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No escuro, o muro se arma
Quanto mais alto,
Mais silêncio,
Mais nos afasta

(Alexandre Kumpinski)
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Resumo

Ao detectar mídias sensíveis, violência é uma das mais difíceis de se definir objetiva-
mente, e por isso, um desafio significante quando se trata de detectar automaticamente.
Enquanto muitos estudos foram conduzidos para detectar aspectos de violência, poucos
tentam solucionar o conceito de forma mais geral. Neste trabalho, é proposto um mé-
todo que tem por objetivo habilitar uma máquina a entender o conceito de alto-nível de
violência. Isso é feito a princípio dividindo o conceito em outros mais simples e objeti-
vos, como lutas, explosões, sangue e tiros para depois combiná-los, levando a um melhor
entendimento da cena. Para isso, as características individuais de cada sub-conceito são
levadas em consideração para guiar a forma como elas devem ser descritas, usando redes
neurais convolucionais específicas para obter tais características. Por exemplo, uma cena
de luta deve incorporar características temporais que uma cena com sangue não precisa.
Uma cena com explosões ou tiros deve levar características auditivas mais em considera-
ção. Com essa solução multimodal, detectores de características visuais e auditivas são
treinados separadamente e depois combinados em uma rede neural de decisão que compõe
um detector de violência que considera diferentes aspectos do problema. Essa solução ro-
busta e modular permite que diferentes pessoas e culturas adaptem o detector para suas
necessidades específicas. Resultados experimentais obtidos em datasets padrões mostram
importantes avanços em relação ao estado da arte.



Abstract

When detecting sensitive media, violence is one of the hardest to define objectively, and
thus, a significant challenge to detect automatically. While many studies were conducted
in detecting aspects of violence, very few try to approach the general concept. In this work,
a method is proposed that aims to enable machines to understand a high-level concept
of violence. This is achieved by first breaking it down into smaller, more objective ones,
such as fights, explosions, blood, and gunshots, to combine them later, leading to a better
understanding of the scene. For this, we leverage characteristics of each individual sub-
concept of violence to guide how they should be described, relying upon custom-tailored
convolutional neural networks. As an example, a fight scene should incorporate temporal
features that a scene with blood does not need to describe. A scene with explosions or
gunshots should weigh more on its audio features. With this multimodal approach, we
trained visual and auditory feature detectors and later combined them into a decision
neural network to give us a violence detector that considers several different aspects of
the problem. This robust and modular approach allows different cultures and users to
adapt the detector to their specific needs. The obtained results on standard datasets in
the literature show important advances over prior art.
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Chapter 1

Introduction

Violence detection is a crucial aspect of sensitive media filtering, be it a tool to protect
users from undesired media or to detect inappropriate behavior in surveillance systems.
Currently, countless hours of video are uploaded every minute through the Internet and
different social media platforms. Analyzing such a significant amount of footage is heavily
time-consuming. Thus, this process’s automation is a desirable application for a large
portion of society, from schools that want to avoid violent material being shown to children
to law enforcement in forensic examination cases.

The issue of violence detection in video scenes was firstly addressed for the task of
action recognition. In that case, before deep-learning-based methods, the Bag-of-Visual-
Words (BoVW) approaches [43, 14] were a cornerstone in the area. Some examples of
this are the work of Bermejo et al. [43], that used low-level features obtained by an image
descriptor such as Space-Time Interest Points (STIP) [31] to predict violence via Support
Vector Machines (SVM). Souza et al. [14] investigated local spatial-temporal features for
violence classification. Clarin et al. [9] addressed the local interest-point approach to
detect fights as subjective violence. Even a novel descriptor was proposed by Hassner et
al. [22] in 2012 for real-time crowd violence detection.

After the first wave of methods exploiting spatial-temporal interest points methods,
deep-learning techniques paved the way for more complex solutions (and consequently
better results) for violence detection. Most of the first deep-learning solutions come from
the “MediaEval Affect Task” competition, which aims to identify violence in movies [32].
The works that resulted from this competition [12, 30, 37, 65, 72, 71] were the first that
incorporated deep-learning features into their BoVW approaches or relied solely on these
new features to classify violence.

Most of the works mentioned above, using or not deep-learning, rely either on a specific
concept of violence (i.e., fights) or on a generalized definition of violence that tries to
capture all its manifestations.

The success of automatic action and object detection methods relies upon how reliable
is the studied concept description. This description, be it by hand-crafted features or data-
driven derived characteristics such as those produced by neural networks, is backed up
by observable and commonly identifiable features. For example, to describe a car, we can
locate the wheels, the doors, glasses, and bodywork. To describe a person walking, we
have the physical description of a human (head, torso, arms, legs, etc.) and can use the
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body’s movement (one leg in front of another), to detect a walking pattern.
For violence, this kind of description is a challenge in itself and make up for one of

our key questions and contributions of this work:

• How to define violence in terms that a computer can understand, i.e., in terms of a
series of more well-defined concepts with specialized and complementary detectors?

• How different kinds of violence interact to enable a system to understand the mean-
ing of violence in general that is scalable and amenable to additional concepts added
in the future?

• How to build a system that relies upon visual and sound signals characteristics with
different violence sub-concepts to detect violence in the general sense?

In this work, we aim at addressing the definition of violence problem by breaking down
the subjective concept of “violence” into more objective concepts:

• Blood: The presence of blood, even in a still image, is a strong indicative of violence.
In a video, blood is likely a consequence of a violent action.

• Cold Arms: Knives, swords, clubs, all of these make up this concept. The presence
of these weapons in a scene can be considered non-violent, but if it is wielded by a
human it can be an indication of an incoming fight scene.

• Explosions: While this concept can not be considered inherently violent, explosions
rarely make up a non-violent scene. It can be big or small, with or without fire
involved.

• Fights: Most of the studies on violent scenes consider fights as the definition of
violence. Many datasets focuses only on fight scenes. They can be one-vs-one,
one-vs-many, or a crowded scene in a many-vs-many fight.

• Fire: This is another concept that is not inherently violent, but can be a strong
indication of a violent scene that is happening. It can appear in conjunction with
explosions, fights or gunshots.

• Firearms: The presence of firearms can be considered violent or not, depending
on the subjective definition of the viewer. A strong indication, though, is a scene
where a human is holding a weapon. Usually gunshots are also involved.

• Gunshots: Even if the shot does not hit another person in-scene, a gunshot can
be considered a clear indication of violence.

Breaking down violence into different subjects is a proxy to achieving more accurate
and robust performance [8]. The breakdown allows us to perform a better investigation
of different subjects’ behavior, as each subject of violence has different characteristics.

To study how these different concepts interact with each other, we consider the concept
of violence as a single high-level concept to analyze the behavior of different integrating



15

concepts individually. We then combine violence concepts to identify the more general
concept of violence and compare different setups’ performances.

Lastly, we discuss the particularities of each distinct concept of violence, mainly fo-
cused on how some concepts have more pronounced sound signatures, such as explosions
and gunshots, and how combining features from both the visual and audio signals con-
tribute to the violence detection system.

This work aims at developing a combined model of visual and audio feature repre-
sentations. The sub-concepts analyzed convey different information. Blood and fire, for
example, can be easily detected with still frames, with very distinct textures and colors.
Fights and explosions, on the other hand, convey the idea of movement, so it is impor-
tant to use this information to better detect the action through time. Gunshots have
very characteristic sounds, thus taking this into consideration will help aggregate more
information. The idea is to analyze various sub-concepts with different characteristics to
detect the more complex (and subjective) concept of violence.

The rest of this work is organized as follows. Chapter 2 reviews the related works on
the task of violence detection by pointing out the definitions of the concept of violence and
its challenges. Chapter 3 introduces our proposed method, detailing how the visual and
audio features are used and combined. Chapter 4 presents our experimental evaluation
and a discussion of the results obtained. Finally, a conclusion is drawn in Chapter 5.

1.1 Challenges

The main challenges of this work rely on agreeing on a satisfactory definition of violence,
finding a diverse dataset with annotated data, and using a data-driven approach to classify
violent scenes. Additional challenges include:

• Designing a method that can describe violence in a way that suits different cultures;

• Finding relevant databases to support the development of a data-driven approach;
and

• Combining visual and sound features in a complementary way to extract the best
of both worlds.

1.2 Contributions

The main contribution of this work is to provide a robust methodology for violence de-
tection that can be adapted to the culture and subjective definition of the end-user. In
order to get to this point, this work contributes with:

• A modularized definition of violence, using more objective concepts as building
blocks for a highly subjective one.

• A plug-and-play method of violence detection. With a final fusion network that is
independent of the method used to extract features from sub-concepts, allowing for
the addition or removal of relevant components.
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• A complementary way of combining visual and audio features to have a more com-
plete information extraction that enhance each of its solo counterparts.

1.3 Publications

During this research, the following papers were produced:

• B. Peixoto, S. Avila, Z. Dias, and A. Rocha. 2018. “Breaking down violence: A
deep-learning strategy to model and classify violence in videos.” In Proceedings of
the 13th International Conference on Availability, Reliability and Security (ARES
2018). Association for Computing Machinery, New York, NY, USA, Article 50,
1–7. [47]

• B. Peixoto, B. Lavi, J. P. Pereira Martin, S. Avila, Z. Dias and A. Rocha, “Toward
Subjective Violence Detection in Videos.” ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2019), Brighton,
UK, 2019, pp. 8276-8280. [45]

• B. Peixoto, B. Lavi, P. Bestagini, Z. Dias and A. Rocha, “Multimodal Violence De-
tection in Videos.” ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP 2020), Barcelona, Spain, 2020, pp.
2957-2961. [44]

• B. Peixoto, B. Lavi, Z. Dias and A. Rocha, “Harnessing high-level concepts, visual,
and auditory features for violence detection in videos.” Journal of Visual Commu-
nication and Image Representation (JVCI), 78. 10.1016/j.jvcir.2021.103174 [46]

1.4 Thesis Organization

This thesis is organized as follows:
Chapter 2 introduces some of the concepts used as well as some related works and

challenges of the violence detection problem.
Chapter 3 details the methodology used as well as going deeper into the concepts

introduced earlier.
Chapter 4 shows the experiments, datasets and metrics used to evaluate the method,

as well as a discussion of the results obtained.
Chapter 5 offers a conclusion to this work and possible future work.
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Chapter 2

Related Work

This chapter explores some of the related work that helped our research on each of these
challenges.

2.1 Related Concepts

To extract meaning from a set of images, computers need to recognize patterns and use
them to identify different concepts. In this section, we briefly explore some of the tools
we use in this project to make this possible and later we discuss them in more detail.

2.1.1 Deep Learning

Deep Learning is a family of methods of machine learning that uses multiple processing
layers to learn non-linear representations of data in high levels of abstraction. Various
architectures such as Deep Neural Networks, Convolutional Neural Networks (CNNs), and
Recurrent Neural Networks (RNNs) have been applied in computer vision and natural
language processing fields showing state-of-the-art results in various tasks.

The main advantage of these models is the ability to generate features automatically
from the available data, allowing pattern recognition systems to rely less on manually-built
heuristics [33]. Even though Convolutional Neural Networks have been showing excellent
performance in hand-written digit classification and face recognition tasks since the late
1990s, in recent years CNNs have shown outstanding performance on more challenging
visual classification tasks, most notably with Krizhevsky et al. [28] winning the 2012
ImageNet classification benchmark with their CNN model achieving an error rate of 16.4%
compared to the second-place result of 26.1%.

Zeiler et al. [74] noted some factors responsible for this improvement as the availability
of much larger training sets, increasing considerably the number of labeled data; more
powerful GPU implementations, making the training of very large models practical; and
better model regularization strategies, such as Dropout [23], to prevent overfitting.
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2.1.2 Convolutional Neural Networks

A CNN is a type of Neural Network inspired by the animal visual cortex [33]. Individual
neurons respond to stimuli in a restricted region known as the receptive field, and the
receptive fields of different neurons partially overlap with one another, creating a visual
field. The response of an individual neuron can be approximated mathematically by a
convolution operation. This way, by stacking multiple layers of neurons, each of which is
responsible to capture information on a small region and feed it forward, leads to filters
that become increasingly global. This is what is called a Feed Forward Neural Network.
In the end, a classification layer outputs the results and, in the case of training, it can
change slightly the weights of the functions of the last layers, trying to minimize the error
of the classification. This process is called backpropagation, as it pulls the error back
through the network, instead of retraining it from the start with these new adjustments.

One of the most influential deep networks is called AlexNet [28], an 8-layer network
with the first five being convolutional layers, some followed by max-pooling layers, and
the last three fully connected layers. This network won several image competitions and
made deep learning the main method of classifying images.

In 2015, Szegedy et al. [61] presented GoogLeNet, a deep CNN in which all filters in the
architecture are learned and the layers repeated several times, leading to a 22-layer deep
network, but with 12 times fewer parameters than AlexNet [28], making it an efficient
architecture for computer vision. This network obtained excellent performance in the
2014 ImageNet classification benchmark [52]. This challenge involved the classification
of images into one of 1000 possible categories, and GoogLeNet achieved an error rate of
6.67%, compared to the second-place result of 7.32%.

2.1.3 Extracting Temporal Features

Convolutional neural networks typically are applied to 2D images. In order to use them to
detect movements in videos, a simple approach is to treat video frames as still images and
apply CNNs to recognize movements at the frame level. This approach, though, does not
consider the motion information encoded in multiple contiguous frames. To incorporate
this kind of information in video analysis, some solutions are proposed.

Long Short Term Memory (LSTM) network is a variant of recurrent neural net-
works, proposed in 1997 and designed to learn information from sequential data. An
LSTM unit incorporates a memory unit cell that can choose to store the predecessor state
or clear its content. The controller has three gates, called the input gate, output gate,
and forget gate. Stacking LSTM units layer after layer will form an LSTM model. In
short, this kind of network recursively maps the input representations to the output gates
while every memory cell may contain the current content inside, depending on the state
of the controller. These memory cells store information over time to use with subsequent
inputs and learn long-range features.

3D Convolutions - C3D was proposed in 2010 by Ji et al. [24] as an approach
to solve the action recognition problem. Using several sequential frames as input, they
applied multiple distinct convolutional operations at the same location on the various
frames of the input. They developed a 3D CNN architecture that generates multiple
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channels of information from adjacent video frames and makes convolutional operations
separately in each channel. In short, they used a 3D kernel to convolve a cube formed
by stacking contiguous frames together. With this, the temporal information correlated
between these frames can be learned by the network.

Optical Flow is another way of representing temporal information from videos. In-
stead of doing this with the network architecture, optical flow is a descriptor that can
be used as input to a regular CNN. This descriptor is the pattern of apparent motion of
objects in a sequence of frames. A differential equation is used to calculate the distance
and velocity that a pixel moved from one frame to the next. A visual representation of
the movement between two frames can be used as an input that has embedded motion
information.

Another way of representing temporal information within the input of the network
is using Temporal Robust Features (TRoF). These features, proposed by Moreira
et al. [38], aims to analyze a sequence of frames and locate the center of a movement
cube, that represents the spatial center of a moving object in the central frame that this
movement occurs. These features can then be used as an efficient starting point to the
action detection solution, by reducing the scope of the problem.

2.1.4 Using Audio Features

Another important aspect of violence detection in videos is the ability to use sound as a
complementary feature. Many audio features can be used to aid this detection, the main
one being

Mel-Frequency Cepstral Coefficients (MFCCs), which is a common feature in
speech recognition problems. This feature is a representation of the power spectrum of
sound based on a linear cosine-transformation on a nonlinear Mel scale frequency.

Inspired by the work of Borreli et al. [4], we can also extract Temporal statistics
from audio signals, computing simple features such as the average frequency, standard
deviation, maximum and minimum in a given time frame and associate them with the
corresponding video frames.

This way, we can incorporate more features and reduce the impact of noise and back-
ground sounds.

2.2 Definitions of Violence

In order to study violence, our first challenge is to reach a definition of what is violence.
Several studies sought to reach a conclusion for this:

In 1978, Giuliano Pontara published an article analyzing different conditions for an
action to be considered violent [51]. It is discussed if violence is characterized by illegal
action, if it only involves physical injury, if there is unintentional or even consensual
violence. This study arrives at a definition that reads: “An action performed by an agent
is an act of violence if it causes at least one human being to die, suffer or get physically
or psychologically injured against his will while the agent believes that harm has been
done.”
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While this definition seems to cover many aspects of what can be considered violence,
one can argue that the context in which the action takes place is an important factor to
account for. In 2007, Morrison and Millwood [40] performed studies with groups of adults
and children in order to understand how they define screen violence.

Interesting points brought to attention were that some adults familiar with violence
did not consider a fight violent unless some kind of accepted codes of behavior are broken.
For example, during a fistfight, one of the involved breaks a glass in the face of the other,
or if one pulls a knife out of their pocket.

For the children, a scene with orcs marching from the movie Lord of the Rings: The
Fellowship of the Ring is considered violent because orcs are like monsters, thus, more
violent or “scary”.

In 1996, the World Health Organization (WHO) global consultation on violence and
health defined violence as “the intentional use of physical force or power, threatened or ac-
tual, against oneself, another person, or against a group or community, that either result in
or has a high likelihood of resulting in injury, death, psychological harm, maldevelopment,
or deprivation.” [64].

On top of this definition, a typology of violence is also presented and can help un-
derstand the context in which violence occurs, even though these classifications are not
uniformly accepted. Namely, there are four types of violence: physical, sexual, psycholog-
ical, and deprivation or neglect. Here we can already sense how broad this concept truly
is. All these four kinds of violence have drastically different visual cues, and each one has
its consequences that allow for any kind of late identification.

Besides these, there is yet another classification according to the victim-perpetrator
relationship: self-directed, community, and interpersonal, with their own sub-categories.
Figure 2.1 shows how all these types of violence are organized. Self-directed is violence
that the victim inflicts upon themselves. Collective violence refers to violence committed
by a large group of individuals, such as terrorist acts, urban riots, and police inter-
ventions. Interpersonal is the violence committed between individuals, and has its own
sub-categories, whether the aggressor is part of the family or the community.

All these different approaches to even define what violence is makes it a challenging
task to automate the identification of such an act. The success of automatic action and
object detection methods depends upon how reliable is the studied concept description.
This description, be it by hand-crafted features or data-driven derived characteristics
such as those produced by neural networks, is backed up by observable and commonly
identifiable features. Hence, in the case of detecting a physical object like a car, we can
describe concrete, tangible parts of it, such as wheels, doors, metal. To describe a person
we also use physical descriptions, even if we are dealing with a walking movement, we can
use the way the body moves to detect different patterns.

Violence, on the other hand, is a subjective action with a contested description, mean-
ing that there is no single set of descriptions for a violent act. Since there is no single
set of observable characteristics that define violence, we can narrow our research to only
tackle physical violence and still have a broad set of actions. For example, to describe a
violent fight, we use different visual cues, it could be a fistfight, or a fight with knives,
even the presence of guns and shooting, or it could be a fight involving running actions, or
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Figure 2.1: Classification of the WHO for the types of violence according to the victim-
perpetrator relationship.

more standing still or rolling on the floor fight. Reflection of this difficulty can be found
in early works on violence detection, that instead of defining what violence is, focused on
different categories or smaller concepts and features that convey violence.

Nam et al. [42] proposed a method that detects flames, blood, the degree of motion in
the scene, and characteristic sounds to detect a violent event. Cheng et al. [8] proposed an
auditory approach to detecting critical audio events such as gunshots, explosions, engines,
and car breakings. Datta et al. [13] proposed a hierarchical approach for detecting violent
events involving two people, such as fist fighting, kicking, and hitting each other with
objects. Clarin et al. [9] developed Dove, a detection method that uses skin color, blood,
and motion activity to classify violence.

One method that seeks to identify violence through motion is proposed by Bermejo et
al. [43]. They used a BoVW approach, with low-level features such as STIP and Motion
SIFT (MoSIFT) [7], adding a histogram of optical flows representing local motion. These
features were then used to establish a bag of words for each video, classified via SVM.
However, their work was tested in a dataset containing scenes from hockey games and
labeled as either ‘fight’ or ‘non-fight’ classes.

These works are examples of the difficulty of defining a single concept for violence
and the lack of a unified benchmark for the problem itself. Later in 2013, the Mediaeval
initiative proposed a Violence Detection Task (VSD) competition [15] that spawned many
works on the area and proposed a widely accepted database and definitions of violence —
both of which evolved in the following years of the competition.

The first definition for the MediaEval benchmark is to classify violence as “physical
violence or accident resulting in human injury or pain”. This is a restrictive and objective
definition. While it includes many violent scenarios, it requires human participation and a
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Figure 2.2: Comparison between two scenes that could potentially be classified as violent
or not, following the MediaEval VSD subjective definition. (a) From the ‘Billy Elliot’
movie, a scene of a kid training for a boxing match - labeled as violent. (b) From the
‘I Am Legend’ movie, a scene of a man sleeping while holding a firearm - labeled as
non-violent.

human actually being the victim of violence. For example, a scene where a bomb explodes
in a desert or a simple theft would not be included in this definition. Consequently,
another more subjective definition included: A scene is violent if “one would not let an
eight-year-old child see it, because they contain physical violence”. This definition has its
problems due to its highly subjective nature, and an example can be seen in Figure 2.2.
This definition still comprises a broader range of violent scenes and is the one we adopt
in this work.

2.3 Annotation Challenges

The difficulty in defining violence reflects the lack of annotated data samples. Even though
we can find several violence-related datasets, they have few samples, or the specific vio-
lence they represent varies significantly. This section provides some examples of existing
datasets we considered for our work and briefly explains why we deemed those datasets
fit or not for our research.

Older datasets consist of detecting various human interactions, not specifically violent,
focusing on the human action recognition problem.

The BEHAVE dataset [2] comprises clips of groups of people meeting, chasing one
another, fighting, following, or just walking together. The Two-person dataset, created
by Yun et al. [73], also aimed at general human action recognition but explicitly based on
two-person interactions as approaching, departing, pushing, kicking, punching, exchang-
ing objects, hugging, and shaking hands. While being widely used, both of these datasets
do not contain a significant amount of violent samples.

In contrast, some datasets focused on violent behavior. Nievas et al. [43] introduced
theHockey Fights dataset, containing 1000 short clips from the National Hockey League
games depicting violence in a dynamic environment while retaining similar non-violent
scenes. Although this dataset has its difficulties, especially the motion blur present in most
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scenes, its nature does not generalize violence, neither the concept of fights, capturing only
a specific scenario.

The Violence in Movies dataset has also been presented by Nievas et al. [43] and
comprises 200 video clips with 100 fight scenes in a more varied scenario. However, the
violent scenes have a similar structure and differ significantly from the non-violent ones.
This kind of dataset can lead to a biased network that not necessarily detects the violent
action but surrounding clues of the scenes specific to this dataset. This behavior is further
impacted by the very short length of the dataset, that total 6 minutes of videos.

Another explored aspect of the problem is crowd violence, aimed at detecting violence
in scenarios where the specific action is not explicit. We considered two datasets for this
kind of problem, but both of them have small sample sizes:

TheViolent Flows dataset published by Hassner et al. [22] comprises 246 short-video
sequences and focuses on the scenario of violent crowds, including football stadiums, bars,
and public demonstrations, both indoors and in open areas.

In short, we are faced with a challenge where the available datasets’ size tends to be
small, reducing the capabilities of data-driven approaches such as deep learning, but not
only that.

While these datasets can detect some violent behavior, they do not address the general
purpose of detecting violence. We are presented with either tangential solutions (i.e.,
human action recognition that also have some violent actions) or specific solutions– such
as detecting fights, accidents, or crowd riots.

This is the reason, in this work, why we mainly use the Violent Scenes Detection
(VSD) dataset, published by Demarty et al. [16], which is the most prominent dataset
used for violence detection to date. It was proposed as part of the Mediaeval competition
and evolved over the years. Initially, the dataset comprised 25 Hollywood movies of
diverse genres, but later on, it also added 86 YouTube clips. This dataset provides fully
annotated movies and annotation of more specific violence triggers in each scene, such
as fights, explosions, and blood presence. It is important to note that even though this
is an important dataset, the annotation of clips as violent or non-violent is still mainly
a subjective matter. Our work herein adopts this dataset but always acknowledges the
subjective aspect of the final violence classification.

Since the start of this study, other datasets were made available, we will briefly discuss
them here and provide a summary table of all the datasets mentioned.

In 2018, Sultani et al. [59] designed a Crime Anomaly dataset extracted from CCTV
cameras with 1900 videos, totaling 128 hours of video. The training set does not have
time-based annotation, though, limiting the violent label to video-level. They proposed
a Multi-Instance Learning method where each video is segmented into a fixed number of
segments and videos labeled as positive are assumed to have at least one violent segment
while negative labeled videos contain no violent segments. They use a ranking loss function
to find which segment in a positive video is most likely to contain a violent scene and
compare it to the highest-ranked segment of a negative video, aiming to further the
distance between them. This dataset, while very large, does not contain audio information,
and their annotated labels limit the solution methods.

In 2019, Perez et al. [49] proposed a CCTV-Fights dataset containing 1000 videos,
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in a total of 18 hours, mainly focused on CCTV and mobile videos of fights. This dataset
contains 280 CCTV videos, ranging from 5 seconds to 12 minutes in length. The additional
720 videos were uploaded to YouTube from multiple sources, mainly mobile cameras.
These videos were annotated at frame level. They proposed three different approaches to
tackle this new dataset: i) A two-stream 2D-CNN architecture, a spatial stream, using
the RGB data of video frames, and a temporal stream, using a stack of optical flows.
ii) a 3D-CNN approach that enables convolution on three dimensions directly from a
stack of frames. iii) a local interest points solution based on Temporal Robust Features
(TRoF) [38].

Finally, in 2020, Wu et al. [70] proposed yet another dataset, XD-Violence, with
more than 4700 videos, totaling 217 hours, aiming to design a neural network on large-
scale data. This dataset has its audio signals available to allow for a more streamlined
multimodal approach and has videos collected from movies and in-the-wild scenarios. This
dataset contains frame-level annotation and is currently the largest one we are aware of.
Their proposed solution to tackle this dataset involves a multimodal fusion, using both
audio and video information and Holistic and Localized Networks, inspired by Graph
neural networks (GNNs) such as [77, 75] to exploit relationships between video snippets.
Since this dataset was proposed late in our research, we could not do any testing with it.

Dataset # Videos Length Source of scenarios Audio

Violence in Movies [43] 200 6 min Movies and sports No
Hockey Fights [43] 1000 27 min Ice hockey No
Violent Flows [22] 246 15 min Streets, school and sports Yes*

VSD 2013 [15] 25 48 hours Movies Yes
VSD 2015 [16] 111 51 hours Movies, mobile cameras and sports Yes

CCTV-Fights [49] 1000 18 hours CCTV and mobile cameras Yes*

Crime Anomaly [59] 1900 128 hours CCTV Camera No
XD-Violence [70] 4754 217 hours Movies, sports, mobile cameras and CCTV Yes

Table 2.1: Summary of Violence Detection datasets. (*means that many videos are silent
or only contain background music.)

2.4 Prior studies in violence detection

Early studies on violence detection were largely based on action recognition ones. The
idea behind classifying different actions is to find a representation of motions that could
uniquely identify them. These early studies were conducted in the limited datasets dis-
cussed in the annotations challenges, which increased the difficulty of directly comparing
them since there was not a single dataset that was used for most of them.

In 2013, with the MediaEval VSD dataset, we had not only a dataset to compare a
large number of studies, but also a more unified definition of the concept of violence.
Since 2015, the competitors started using deep neural networks in this competition and
many more works in the field also adopted this approach. In the following sections, we
explore a little more in-depth some of these studies and the history of violence detection.
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2.4.1 Action Recognition and Early Studies

Wang et al. [67] developed an action recognition method using dense trajectories. They
introduced a descriptor that computes motion boundaries from the optical flow informa-
tion to find a trajectory for the motion. This approach has been further improved [48]
by correcting camera motion [68] and using Fisher Vector encoding [50], becoming state-
of-the-art in the field. This approach, however, is dependent on numerous hand-crafted
descriptors being put together in a bag of features, leaving the classifier to decide how they
interact to describe each kind of action. In order to automatically extract features from
videos, Ji et al. [24] proposed a 3D convolutional neural network for action recognition,
stacking multiple contiguous frames of video and using them as input for the network,
capturing the motion information. This method achieved similar results to those using
dense trajectories, but computing over frames with a 4-times lower resolution.

Simonyan and Zisserman [56] proposed a convolutional network for action recognition
that separates the spatial information from the temporal one and later combines them.
Both of them are implemented in distinct networks. The spatial stream uses still video
frames and the temporal stream uses optical flow as inputs. While the temporal infor-
mation still relied on a manipulated input, the extracted features showed that a standard
2D convolutional network could be used for this task.

In the specific area of violence detection, however, most of the work is based on low-
level features. The usual approach involves the extraction of features around interest
points, such as optical flows, gradients, intensities, or other local features. One of the
earlier works is by Nam et al. [42], which proposes threshold values for auditory and
visual features. For the auditory features, they considered the amplitude and energy of
the audio signal, as well as sudden changes in the overall entropy. As visual features,
they calculate the dynamic activity to identify quick movements as well as pixel color
thresholds for blood detection.

Cheng et al. [8] proposed an auditory approach to detecting basic audio events such
as gunshots, explosions, engines, car breakings, etc. They trained Hidden Markov Models
(HMM) to recognize and target sound events and then model the correlations among
several events with Gaussian mixture models to extract more complex semantic contexts.

These earlier methods though, relied on specific events and looked for each one indi-
vidually. One method that generalizes and tries to identify violence through motion is
proposed by Bermejo et al. [43]. They exploited a Bag of Visual Word (BoVW) approach,
using low-level features such as Space-Time Interest Points (STIP) and Motion SIFT
(MoSIFT) [7], which is an extension of the SIFT [35] image descriptor for video, adding
a histogram of optical flows representing local motion. These features were then used to
establish a bag of words for each video that was classified via Support Vector Machine
(SVM). Souza et al. [14] also used a BoVW-based approach with local spatio-temporal
features to classify video shots as violent or not. Several STIP-detected descriptions were
hard-coded to make use of the spatio-temporal information and compose a bag of fea-
tures for each shot, and a linear SVM was then trained to classify the videos, achieving
comparatively better results. These approaches highlight the importance of using motion
and space-temporal features in violence detection.
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These works, however, reported results on different datasets, which were discussed
earlier, with different metrics. Moreover, the different concepts of violence prevent us from
directly compare the existing methods. Such problems further sparked the MediaEval
initiative as a form of standardizing validation in the field.

2.4.2 MediaEval Violence Scenes Detection Task

The MediaEval Benchmarking Initiative for Multimedia Evaluation [16] provided the sci-
entific community with a unified violence dataset, with a common groundtruth, which
reflected a clear understanding of the concept of violence and standardized evaluation
protocols. Since then, a gamut of works have been proposed in the literature, aiming at
attending the Violent Scenes Detection (VSD) task.

In its first years, 2013 and 2014, the task challenged participants to classify pre-
segmented video shots from Hollywood movies as violent or not. A common trend among
the VSD task attendants was to combine visual and auditory features, similar to previous
works in the related literature. In 2015, Youtube video clips were added to the dataset and
various teams have started venturing with deep convolutional neural networks, automating
the process of extracting features and achieving promising results.

Vlastelica et al. [65] proposed a method that used multiple visual features and linear
SVM classifiers. In their work, the BVLC Reference CaffeNet model provided with the
Caffe framework [25] was used to extract CNN features, using the output of the last
fully-connected (FC) layer and training a linear SVM on the 4096-dimensional features
for the images from video clips. Another feature used was the Improved Dense Trajectory
(IDT), which is a descriptor used in action recognition [68]. To represent the motion
information of video content, the IDT approach combines several descriptors for each
trajectory, mainly the Histogram of Oriented Gradients (HOG), Histogram of Optical
Flow (HOF), and Motion Boundary Histogram (MBH). These features are then projected
via Principal Component Analysis (PCA) to reduce their dimensionality and encoded
using a Fisher Vector model [50].

Yi et al. [72] combined CNN features with various additional features, such as Dense
SIFT, Hue-Saturation Histogram, and an IDT approach with the aid of a new proposed
Trajectory Based Covariance descriptor [66], using also audio features, extracting the Mel-
Frequency Cepstral Coefficients (MFCC). The CNN-based features were extracted using
the architecture of the CNN-M-2048 [6], using the frames of the videos in the violence
detection task to fine-tune the first five layers and retrain the last three.

Dai et al. [12] trained a CNN model based on AlexNet [28] with a subset of ImageNet
classes manually picked to be related to violence and extracted features for both static
frames and motion optical flows. For the static frames, a pre-trained CNN model on the
ImageNet Challenge dataset was used and the last three fully-connected layers were used
as features. For the motion information, a CNN model was trained to take stacked optical
flows as input, and the last FC layer used as feature. After the feature extraction, a Long
Short-Term Memory (LSTM) model was applied to further model the long-term dynamic
information. Conventional features, such as IDT, Space-Time Interest Points (STIP), and
MFCC were also used and the classification was done via SVM.
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Table 2.2 shows all teams that used CNN to some extent, either for the violence
detection problem by itself or in conjunction with other conventional features, such as
IDT, STIP, SIFT, and MFCC. The results were compiled using the percentage of the
reported mean average precision (MAP), which was the official performance measure in
the 2015 MediaEval Violent Scenes Detection Task.

Team CNN Non-CNN Features CNN+Others

Fudan-Huawei[12] 23.5 16.5 29.6

MIC-TJU[72] 17.4 21.8 28.5

RFA[37] 14.2 7.7 8.2

RUCMM[27] 11.8 10.6 21.6

KIT[65] 10.2 8.6 12.9

NII-UIT[30] - 20.8 26.8

UMons[54] 9.7 9.6 -

TCS-ILAB[5] - 6.4 -

ICL-TUM-PASSAU[5] - 14.9 -

RECOD[39] - 11.4 -

Table 2.2: Results for the violent scenes detection of teams that used CNNs in the 2015
MediaEval Violent Scenes Detection Task. The official performance measure is the mean
average precision (MAP), shown here in percentages.

As we can see initial deep-learning approaches usually combine the features extracted
from the neural network with other hand-crafted features, in an attempt to improve their
results without knowing exactly how each one of them is contributing. The NII-UIT
team [30] achieved their best results combining auditory, image, and motion features with
various different layers extracted from the CNN, plus non-CNN features from the past
year [29] as external features, but no explanation was provided as to why fusing so many
different features worked better.

Jin et al. [27] also proposed a solution based on visual and audio clues. The method
consists of extracting audio features by collecting bag-of-audio-words features and utilizing
a deep convolutional neural network technique to obtain more robust visual features.
Instead of using the CNN features as one part of a BoVW approach, though, they used
these features as the only visual features of their solution. Both audio and visual features
are further concatenated in a late-fusion stage. Finally, a standard classifier is applied to
determine if a violent scene occurred in a video.

2.4.3 Recent Studies

Since the 2015 Mediaeval VSD task, we have had other improvements on the field. Ta-
ble 2.3 shows a comparison of the recent studies mentioned below, with a summary of
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their methods and results.
In 2016, Bilinski et al. [1] proposed an extension of the Improved Fisher Vector tech-

niques and a sliding window method to localize the timeframe where the violent scene
starts and ends. By representing the position of local features in the video and reducing
the influence of motionless regions at the boundaries, they outperformed previous works
in three critical datasets (Hockey Fights, Violence in Movies and Violent Flows), achiev-
ing more than 93% accuracy in all datasets, and improving the accuracy in the violent
flows dataset from 85% to 96%.

The use of neural network have since risen, and in 2016, a three-stream DNN frame-
work was proposed for detecting violence under the subject of person-to-person violence
setup by Dong et al. [18]. They used a CNN to extract features on three streams: Spatial,
using raw pixels; and temporal, using optical flow and acceleration flow maps. These
features are then used in an LSTM network to further encode temporal information for a
late fusion.

In 2017, Meng et al. [36] proposed a method that integrates dense trajectory and
deep networks to capture more action information as input for the network. They used
VGG-19 to extract spatial features from the video frames. For the temporal information,
they compute the optical flow and finetune their pre-trained spatial model. With these
new features, they compute the improved trajectories [68] and use a final Fisher Vector
with an SVM classifier. This method achieved high accuracy in both the Violent Flows
(92.5%) and Hockey Fights (98.6%) datasets.

While many rely on optical flow to describe temporal features, another method for
extracting temporal information was proposed by Moreira et al. [38] in 2016. The Tem-
poral Robust Features (TRoF) were designed to quickly compute an optimized amount
of spatio-temporal interest points inspired by the still-image counterpart, SURF. This
detector localizes a 3D point in a given scene that is the center of the movement, not only
pinpointing its location in the scene, but also the time duration of the movement.

Senst et al. [55] also proposed another way of describing features for violence detec-
tion, based on Lagrangian local features and the BOW model. Lagrangian methods are
used to describe nonlinear dynamic systems by a series of time-dependent fields. They
are characterized by motion vector fields that describe the physical motion of particles.
This method quantifies the properties of each particle while moving and reveals motion
patterns through time. They adopted these concepts to a sequence of optical flow fields
to characterize the motion within an image over time and used interest point detection
based on SIFT to pinpoint the location of the movement within the image.

Sudhakaran and Lanz [58], though, went deeper in the LSTM approach. Using a
convLSTM, which replaces the fully-connected layers of the LSTM with convolutional
layers, they were able to store spatio-temporal information in the LSTM memory cells.
Hence, they applied the frames of the input video sequentially to the network. After all the
frames are applied, the hidden state of the convLSTM contains the representation of the
input video. Finally, this representation is applied to a series of fully-connected layers for
classification. Inspired by the Simonyan and Zisserman model for action recognition [56],
they used the difference between adjacent frames as input for the convLSTM. This way,
the network could model the changes of adjacent frames, instead of in the frame itself.
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This is used as a crude approximation of the optical flow, in an attempt to avoid the
computational complexity of calculating it. This method achieved better results than any
other previous works in the Hockey Fights and Violence in Movies dataset, while achieving
94.57% accuracy in the Violent Flows one, behind only to Bilinski and Bremond [1]. A
big upside of this method is that it needs significantly fewer parameters to optimize than
a regular LSTM, while achieving a better result. Unfortunately, the datasets used were
too limited.

In 2018, Hanson et al. [21] presented an approach based on a Bidirectional convo-
lutional LSTM (BiConvLSTM). First, they encode each video frame as a collection of
feature maps extracted from a forward pass through a VGG13 network [57] and then pass
the obtained feature maps to a BiConvLSTM, which is an extension of a ConvLSTM
and contains two main cell states: one for a forward sequence and other for a backward
sequence in time. This way, the network has access to a long range of context in both
directions of the time sequence. They also had high accuracy results in the Hockey Fights
(96.96%), Violence in Movies (100%), and the Violent Flows dataset (92.18%).

Also in 2018, these datasets were then studied with a much simpler approach by
Mumtaz et al. [41]. They used a pre-trained GoogleNet [61] with learned features from
the ImageNet dataset and used it for transfer learning experiments. They removed the
last dense fully connected classification layer that classifies 1000 ImageNet classes and
replaced it with 2 classes for the Hockey and Movies datasets, discriminating violent/fight
scenes from non-fight ones. This method resulted in a 99.28% accuracy in the Hockey
Fights dataset and a 99.97% accuracy in the Movies dataset, demonstrating how powerful
transfer learning can be.

Year Author Features/Classifier Datasets Accuracy (%)

Hockey Movies Flows

2011 Bermejo et al. BoVW - MoSIFT + SVM(HIK) 90.90 89.50 -
2016 Bilinski et al. IFV / Sliding Window + SVM (χ2) 93.70 99.50 96.40
2016 Dong et al. Three-streams + LSTM 93.90 - -
2017 Senst et al. Lagrangian SIFT + SVM (χ2) 94.42 94.95 93.12

2017 Meng et al. CNN + Optical Flow + IDT 98.60 - 92.50
2017 Sudhakaran et al. Convolutional LSTM 97.10 100.00 94.57
2018 Hanson et al. Biconvolutional LSTM 96.96 100.00 92.18
2018 Mumtaz et al. Transfer Learning from Inception 99.28 99.97 -
2019 Ullah et al. CNN + 3D CNN 96.00 99.99 98.00

Table 2.3: Summary of the recent studies on violence detection mentioned.

In 2019, Ullah et al. [63] proposed a solution based on 3D CNNs. They first detect
people in the video stream with a CNN model and then pass a 16-frame sequence as input
for the 3D CNN to extract temporal features. This method allows for the C3D to work
with a more streamlined sequence of frames and achieved the best results in the violent
flows dataset, with a 98% accuracy, while maintaining 96% accuracy in the hockey dataset
and a 99.99% accuracy in the violence in movies one. They also cross-tested each of their
models on the other two datasets, but only two achieved more than 60% accuracy.
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It is important to note that, while many of these methods use neural networks to
achieve high accuracy results, the datasets tested are relatively small and limited. While
solutions based on hand-crafted features already achieved more than 90% accuracy, many
solutions based solely on CNN features could surpass them. This work builds on these
promising results and use a more data-driven approach to a more generalist problem,
working on a bigger dataset.
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Chapter 3

Breaking Down Violence

Our research hypothesis, in this work, is that violence can be broken down into more
precise, concrete, and objective concepts. With such concepts, it would be possible to
aggregate specific features to detect a broader, more complex concept such as violence.
In other words, we will rely upon divide-and-conquer modeling to approach the problem
of violence detection.

The idea of breaking down violence into more specific concepts is not entirely new. In
2003, Cheng et al. [8] identified audio signatures of various types of events that could signal
different kinds of violence, such as explosions, gunshots, and car crashes. In line with this,
we can train different detectors to find more specific types of violence. However, rather
than fusing several general-purpose features that try to encapsulate the whole concept of
violence, we can break down violence into smaller ones and find tailored features for each
one, combining them later on for a more robust detection system.

This divide-and-conquer modeling has its challenges, as data for specific events (or
concepts) is scarce. Much of the labeled data available for study treats violence as a
general concept, and it is highly subjective as one scene can be characterized as violent for
one person but not so for another. Using specific violence concepts as a starting point, we
can find a better definition of violence itself, recognizing common characteristics between
them. Grasping the nuances of the concept of violence and understanding its definitions
is the first step toward a more robust representation of this problem.

3.1 Concepts of Violence

Our initial modeling adopts seven defined sub-concepts of violence: fights, gunshots,
explosions, blood, fire, firearms, and cold arms. These concepts were chosen mainly for
those that are more represented in the MediaEval benchmark [15], as well as their naming
for each concept.

We then trained individual neural networks for each concept to learn their specific
features. Each concept, however, has different classes of features associated with it. The
concept of gunshots has robust auditory features, while fights rely upon dynamic, motion-
related features. With this in mind, we can adjust what kinds of features are more critical
for each concept, extracting all of them and learning a tailored fusion manifold to decide
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Figure 3.1: Pipeline of the multimodal feature fusion solution we devise in this work.
Videos are described using a dCNN, whereas the extracted audio features are processed
with a shallow neural network in the early-stage. In this pipeline, the source domain data
for each audio and visual sources with different sub-concepts (Xa1, Xv1, . . . , Xan, Xvn) is
treated in parallel. All the features for each sub-concept are then combined and used
as input for our fusion network, still maintaining the audio and visual pipeline separate.
The features from both of these fusion networks are finally combined into a single feature
representation and further used to train the final fusion network. The fusion network is
trained in all its instances with the label for violence in general.

the weights to give to each class of features.
In order to classify violence within a movie, for example, we extract the frames for this

movie and go through independent networks to classify them for each sub-concept. Audio
and visual signals are also independent. This way, with our seven defined sub-concepts,
each frame goes independently through 14 networks.

After this, we extract the features from each visual network and concatenate them
into a single feature vector for our visual fusion network. We also do the same with the
audio features.

Finally, we concatenate the features from each fusion network to create the input to
our final fusion network, classify violence as a broader concept that is layered from smaller,
more objective ones.

All fusion networks are trained with the annotation for the general violence, discussed
as the one where a scene is violent if “one would not let an eight-year-old child see”.

Figure 3.1 demonstrates the whole pipeline of our described solution on the violence
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detection problem.
The main takeaway is the idea of domain transfer learning from a broad, subjective

concept into a collection of more specific, objective ones that help the machine understand
the high-level target.

To achieve this, we need to extract features from each specific concept individually,
hence our solution’s first step consists of extracting the scene’s static and dynamic visual
features, followed by its auditory ones.

Figure 3.2: Representative frames of each violent sub-concept considered. Frames ex-
tracted from the movies in the VSD dataset: (a) Pulp Fiction; (b) Pirates of the
Caribbean; (c) Armageddon; (d) The Wicker Man; (e) Eragon; (f) The Bourne Iden-
tity; (g) Saving Private Ryan.

3.2 Visual Static Features

The static visual features we used are mainly extracted from a dCNN such as inception
v4 [60]. They represent our most basic and straightforward features, processing each
training video frame by frame through a dCNN and extracting a pure data-driven feature
set directly from the last average pooling layer. Though this method seems simple, our
experiments later show that for sub-concepts represented by a purely visual aspect, such
as the presence of blood or cold arms, these are the most accurate features to identify
them. Figure 3.3 illustrates our input and output sizes for this network.

3.3 Visual Dynamic Features

The visual features’ dynamic properties are an essential aspect of our work, as the most
troublesome sub-concepts to detect convey the notion of movement and the passage of
time, e.g., fights, explosions, and (indirectly) gunshots.

We approached this problem on two main fronts: (i) explicitly designing a time-based
network architecture to consider motion; and (ii) modifying the input to capture the
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Figure 3.3: Our input and the output of the frames through the inception v4 architecture.
No changes were made to the architecture, and we used the last fully connected layer as
features when necessary.

notion of motion.

3.3.1 Time-based Architecture

In this approach, we studied the possibility of using different CNN architectures special-
izing in detecting time-based features.

3D convolutional networks are trained on frame sequences of video clips. This
type of network can learn correlations directly in the 3D space, wherein the convolutional
processing of a CNN can compute features from both spatial and temporal domains. This
is achieved by constructing an input representing a fixed time-span, such as 30 frames (or
one second, if we have a video frame rate of 30 frames per second). The 3D network then
can process this block of frames as one and computes features from the temporal domain
using the different frames in the same block.

Figure 3.4: Architecture of the C3D network. The input is a full set of 32 sequential
frames of size 128x128, forming an input of four-dimensional input of 32:128:128:3 (32
frames of 128 width by 128 height and 3 color channels). Each edge shows the size of the
input for the following layer.

Figure 3.4 shows the C3D network architecture used, which comprises eight convolu-
tion layers divided into five groups. The first two groups are formed by a single convolu-
tion layer followed by a max-pooling layer, while the last three groups are formed by two
consecutive convolution layers and a max-pooling layer.
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Simultaneously processing a sequence of frames is crucial if we consider that a violent
scene will not last for a long time and possibly contains a higher variance between the
frames.

The CNN-LSTM model aims to learn spatial-temporal information jointly. It
achieved promising results on the hand gesture recognition problem [62] and fitted our
problem of detecting temporal features and their associated spatial features. This archi-
tecture receives as input a sequence of frames and acts mainly as a CNN network, with
the last feature layer functioning as input to an LSTM layer, as illustrated by Figure 3.5.

Figure 3.5: Architecture of the CNN-LSTM network. The input here is a sequence of
consecutive frames that the LSTM layer uses to store information of previous frames.

3.3.2 Input Transformations to Capture Motion Information

In addition to processing temporal video cubes, we also studied different input adaptation
types to convey movement information into a single image and use it as input to a 2D
CNN. For this, we used three different approaches:

Optical Flow. This method comprises one of the most widely used features to repre-
sent motion. We use the Lucas-Kanade method of estimation for the optical flow, which
assumes that the image’s displacement between two consecutive frames is approximately
constant within a given pixel neighborhood.

Optical Acceleration. As we aim to capture movement information from a wide
variety of scenarios, it comes to reason that different types of violent actions will have
different accelerations. One can expect that a gunshot scene will have a different accel-
eration than an explosion scene or a fight scene (considering the same video frequency
sampling rate). We adopted the Farneback optical acceleration method [19] as the differ-
ence between two consecutive optical flows between three adjacent frames.

Figure 3.6 shows an example of the optical flow and optical acceleration inputs derived
from a set of three consecutive frames.

TRoF and Input Transformations. Another way to represent movement in an
image is to first detect a sequence of frames where the movement happens and identify a
centralized point with a radius to make a cube of movement. That is what the temporal
robust features detector (TRoF) [38] is capable of. With the detected cube, we can
combine specific frames from this sequence to capture the event. We first run the TRoF
detector through each movie sequence of a database and select the most relevant sequences
of frames detected. These sequences comprise a center frame and a diameter representing
the number of frames that encapsulate a specific kind of movement.
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Figure 3.6: Visual representation of Optical Flow and Optical Acceleration. From a
sequence of three consecutive frames we extract the two optical flows related, each com-
bining two sequential frames. From the two consecutive optical flows, we then extract the
optical acceleration.

As we seek to represent fights, explosions, fire, and gunshots, we are searching mainly
for sudden movements, being it short-lived such as gunshots, an explosion or a punch, or
a long sequence of shooting or a fight. We can expect the sequences of frames detected by
TRoF that represent a violent concept to have a broader range of movement throughout
their frames than a sequence of frames that does not represent any physical violence, such
as walking or talking.

With this in mind, we assembled three types of images to use as inputs to the designed
neural network: One to capture the apex of the movement; one to capture the difference
between the start and end of the movement; and one to capture the flow of movement
throughout the sequence.

Figure 3.7 illustrates how a sequence of frames detected by TRoF is used to form the
combination of images discussed below.
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• Central Combination: From the center of the sequence detected by TRoF, we
combined it with the frame immediately before and immediately after. This forms a
3-tensor input (as a comparison, a typical natural image is also a 3-tensor input but
with color channels, green, red, and blue, used instead). Thus, obtaining a single
image representing this movement to feed the network. This type of combination
focuses on the movement’s climax, using only the sequence’s three central frames.

• Extremities Combination: For each sequence of frames detected by TRoF, we
combined its center with its start and end frames also in a 3-tensor input to represent
the whole movement detected in a single input. This type of combination captures
the changes between the start of the movement and its end, using the central frame
as a bridge. Each channel in the tensor is a grayscale image representing the specific
frame adopted.

• Averages Combination: For each sequence of n frames detected by TRoF, we
combined its center with the average of the n/2 preceding frames and the average
of n/2 frames after it. We again assigned each resulting grayscale-converted image
to a 3-tensor input, respectively. This type of combination was made to capture the
flow of movement throughout the whole sequence, using all the sequence frames to
represent how the movement occurred.

Figure 3.7: Overview of how the combinations are constructed from a single sequence
detected by TRoF. (a) The first and last frames of the sequence are combined with
the center to form the Extremities combination. (b) The three central frames are put
together as each of the color channels of the Central Combination. (c) To form the
Average Combination, the center frame is joined with the average of the first half frames
in the red channel and the average of the last half of the blue channel frames.

3.4 Audio Processing

Typically, violence is subjective, thus for some sub-concepts (e.g., gunshot, explosion,
fight), it might be possible that auditory sensation better captures such a notion. However,
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the visual features might be the only available cue for some of the other sub-concepts, such
as blood. Audio features can help boost the performance accuracy of violence detection
tasks as a complementary feature. Undeniably, for the available audio data in the violence
detection problem, almost all sub-concepts contain noise such as background sound and
people talking. In this task, we consider audio descriptors robust to noise and background
clutter. The descriptors can be processed through raw audio waveforms in the frequency
domain. This means the frequency domain can be directly calculated on the spectral
distribution of a given audio waveform. We opt to rely upon expert knowledge and
handcrafted features in this case because a data-driven solution trained on audio-related
violence would be hard to train. The lack of available annotated data is different from
visual-related features, which presents a better data availability scenario.

We describe the used audio feature representation and prediction model for the violence
detection problem. We tackle the audio modality in two steps processing. We first extract
the audio features by leveraging some standard audio feature extracting methods. For a
given raw audio waveform, x(t), we split it into a series of I temporal windows, and we
extract the features for each window. We then apply statistical methods to the results
generated in the first step. This approach can generate a robust and compact version of
the extracted audio features and reduce clutter and background noise. In the following,
we describe each step in detail.

3.4.1 Standard Acoustic Features

We consider four standard audio feature extractors for subjective violence detection. Fig-
ure 3.8 depicts the raw waveform of a given audio clip, including the spectrogram vi-
sualization for each audio feature on various sub-concepts. We can observe, for some
sub-concepts, such as blood and Fire, the spectrogram has no semantic audio representa-
tion. However, some sub-concepts such as Gunshot and Firearm stand out, with similar
acoustic characteristics appearing on the spectrograms.

Mel-Frequency Cepstral Coefficients (MFCCs) [3]: This is a commonly used
audio feature in speech recognition problems. For a given audio clip, it first computes
MFC as a power spectrum by applying a linear cosine-transformation on a nonlinear
Mel-scale (filterbank) frequency, and it represents the coefficients obtained through the
calculation of MFC.

Chroma Short-Time Fourier Transform (C-STFT) [20]: Chroma feature (a.k.a.,
chromagram) is mainly extracted to capture harmonic characteristics of an audio wave-
form in a short-time window. It first computes the magnitude spectrum through the
short-time Fourier transform. This feature can handle the tone (pitch) of a sound that
appeared within the audio clip.

Mel-Spectrogram (MS) [3]: This feature is represented as a more straightforward
and lower-level form of frequency to imitate the function of the human ear. It filters the
components of frequency through log-Mel filter banks in the spectrogram.

Spectral Contrast (SC) [26]: This feature is generated as the decibel difference
between peak and valley frequencies in the spectrogram. It is widely considered when the
ratio between signal and noise is relatively large and can significantly reduce the noise for
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Feature #coefficients
MFCC (fmfcc) 40
C-STFT (f c−stft) 12
MS (fms) 128
SC (f sc) 7

Table 3.1: Features extracted from each raw audio clip.

a given audio waveform.
The audio features obtained from the above extractors are finally represented as the

feature set associated to the i-th time window and defined as

fi = {fmfcci ; f cstfti ; fmsi ; f sci } (3.1)

Table 3.1 reports the number of coefficients obtained for each audio feature.
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Figure 3.8: Visualization of raw-audio waveforms and their corresponding spectrograms
for the set of extracted audio features in various violence sub-concepts.
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3.4.2 Temporal Statistics Calculation

Inspired by the work of Borrelli et al. [4], to obtain a more discriminant feature vector
over the set of extracted audio features, we apply four temporal statistics to I extracted
feature vectors of fi. This provides an additional set of information for the subsequent
learning stage. This feature vector is subsequently projected onto a lower-dimensional
space and represented as a compact form of the four extracted audio features in fi. This
can also significantly reduce the computational cost and memory footprint and eliminate
features not relevant for a particular sub-concept.

Given a set of I feature vectors fi, we compute the per-feature average, standard
deviation, maximum, and minimum value as

fµ =
1

I

J∑
i=1

fi, (3.2)

fσ =

√√√√1

I

I∑
i=1

(fi − fµ)2, (3.3)

fM = max
i∈I

fi, (3.4)

fm = min
i∈I

fi. (3.5)

All operations are applied element-wise. The final feature vector is presented by
concatenating all the statistical features as

f tot = [fµi , f
σ
i , f

M
i , f

m
i ], (3.6)

where f tot denotes a feature vector of 4× 4 = 16 elements.

3.4.3 Learning step

In order to learn violence concepts characteristics, we train a supervised classifier based
on a shallow neural network fed with the extracted audio features.

Even though we experimented with different network designs (including deep ones),
we decided to adopt a shallow neural network (NN) model to reduce complexity. Indeed,
the designed NN has a single hidden layer, in which the number of neurons is equivalent
to the length of the feature vector f tot. As a matter of fact, with such a small feature
vector (i.e., 16 elements), deeper networks did not provide much better results.

The network is trained to detect a specific kind of violence (i.e., Blood, Cold Arms,
Explosions, Fights, Fire, Firearms, Gunshots), rather than general violence. In other
words, we treat the audio violent detection problem as a 2-class classification problem by
training a different binary classifier for each violence concept. A softmax layer is deployed
at the end of the network to determine whether violence occurred within the audio clip
or not.
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3.5 Fusion Neural Network (NN)

We design a multilayer perceptron neural network to identify the ultimate decision on
violence by itself — aiming to leverage and integrate the sub-concepts of violence. In this
vein, we present a straightforward strategy that can independently learn an embedding of
the feature maps obtained from earlier stages (i.e., audio and visual modalities). We treat
the network as a binary classification problem to determine whether violence is perceived
in a video. This solution allowed us to gain a better trade-off between efficiency and
performance.

Our designed fusion NN solution is involved in three tasks of this work on the hand,
and for each task, the network is trained independently. First, feature maps obtained from
each modality (both audio and visual) are fed to an individual fusion network and learn
the concept of violence. A third fusion network is then used to combine feature vectors
obtained with audio and visual detectors trained on specific kinds of violence to detect the
presence of violence. This technique enables us to transfer domain knowledge from sub-
concepts to the main concept, expecting better generalization in unknown target domains.
We pass the feature vector through a standard MinMax normalization step before using
it as input for the network.

Figure 3.9: The structure of our fusion neural network.

Figure 3.9 shows the structure of our fusion neural network in detail. The designed
network mainly consists of three hidden layers. We applied a grid search method on the
number of hidden layers and, accordingly, the number of neurons for each hidden layer.
The network’s best performance is achieved by choosing 512, 128, 32 neurons, respectively,
from the first to last hidden layer. The network is utilized as a feed-forward structure
with a back-propagation algorithm for its training process.
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Chapter 4

Experiments and Results

In this chapter, we detail our experiments and metrics used to validate them and a detailed
view of the datasets used. First, we explore the main dataset and the metrics used to
analyze our results. Then, we discuss these results and how our research iterate over them
to build a better method to detect violence. We go from using still frames to find a robust
representation of motion to incorporate audio information.

4.1 Dataset and Metrics

For our experiments, we adopted mainly the MediaEval-2013-VSD dataset [15], which
contains 25 Hollywood movies of diverse genres. This is an early iteration of the dataset,
that later incorporated YouTube clips in its test-set for the 2015 edition [16]. Later, we
also tested our method with these additional clips.

The definition of violence used is that a scene is violent if “one would not let an
eight-year-old child see it”. The dataset is released with separated training and testing
partitions. The training set includes 18 movies, while the test set comprises seven movies.

The annotations were carried out by three expert annotator groups. At first, two
groups conducted all the annotations independently. Then, a third master group merged
the two sets of annotation and made decisions for the inconsistent cases. The subjective
definition of violence required panel discussions for borderline cases. Further information
on the evolution of the dataset as well as more insight of the annotation method can be
found in the latest work by Constantin et al. [10].

Remarkably, for all the movies in the MediaEval-2013 dataset, only 20% of the shots
have been categorized as violent. Although the dataset provides annotations for individual
concepts (e.g., blood, fights), these annotations are only available for the training set.

Given that only the movies in the official training set contain annotations for the
sub-concepts, we partitioned this set into its own training, validation, and test sets. This
allows for a better comparison between different methods that aim to classify specific
concepts. Table 4.1 details the movies used in each partition.

The VSD task motivation was to foster the development of systems that could help
users choose suitable titles for their children by previewing parts of the movie that include
the most violent moments. This means that the best-performing systems are the ones that
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Movie Length (m) Violence (%)

Dev Set

Training

Armageddon 145 7.78
Billy Elliot 106 2.46
Dead Poets Society 124 0.58
Eragon 100 13.26
Harry Potter 5 133 5.44
Midnight Express 116 7.12
Pirates of the Caribbean 137 18.15
Reservoir Dogs 95 30.41
Saving Private Ryan 162 33.95
The Bourne Identity 114 7.18
The Wicker Man 98 6.44
The Wizard of Oz 98 1.02

Validation Fight Club 133 18.83
Leon 106 16.36

Test
I am Legend 96 15.64
Independence Day 147 13.13
The Sixth Sense 103 2.00

Test Set

Fantastic Four 102 20.53
Fargo 94 15.04
Forrest Gump 136 8.29
Legally Blond 92 0.00
Pulp Fiction 148 25.05
The Godfather 170 5.73
The Pianist 143 15.44

Table 4.1: Details of the Mediaeval 2013 VSD task dataset and how was used for the
experiments, with Length of videos in minutes and percent of violent scenes within. ‘Dev
Set’ and ‘Test Set’ are the official segmentation of the database, while Training, Validation,
and Test in the Dev Set are our segmentation to validate each concept individually. The
movie Kill Bill 1 had annotation problems and was later excluded from the dataset.

return the largest number of violent shots at the first positions of the top-k retrieved shots.
For that, the competition suggests using the Mean Average Precision (MAP) at the 100
top-ranked violent shots (MAP@100) as the official evaluation metric.

To calculate this metric, first, each movie is segmented into different shots, which are
roughly equivalent to the movie scenes. This segmentation is provided by the dataset at
the frame level, indicating the first and last frame of each shot.

MAP is calculated by first taking the average precision scores for all movies in the test
set and then getting the arithmetic mean of these scores, as shown in Equation 4.1:

MAP@k =
1

q

q∑
i=1

AP@k(i), (4.1)

where k is the quantity of shots within the rank of retrieved shots, in this case, k = 100,
and q is the quantity of system queries for obtaining ranked violent shot lists. In the VSD
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case, q = 7, which is the number of movie titles within the test set. AP@k(i), in turn, is
the average precision of the i-th query(movie), when returning a k-shot ranked list, as it
follows:

AP@k(i) =
1

q

k∑
j=1

(precision(i, j), (4.2)

where precision(i, j) is the system precision when retrieving the top-j violent shots, within
the i-th query (movie).

When calculating the MAP@100, we only use the precision scores of the 100 highest
ranked shots. This way, a solution is considered better than another if it presents a higher
MAP@100 value as it indicates that such a solution returns fewer false-positive shots in
the first positions of a 100-violent-shot ranked answer.

Since our objective is to simply detect violence, without ranking or taking into consid-
eration only the most violent scenes, we mainly report our solutions’ balanced accuracy
at the frame-level.

Since there is a high unbalance of classes within the dataset, as shown in Table 4.1,
most of the scenes of each movie are annotated as non-violent, all our experiments adopt
a dataset balancing approach.

For each movie, we count the number of frames annotated as violent and randomly
select the same number of non-violent frames, respecting the shot-segmentation of the
dataset and ignoring frames that are all black, due to fade or cut effects and the beginning
and end credits.

The accuracies we report throughout the experiments are all derived from this balanced
dataset.

To validate our method in a non-VSD dataset, we also test our method with the NTU-
CCTV fights dataset [49], which consists of 1000 Youtube videos with more than 17 hours
of footage containing different types of fights. This dataset contains 280 CCTV videos
ranging from 5 seconds to 12 minutes each (average of 2 minutes), totaling 8.54 hours,
while the remainder of the dataset consists of 720 shorter videos (45 seconds on average)
extracted mainly from mobile cameras.

4.2 Validation and Results

In the following, we present the step-by-step search for a reliable method that can incor-
porate the many different kinds of violence to give us a classification for such a broad
concept. In order to classify violence, we first classify each of the defined sub-concepts
individually. Here we can already see that some sub-concepts convey movement, such
as fights or explosions. In Section 4.2.1, we explore different ideas on how to represent
motion information to a network by manipulating the input or using architectures that
incorporate this kind of feature. In Section 4.2.2, we use the best visual features for each
sub-concept in addition to audio features to complement the information available for our
fusion network. Then, in Section 4.2.3, we start to explore how this method holds up
when using a separate dataset to train a specific sub-concept while still using features
from the other sub-concepts trained with the Mediaeval VSD dataset.
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4.2.1 Visual and Motion Detection

To find the best way to represent each sub-concept visually, we compare the results
from the different strategies of Input Transformations and Time-based Architecture Mod-
eling alongside a straight 2D Static Raw input classification. Our baseline is to run the
Inception-v4 with raw frames for each sub-concept and for the direct violence classifica-
tion.

Here and in all of the following experiments, we present the balanced accuracy results
for each sub-concept, and a comparison between three methods of classifying violence:

• Violence, which is a direct classification of the frames, using the subjective defini-
tion of the VSD task. This method uses an independent network to classify violence
as if it was yet another sub-concept, using the violence annotation of the dataset as
guideline and serving as baseline for our fusion method.

• Concatenation is the classification done with the features of each sub-concept
put together. That is, for each frame of a movie, we extract the features from the
networks of each sub-concept and concatenate them into a single feature vector for
that frame. This is the input for the classifier.

• Fusion Network is the classification that uses the concatenation feature vector as
input for our proposed fusion network.

All of these classify violence based on the dataset annotation of violence that states
that a scene is violent if “one would not let an eight-year old child see”.

Input Transformations

The first experiments with input manipulation were based on the TRoF Combinations.
For these, we compared the results of the classification done by the inception-v4 own
softmax layer with a SVM classifier that received the features from the last fully connected
layer of the network. We tested three different kernels for the SVM: i) Linear; ii) RBF;
and iii) Power Mean (PmSVM).

Of the kernels tested, the one that performed better was the PMSVM [69]. This
method uses the Power Mean family of additive kernels, going from the X2 to the
Histogram Intersection Kernel (HIK). It first performs a Principal Component Analy-
sis (PCA) to reduce the dimensionality of the features and later performs an optimized
grid search for the best parameters and kernel.

Tables 4.2, 4.3, and 4.4 show the results for each SVM used. It is notable that the
fusion of sub-concepts performed better than the subjective definition of violence in all of
the experiments. It is also notable that the Extremities combination was the best type of
combination overall, independent of the SVM kernel.

Compared to the simple softmax layer of the Inception-v4, though, the accuracy of the
SVM does not give many advantages. For example, the best fusion accuracy achieved by
any tested SVM method was the Extremities combination with the PMSVM, 73.1%. The
same combination input when classified by the inception-v4 achieved a 73.3% accuracy.
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Linear SVM Classification
TRoF Combinations

Raw Frames Central Extremities Average
Blood 59.0 57.6 58.5 54.7
Cold Arms 72.5 61.9 65.0 67.0
Explosions 65.4 72.1 73.2 71.5
Fights 54.4 69.4 71.0 67.8
Fire 73.9 62.7 70.3 68.9
Firearms 60.1 57.3 56.6 59.3
Gunshots 56.6 52.4 61.9 53.2
Violence 68.3 67.3 63.1 64.8
Concatenation 69.4 70.3 72.7 70.1

Table 4.2: Balanced classification accuracy (in percentage) for all TRoF Combinations
with a linear kernel SVM. The ‘violence’ concept refers to the MediaEval VSD definition
of a violent scene. ‘Fusion’ does not include the ‘violence’ concept.

RBF Kernel SVM Classification
TRoF Combinations

Raw Frames Central Extremities Average
Blood 54.3 58.7 61.1 60.1
Cold Arms 71.1 63.7 65.8 66.1
Explosions 73.1 69.5 74.3 73.1
Fights 72.3 70.7 74.2 73.6
Fire 76.7 72.4 72.4 73.7
Firearms 59.4 58.7 58.6 58.8
Gunshots 61.1 63.9 65.3 57.0
Violence 68.5 67.4 63.2 63.1
Concatenation 69.2 69.4 70.1 70.3

Table 4.3: Balanced classification accuracy (in percentage) for all TRoF Combinations
with a RBF kernel SVM. The ‘violence’ concept refers to the MediaEval VSD definition
of a violent scene. ‘Fusion’ does not include the ‘violence’ concept.

PMSVM Classification
TRoF Combinations

Raw Frames Central Extremities Average
Blood 61.8 63.5 69.6 62.8
Cold Arms 68.7 60.5 68.9 63.5
Explosions 71.0 68.7 67.9 65.9
Fights 72.3 72.1 73.5 74.3
Fire 57.7 55.2 61.6 55.9
Firearms 69.8 64.4 65.9 63.8
Gunshots 73.9 78.4 72.6 72.0
Violence 69.2 66.2 69.4 66.7
Concatenation 71.3 70.6 72.1 71.9

Table 4.4: Balanced classification accuracy (in percentage) for all TRoF Combinations
with a Power Mean kernel SVM. The ‘violence’ concept refers to the MediaEval VSD
definition of a violent scene. ‘Fusion’ does not include the ‘violence’ concept.

The last classification methods analyzed were the classification done by the inception-
v4 and our fusion network, detailed in the Section 3.5.

Table 4.5 shows the results of the classification done directly by the inception-v4 for



48

each sub-concept as well as two types of fusion: i) a simple concatenation of the features
extracted from the last fully-connected layer of each sub-concept; and ii) using these same
features as inputs to our fusion network.

The results show that our fusion network is better than the simple concatenation of
features for the inception-v4, in all types of input tested it achieved a better accuracy,
peaking at 74.4% for the Raw Frames. We can also see that the individual results for
the classification of each sub-concept have an overall better accuracy when done directly
by the neural network. Notably, the cold arms concept, which for the first time achieved
more than 80% accuracy in all of the experiments. The TRoF combinations also performed
worse than the raw frames with no movement information associated. The best one being
the extremities combination, which had a 73.2% accuracy for the Fights sub-concept.

In search of a different representation of movement, we used Optical Flow and Optical
Acceleration. Table 4.6 also shows our results with these experiments, alongside the
results for the Network Classification as shown in Table 4.5.

Network Classification
TRoF Combinations

Raw Frames Central Extremities Average
Blood 74.2 73.8 70.6 69.9
Cold Arms 81.6 64.4 71.5 70.8
Explosions 79.4 71.3 75.9 74.2
Fights 73.1 70.4 73.2 71.5
Fire 70.1 70.7 70.6 69.9
Firearms 60.8 58.4 58.5 59.1
Gunshots 69.3 66.8 66.4 64.0
Violence 66.7 68.4 62.8 65.3
Concatenation 72.4 70.5 73.3 73.6
Fusion Network 74.4 74.1 73.8 74.2

Table 4.5: Balanced classification accuracy (in percentage) for all TRoF Combinations
using a neural network classification layer. The ‘violence’ concept refers to the MediaE-
val VSD definition of a violent scene. ‘Concatenation’ is the classification done by the
inception-v4 using the features from the last fully-connected layer of every sub-concept
network. ‘Fusion Network’ is the classification done by our fusion network with the same
features. These fusions do not include the ‘violence’ concept.

From all these experiments, we can see that for every type of input the results for
combining sub-concepts (the results from the ‘Fusion’ row) are consistently better than
just classifying violence solely through its subjective definition (the ‘Violence’ row).

We can also see that using just TRoF combinations leads to better results for the
fusion than the full-optical flow inputs. This result seems to indicate that the TRoF
combinations, when used together in a fusion network, might be better suited to use as
inputs than the optical flow.

However, no combination from TRoF was better than the other types of inputs (Raw
frames or optical flow) with the individual concepts. This result can be explained by
the nature of the concepts and how the inputs are designed. For example, for blood and
cold arms, where there is little movement, it was expected that a movement-based input
would not provide better results. For fights, fire, and gunshots, the movement provides
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TRoF Combinations Optical Flow Inputs
Raw Frames Central Extremities Average Flow Acceleration

Blood 74.2 73.8 70.6 69.9 68.3 58.2
Cold Arms 81.6 64.4 71.5 70.8 61.9 76.5
Explosions 79.4 71.3 75.9 74.2 77.8 70.6
Fights 73.1 70.4 73.2 71.5 76.8 74.3
Fire 70.1 70.7 70.6 69.9 68.1 71.2
Firearms 60.8 58.4 58.5 59.1 62.3 66.8
Gunshots 69.3 66.8 66.4 64.0 63.6 73.1
Violence 66.7 68.4 62.8 65.3 65.0 58.7
Concatenation 72.4 70.5 73.3 73.6 67.9 72.1
Fusion Network 74.4 74.1 73.8 74.2 68.2 72.8

Table 4.6: Balanced classification accuracy (in percentage) for all types of input ma-
nipulation visual dynamic features with corresponding raw static frames accuracy for
comparison. The ‘violence’ concept refers to the MediaEval VSD definition of a violent
scene. Individual sub-concept classification was done by inception-v4. ‘Concatenation’ is
the classification done by the inception-v4 using the features from the last fully-connected
layer of every sub-concept network. ‘Fusion Network’ is the classification done by our fu-
sion network with the same features. These fusions do not include the ‘violence’ concept.

additional information, hence the raw frames’ results were worse. The optical flow ability
to convey this kind of information could be the deciding factor.

The exceptions to this reasoning are the concepts of explosions and firearms, but we
can look at the dataset itself for some explanation. Many explosions in the movies within
the dataset receive a close-up treatment, filling the whole screen and visual effects that
prolong their duration, making it easier to detect it with raw frames than with movement
detectors, even when the explosion does not involve fire itself. On the other hand, firearms
are often portrayed alongside gunshots rather than as a static object, explaining why the
optical flow inputs captured this better than the raw frames.

Figure 4.1 show some examples of positive samples for firearms and explosions that
were classified as positive by both the raw frames and optical flow inputs and which were
classified as positive only by one of them. Both classifiers correctly detected the more
straightforward scenarios, but the harder ones were split, making it challenging to decide
which one is better.

Time-based Architecture

With these results, we then ran experiments with time-based architectures. We used the
raw frames with two distinct networks: C3D and CNN-LSTM, as detailed in Section 3.3.1.
Table 4.7 shows our results for each of the sub-concepts and the same comparison between
classifying violence directly and through our fusion network. From Table 4.7, we can see
that once again, the results for the fusion of concepts are classified better than just using
the subjective definition directly. The best results for the direct definition of violence were
68.3%, while our fusion had 69.2% accuracy. Overall, the C3D architecture performed
better, especially with the optical acceleration input, but the results with a deep CNN —
Inception-v4 — outperformed the best results with C3D.
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Figure 4.1: Some positive examples for firearms and explosions. The first column, scenes
(a) and (d) were correctly classified by both the raw frames and the optical flow inputs.
The middle column, scenes (b) and (e) were correctly identified only by the optical flow
input. The last column, scenes (c) and (f) were only detected correctly with the raw
frames input.

However, one thing to note is that even if the results with a dCNN were better, not
a single type of input led to better results across all sub-concepts. Namely, the sub-
concepts that convey motion were expected to perform better with networks that use
temporal information, but both Explosions and Fights, the most prominent sub-concepts
associated with motion, not only perform better with the dCNN, but the best results
with C3D and CNN-LSTM were from the Raw Frames input. This could mean that the
Optical Flow for these concepts may interfere with how these networks calculate temporal
information.

4.2.2 Combined Visual and Audio Features per Concept

Since our fusion network relies on the extracted features from the last layer of the sub-
concept classifier network, it allows for a combination of features from different networks.
We can select the networks’ features with the best performance accuracy for their specific
sub-concept and use them as input for our fusion network. With this, we expect to use
our best individual classifiers as feature feeds to a fusion network that can analyze a scene
with information from multiple violence sub-concepts and learn how they combine to give
us a broader classifier for violence.

With this reasoning, the best performing networks for each sub-concept come from
the Inception-v4 architecture, shown in Table 4.6. We also take into consideration that
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Raw Frames Optical Flow Optical Acceleration Central TRoF
C3D CNN-LSTM C3D CNN-LSTM C3D CNN-LSTM C3D CNN-LSTM

Blood 58.0 57.2 59.2 60.2 60.2 58.2 56.8 57.4
Cold Arms 58.3 54.2 66.5 66.2 75.3 69.0 63.5 64.0
Explosions 77.1 61.4 66.4 64.8 73.0 68.1 69.4 69.0
Fights 70.5 53.7 68.0 66.9 65.4 61.7 68.2 66.3
Fire 60.2 55.6 60.3 61.3 64.9 61.9 62.7 63.6
Firearms 61.0 60.3 63.2 65.0 66.5 62.3 62.0 63.4
Gunshots 65.3 56.8 62.6 64.1 68.6 66.8 63.8 64.5
Violence 62.3 55.9 58.1 58.6 68.3 63.6 62.3 60.1
Fusion Network 67.3 63.3 67.2 64.8 69.2 64.2 66.8 65.2

Table 4.7: Balanced classification accuracy (in percentage) for each time-based architec-
ture for all types of input transformation, dynamic features, and raw static frames. All
seven concepts were trained and tested with the same subsets of movies. The ‘violence’
concept refers to the MediaEval VSD definition of a violent scene. ‘Fusion’ does not
include the ‘violence’ overall concept.

since we are combining visual and audio features, it is possible that a visual feature
that performed worse individually can be significantly improved by the addition of audio
features, resulting in a better performance. Through our experiments, though, we found
that not to be the case. Table 4.8 shows one example of using the best features from the
C3D, which performed worse than the Inception-v4, combined with our audio features.
The features we used are from the experiments highlighted in Table 4.7. Even though
our final fusion results were better than using only the visual or only the audio features,
it was not better compared with our classification of visual features using Inception-v4,
reaching a balanced accuracy of 74.1% compared to our previously discussed 74.4%.

Best C3D Features Audio Features Visual + Audio Features
Blood 60.2 61.0 62.1
Cold Arms 75.3 66.9 78.4
Explosions 77.1 65.3 76.8
Fights 70.5 61.9 72.1
Fire 64.9 67.8 62.3
Firearms 66.5 62.4 65.6
Gunshots 68.6 70.7 70.7
Violence 68.3 72.8 71.4
Fusion Network 69.2 63.0 74.1

Table 4.8: Balanced classification accuracy (in percentage) for the best C3D and audio
features for each sub-concept and their result for the fusion of visual and audio features.
All seven concepts were trained and tested with the same subsets of movies. The ‘violence’
concept refers to the MediaEval VSD definition of a violent scene. ‘Fusion’ does not
include the ‘violence’ concept.

For this experiment, we settled with the features from the best-performing networks
for each sub-concept. Since the C3D and CNN-LSTM networks underperformed, we used
the best results with Inception-v4 architecture from Table 4.6 as discussed in the previous
section, that is, for each sub-concept, we used the following inputs:
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• Blood: Raw Frames

• Cold Arms: Raw Frames

• Explosions: Raw Frames

• Fights: Optical Flow

• Fire: Optical Acceleration

• Firearms: Optical Acceleration

• Gunshots: Optical Acceleration

Best Visual Features Audio Features Visual + Audio Features
Blood 74.2 61.0 66.5
Cold Arms 81.6 66.9 83.2
Explosions 79.4 65.3 77.3
Fights 76.8 61.9 77.2
Fire 71.2 67.8 64.5
Firearms 66.8 62.4 73.3
Gunshots 73.1 70.7 74.5
Violence 68.4 72.8 72.1
Fusion Network 75.3 63.0 78.5

Table 4.9: Balanced classification accuracy (in percentage) for the best visual (from
Inception-v4) and audio features for each sub-concept and their result for the fusion
of visual and audio features. All seven concepts were trained and tested with the same
subsets of movies. The ‘violence’ concept refers to the MediaEval VSD definition of a
violent scene. ‘Fusion’ does not include the ‘violence’ concept.

Table 4.9 shows our results using the individual best feature for each sub-concept. We
obtained the highest fusion results using the best features for each sub-concept. With
the audio features discussed in Section 3.4, we performed another set of experiments:
classifying each sub-concept using only audio and then combining the best visual features
with such audio features. Table 4.9 shows results for both experiments.

Interestingly, with only audio features, we had our best results classifying violence
from the direct definition (the more subjective one), even if no individual sub-concept
was better classified using only audio. This could result from the nature of the dataset
itself, which contains Hollywood movies that, by design, have distinctive sounds and music
cues for action scenes that could help the network identify these scenes as violent without
learning the specific aspects of violence well.

When adopting both visual and audio features, though, we had our best results yet
for most sub-concepts and the final fusion, with 78.5% accuracy. This indicates the
complementary nature of the visual and audio features since joining them improves the
classifier accuracy compared to each separately.

Our decision to use balanced accuracy to compare results was to have a better sense
of the generalization of the methods. However, the official metric used by the MediaEval
competition is the mean average precision(mAP). Table 4.10 compares our best results
for the fusion of visual and audio features with other works adopting the same dataset in
the prior art. We also report results using this method in the latest 2015 MediaEval VSD
dataset.

We can see the fusion method compared to the competition’s best results and some
other works that used the same dataset. In the 2013 version, our method was not the best;
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MediaEval 2013 MediaEval 2015
TRoF [38] 0.508 -
LIG [17] 0.690 -
FUDAN [11, 12] 0.587 0.296
MIC-TJU [72] - 0.285
Li et al. [34] - 0.303
Proposed Solution (w. Fusion) 0.656 0.301

Table 4.10: Mean Average Precision (mAP) of our method, in the Mediaeval VSD task
in 2013 and 2015, compared with the top performers in both years and later works

it performed better than most competitors, behind only the competition’s first place. For
the 2015 version, our method was on par with the best results, even from the later work
of Li et al. [34]. This is a significant result, mainly because we did not train with the
other movies from the training set of the 2015 dataset.

4.2.3 Specialized Dataset

We also tested the pre-trained networks in a more specialized dataset: The NTU-CCTV
fights dataset [49]. In Table 4.11, we can see our results for the fights specific network
and the fusion in this set. To test this dataset, we extracted every individual frame and
used the frame-level annotation provided. Like all of our experiments, the accuracy is
balanced to account for the different positive and negative sets. To calculate the mAP,
we segmented the shots in the edge frames when a scene becomes violent or becomes
non-violent.

mAP
Two-Stream 0.795
C3D 0.645
TRoF 0.692
Fights Detector 0.623
Proposed Solution (w. Fusion) 0.652

Table 4.11: Mean Average Precision in the NTU-CCTV dataset, with the different meth-
ods portrayed in their work and our detectors, specific for fights and the fusion of all
concepts.

Original Training Specialized Training
Accuracy mAP Accuracy mAP

Fights 77.2 - 78.8 -
Proposed Solution (w. Fusion) 78.5 0.656 79.6 0.661

Table 4.12: Classification Accuracy (in percentage) and Mean Average Precision of the
fights detector and fusion network in the Mediaeval 2013 VSD dataset when the fights
detector is trained with the NTU-CCTV-Fights dataset.

One of the main aspects of our method is its modularity, such that it can be easily
updated. Here we illustrate one example with the NTU-CCTV dataset, which focuses
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mainly on fights. We trained a fight-specific network in the NTU-CCTV dataset and
plugged in the extracted features from the other concepts, previously tested with the
Mediaeval 2013 VSD dataset. Table 4.12 shows our results with this setup when tested
in the VSD dataset. This change improved the detector’s accuracy, going from 77.2%
to 78.8%. This training also improved the accuracy (78.5% to 79.6%) and mAP of the
fusion (0.656 to 0.661), making this our best result thus far. This improvement is thanks
to a more comprehensive set of examples of fights in the NTU-CCTV than that present
in the MediaEval dataset. Given this result, we searched for other available datasets with
different concepts, but unfortunately, such datasets do not exist to date.
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Chapter 5

Conclusion and Future Work

Detecting violence is a challenging problem, and there is not much work invested in
detecting violence in general. Prior work, notably, focuses on a single aspect of violence.
We designed a method that breaks the broader subjective concept into smaller and more
concrete ones to combine them later and better understand how violence can be portrayed.

We trained different dCNNs (static and motion-based), each responsible for detecting
a single aspect of violence. We focused our efforts on the Mediaeval 2013 VSD task and
dataset, which has annotations for several violence concepts. We later combined such
individual solutions with another network to classify violence using features from all the
networks.

We could follow our results as they became better when introducing audio features
and trained with specialized datasets. We tested our trained networks in a different, more
challenging dataset composed of drastically different videos and had better results than
the contestants.

This methodology’s modularity allows for the inclusion and removal of any concept of
violence relevant to the problem, which we consider a potential solution to its inherent
subjectivity. The obtained results with the specialized fights dataset point us in a promis-
ing direction, in which we can train each different aspect of violence with its specialized
dataset to fuse them into a yet more generalized violence detection network.

Each concept of violence could be trained not only with its own dataset, but taking
into consideration the best features and architectures for them.

This idea of training specialized networks with other datasets, however, creates yet
another problem in the lack of annotated datasets with different aspects of violence. Most
of the available datasets focus on fights. To get a wider range of violence sub-concepts,
one approach could be gathering non-labeled data. The challenge then becomes training
these networks with non-labeled data.

The big advancement of this idea is taking yet another step to an entirely data-driven
approach to the violence detection problem. In this direction, we believe the most exciting
future research direction is developing self-supervised learning techniques capable of using
just a few annotated examples of each concept and expanding them as more data arrives
at the pool. Self-supervised learning using techniques such as triplet loss demonstrated
by Schroff et al. with Facenet [53] and Zhai et al. with S4L [76] is just beginning to show
its potential, but we anticipate it would be appropriate for such investigations.
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