinformatics and Computational

Biology, 12(3):26, 2014.

[23] Z. Dias and U. Dias. Sorting by Prefix Reversals and Prefix Transpositions. Discrete

Applied Mathematics, 181:78–89, 2015.

[24] Z. Dias and J. Meidanis. Sorting by Prefix Transpositions. In A. H. F. Laender and
A. L. Oliveira, editors, Proceedings of the 9th International Symposium on String

Processing and Information Retrieval (SPIRE’2002), volume 2476 of Lecture Notes

in Computer Science, pages 65–76. Springer-Verlag Berlin Heidelberg New York,
Berlin/Heidelberg, Germany, 2002.

BIBLIOGRAPHY 135

[25] H. Dweighter. Problem E2569. American Mathematical Monthly, 82:1010, 1975.

[26] I. Elias and T. Hartman. A 1.375-Approximation Algorithm for Sorting by Trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3(4):369–379, 2006.

[27] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wastlund. Sorting a
Bridge Hand. Discrete Mathematics, 241(1-3):289–300, 2001.

[28] G. Fertin, A. Labarre, I. Rusu, É. Tannier, and S. Vialette. Combinatorics of Genome

Rearrangements. Computational Molecular Biology. The MIT Press, London, Eng-
land, 2009.

[29] G. Fertin, L. Jankowiak, and G. Jean. Prefix and Suffix Reversals on Strings. In
C. Iliopoulos, S. Puglisi, and E. Yilmaz, editors, String Processing and Informa-

tion Retrieval, volume 9309 of Lecture Notes in Computer Science, pages 165–176.
Springer International Publishing, Switzerland, 2015.

[30] J. Fischer and S. W. Ginzinger. A 2-Approximation Algorithm for Sorting by Prefix
Reversals. In G. S. Brodal and S. Leonardi, editors, Proceedings of the 13th Annual

European Conference on Algorithms (ESA’2005), volume 3669 of Lecture Notes in

Computer Science, pages 415–425, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg.

[31] G. R. Galvão and Z. Dias. An Audit Tool for Genome Rearrangement Algorithms.
Journal of Experimental Algorithmics, 19:1–34, 2014.

[32] G. R. Galvão, C. Baudet, and Z. Dias. Sorting Signed Circular Permutations by
Super Short Reversals. In R. Harrison, Y. Li, and I. Măndoiu, editors, Proceedings

of the 11th International Symposium on Bioinformatics Research and Applications

(ISBRA’2015), Lecture Notes in Computer Science, pages 272–283. Springer Inter-
national Publishing, Switzerland, 2015.

[33] G. R. Galvão, O. Lee, and Z. Dias. Sorting Signed Permutations by Short Operations.
Algorithms for Molecular Biology, 10(1):1–17, 2015.

[34] W. H. Gates and C. H. Papadimitriou. Bounds for Sorting by Prefix Reversal.
Discrete Mathematics, 27(1):47–57, 1979.

[35] Q.-P. Gu, S. Peng, and I. H. Sudborough. A 2-Approximation Algorithm for Genome
Rearrangements by Reversals and Transpositions. Theoretical Computer Science, 210
(2):327–339, 1999.

[36] Y. Han. Improving the Efficiency of Sorting by Reversals. In H. R. Arabnia and
H. Valafar, editors, Proceedings of the 2006 International Conference on Bioinfor-

matics & Computational Biology (BIOCOMP’2006), pages 635–646. CSREA Press,
2006.

BIBLIOGRAPHY 136

[37] S. Hannenhalli and P. A. Pevzner. Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals. Journal of the ACM, 46
(1):1–27, 1999.

[38] T. Hartman and R. Sharan. A 1.5-Approximation Algorithm for Sorting by Transpo-
sitions and Transreversals. Journal of Computer and System Sciences, 70(3):300–320,
2005.

[39] M. Hasan, A. Rahman, M. K. Rahman, M. S. Rahman, M. Sharmin, and R. Yeasmin.
Pancake Flipping and Sorting Permutations. Journal of Discrete Algorithms, 33:139–
149, 2015.

[40] M. H. Heydari and I. H. Sudborough. On the Diameter of the Pancake Network.
Journal of Algorithms, 25(1):67–94, 1997.

[41] J. D. Kececioglu and D. Sankoff. Exact and Approximation Algorithms for Sorting by
Reversals, with Application to Genome Rearrangement. Algorithmica, 13:180–210,
1995.

[42] A. Labarre. Edit Distances and Factorisations of Even Permutations. In D. Halperin
and K. Mehlhorn, editors, Proceedings of the 16th Annual European Symposium on

Algorithms (ESA’2008), volume 5193 of Lecture Notes in Computer Science, pages
635–646, Berlin, Heidelberg, 2008. Springer-Verlag.

[43] G.-H. Lin and G. Xue. Signed Genome Rearrangement by Reversals and Transposi-
tions: Models and Approximations. Theoretical Computer Science, 259(1-2):513–531,
2001.

[44] C. N. Lintzmayer and Z. Dias. Sorting Permutations by Prefix and Suffix Versions
of Reversals and Transpositions. In A. Pardo and A. Viola, editors, LATIN 2014:

Theoretical Informatics, volume 8392 of Lecture Notes in Computer Science, pages
671–682. Springer Berlin Heidelberg, Heidelberg, Germany, 2014.

[45] C. N. Lintzmayer and Z. Dias. On Sorting of Signed Permutations by Prefix and
Suffix Reversals and Transpositions. In A.-H. Dediu, C. Martín-Vide, and B. Truthe,
editors, Algorithms for Computational Biology, volume 8542 of Lecture Notes in Com-

puter Science, pages 146–157. Springer International Publishing, Switzerland, 2014.

[46] C. N. Lintzmayer and Z. Dias. On the Diameter of Rearrangement Problems. In
A.-H. Dediu, C. Martín-Vide, and B. Truthe, editors, Algorithms for Computational

Biology, volume 8542 of Lecture Notes in Computer Science, pages 158–170. Springer
International Publishing, Switzerland, 2014.

[47] C. N. Lintzmayer, G. Fertin, and Z. Dias. Approximation Algorithms for Sorting by
Length-Weighted Prefix and Suffix Operations. Theoretical Computer Science, 593:
26–41, 2015.

BIBLIOGRAPHY 137

[48] J. Meidanis, M. E. M. T. Walter, and Z. Dias. Transposition Distance Between
a Permutation and its Reverse. In R. Baeza-Yates, editor, Proceedings of the 4th

South American Workshop on String Processing (WSP’1997), pages 70–79, Ontario,
Canada, 1997. Carleton University Press.

[49] T. C. Nguyen, H. T. Ngo, and N. B. Nguyen. Sorting by Restricted-Length-Weighted
Reversals. Genomics Proteomics & Bioinformatics, 3(2):120–127, 2005.

[50] R. Y. Pinter and S. Skiena. Genomic Sorting with Length-Weighted Reversals.
Genome Informatics, 13:2002, 2002.

[51] A. Rahman, S. Shatabda, and M. Hasan. An Approximation Algorithm for Sorting
by Reversals and Transpositions. Journal of Discrete Algorithms, 6(3):449–457, 2008.

[52] I. Rusu. Log-Lists and Their Applications to Sorting by Transpositions, Reversals
and Block-Interchanges. http://arxiv.org/abs/1507.01512, 2015.

[53] M. Sharmin, R. Yeasmin, M. Hasan, A. Rahman, and M. S. Rahman. Pancake
Flipping with Two Spatulas. Electronic Notes in Discrete Mathematics, 36:231–238,
2010.

[54] F. Swidan, M. A. Bender, D. Ge, S. He, H. Hu, and R. Y. Pinter. Sorting by Length-
Weighted Reversals: Dealing with Signs and Circularity. In S. Sahinalp, S. Muthukr-
ishnan, and U. Dogrusoz, editors, Combinatorial Pattern Matching, volume 3109 of
Lecture Notes in Computer Science, pages 32–46. Springer Berlin Heidelberg, Hei-
delberg, Germany, 2004.

[55] E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on Sorting by Reversals. Discrete

Applied Mathematics, 155(6-7):881–888, 2007.

[56] M. E. M. T. Walter, Z. Dias, and J. Meidanis. Reversal and Transposition Distance of
Linear Chromosomes. In Proceedings of the 5th International Symposium on String

Processing and Information Retrieval (SPIRE’1998), pages 96–102, Los Alamitos,
CA, USA, 1998. IEEE Computer Society.

http://arxiv.org/abs/1507.01512

	List of Figures
	List of Tables
	Introduction
	Theoretical Fundaments
	Breakpoints and Strips
	Binary Strings
	Approximation Algorithms

	Known Results for Traditional Approach
	Summary of the Chapter

	Results Obtained for Traditional Approach
	Sorting by Prefix and Suffix Reversals
	Sorting by Prefix and Suffix Transpositions
	Sorting by Prefix and Suffix Reversals and Transpositions
	Sorting by Signed Prefix and Suffix Reversals
	Sorting by Signed Prefix Reversals and Transpositions and Sorting by Signed Prefix and Suffix Reversals and Transpositions
	Improving the Results in Practice
	Experimental Results
	Bounds on the Diameters
	Summary of the Chapter

	Known Results for Length-Weighted Approach
	Summary of the Chapter

	Results Obtained for Length-Weighted Approach
	Sorting Algorithms Considering = 1
	Sorting by Length-Weighted Prefix Reversals
	Sorting by Length-Weighted Prefix and Suffix Reversals
	Sorting by Length-Weighted Prefix Transpositions and Sorting by Length-Weighted Prefix and Suffix Transpositions
	Sorting by Length-Weighted Prefix Reversals and Transpositions and Sorting by Length-Weighted Prefix and Suffix Reversals and Transpositions

	Bounds on the Diameters
	Lower Bounds on the Diameters
	Considering 0 < < 1
	Considering = 1
	Considering > 1

	Upper Bounds on the Diameters

	Sorting Algorithms Considering 0 < < 1
	Sorting Algorithms Considering > 1
	Experimental Results
	Sorting by Length-Weighted Reversals
	Sorting by Length-Weighted Transpositions and Sorting by Length-Weighted Reversals and Transpositions
	Sorting Signed Permutations and Signed Binary Strings by Length-Weighted Prefix and Suffix Rearrangements
	Summary of the Chapter

	Results Obtained for Exponential Cost Function
	Sorting by Length-Weighted Prefix Reversals, Sorting by Length-Weighted Prefix Transpositions, and Sorting by Length-Weighted Prefix Reversals and Transpositions
	Sorting by Length-Weighted Reversals
	Sorting by Length-Weighted Transpositions and Sorting by Length-Weighted Reversals and Transpositions
	Sorting Signed Permutations and Signed Binary Strings by Length-Weighted Prefix Rearrangements
	Summary of the Chapter

	Final Considerations
	Bibliography

