Harnessing high-level concepts, visual, and auditory features for violence detection in videos

University of Campinas PhD Defense – July 14th, 2021 Bruno Malveira Peixoto Advisors: Anderson Rocha Zanoni Dias

PRESENTATION OUTLINE

Why Detect Violence?

Reuters/Gonzalo Fuentes

How to define violence in terms that a computer can understand?

RESEARCH QUESTIONS

How different kinds of violence interact to enable a system to understand the meaning of violence in general?

How to build a system that relies upon visual and sound signals characteristics to detect violence in the general sense?

DEFINITION OF VIOLENCE

DEFINITION OF VIOLENCE

Definitions from the MediaEval VSD task dataset

A scene is violent if it contains "physical violence or accident resulting in human injury or pain".

A scene is violent if it contains physical violence which "one would not let an eight-year old child see".

Source: I Am Legend (2007)

STATE OF ART

CLASSICAL DATASETS

Hockey Fights

....

Violence in Movies

Violent Flows

Source: A survey on video content rating: taxonomy, challenges and open issues, Pour et al. 2021

RECENT STUDIES IN VIOLENCE DETECTION

Voor	Authors	Easturas / Classifiar	Accuracy in Datasets (%)			
Tear	Autions	reatures / Glassifier	Hockey	Movies	Flows	
2011	Bermejo et al.	BoVW - MoSIFT + SVM(HIK)	90.90	89.50	-	
2016	Bilinski et al.	FV / Sliding Window + SVM (χ ²)	93.70	99.50	96.40	
2016	Dong et al.	Three-streams + LSTM	93.90	-	-	
2017	Senst et al.	Lagrangian SIFT + SVM (χ²)	94.42	94.95	93.12	
2017	Meng et al.	CNN + Optical Flow + IDT	98.60	-	92.50	
2017	Sudhakaran et al.	Convolutional LSTM	97.10	100.00	94.57	
2018	Hanson et al.	Biconvolutional LSTM	96.96	100.00	92.18	
2018	Mumtaz et al.	Transfer learning from Inception	99.28	99.97	-	
2019	Ullah et al.	CNN + 3D CNN	96.00	99.99	98.00	

 Table 1 – Summary of studies in classical datasets.

REPRESENTING VIOLENCE

Source: Stefano Massa/Doctorcrowd

..

REPRESENTING VIOLENCE

Source: Billy Elliot (2000)

CONCEPTS OF VIOLENCE

Blood

Fire

Cold Arms

Fights

Explosions

Gunshots

Firearms

CONCEPTS OF VIOLENCE

..

INCORPORATING TEMPORAL INFORMATION

Some concepts of violence convey passage of time.

INCORPORATING TEMPORAL INFORMATION

Temporal Robust Features - TRoF

Identify which frames belong to a specific movement

Combine these frames into a single image input

COMBINATIONS

INCORPORATING TEMPORAL INFORMATION

Different concepts of violence have different sound signals.

Gunshot

Fight

PIPELINE

FUSION NETWORK

DATASET – MEDIAEVAL 2013 VSD TASK

ani/AFP Getty mages.

Hollywood movies Training set: 17 movies, 2013 min. Test set: 7 movies, 885 min.

RESULTS – VISUAL INPUT TRANSFORMATIONS

		TRoF Combinations			Optical	Flow Inputs
Concept	Raw Frames	Central	Extremities	Average	Flow	Acceleration
Blood	74.2	73.8	70.6	69.9	68.3	58.2
Cold Arms	81.6	64.4	71.5	70.8	61.9	76.5
Explosions	79.4	71.3	75.9	74.2	77.8	70.6
Fights	73.1	70.4	73.2	71.5	76.8	74.3
Fire	70.1	70.7	70.6	69.9	68.1	71.2
Firearms	60.8	58.4	58.5	59.1	62.3	66.8
Gunshots	69.3	66.8	66.4	64.0	63.6	73.1
Violence	66.7	68.4	62.8	65.3	65.0	58.7
Concatenation	72.4	70.5	73.3	73.6	67.9	72.1
Fusion Network	74.4	74.1	73.8	74.2	68.2	72.8

Table 3 – Accuracy percentages for each input transformation on every sub-concept.

TIME-BASED ARCHITECTURES

Source: Ji, Shuiwang et al. "3D Convolutional Neural Networks for Human Action Recognition." (2010)

Source: Colah's Blog. "Understanding LSTM Networks" (2015)

RESULTS – TIME–BASED ARCHITECTURES

	Raw Frames		Optical Flow		Optical Acceleration		Central TRoF	
Concept	C3D	CNN-LSTM	C3D	CNN-LSTM	C3D	CNN-LSTM	C3D	CNN-LSTM
Blood	58.0	57.2	59.2	60.2	60.2	58.2	56.8	57.4
Cold Arms	58.3	54.2	66.5	66.2	75.3	69.0	63.5	64.0
Explosions	77.1	61.4	66.4	64.	73.0	68.1	69.4	69.0
Fights	70.5	53.7	68.0	66.9	65.4	61.7	68.2	66.3
Fire	60.2	55.6	60.3	61.3	64.9	61.9	62.7	63.6
Firearms	61.0	60.3	63.2	65.0	66.5	62.3	62.0	63.4
Gunshots	65.3	56.8	62.6	64.1	68.6	66.8	63.8	64.5
Violence	62.3	55.9	58.1	58.6	68.3	63.6	62.3	60.1
Fusion	67.3	63.3	67.2	64.8	69.2	64.2	66.8	65.2

 Table 4 – C3D and CNN-LSTM accuracy percentages with different input transformations.

RESULTS – BEST INPUTS FOR EACH CONCEPT

RESULTS – COMBINED VISUAL AND AUDIO FEATURES

Concept	Best Visual Features	Audio Features	Visual + Audio Features
Blood	74.2	61.0	66.5
Cold Arms	81.6	66.9	83.2
Explosions	79.4	65.3	77.3
Fights	76.8	61.9	77.2
Fire	71.2	67.8	64.5
Firearms	66.8	62.4	73.3
Gunshots	73.1	70.7	74.5
Violence	68.4	72.8	72.1
Fusion	75.3	63.0	78.5

Table 5 – Accuracy percentages of the best visual features combined with audio features.

SPECIALIZED DATASET – NTU–CCTV FIGHTS

(ALSO

1000 Videos 18 hours CCTV and mobile cameras

EASTPAK

RESULTS - SPECIALIZED DATASET

	mAP
Two-Stream	0.795
C3D	0.645
TRoF	0.692
Fights Detector	0.623
Fusion	0.652

 Table 6 – Pre-trained network tested in specialized dataset

RESULTS - SPECIALIZED DATASET

	Original Training		Specialize	ed Training
	Acc. (%)	mAP	Acc. (%)	mAP
Fights	77.2	-	78.8	-
Fusion Network	78.5	0.656	79.6	0.661

Table 7 – Training only the fights detector network with the specialized dataset and tested on MediaEval 2013

Breaking down violence: A deep-learning strategy to model and classify violence in videos.

B. Peixoto, S. Avila, Z. Dias, and A. Rocha. 2018

In Proceedings of the 13th International Conference on Availability, Reliability and Security (ARES 2018).

Concepts and input manipulation results

Toward Subjective Violence Detection in Videos.

B. Peixoto, B. Lavi, J. P. Pereira Martin, S. Avila, Z. Dias and A. Rocha. 2019

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Fusion network and time-based architectures results

Ivan Alvarado/Reuters

Multimodal Violence Detection in Videos.

B. Peixoto, B. Lavi, P. Bestagini, Z. Dias and A. Rocha. 2020

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Fusion network with visual and audio features

Harnessing high-level concepts, visual, and auditory features for violence detection in videos.

B. Peixoto, B. Lavi, Z. Dias and A. Rocha. 2021

Journal of Visual Communication and Image Representation (JVCI). 78

Fusion network with specialized dataset

Ivan Alvarado/Reuters

CONCLUSION

How to define violence in terms that a computer can understand?

How different kinds of violence interact to enable a system to understand the meaning of violence in general?

CONCLUSION

How to build a system that relies upon visual and sound signals characteristics to detect violence in the general sense?

CONCLUSION

FUTURE WORK

Specialized datasets for each desired sub-concept.

Self-supervised learning to deal with non-labeled data.

UNICAMP

Instituto de Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS

CAPES

RCNPq

recod

II. I Thank You!

Tiago Viana

RESULTS – EXAMPLES

Firearms

.....

(a)

(b)

(c)

Explosions

RELEVANCE OF INDIVIDUAL CONCEPTS

	(Percentage of Annotated Shots)					
Concept	Non violent	Violent				
Blood	50.94	49.06				
Cold Arms	76.06	23.94				
Explosions	44.48	55.52				
Fights	16.42	83.58				
Fire	71.18	28.82				
Firearms	66.63	33.37				
Gunshots	44.57	55.43				

Presence of concepts in violent scenes. Dataset for the MediaEval 2013 VSD Task.

PRESENCE OF INDIVIDUAL CONCEPTS IN VSD 2013 DATASET

	Blood	Cold Arms	Explosions	Fights	Fire	Firearms	Gunshots
Armageddon	0.86%	0.04%	1.61%	3.07%	9.66%	4.02%	0.09%
Billy Elliot	0.24%	1.88%	0.00%	2.00%	1.08%	0.00%	0.00%
Dead Poets Society	0.36%	0.84%	0.00%	0.31%	3.39%	0.51%	0.00%
Eragon	5.27%	13.94%	0.45%	10.91%	22.00%	0.00%	0.00%
Fight Club	8.20%	0.20%	0.26%	4.59%	2.71%	5.37%	0.08%
Harry Potter 5	4.97%	2.80%	2.14%	5.73%	16.96%	0.00%	0.00%
I Am Legend	6.43%	2.45%	0.35%	4.08%	1.45 %	9.47%	0.53%
Independence Day	0.52%	0.89%	4.13%	1.67%	12.75%	8.87%	2.34%
Leon	8.17%	1.14%	0.15%	1.16%	0.51%	13.71%	0.92%
Midnight Express	2.08%	0.45%	0.00%	5.41 %	3.82%	7.10%	0.25%
Pirates of the Caribbean	0.94%	0.01%	1.16%	13.67%	26.15%	29.19%	3.01%
Reservoir Dogs	37.23%	1.89%	0.00%	4.12%	0.22%	19.31%	0.78%
Saving Private Ryan	27.31%	23.75%	16.45%	13.78%	14.85%	68.65%	33.23%
The Bourne Identity	3.66%	2.52%	0.09%	2.90%	0.48%	6.86%	0.47%
The Sixth Sense	1.08%	4.85%	0.00%	0.14%	2.08%	0.92%	0.04%
The Wicker Man	0.47%	1.26%	0.14%	0.30%	3.30%	4.32%	0.18%
The Wizard of Oz	0.00%	32.88%	1.08%	1.20%	6.65%	7.34%	0.00%

Percentage of positive samples for each sub-concept in each movie

Gunshot

Fight

Cold arms

..

Why Use Deep Learning?