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Pancake Flipping

The Pancake Flipping Problem (Dweighter, 1975 [1])
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Pancake Flipping

The Burnt Pancake Flipping Problem (Gates and Papadimitriou, 1979 [2])
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Pancake Flipping

Allowed moves: prefix reversals

Reinterpreted as a genome rearrangements problem (1995) [3]
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Genome Rearrangements

A type of large scale mutation that can occur in a genome

Reversal: inverts a segment of a genome

Transposition: exchanges the position of two consecutive segments of
a genome

Sorting by Genome Rearrangements: a form of comparing two
genomes and inferring their evolutionary distance

Our work: prefix and suffix versions of reversals and transpositions
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Pancake Flipping

Sorting by Prefix Reversals

NP-hard (2012) [4]

Best-known approximation algorithm has factor 2 (2005) [5]

Sorting by Signed Prefix Reversals

Unknown complexity

Best-known approximation algorithm has factor 2 (1995) [6]
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Other Problems

Sorting by Prefix Transpositions (Dias and Meidanis, 2002 [7])
Unknown complexity, best-known approximation factor 2

Pancake Flipping with Two Spatulas (Sharmin et al., 2010 [8])
Unknown complexity, best-known approximation factor 2 + 4/bupr(π)
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Definitions and Notations

Permutation: π = (π1 π2 . . . πn) where πi = π(i)

Unsigned permutation: πi ∈ {1, 2, . . . , n} and πi 6= πj for all i 6= j

Signed permutation: πi ∈ {−n, −(n− 1), . . . , −1, 1, 2, . . . , n} and
|πi| 6= |πj | for all i 6= j

Extended: (π0 = 0 π1 π2 . . . πn πn+1 = n+ 1)

Permutations also represent rearrangements

Composition: π · σ = (πσ1 πσ2 . . . πσn)

Identity permutation: ιn = (1 2 . . . n)
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Definitions and Notations

Reversal: ρ(i, j) with 1 ≤ i < j ≤ n

π = (π1 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn)

π · ρ(i, j) = (π1 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn)

Example:
π = (3 1 5 2 7 4 6)

π · ρ(2, 5) = (3 7 2 5 1 4 6)

Prefix reversal: ρp(j) ≡ ρ(1, j)

Suffix reversal: ρs(i) ≡ ρ(i, n)
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Definitions and Notations

Signed reversal: ρ̄(i, j) with 1 ≤ i ≤ j ≤ n

π = (π1 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn)

π · ρ̄(i, j) = (π1 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn)

Example:

π = (−3 +1 − 5 + 2 + 7 − 4 − 6)
π · ρ̄(2, 5) = (−3 −7 − 2 + 5 − 1 − 4 − 6)

Signed prefix reversal: ρ̄p(j) ≡ ρ̄(1, j)

Signed suffix reversal: ρ̄s(i) ≡ ρ̄(i, n)
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Definitions and Notations

Transposition: τ(i, j, k) with 1 ≤ i < j < k ≤ n+ 1

π = (π1 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πk−1 πk . . . πn)

π · τ(i, j, k) = (π1 . . . πi−1 πj πj+1 . . . πk−1 πi πi+1 . . . πj−1 πk . . . πn)

Example:
π = (3 1 5 2 7 4 6)

π · τ(2, 4, 7) = (3 2 7 4 1 5 6)

Prefix transposition: τp(j, k) ≡ τ(1, j, k)

Suffix transposition: τs(i, j) ≡ τ(i, j, n+ 1)
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Definitions and Notations

Sorting sequence: Sequence of rearrangements that, when applied to π,
transform it into ιn

π = (2 4 5 3 1)
·ρp(3) → (5 4 2 3 1)
·ρp(5) → (1 3 2 4 5)
·ρp(2) → (3 1 2 4 5)
·ρp(3) → (2 1 3 4 5)
·ρp(2) → (1 2 3 4 5)
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Definitions and Notations

Length of ρ(i, j): ℓ = j − i+ 1

Length of τ(i, j, k): ℓ = k − i

Cost of a rearrangement of length ℓ: f(ℓ)
◮ Normally, f(ℓ) = ℓα, for α ≥ 0

Sorting sequence with k rearrangements of length ℓ1, ℓ2, . . ., ℓk has
cost f(ℓ1) + f(ℓ2) + . . . + f(ℓk)

Rearrangement model: defines the allowed rearrangements in a
sorting problem

Carla Negri Lintzmayer The Problem of Sorting Permutations by Prefix and Suffix Rearrangements 15 / 59



Goals

Given a permutation π, a rearrangement model β, and an α, find the
distance dαβ(π)

π = (2 4 5 3 1)
·ρp(4) → (3 5 4 2 1)
·ρp(3) → (4 5 3 2 1)
·ρp(2) → (5 4 3 2 1)
·ρp(5) → (1 2 3 4 5)

d0pr(π) = 4

d1pr(π) = 14
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Goals

Given all permutations of a size n, a rearrangement model β, and an α,
find the diameter Dα

β (n)

d0pr(1 2 3 4) = 0 d0pr(1 2 4 3) = 3 d0pr(1 3 2 4) = 3
d0pr(1 3 4 2) = 3 d0pr(1 4 2 3) = 3 d0pr(1 4 3 2) = 3
d0pr(2 1 3 4) = 1 d0pr(2 1 4 3) = 3 d0pr(2 3 1 4) = 2
d0pr(2 3 4 1) = 2 d0pr(2 4 1 3) = 4 d0pr(2 4 3 1) = 3
d0pr(3 1 2 4) = 2 d0pr(3 1 4 2) = 4 d0pr(3 2 1 4) = 1
d0pr(3 2 4 1) = 3 d0pr(3 4 1 2) = 3 d0pr(3 4 2 1) = 2
d0pr(4 1 2 3) = 2 d0pr(4 1 3 2) = 3 d0pr(4 2 1 3) = 3
d0pr(4 2 3 1) = 4 d0pr(4 3 1 2) = 2 d0pr(4 3 2 1) = 1

D0
pr(4) = 4
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Traditional Approach

The cost to sort a permutation is given by the amount of
rearrangements that were used to do it

f(ℓ) = ℓα = 1 because α = 0
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Known Results

Rearrangements Best Approx. Factor Complexity

Reversals 1.375 [9] NP-hard [10]

Sig. Reversals 1 [11] P [11]

Transpositions 1.375 [12] NP-hard [13]

Reversals and Transpositions 2.8334 [14, 15] Unknown

Sig. Reversals and Transpositions 2 [16] Unknown

Pref. Reversals 2 [5] NP-hard [4]

Sig. Pref. Reversals 2 [6] Unknown

Pref. Transpositions 2 [7] Unknown

Pref. Reversals and Transpositions 2 + 4/bupr(π) [17] Unknown
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Known Results

Diameter
Rearrangements

Lower Bound Upper Bound

Reversals n− 1 [18]

Sig. Reversals n+ 1 [19]

Transpositions
⌊

n+1
2

⌋

+ 1 [12]
⌊

2n−2
3

⌋

[20]

Reversals and Transpositions - -

Sig. Reversals and Transpositions - -

Pref. Reversals 15n
14

[21] 18n
11

+O(1) [22]

Sig. Pref. Reversals 3n+3
2

[21] 2n− 6 [23]

Pref. Transpositions
⌊

3n+1
4

⌋

[24] n− log7/2 n [25]

Pref. Reversals and Transpositions - -
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Obtained Results

Rearrangements Approx. Factor

Pref. and Suf. Reversals 2

Pref. and Suf. Transpositions 2

Pref. and Suf. Reversals and Transpositions 2 + 4/bupsrt(π)

Sig. Pref. and Suf. Reversals 2

Sig. Pref. Reversals and Transpositions 2 + 4/bp(π)

Sig. Pref. and Suf. Reversals and Transpositions 2 + 4/bupr(π)
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Obtained Results

Diameter
Rearrangements

Lower Bound Upper Bound

Pref. and Suf. Reversals n− 1 18n
11

+O(1)

Pref. and Suf. Transpositions
⌈

n−1
2

⌉

+ 1 n− log7/2 n

Pref. Reversals and Transpositions
⌈

n
2

⌉

n− log7/2 n

Pref. and Suf. Reversals and Transpositions
⌈

n−1
2

⌉

n− log7/2 n

Sig. Pref. and Suf. Reversals n 2n− 6

Sig. Pref. and Suf. Transpositions
⌈

n
2

⌉

+ 1 2n− 6

Sig. Pref. and Suf. Reversals and Transpositions
⌈

n−1
2

⌉

2n− 6
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Obtained Results

Pref. and Suf. Reversals

Pref. and Suf. Transpositions

Pref. and Suf. Reversals and Transpositions

Sig. Pref. and Suf. Reversals

Sig. Pref. Reversals and Transpositions

Sig. Pref. and Suf. Reversals and Transpositions
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Sorting by Signed Prefix and Suffix Reversals (SbPSR̄)

Breakpoint: occur between two consecutive elements in π that should
not be consecutive

(0 3 � − 2 � 4 5 � − 1 6)

Strip: maximal sequence of elements of π without breakpoints

Lower bound:
dpr̄(π) ≥ b(π)
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SbPSR̄

Main idea of algorithm 2-PSR̄:

While π is not sorted:
◮ If it is possible to remove 1 breakpoint with one prefix/suffix reversal,

then do it;
⋆ (−k . . . . . . k + 1 . . . . . .)
⋆ (. . . . . . k − 1 . . . . . . − k)

◮ Otherwise, if it is possible to remove 1 breakpoint with two
prefix/suffix reversals, then do it;

⋆ (. . . . . . k . . . . . . − (k + 1) . . . . . .)
⋆ (. . . . . . k . . . . . . k + 1 . . . . . .)
⋆ (. . . . . . k . . . . . . − (k − 1) . . . . . .)

◮ Otherwise the permutation has a special form.
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SbPSR̄

Lemma

If π is an signed permutation for which is not possible to remove one
breakpoint with one or two prefix/suffix reversals, then π is of one of the
three following forms:

1 η̄n = (−n − (n− 1) . . . − 1);

2 λsa

b+1
= (pb + 1 pb + 2 . . . n

︸ ︷︷ ︸

ℓb+1

pb−1 + 1 pb−1 + 2 . . . pb
︸ ︷︷ ︸

ℓb

. . . . . . 1 2 . . . p1
︸ ︷︷ ︸

ℓ1

);

3 λsd

b+1
= (−p1 − (p1−1) . . . − 1

︸ ︷︷ ︸

ℓ1

−p2 − (p2−1) . . . − (p1+1)
︸ ︷︷ ︸

ℓ2

. . . . . .

−n − (n−1) . . . − (pb+1)
︸ ︷︷ ︸

ℓb+1

),

where b = b(π) ≥ 1 and ℓi ≥ 1 for all 1 ≤ i ≤ b(π) + 1.
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SbPSR̄

Lemma

Let π be one of the signed permutations described in the previous lemma.
If π = η̄n, then one signed prefix reversal ρ̄p(n) sorts it. Otherwise, at
most b(π) + 2 prefix and suffix reversals sort it.

Lemma

For any signed permutation π, 2-PSR̄(π) ≤ 2b(π) + 1.

Theorem

SbPSR̄ is 2-approximable.
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Length-Weighted Approach – Polynomial Cost Function

The cost to sort a permutation is the sum of the cost of the
rearrangements that were used to do it

f(ℓ) = ℓα and α > 0
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Known Results

Rearrangements Parameter Best Approx. Factor

0 < α < 1 -

α = 1 O(lgn)

Reversals [26] 1 < α < 2 O(lgn)

2 ≤ α < 3 2

α ≥ 3 1

0 < α < 1 -

α = 1 O(lgn)

Sig. Reversals [27]
1 < α < 2 O(lgn)

α ≥ 2 O(1)

Reversals of length k = Ω(n) O(logn)

at most k [28] k = o(n) 2 lg2 n+ lgn
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Known Results
Diameter

Rearrangements Parameter
Lower Bound Upper Bound

0 < α < 1 Ω(n) O(n lgn)

α = 1 Ω(n lgn) O(n lg2 n)

Reversals [26]
1 < α < 2 θ(nα)

α ≥ 2 θ(n2)

0 < α < 1 Ω(n) O(n lgn)

α = 1 Ω(n lgn) O(n lg2 n)

Sig. Reversals [27]
1 < α < 2 θ(nα)

α ≥ 2 θ(n2)

0 < α < 1 Ω(n+ n2kα−2) O(n logn+ n2kα−2)

Reversals of
α = 1 Ω(n logn+ n2

k
) O(n logn log k + n2

k
)

length at
1 < α < 2 Ω(n2kα−2)

most k [28]
α ≥ 2 θ(n2)
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Obtained Results
Rearrangements α Approximation Factor

0 < α < 1 O(nα)

Pref. Reversals, α = 1 O(lg2 n)

Pref. Transpositions, 1 < α < 2 O(1)

and Pref. Reversals 2 ≤ α < 3 10

and Transpositions α ≥ 3 5

α → ∞ 2α

2α−2
+ 22α+1

(2α−2)2

Pref. and Suf. Reversals,

Pref. and Suf. Transpositions,

and Pref. and Suf. Reversals
α = 1 O(lg2 n)

and Transpositions

Reversals 0 < α < 1 O(nα)

0 < α < 1 O(nα)

α = 1 O(lg2 n)

Transpositions, 1 < α < 2 O(lgn)

Reversals and Transpositions 2 ≤ α < 3 2

α ≥ 3 1
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Obtained Results

Rearrangements α Approximation Factor

Sig. Pref. Reversals and 0 < α < 1 O(nα)

Sig. Pref. Reversals and α = 1 O(lg2 n)

Transpositions α > 1 O(1)

Sig. Pref. and Suf. Reversals

and Sig. Pref. and Suf. Reversals α = 1 O(lg2 n)

and Transpositions
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Obtained Results

Diameter
Rearrangements α

Lower Bound Upper Bound

Pref. Reversals, 0 < α < 1 Ω(n) O(n lgn)

Pref. Transpositions, and α = 1 Ω(n lgn) O(n lg2 n)

Pref. Reversals and Transpositions α > 1 Θ(nα)

0 < α < 1 Ω(n) O(n lgn)

Transpositions, and α = 1 Ω(n lgn) O(n lg2 n)

Reversals and Transpositions 1 < α < 2 Θ(nα)

α ≥ 2 Θ(n2)

Sig. Pref. Reversals and 0 < α < 1 Ω(n) O(n lgn)

Sig. Pref. Reversals and α = 1 Ω(n lgn) O(n lg2 n)

Transpositions α > 1 Θ(nα)
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Obtained Results

Pref. Reversals

Pref. Transpositions

Pref. Reversals and Transpositions

Pref. and Suf. Reversals

Pref. and Suf. Transpositions

Pref. and Suf. Reversals and Transpositions

Reversals

Transpositions

Reversals and Transpositions

Sig. Pref. Reversals

Sig. Pref. Reversals and Transpositions

Sig. Pref. and Suf. Reversals

Sig. Pref. and Suf. Reversals and Transpositions
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Sorting by Length-Weighted Prefix Reversals (SbWPR)

Main idea of algorithm WPR: divide-and-conquer strategy

If no base case applies:
◮ Let m be the median of the interval // let π = (4 7 1 8 3 9 5 6 2),

m = 5
◮ Partition the interval // (9 6 8 7 5 | 1 4 3 2)
◮ Recursively sort first part // (9 8 7 6 5 | 1 4 3 2)
◮ Reverse whole interval // (2 3 4 1 | 5 6 7 8 9)
◮ Recursively sort second part // (1 2 3 4 | 5 6 7 8 9)
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SbWPR

Lower bound:
d1pr(π) ≥ n

Lemma

For any unsigned permutation π with n valid elements and α = 1,
partitionWPR(π, n) is in O(n lgn) and WPR(π, n) is in O(n lg2 n).

Theorem

For α = 1, SbWPR is O(lg2 n)-approximable.
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Length-Weighted Approach – Exponential Cost Function

The cost to sort a permutation is the sum of the cost of the
rearrangements that were used to do it

f(ℓ) = 2ℓ
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Obtained Results

Rearrangements Approximation Factor Diameter

Pref. Reversals 3 Θ(2n)

Pref. Transpositions and

Pref. Reversals and Transpositions
2 Θ(2n)

Reversals 1.5 Θ(n2)

Transpositions and

Reversals and Transpositions
1.125 Θ(n2)

Sig. Pref. Reversals and

Sig. Pref. Reversals and Transpositions
4 + n/2n−1 Θ(2n)
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Other Obtained Results

Binary string: 001011010110

Sorted binary string: 000000111111
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Other Obtained Results

Sorting Binary Strings by Length-Weighted Operations (f(ℓ) = ℓα)
Rearrangements α Approximation Factor Diameter

0 < α < 1 O(lgn) Θ(n)
Pref. Reversals, α = 1 O(lgn) Θ(n lgn)

Pref. Transpositions, 1 < α < 2 O(1)
and Pref. Reversals 2 ≤ α < 3 4
and Transpositions α ≥ 3 3

Θ(nα)

α → ∞ (2α+1)(2α − 2)
Pref. and Suf. Reversals,

Pref. and Suf. Transpositions,
and Pref. and Suf. Reversals

α = 1 O(lgn) -

and Transpositions
0 < α < 1 O(1) Θ(n)

Transpositions, α = 1 O(lgn) Θ(n lgn)
Reversals and Transpositions 1 < α < 2 O(1) Θ(nα)

α ≥ 2 1 Θ(n2)
Sig. Pref. Reversals and 0 < α < 1 O(lgn) Θ(n)
Sig. Pref. Reversals and α = 1 O(lgn) Θ(n lgn)

Transpositions α > 1 O(1) Θ(nα)
Sig. Pref. and Suf. Reversals

and Sig Pref. and Suf. Reversals α = 1 O(lgn) -
and Transpositions
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Other Obtained Results

Sorting Binary Strings by Length-Weighted Operations (f(ℓ) = 2ℓ)
Rearrangements Approximation Factor Diameter

Pref. Reversals 3 Θ(2n)

Pref. Transpositions and

Pref. Reversals and Transpositions
2 Θ(2n)

Reversals 1.125 Θ(n2)

Transpositions and

Reversals and Transpositions
1.125 Θ(n2)

Sig. Pref. Reversals and

Sig. Pref. Reversals and Transpositions
4 + n/2n−1 Θ(2n)
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Theoretical Computer Science
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Thank you!
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