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Estimating the Contribution of Computers to Productivity Growth 

 
 

ABSTRACT 
 
In this paper we explore the relationship between computers and productivity growth at the firm 
level.  We apply standard productivity and growth accounting techniques to data from 600 large 
US firms over 1987-1994.  While we find that computer make a positive and significant 
contribution to output growth in the short term (using 1 year differences), the implied returns to 
computers are two to five times greater when differences are taken over seven years instead of 
one year.  Our results challenge the conclusions drawn from aggregate data on computers and 
productivity, but are consistent with case evidence that the combination of computers and 
organizational co-investments make a substantial contribution to growth. 
 
 
JEL Categories:  O3 Technological Change;  D24 Capital and Total Factor Productivity 
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1. INTRODUCTION 

 

In advanced economies, computers are a promising source of productivity growth.  Rapid 

technological innovation has led to a quality-adjusted price decline of computers of 20% or more 

per year for several decades (Berndt and Griliches, 1990; Gordon, 1999).  Since nominal 

investment has increased even as prices declined during the past 30 years, the share of computers 

in capital formation has increased dramatically.   Computers may be the modern-day exemplar of 

technological progress, but the connection between computers to productivity has proven elusive 

to quantify.  What is the relationship between computers and productivity growth? 

 

Computers are a promising area for investigation into the sources of growth in modern economies 

for several reasons.  First, computers are the embodiments of significant investments in technical 

progress.  From 1978 to 1989, the computer industry had the highest level of R&D intensity of 

any industry in the manufacturing sector (Griliches, 1994) and its products have exhibited 

unprecedented quality improvements. Second, the value of computers may be substantially 

attenuated or magnified by complementary investments.  Computers are best described as a 

“general purpose technology” whose primary contribution is to make radically new production 

methods possible when combined with complementary investments such as work systems, 

organizational redesign and business processes (Bresnahan and Trajtenberg, 1995; Malone and 

Rockart, 1991).  David (1990) has compared the current computerization of the economy to the 

historical example of electrification 100 years earlier by noting that new ways to organize work 

are required to exploit new general purpose technologies. Milgrom and Roberts (1990) argue that 

computers have been an important driver of the shift from “mass production” to “modern 

manufacturing”.  Advocates of organizational “reengineering” have argued that computer-enabled 

work redesign can lead to vast productivity improvements (see e.g. Hammer and Champy, 1993) 

while some prominent economists have speculated that synergies with computerization may be 

leading to significant changes in the economy as a whole (Greenspan, 1999). 

 

Despite these promising elements, how much, and even whether, computers contribute to 

productivity growth remains a topic of debate.  A decade after Solow  (1987) quipped “we see 
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the computer age everywhere except in the productivity statistics”, aggregate productivity growth 

in the U.S. began to soar.  In the period 1995-2000, U.S. multifactor productivity has grown by 

2.7% per year, roughly double the average of the previous 25 years.  Nonetheless, others 

including Gordon (1999), have vigorously argued that while there has been tremendous 

productivity growth in computer producing industries, there is only limited evidence of any 

incremental productivity growth in computer using industries. 

 

One explanation for this discrepancy is mismeasurement.  Aggregate industry data may not 

accurately reflect the value of variety, timeliness, customization and other intangibles (Boskin et 

al., 1997), which may obscure the productivity effects of computers if the benefits of 

computerization are disproportionately oriented toward intangible value.  Firm-level data may 

better reveal computers’ contributions to the extent that consumers consider intangible benefits 

when they make purchase decisions.  Second, there is an issue of adjustment time and learning.  

Investments in computers may make little direct contribution to overall performance of a firm or 

the economy until they are combined with complementary investments in work practices, human 

capital, and firm restructuring (Brynjolfsson and Yang, 1999;  Brynjolfsson, Hitt and Yang, 1999; 

David, 1990;  Greenwood and Jovanovich, 1998;  Hall, 2000;  Hammer, 1992).  This may depress 

the apparent contribution of computers in the short term but result in substantial contributions in 

the long term. 

 

Research on computers’ effects on firm-level productivity has been constrained by data availability 

and has produced mixed results.  Studies by Loveman (1990) and by Barua, Kriebel and 

Mukhopadhyay (1995) found no evidence that computers contributed positively to output when 

they examined a data set of 60 business units in the early 1980s.  In contrast, studies employing 

more recent firm-level data have found a correlation between levels of computer investment and 

productivity level.  Brynjolfsson and Hitt (1995, 1996) and Lichtenberg (1995) estimated several 

production functions using data for approximately 350 large firms from 1988-1992, and found 

high output elasticities for computers exceeding their capital costs.1  While several studies have 

                                                
1 The results at the industry level have also been mixed.  Morrison (1996) finds a zero or even negative correlation 
between computers and productivity, while Siegel (1997) found a positive relationship after correcting for 
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now found a positive correlation between computers and productivity levels, none has examined 

productivity growth at the firm level.   Analyzing the effect of computers on productivity growth 

is important not only because it implicitly controls for firm heterogeneity, but also because of the 

importance of productivity growth in determining future living standards. 

 

In this paper our objective is to clarify the relationship between computers and productivity by 

estimating the contribution of computers to growth and evaluating one possible mechanism that is 

driving this relationship:  the role of organizational co-investments.  Using standard growth 

accounting and productivity measurement approaches we examine the relationship between 

growth in computer spending and growth in output for 600 large firms over 1987-1994.  To the 

extent that output growth exceeds a “normal” rate implied by economic theory, after accounting 

for growth in other factors, we can conclude that computers contribute to productivity growth.  

By performing the estimation at the firm rather than the industry level, we reduce difficulties of 

mismeasured output and inputs, thus potentially obtaining a more accurate estimate of computers’ 

contributions.  We conduct the analysis varying the time horizon (difference length for the growth 

calculation) to examine how the changes in computers’ contribution is affected by longer term 

investments in complementary factors.  Finally, we use multiple econometric approaches to 

account for different types of biases introduced by firm heterogeneity, endogeneity of factor 

spending, and slow adjustment of other factors. 

 

We find evidence of a substantial relationship between computers and multifactor productivity 

growth. Our results indicate that computers’ short-run contribution to output is approximately 

equal to the direct user cost of computer capital.  However, in the long run, we find that the 

implied marginal product and growth contribution of computers rises by an economically and 

statistically significant margin.  Our interpretation is that the long-run contributions rise because 

                                                                                                                                                       
measurement error in input and output quantity.  Other studies showing mixed results in industry data include 
Berndt, Morrison and Rosenblum (1992), Berndt and Morrison (1995), Morrison and Berndt (1990) and Siegel 
and Griliches (1991).  Even studies which simply assume that computers were earning a normal rate of return have 
come to contrasting conclusions about what this implies for their overall contribution to the economic growth.  See 
Lau and Tokutsu (1992), Jorgenson and Stiroh (1995), Bresnahan (1986), Brynjolfsson (1996), and Oliner and 
Sichel (1994).  See Brynjolfsson (1993), Brynjolfsson and Yang (1996) and Brynjolfsson and Hitt (2000) for more 
comprehensive literature reviews. 
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computers complement productivity-enhancing organizational changes carried out over a period 

of several years. 

 

The remainder of the paper is organized as follows.  Section 2 provides examines the role of 

computer technology in productivity growth and discusses the measurement problems inherent in 

analyzing the productivity contribution of computers.  Section 3 develops the theoretical 

framework we employ in estimating productivity effects and introduces our data. The regression 

results and an analysis of the importance of complementary factors are presented in Section 4.   

We conclude with some possible interpretations of our results. 

 

2. BACKGROUND 

 

Since the 1960s, semiconductor chipmakers have increased the density of the lines that form 

transistor circuits by about 10% a year.  Combined with numerous other improvements, this has 

led to a doubling of microprocessor power every 18 months (See Figure 1). These improvements 

have occurred so consistently that the trend is known in the computer industry as "Moore's Law," 

after a 1964 prediction by Gordon Moore, a founder of Intel Corporation.  Improvements in 

semiconductors and other components account for the annual 20-30% quality-adjusted price 

decline for computers (Berndt and Griliches, 1990; Gordon, 1990;  Gordon, 1999) and reflect a 

successful effort to advance the technological frontier for computer production. 

 

Computers are primarily an intermediate good, so their effect on economic welfare depends on 

how successfully they are used to create other goods and services.  Both nominal and real 

investments in computers have increased substantially over the past several decades (Figure 2), 

and have further accelerated in the 1990s.  Presumably companies perceive a significant potential 

increase in profit and productivity from exploiting these new technologies.  In part, this reflects 

the substitution of computers for labor or other types of capital along a given production 

possibility frontier for computer consumers.  Users of ever-cheaper computer equipment can 

thereby achieve greater output for a given cost of inputs.  However, after properly accounting for 

the deflation of computer prices, this type of output growth reflects investment growth, not 



Computers and Productivity Growth  Page 5 
   

productivity growth by computer users (Jorgenson and Stiroh, 1995).  Griliches (1991) terms this 

a pecuniary spillover, because the combination of productivity growth and competition in the 

computer-producing sector has allowed computer-using industries to purchase computer inputs at 

prices below their quality-adjusted value.  The economic impact of investment and pecuniary 

spillovers can amount to billions of dollars; a sizable fraction of recent output growth in the 

United States (Brynjolfsson, 1996; Jorgenson and Stiroh, 1995).  Some authors suggest that the 

entire contribution of computers is in the form of pecuniary spillovers (Gordon, 1999). 

 

Computers may also affect the multifactor productivity growth of the firms that use them by 

changing the production process itself and engendering complementary innovations within and 

among firms.  This could lead to an output elasticity that is greater than computers’ input share 

and thus a positive impact on productivity.  

 

Firm-level cases strongly indicate that computers are in fact associated with changes in the 

composition of both outputs and inputs complicating the problem of estimating their effects.  For 

example, Diewert and Smith (1994) analyzed a wholesaling firm that adopted a computer-based 

inventory management system.  After the system was introduced, the firm restructured the way 

inventory was handled and realized multifactor productivity growth of over 9% per quarter.   

Interestingly, while inventories per stock-keeping unit declined precipitously, there was virtually 

no net reduction in total inventories, because the number of products carried increased 

proportionately.  A less careful study would like have missed many of the actual productivity 

gains if it merely looked at aggregates like inventory or sales.   More recently, firms have made 

large investments in electronic commerce to improve service to customers as well as improve 

speed and flexibility in their inbound and outbound logistics.  This has enabled new types of 

customer focused strategies to be implemented.  For example, several automakers, including 

Toyota, have announced plans to offer cars on a build-to-order basis with delivery in less than two 

weeks.  Numerous on-line book and music retailers can provide almost any title currently in 

production delivered within 24 hours, and on-line computer retailers enable consumers to 

customize their own personal computer on-line which is usually available for shipment within 10 

days. 
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To the extent that aggregate statistics do not reflect the consumer benefits from greater product 

choice or faster time to market, the effects of computerization will be underestimated.  On the 

other hand, if the sales of individual firms are increased by offering these “intangible” benefits, 

then firm-level data will detect them. 

 

The above cases also reflect the emerging consensus that substantial investments in 

“organizational capital” – the built-up knowledge reflected in a firm’s routines, procedures, 

reporting structures, staff training, work flows, and product positioning– typically also accompany 

the implementation of the new information systems (See, for example, Cash, Eccles, Nohria and 

Nolan, 1994; Malone, Rockart, 1991; or Lucas, 1996; Hitt and Brynjolfsson, 1997;  Bresnahan, 

Brynjolfsson and Hitt, 1999).  Milgrom and Roberts (1990, 1992) argue that the combination of 

computers and these complementary investments enable firms to pursue high-productivity 

strategies that were unprofitable or infeasible in the past.   

 

The long-run increase in output associated with a price decline in an input like computers may be 

magnified as other complementary organizational factors are adjusted over time (Milgrom and 

Roberts, 1996).  In the short term, output rises because of increased quantities of computer 

inputs.  Over time, firms will adjust quasi-fixed factors, such as physical capital, human capital, 

business processes, and other organizational characteristics to maximize the contribution of the 

technology (Berndt and Fuss, 1986).   

 

3. MODEL AND DATA 

 

3.1. Theoretical Framework 

 

We begin by applying the standard growth accounting framework that has been used extensively 

for studying the productivity of inputs such as capital, labor, energy, and research and 

development (R&D) (Berndt, 1991).  We assume that the production process of the firms in our 

sample can be represented by a production function (F) that relates firm value-added (Q) to four 
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inputs: ordinary capital stocks (K), computer capital stocks (C), labor (L) and, in some cases, 

R&D (R).2  In addition, we assume that the production function is affected by time (t), and the 

industry (j) in which a firm (i) operates.  Thus: 

 

Q F K L C R i j tit it it it it= ( , , , , , , )      (1) 

 

Following common practice, we assume that this relationship can be approximated by a Cobb-

Douglas production function and its variants.3 For most of our analyses, we implement this 

function with three inputs: ordinary capital, computer capital, and labor, written in levels or 

logarithms of levels (lower-case letters denote logarithms; firm and time subscripts on inputs are 

omitted hereafter): 

 

31 2( , , )Q A i j t K L C ββ β= , or     (2a) 

1 2 3( , , )   q a i j t k l cβ β β= + + +     (2b) 

 

The term a, often referred to as multifactor productivity, captures differences in output across 

firms and over time that are not accounted for by capital or labor.   This productivity framework 

is usually implemented in time series or panel data settings by taking the time difference of each of 

the factors, with &x representing the time difference of x : 

 

1 2 3q a k l cβ β β= + + +& && & &     (3) 

 

For each firm in each year, the output elasticities of non-computer inputs ( 1 2, )β β  are set to equal 

their theoretical value. Under standard assumptions (cost minimization, competitive output and 

                                                
2 Results on the computer elasticity are generally similar whether or not R&D is included in the regression.  
Because of the large number of missing data points (including almost the entire service sector) we do not show 
R&D in the main results, but do include R&D in some of the corroborating analyses. 
3 The Cobb-Douglas functional form has the advantage that it is the simplest form that enables calculation of the 
relevant quantities of interst without introducing so many terms that the estimates are imprecise.  More general 
functional forms such as the transcendental logarithmic (translog) have been utilized in research on the levels of 
computer investment and productivity (see Brynjolfsson and Hitt, 1995) with similar results.  
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input markets, and factor quantities in long-run equilibrium), this equals the ratio of the cost of 

the input to the value of output.  Estimating these elasticities by averaging factor input shares over 

the current and previous years, and rewriting the equation as a function of multifactor 

productivity growth ( &a ), where subscripts refer to time period, and r, w, p are the real price of 

physical units of capital, labor and output respectively, yields: 

 

1 1 1 1
3

1 1 1 1

1 1

2 2
( ) ( )t t t t t t t t

t t t t t t t t

r K r K w L w La q k l cp Q p Q p Q p Q β− − − −
− − − −

= − + − + −& && & & (4) 

 

  

The output elasticity of computer capital (β3) could be calculated using a formula similar to that 

for ordinary capital.  Alternatively, multifactor productivity growth can be first estimated 

excluding the contribution of computers.  Then this estimate can be used to estimate the computer 

elasticity by regression (after adding an error term, assumed to satisfy the standard assumptions 

necessary for ordinary least squares to be unbiased and efficient): 

 

 \ 3
ˆ ˆ

ca cλ β ε= + +& &       (5) 

 

where: 1 1 1 1
\

1 1 1 1

1 1

2 2
( ) ( )t t t t t t t t

c
t t t t t t t t

r K r K w L w La q k lp Q p Q p Q p Q
− − − −

− − − −
≡ − + − +& && &  

 (Coefficients with hats ^ represent econometric estimates.) 

 

This approach, which was employed by Adams and Jaffe (1996) to study R&D productivity, 

provides unbiased estimates when all factors are in competitive equilibrium.  However, as shown 

by Berndt and Fuss (1986), it may give biased estimates if a quasi-fixed factor, such as capital, is 

not in equilibrium.  In this case, the value of the service flows from that factor can be adjusted to 

give accurate estimates of productivity growth.  In particular, Berndt and Fuss show that the 

expected ex post shadow rental price of capital should replace the ex ante rental price in 

calculating input shares, and that the expected shadow rental price of capital (zt ) can be 

approximated by multiplying the traditional Hall-Jorgenson ex ante rental price by Tobin’s q (φ), 

which is the market value of the firm divided by the replacement cost of its physical capital stock.  
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Tobin’s q incorporates information on the expectations of investors regarding future input and 

output prices and thus the shadow price of installed capital.  We implement this approach by 

estimating equation (5) using the expected shadow price of capital ( z rt t t= φ ) in place of the 

capital rental price ( rt ), where φt  is a normalized value of Tobin’s q for each firm in each year.4 

 

Evaluating the Contribution of Computers. To interpret these results, we can compute the 

marginal product of computers – the marginal increase in output for an additional unit of 

computer capital input – by differentiating the Cobb-Douglas production function.  For 

computers, the marginal product is given by: 

 

3̂c c c

pQ pQ
MP

r C r C
∂ β
∂

= =     (7) 

where:  pQ r Cc,  represent sample average output and computer (flow) quantities and  
r c represents the rental price of computers. 

 

The marginal product should equal 1 if the firms are in a long-run equilibrium; each additional 

dollar of input (flow) should result in a dollar of output, assuming parameter estimates are 

unbiased and all relevant costs are measured.   

 

An alternative estimation approach combines the use of marginal product calculations with the 

productivity estimation framework.  Instead of estimating the output elasticity, we can directly 

estimate the implied rental price of computers by weighting the growth in computer capital by its 

factor share: 

/ ˆˆ ( )t d t
c

t d t

C Ca c controls
V V

γ ψ ε−

−

+= + + +
+

& &  (8) 

 

                                                
4 In addition, the traditional growth accounting framework may also attribute changes in market power and 
economies of scale to productivity growth.  Whether these gains are legitimately part of productivity growth is a 
matter of interpretation.  For example, Morrison (1992) writes “…  for some purposes scale economies are 
appropriate to include as ‘productivity growth’.” 
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This analysis (we refer to as a “rate of return” specification) has the advantage that it directly 

accommodates heterogeneity in computer investment across firms and over time. 

 

3.2. Data Sources and Construction 

 

The data set for this study was created by combining two main data sources: a database of capital 

stock of computers provided by Computer Intelligence InfoCorp (CII); and public financial 

information obtained from Compustat II (Compustat).  We also employed price deflators from 

various government and private sources.  In some analyses, we also used a data set of computer 

hardware and related expenses obtained through surveys conducted by International Data Group 

(IDG), and data from a survey we conducted for this research which asked chief information 

officers about the benefits they expected from computerization.  Appendix A provides additional 

details on the data sources and construction. 

 

CII conducts a series of surveys that tracks specific pieces of computer equipment in use at 

approximately 25,000 sites at different locations of the 1000 largest firms in the United States.  

CII interviews information systems managers to obtain detailed information on each site’s 

information technology hardware.  Site sampling frequency ranges from monthly to annually, 

depending on the size of the site, and the interview process includes checks on hardware that was 

reported in previous interviews which makes time series comparisons more accurate.  Each piece 

of hardware is market-valued and aggregated to form a measure of the total hardware value in use 

at the firm. These data obviate the need to make assumptions about retirement rates or 

depreciation, which are typically required when constructing capital series.5  The CII data provide 

a relatively narrow definition of computers that omits software, information system staff, and 

telecommunications equipment.  The data are available for the Fortune 1000 annually for the 

period 1987 to 1994. 

  

                                                
5 This methodology may introduce some error in the measurement of computer inputs because different types of 
computers are aggregated by stock rather than flow values (weighted by rental price). The direction of such a bias 
is unclear because it depends on assumptions about depreciation rates of various types of computers at each site. 
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We consulted Standard & Poor's Compustat II database to obtain information on sales, labor 

expenses, capital stock, industry classification, employment, R&D spending, and other expenses 

for all the firms in the CII database. These data were supplemented with price deflators from a 

variety of sources to construct measures of the sample firms’ inputs and outputs using procedures 

consistent with earlier work (Hall, 1990; Brynjolfsson and Hitt, 1995).  The procedure for 

calculating rental prices of computers and other inputs appears in Appendix B. 

 

Sample.  Using data from the CII database and Compustat, we constructed a nearly balanced 

panel of approximately 600 firms in the Fortune 1000 over an 8-year period for a total of 4571 

observations.6 We also have matching estimates of computer stock for 1411 of these observations 

from IDG, which gathered data from a single officer in each firm and used a somewhat different 

definition of computer capital.  For the overlapping firms, the computer capital data had a 

correlation of 73% between CII and IDG. 

 

During the sample period, the average factor shares of computers, capital, and labor were .01, .34 

and .61 respectively. The firms in the sample are quite large, averaging $1Bn in value-added.  The 

sample consists of 57% manufacturing firms, 41% service firms, and 2% mining, construction and 

agriculture, and there is at least one firm present from 41 different 2-digit SIC industries.  

However, some service industries -- banking, insurance -- are largely excluded because many of 

the firms in these industries do not report ordinary capital stock on Compustat.  Because these 

industries are particularly computer-intensive, the firms in our sample are somewhat less 

computer-intensive than the economy as a whole.  Altogether, our sample appears to be broadly 

representative of large firms in the U.S. economy and firms in the sample account for about 15% 

of total U.S. economic output. 

 

4. RESULTS 

 

                                                
6 The panel is unbalanced because some firms enter or leave the Fortune 1000 each year, merge, or for some other 
reason fail to have complete or comparable financial data available for all eight years.  To prevent the results from 
being skewed by sample heterogeneity over time, we restrict the sample to firms that participated in at least six of 
the eight years of our sample. 
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In this section we estimate the relationship between growth in computers and multifactor 

productivity growth for the firms in our sample.  We begin with a base specification that estimates 

the relationship between productivity growth and growth in computer input at varying difference 

lengths, adding additional control variables for time and industry.   We then extend this 

specification by using instrumental variables to address reverse causality and random measurement 

error and to adjust for disequilibrium effects on capital using ex-post rental prices.   Finally, to 

corroborate our productivity results, we take an alternative approach and use a “semi-reduced 

form” specification that requires fewer assumptions about the ex-post rental price of capital and 

addresses endogeneity of labor more directly, and replicate and extend previous results 

concerning the impact of levels of computer investment on levels of output. 

 

4.1.  Productivity 

 

Base Estimates.  We begin by estimating a conventional multifactor productivity equation that 

calculates the residual change in output after accounting for changes in ordinary capital and labor.  

Using equation (5), we calculate multifactor productivity growth (excluding computers from 

capital), and regress the result against the change in computer capital services varying the length 

of differencing. 

 

The results of these initial regressions are shown in the first column of Table 1a. We begin by 

examining first differences (row 1, column 1).  We find that the elasticity of computers is about 

.01, and we cannot reject the hypothesis that the elasticity is equal to the factor share of 

computers (t=1.4).  We do find that the elasticity is significantly different from zero (t=2.2).  

When the analysis is repeated with longer difference lengths, we observe a general upward trend 

in the estimated elasticity with a statistically significant difference between the one-year and the 

seven-year first difference coefficients (p<.05).7 

                                                
7 We performed the analysis after removing a small number of outliers:  those where the one-year multifactor 
productivity change is greater than 1 (in logarithms), or a multi-year multifactor productivity change is greater 
than 2.  In addition, we require that for all years a firm has no changes in the logarithm of capital or labor greater 
than 2, and no changes in the logarithm of computers greater than 3.  This led to the elimination of 12 firms, 
leaving 599 for analysis.  The estimates are similar when outliers are included. 
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The effect of added control variables on this baseline specification are shown in columns 2-4 in 

Table 1a, and graphically in Figure 3.  When dummy variables for time are included, the elasticity 

estimates drop in short differences, but are essentially unchanged in longer differences.  Industry 

controls also appear to slightly lower the elasticity estimates across all difference specifications, 

suggesting that there are some systematic variations in computer input growth and productivity 

growth across industry.  However, the fact that the effects of computers are still significant 

suggests that firm-level variation is more important than industry-level variation.  As a result, it is 

likely to be difficult to assess the effects of computers on productivity growth using only industry-

level data. 

 

 Interestingly, regardless of the specification, the elasticity estimates for computers show the same 

increasing trend as differences are lengthened.  We cannot reject the hypothesis that the elasticity 

estimates are at least as large as the computer input share in any of these analyses.8  

 

Instrumental Variables.  Our earlier results assume that computer investment is determined by 

exogenous factors and is not correlated with shocks in productivity.  However, it may be possible 

that either time-series or cross-sectional variation in productivity can also influence computer 

investment.  For example, if firms disproportionately increase investments in computers in years 

where output is unexpectedly high, our short-difference elasticity results will be upward biased.  

 

However, if firms change their other expenses in response to demand shocks more than their 

investments in computers, or if computer investment is countercyclical for other reasons, then 

OLS may underestimate the contributions of computers.  Similarly, different firms may have 

different costs of making incremental investments in computers due to the structure of their past 

                                                
8 To probe this result further, we estimated regressions using varying difference length for particular years.  For 
example, for 1992 we can examine the 1992-1991, 1992-1990, 1992-1989, 1992-1988 and 1992-1987 differences.   
The shorter difference results varied depending on the base year chosen, although they are usually positive and 
close to zero.  However, elasticity estimates for fifth, sixth and seventh differences were consistently in the .02 to 
.03 range.  
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investments in computers or other factor inputs; if these investments are also associated with 

higher (lower) productivity, then our estimates will be biased upward (downward) as well.   

 

Regardless of the direction of the bias we can obtain consistent estimates of the contribution of 

computers using an instrumental variables estimator.  This can also correct for the possibility of 

measurement error in computer inputs. 

 

For instruments, we model computer investment as being driven by the prices of pre-existing 

complements and substitutes to computers (durable goods, non-durable goods, energy), capital 

costs (BAA bond yields) and exogenous shocks to investment requirements (defense 

expenditures) in time series.  These are the instruments used for productivity analysis proposed by 

Hall (1990).  To model cross-sectional variation in IT adoption, we build on the idea that different 

types of computer technologies have different costs of incremental investment.  In particular, 

firms that have already invested heavily in client-server technology may be able to make additional 

investments much more easily than firms that have relied heavily on mainframe technology and 

need to undergo a costly (and time consuming) conversion.  The adoption of client-server 

technology is measured as the percentage of personal computers (PCs) connected to local area 

networks and the ratio of PCs to mainframe terminals.  In addition, firms with a newer capital 

stock may be better able to use computers either because it is likely to be more compatible with 

computer technology (e.g. uses digital controls), or because newer capital indicates a willingness 

or ability to use new technologies.  Finally, we include measures on the reason the firm is making 

the investment in computers9 taken from a survey of IS managers since the indirect cost of 

computer investment may vary depending on the application.   

 

Following Bartelsman, Caballero and Lyons (1994), we lag all our time series instruments by one 

period, calculate prices as a ratio to the price of energy and allow the effects of the instruments to 

                                                
9 The survey contains nine questions about reasons for investing in information technology and asks the 
respondent to rate the importance of each factor on a ten point scale:  increase product variety, quality, customer 
service, timeliness, provide infrastructure, support business process redesign, reduce costs, improve bargaining 
position with customers, improve management information.  We have data for about half of the firms in our 
sample on these measures.  Where data is unavailable, we include a dummy variable for each question for missing 
data and the value of the variable itself is set to zero. 
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vary by industry.  The R2 of first stage regressions ranged from 35% in short differences to 67% 

in seventh differences.  Although this instrument set is clearly less than ideal as it is very difficult 

to obtain time varying predictors of computers across different firms, we hope to at least 

directionally compare the results of the instrumental variables analysis with our prior first- and 

long-difference analysis. 

 

The two-stage least squares (2SLS) estimates are presented in Table 1b and are compared to 

other analyses in Figure 4.  In short differences (first through third), the coefficients are 

consistently larger in 2SLS than they are in the OLS regressions. This suggests that computer 

investment may be less cyclical than other investments in the short-run.  In fourth and longer 

differences, the results drop to a level comparable to the OLS results. This is at least partly due to 

the loss of a time series variation in the data as the difference length increases, reducing the 

difference between OLS and 2SLS estimates. Although the standard errors are much larger in the 

2SLS specification, we can still reject the null hypothesis that computers make no contribution to 

productivity growth in first through fourth differences, and have no evidence that computers are 

not at least as productive as other inputs in any specification. 

 

Research and Development.  Previous work has found that R&D investment is substantially 

correlated with productivity level and growth (see e.g., Griliches, 1986;  1994).  Because R&D 

spending is likely to be driven by some of the same factors as information technology spending, 

such as an overall emphasis on innovativeness, an industry environment or strategy that requires 

greater speed to market or customer responsiveness, or just a intrinsic capability for innovation 

within the firm, it is possible that our IT coefficients are biased because we do not account for 

R&D spending.  We explore this possibility in Table 1c where we simultaneously include both 

computer capital growth and R&D growth in the analysis.  In column 1, we replicate our previous 

analysis without R&D on the subset of firms that have reported R&D expenditure (primarily 

manufacturing firms).  Although the sample size is substantially reduced, we still find positive and, 

in most cases, significant IT effects.  Coefficients on computers rise from about .01 to .05 as the 

difference length increases with a general upward (but not monotonically increasing) trend.  In 

columns 2 and 4 we show the equivalent coefficients in a regression with R&D included, first with 



Computers and Productivity Growth  Page 16 
   

no other control variables (column 2) and then with industry and time controls (column 4).  The 

coefficient estimates are broadly similar to the analysis without R&D, and although tend to be less 

precisely estimated due to the reduced sample size and multicollinearity between computers and 

R&D growth, they still are generally positive, significant and show an upward trend as the 

difference length is increased.  Interestingly, the R&D coefficient tends to only be significant in 

first differences and shows no particular trend as the difference length increases.  These results 

suggest that our analysis is robust to whether or not we explicitly include R&D in the analysis and 

also that the upward trend in the coefficients is unique to information technology as opposed to 

applying to investments in innovation more broadly.  Moreover, to the extent that sources of 

reverse causality are similar for computers and R&D, this provides a further indication that these 

types of specification errors do not appear to be biasing the results (at least in the long run) since 

the same effects do not appear for R&D. 

 

Adjusting for Input Quasi-Fixity.  The fact that time controls and instrumental variables estimates 

have a substantial effect on short difference elasticity estimates suggests that firms were not 

always in long-run equilibrium.  While the IV estimates correct for the endogeneity of IT with 

respect to productivity, the do not account for possible biases in the measurement of TFP growth 

due to quasi-fixity of capital.   Because the economic value of capital can deviate from its 

accounting value depending on short-term economic conditions such as capacity utilization, 

traditional growth accounting methods will tend to overstate capital inputs in recessions and 

understate capital inputs in periods of growth.  If IT has a systematic relationship to economic 

cycles as well, this could lead to a biased estimate of the elasticity of computers. 

 

To address the bias in productivity measurement we adjust the rental price of capital to 

approximate their true shadow values by using Tobin’s q (following Berndt and Fuss (1986)).  In 

principal, a q-value greater than 1 implies that the shadow value of the firm’s capital is greater 

than its ex ante cost as conventionally measured.  However, since many firms have significant 

intangible assets with zero book value, they may have values for average Tobin’s q that are 

greater than 1 even when the shadow value of capital is below its long-run equilibrium value.  One 

way to correct for this heterogeneity is to normalize all values of q by dividing by each firm’s q 
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value in our base year of 1990.   Thus, only changes in q relative to 1990 are used to adjust the 

capital flow weights.   

 

In Table 2, changes in multifactor productivity growth are calculated using firm-specific ex post 

rental prices for capital derived from Tobin’s q.  When compared to the analysis assuming ex ante 

rental prices, the results are similar to the earlier analysis whether or not industry dummy variables 

are included and for both OLS and 2SLS estimates.  In particular, the coefficients rise as the 

period of differencing is increased.  This would suggest that the previous estimates are not driven 

by assumptions about whether firms are using equilibrium levels of quasi-fixed inputs.   

 

4.2 Estimating Production Functions instead of Productivity 

 

To examine the possibility that our results are unique to this data set or the modeling approach we 

employ, we now analyze the data using production functions instead of directly examining 

productivity and compare results from our data to an alternate dataset from IDG.  

 

All previous firm-level studies have focused on estimating production functions, in which the 

elasticity of other factors (capital and labor) are estimated from the data, but are constrained to be 

the same across firms.  The results from a 4-input (computers, capital, labor, R&D) production 

function estimation are shown in Table 3 using both our new data set, and the data set from 

International Data Group (IDG) used in earlier research by Brynjolfsson and Hitt, and by 

Lichtenberg. Overall, we find consistency both within this study and between this study and 

previous work. 

 

The first column shows the results when we average output and all factor inputs across the time 

dimension for the same firm and estimate a "between" regression by weighted least squares 

(weights are the inverse of the square root of the number of observations per firm).  In the cross-

sectional dimension of the data alone, the estimated elasticity is .035 for computers.  When we 

pool the data, as done in previous work, we find that the computer elasticity estimates in levels 

are around .03 for computers in both data sets.  In a more demanding first difference specification, 
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evidence of the contribution of computers is lost in statistical noise in the IDG sample, but not in 

the broader and longer CII data series.  Altogether, when combined with the productivity 

analyses, we find strong evidence that computers are a productive investment in both cross-

section and time-series analyses. 

 

For the CII sample, the estimated elasticity of ordinary capital and labor are near what would be 

expected in the levels estimates, but the ordinary capital elasticity appears substantially biased 

downward in first differences.  This is possibly the result of labor endogeneity, which can result in 

lower capital elasticity estimates.  In fact, a Hausman test for the production function estimated in 

levels suggests that labor is endogenous (but not capital or computers) when we used lagged 

values of the independent variables as instruments.  As a result, first difference estimates of a 

production function with all the factors included may be unreliable. 

 

4.3  Semi-Reduced Form Estimates 

 

By dropping labor from the equation, we can remove potential biases from endogeneity of labor 

(Griliches and Mairesse, 1984).   In this formulation, labor is treated as endogenously determined 

by the quasi-fixed choices of computers and ordinary capital, thus reducing the possibility that 

labor endogeneity introduces biases in other coefficients.  This results in a system of equations 

that allows the estimation of the ratio of capital and computer elasticities to the labor elasticities 

(see the derivation in Griliches and Mairesse, 1984): 

q k c

l k c

q q

l l

= + − + − +

= + − + − +

$ $ $

$ $ $
γ α

β
δ

β ε

γ α
β

δ
β ε

1 1

1 1

      (8) 

 

This formulation can be estimated in levels or differences.  Table 4 reports the estimates of this 

each equation separately in first differences.  We cannot reject equality of coefficient across the 

two equations, so in the third column we estimate the equations simultaneously, imposing the 

restriction that elasticities are the same in both equations to improve efficiency.  In Table 5, we 
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allow the difference length to vary from 1 to 7 years.   After adjusting for the 62% factor share for 

labor, the coefficient estimates imply that the output elasticity of computers is monotonically 

increasing from .009 to .044 as the difference length is increased.  Similar results are obtained 

using instrumental variables estimates with the same instrument set as before (not shown), 

although most of the increase in coefficient estimates occurs between the first and third 

differences.  In addition, the IV estimates are consistently higher than the OLS estimates. This 

corroborates our earlier results using the productivity formulation, and it also suggests that, 

ceteris paribus, OLS may underestimate the coefficient on computers in production functions 

estimated in first or long-differences. 

 

4.3  Rate of Return Specification 

 

To further examine the contributions of computers and gauge the reliability of our earlier results, 

we also estimate the effects of computers in a rate of return specification, where the coefficient 

estimate represents the implied rental price – the rental price at which computers contributions 

equal their costs (Table 6).   The numbers that appear in the table are the implied rental price of 

computers.  When the estimates exceed our rental price estimate of 42% per year, it suggests that 

computers have excess returns or a positive contribution to measured MFP.  While this table 

shows somewhat lower contributions of computers in longer differences (on the order of 1.5 – 2.5 

times the rental price), the returns consistently rise from first to third differences and are 

substantially above theoretical value of the rental price. 

  

4.3 Interpretation of Elasticity Estimates 

 

Across various specifications we find that the elasticity of computers starts at about .01 in first 

differences and rises to as much as .04 in long differences.  The long-difference estimates are up 

to 8 times as large as would be expected if computers had "normal" returns.  In this section, we 

evaluate several alternative explanations for the large and increasing coefficient estimates, with a 

focus on the mismeasurement of computer inputs and complementary factors. 
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Random Measurement Error.  One potential explanation is that the results are a product of 

random measurement error.  Because our productivity analyses only have a single regressor, we 

would expect that random input mismeasurement would bias down the computer elasticity 

estimates.  This bias should be most pronounced in shorter differences since the amount of 

“signal” (e.g. the true change in computer investment) is likely to be reduced by differencing more 

than the “noise”, because noise is less likely to be correlated over time.  Thus, the signal-to-noise 

ratio, which is inversely proportional to the bias, is likely to increase as longer differences are 

taken (Griliches and Hausman, 1986).10  The fact that the coefficients rise as longer differences 

are taken is consistent with a measurement error explanation.  However, an upward trend in the 

coefficients still appears in the instrumental variables regressions and furthermore, this explanation 

implies that the true elasticity of computers is actually equal to or  greater than our long difference 

estimate. 

  

If the long-run elasticity estimates are correct, then either the true returns to computer investment 

are dramatically higher than the returns to other investments or there is some “missing mass” of 

inputs to the production function that is correlated with computer stock.  Only the latter 

explanation is consistent with long-run equilibrium.  We can determine how large any missing  

mass must be in order to bring the marginal product of computers down to normal levels and how 

this missing mass relates to factors we do observe.  

 

Miscounted Technological Complements.  One component of this missing mass may simply be 

miscounted computer inputs that are counted as ordinary capital or labor. The analysis of this bias 

is similar to the analysis of “double counting” of R&D expenditure investigated by Griliches 

(1988, Ch. 15) and Schankermann (1981).  On the one hand, the marginal product of computers 

is biased upward because the factor input quantity is understated.  On the other hand, the estimate 

of the computer elasticity is biased downward because other factors are absorbing some of the 

effect that should be attributed to computers. Under some minor assumptions, the measured effect 

                                                
10 In addition, because changes in different inputs for the same firm are nearly uncorrelated in our sample, the 
same downward bias should be evident in our specifications that have multiple regressors, such as the semi-
reduced form estimates.  This is a straightforward calculation from the standard results on the effects of errors in 
variables with multiple regressors (see e.g. Greene, 1993). 
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of computers represents a weighted average of the marginal products of computers and other 

inputs, with the weights proportional the amount of misallocation (see Appendix C.2).   

 

The reported stock of computers from CII that we use in our estimation probably does not 

include all the computers actually at the sample firms. Because ordinary capital is calculated as a 

residual after subtracting measured computer capital, any “missing” computers will be 

misclassified as ordinary capital.  In addition, a study by IDG (1996) suggests that for a typical 

information systems installation based on client-server technology, the lifecycle software and 

operating costs (including computer labor) can be as much as five times the hardware costs.   

 

To assess the approximate impact of such misclassification, assume that for every computer 

detected by CII, there is an equivalent amount of unmeasured computer capital that is erroneously 

treated as ordinary capital.  Using an annual capital computer capital of 42% (see Appendix B) 

and multiplying this by five (as per the IDG study) to account for potential unmeasured computer 

labor, implies that the annual flow of misclassified labor is up to 2.1 times the computer capital 

stock for any given year.  Finally, assume conservatively that the misclassified capital and labor is 

perfectly correlated with the observed computer capital estimates.11  Using the equations in 

Appendix C.2 and assuming normal returns to ordinary capital or labor, this yields a revised 

marginal product estimate of computers of 1.2 in the short run and 1.8 in the long run.  This is 

closer to the predicted value of 1.0, but it remains somewhat greater than what would be expected 

in equilibrium.  Thus, a correction of this type alone does not fully account for the high long-run 

elasticity of computer capital. 

 

Our data may also miss some of the technical complements to computers that do not appear in 

other inputs.  For instance, software is a long-lived asset that is often charged as an expense in the 

year of acquisition or development by standard accounting practices.  Regression estimates in 

subsequent years will reflect the value of the overall system (hardware plus software), not just the 

measured input quantity (hardware). 

                                                
11 If the correlation with computer capital is less than perfect, then the bias on the computer elasticity estimated 
will be correspondingly smaller. 
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As shown in Appendix C, the extent of the bias depends on the value of the omitted technical 

complements and their correlation with measured computers.  Assuming that they have the same 

marginal product as other computer investments and are perfectly correlated with the observed 

computer inputs, their cost would have to be approximately $6.50 per dollar of measured 

computer input after the miscounting correction for computers to have "normal" returns.12  The 

magnitude of this number is implausibly large, suggesting that omitted factors are not the sole 

explanation for excess returns.  Furthermore, it does not explain the rise in the coefficients as the 

length of differencing increases. 

  

Miscounted Organizational Complements.  As argued in the introduction, effective use of 

computers often requires additional organizational adaptations to the use of computers.  

However, these adjustments may not be instantaneous.  For example, a firm may not immediately 

be able to optimize their organizational characteristics such as work systems, incentives or human 

capital levels to take full advantage of new production possibilities enabled by computers.   As a 

result, if there are other factors that are complementary to computers, comparing short-term 

changes in output or productivity growth to short-term changes in computer investment may miss 

the impact of these other complementary factors.  However, if we analyze changes over long time 

periods the impact of these complements may be more apparent.  Thus, as argued by Bartelsman, 

Caballero and Lyons (1994) in the context of production externalities, it may be possible to 

observe the effects of slow-changing complementary factors by examining the change in elasticity 

coefficients at various difference lengths (see further discussion in Appendix C.1).  

 

This explanation is similar to but distinct from models based on “learning.”  For example, a firm 

may experiment with a new computer technology and over time learn the most effective uses of 

computers.  In one interpretation, this is just a variant of our organizational complementarities 

story – the learning is the “complementary asset”, just one that arises over time rather than 

through explicit investment.  While this is certainly a component of the overall story it is unlikely 
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that learning without deliberate investment is the only component.  There are numerous examples 

(see a survey in Hitt and Brynjolfsson, 2000) of explicit investments in complementary assets such 

as supply chain redesign, organizational restructuring or human capital.  Moreover, there is a very 

large computer services and consulting industry which exists primarily to transfer (at a cost!) the 

“learning” on the use of computers from firm to firm.  Finally, some of these hypothesized 

organizational complements can and have been measured directly, such as changes in the structure 

of the firm in the form of vertical de-integration (Hitt, 1999) or changes in organizational design 

to utilize greater levels of human capital (Bresnahan, Brynjolfsson and Hitt, 1999).  

 

4.4 What Can the Results Tell Us about Aggregate Productivity Growth? 

 

Using our elasticity estimates for computers and the annual growth rate of computer capital of 

about 25% per year, computers have added approximately .25% to .5% to output and 

productivity growth at the firm level over this period.   As the factor share of computers grows, 

so will the productivity contribution, ceteris paribus.  Because our productivity calculation 

reflects private returns, including rent stealing but not productivity spillovers, we cannot know 

whether the aggregate impact on the economy is smaller or larger than the private returns. 

 

If computers were more likely than other inputs to be used to capture rents from competitors, 

then the aggregate returns to the economy would be less than the sum of the private returns we 

measure.  Because redistributing rents is a zero-sum game, but computer expenditures are costly, 

the net effect would be to lower aggregate profits.  However, aggregate corporate profits do not 

appear to be any lower in recent years and there is some evidence that they have risen (Poterba, 

1997). 

 

There is more evidence for an effect in the opposite direction.  Some of the benefits of computers 

spill over to consumers and other firms.  For example, when two or more banks simultaneously 

invest in an ATM network, consumers get most of the benefit.  Similarly, when a firm like 

                                                                                                                                                       
12 The calculation of this figure is as follows:  6.5 = 1.8 (“excess marginal product” on total computer stock, 
including double counting) x 3.6 (ratio of true computer stock - including the undercounted capital and labor - to 
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Walmart demonstrates new IT-enabled efficiencies in supply chain management, its competitors 

attempt to copy their innovations with varying degrees of success.  This can explain some of the 

discrepency between the firm-level result and the analyses using aggregate data.  Moreover, the 

outputs of many firms, especially those in the service sector, are not measured well, leading to 

underestimates of aggregate productivity growth (Baily and Gordon, 1988; Gordon, 1996).  Firm-

level data may help reduce problems from output mismeasurement because intangible benefits that 

are invisible to the econometrician are visible, presumably, to a firm's customers. Firms that 

improve output quality, variety or timeliness through investments in computers will be able to 

charge a higher price, force competitors to lower their prices, or both.  These private benefits will 

appear as a correlation between the firm’s output and its computer investment.13  In contrast, in 

industry- or economy-level data, these differences among firms in the same industry would be 

obscured.  However, when two or more competitors simultaneously introduce intangible benefits, 

some or all of the benefits will be passed on to their customers and elude detection in revenue or 

output data.  Therefore, even regressions using firm-level data may underestimate the computers 

contributions to intantible output. 

 

To better understand whether computers were disproportionately contributing to unmeasured 

components of GDP, we conducted a small survey of information systems managers at Fortune 

500 firms in 1997.  We asked why managers were investing in computers (see Figure 5).  In this 

survey, managers ranked improving product quality and obtaining new customers higher than cost 

savings, and four of the top five responses represent investments directed at improving intangible 

aspects of output.  When these intangibles are added to the “true” output of the firms and the 

economy, this suggests that many of the contributions of computers to output go unmeasured, 

even in firm level data. 

 

5.  Conclusion 

 

                                                                                                                                                       
measured computer stock).  This is also close to the figure if double counting were not taken into effect. 
13 A similar argument suggests that hidden costs computerization imposes on consumers will also be more evident 
in firm level data. 
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This paper presents direct evidence that computers contribute to productivity growth in a broad 

cross-section of firms.  Furthermore, as a general-purpose technology, the pattern of growth 

contribution appears to suggest that computers are part of a larger system of technological and 

organizational changes that increases productivity over time.  

 

When we examine the data in one-year differences, we find that computers contribute to output 

an amount roughly equal to their factor share.   This implies that computers contribute to output 

growth but not productivity growth.  Over longer time horizons (between three and seven years), 

computers appear to contribute substantially more than their factor share – between 2 and 8 times 

as much as the short term impact.  This implies a substantial contribution to long-run productivity 

growth.    These results, as well as corroborating institutional evidence, are consistent with a story 

that the long-term growth contributions of computers represent the combination of computers and 

complementary organizational investment.  Other explanations for our results, such as 

measurement error (either random or systematic), omitted variables such as R&D, and quasi-fixity 

or endogeneity of other factor inputs do not fare as well.  Our instrumental variables regressions, 

although limited by the quality of the instrument set, also suggest that reverse causality does not 

appear lead to upward biases in the estimation of computers’ contribution.   The fact that the 

results are consistent when performed in differences, providing some control for time-invariant 

firm heterogeneity, and robust to a “rate of return” analysis and industry controls, provides 

evidence against a firm or industry heterogeneity story.  It may be that “high performance” firms 

grow faster and invest more in computers for unrelated reasons (a story which is very hard to 

examine without a clear description as to what the reason is), but industry effects or a high past 

level of productivity or computer investment leading to high current productivity would not 

explain our results.  

 

It is important to note that conducted the analysis over a time period where there was not 

extraordinary growth in the overall economy.  This suggests that our results are not likely to be 

biased by (although could be predictive of) the recent massive increases in valuation of technology 

and computer companies.  On the contrary, if computers indeed require several years to realize 

their growth contribution, our current economic performance may at least in part reflect the 



Computers and Productivity Growth  Page 26 
   

massive computer investments as well as complementary organizational investments made in the 

early 1990s.  
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Table 1a:  Regression of Computer Growth on Multifactor Productivity Growth - Varying 

Difference Length  

     
 
Difference 

OLS 
No controls 

OLS 
Time 

Controls 

OLS  
Industry 
Controls 

OLS 
Time & Ind. 

Controls 

Sample 
Size 

1 year  
differences 

.0104 
(.0043) 

.00464 
(.0046) 

.00924 
(.0043) 

.00319 
(.0046) 

3936 

2 year 
differences 

.0.0138 
(.0054) 

.00512 
(.00564) 

.0144 
(.0053) 

.00227 
(.0056) 

3364 

3 year 
differences 

.000796 
(.0066) 

.000295 
(.0065) 

.00332 
(.0064) 

-.00445 
(.0064) 

2775 

4 year 
differences 

.0227 
(.0072) 

.0129 
(.0075) 

.0218 
(.0067) 

.0117 
(.0070) 

2190 

5 year 
differences 

.0244 
(.0084) 

.0234 
(.0086) 

.0186 
(.0077) 

.0180 
(.0079) 

1606 

6 year 
differences 

.0244 
(.010) 

.0248 
(.010) 

.0183 
(.0095) 

.0193 
(.0095) 

1020 

7 year 
differences 

.0277 
(.015) 

.0277 
(.015) 

.0209 
(.0014) 

.0217 
(0.014) 

488 

 
Table 1b.  Instrumental Variables Estimates 
     
 
Difference 

2SLS  
No controls 

 

2SLS  
Industry 
Controls 

Sample 
Size 

1 year  
differences 

.0195 
(.0073) 

.0161 
(.0073) 

3449 

2 year 
differences 

.0279 
(.0091) 

.0206 
(.0090) 

2948 

3 year 
differences 

.0343 
(.012) 

.0231 
(.012) 

2433 

4 year 
differences 

.0225 
(.013) 

.0216 
(.012) 

1929 

5 year 
differences 

.0194 
(.015) 

.00484 
(.015) 

1390 

6 year 
differences 

.0229 
(.018) 

.0109 
(.018) 

890 

7 year 
differences 

.0358 
(.022) 

.0379 
(.023) 

435 

Sample size reduced for 2SLS because of data availability for instruments. 
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Table 1c:  Productivity Growth Analysis including R&D 
 
 
 Baseline: 

OLS 
No Controls 

or R&D 

 
 

With R&D: 
OLS, No other Controls 

 
With R&D 

OLS 
Time & Industry Controls 

 
 

Sample 
Size 

Coefficient Computer 
Growth 

Computer 
Growth 

R&D 
Growth 

Computer 
Growth 

R&D 
Growth 

 

1 year  
differences 

.00993 
(.0068) 

.00964 
(.0068) 

.00964 
(.0068) 

.00985 
(.0074) 

.00575 
(.0034) 

1498 

2 year 
differences 

.0217 
(.0081) 

.0211 
(.00814) 

.0211 
(.00814) 

.0186 
(.0082) 

.00190 
(.0032) 

1279 

3 year 
differences 

.0199 
(.0103) 

.0194 
(.0103) 

.0194 
(.0103) 

.0210 
(.0093) 

.00116 
(.0031) 

1058 

4 year 
differences 

.0256 
(.0117) 

.0248 
(.0117) 

.0248 
(.0117) 

.0229 
(.0102) 

.000476 
(.0030) 

842 

5 year 
differences 

.0204 
(.0143) 

.0193 
(.0144) 

.0193 
(.0144) 

.0244 
(.0121) 

-.000770 
(.0037) 

625 

6 year 
differences 

.0185 
(.0184) 

.0186 
(.018) 

.0186 
(.018) 

.0264 
(.0152) 

-0.00238 
(.0051) 

410 

7 year 
differences 

.0507 
(.0272) 

.0545 
(.0278) 

.0545 
(.0278) 

.0519 
(.0216) 

-.00602 
(.0076) 

195 

Sample size substantially reduced because of missing R&D data
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Table 2:  Regression of Computer Growth on Multifactor Productivity Growth Adjusted for 
Quasi-fixed Capital with ex post Rental Prices - Varying Difference Length   
 
Difference 

OLS 
Quasi-fixed 

Capital 
No controls 

2SLS 
Quasi-fixed 

Capital 
No controls 

OLS 
Quasi-fixed 

Capital 
Ind. controls 

2SLS 
Quasi-fixed 

Capital 
Ind. controls 

Sample 
Size 

1 year  
differences 

.0115 
(.0044) 

.0195 
(.0073) 

.0103 
(.0045) 

.0153 
(.0075) 

3661 

2 year 
differences 

.0133 
(.0053) 

.0279 
(.0091) 

.0109 
(.0055) 

.0256 
(.0097) 

3130 

3 year 
differences 

.00550 
(.0067) 

.0343 
(.012) 

.00200 
(.0065) 

.0263 
(.012) 

2583 

4 year 
differences 

.0208 
(.0075) 

.0225 
(.013) 

.0207 
(.0068) 

.0224 
(.012) 

2041 

5 year 
differences 

.0245 
(.0087) 

.0194 
(.015) 

.0195 
(.0081) 

.00969 
(.015) 

1499 

6 year 
differences 

.0242 
(.011) 

.0229 
(.018) 

.0166 
(.010) 

.00961 
(.017) 

956 

7 year 
differences 

.0309 
(.015) 

.0358 
(.022) 

.0209 
(.014) 

.0371 
(.024) 

456 

Sample size slightly reduced for 2SLS because of data availability for instruments. 
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Table 3:  Production Function Approach 
 
 
Coefficient 

CII 
Between 

CII 
Pooled 
Levels 

CII 
1st Diff. 

IDG 
Pooled 
Levels 

IDG 
1st Diff. 

Computer Elasticity .0358 
(.011) 

.0304 
(.0040) 

.0117 
(.0041) 

.0248 
(.0068) 

-.0015 
(.0041) 

Ordinary Capital Elasticity .201 
(.015) 

.188 
(.0058) 

.0608 
(.012) 

.187 
(.010) 

.0574 
(.017) 

Labor Elasticity .706 
(.016) 

.720 
(.0064) 

.743 
(.0139) 

.734 
(.012) 

.719 
(.025) 

R&D Dummy (1=not 
present) 

.274 
(.062) 

.287 
(.025) 

.00383 
(.0041) 

.304 
(.044) 

.278 
(.078) 

R&D Elasticity .0436 
(.0112) 

.0464 
(.0045) 

.0102 
(.0057) 

.0550 
(.0075) 

.0205 
(.0070) 

Controls Industry Year 
Industry 

 Year 
Industry 

 

R 2 97.0% 95.9% 50.3% 97.1% 56.9% 
N 599 4571 3946 1411 934 
 

Table 4:  Semi-Reduced Form Estimates - First Differences 

 
Coefficient 

Single Eqn.: 
VA 

Single Eqn.: 
Labor 

 
System 

∆Computer Capital .0219 
(.0055) 

.0251 
(.0050) 

.0240 
(.0047) 

∆Ordinary Capital .373 
(.013) 

.400 
(.012) 

.391 
(.011) 

Controls  Year Year Year 
R 2 20.5% 24.4% 19.5%/24.3% 
N 3936 3936 3936 
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Table 5: Semi-Reduced Form Specification Varying Lag Length - ISUR Estimates 
 
 

Difference 

∆Computer 

Capital 

∆Ordinary 

Capital 

Sample 

Size 

1 year  
differences 

.0247 
(.0048) 

.395 
(.011) 

3936 

2 year 
differences 

.0525 
(.0058) 

.432 
(.012) 

3364 

3 year 
differences 

.0680 
(.0069) 

.486 
(.013) 

2775 

4 year 
differences 

.0775 
(.0083) 

.519 
(.014) 

2190 

5 year 
differences 

.0890 
(.010) 

.549 
(.016) 

1606 

6 year 
differences 

.0910 
(.013) 

.590 
(.020) 

1020 

7 year 
differences 

.115 
(.019) 

.580 
(.028) 

488 

 
Table 6:  Rate of Return Analysis 

 

Difference  
Length 

No 
Controls 

Time 
Only 

Industry 
Only 

Industry and 
Time 

1 year  
differences 

.168 
(.175) 

-.0111 
(.035) 

.0552 
(.0329) 

.0160 
(.035) 

2 year 
differences 

.474 
(.151) 

.189 
(.159) 

.341 
(.153) 

.0100 
(.061) 

3 year 
differences 

.810 
(.179) 

.533 
(.184) 

.606 
(.181) 

.278 
(.185) 

4 year 
differences 

1.14 
(.183) 

.982 
(.190) 

.861 
(.177) 

.659 
(.184) 

5 year 
differences 

.889 
(.196) 

.915 
(.201) 

.521 
(.187) 

.540 
(.193) 

6 year 
differences 

.932 
(.235) 

.972 
(.236) 

.613 
(.219) 

.662 
(.220) 

7 year 
differences 

.877 
(.329) 

.877 
(.329) 

.623 
(.309) 

.623 
(.309) 
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Figure 1: Trends in Semiconductor Manufacturing 
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Figure 2: Nominal and Real Computer Investment 
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Source:  NIPA Historical Cost Investment Table and Chain-Weighted Quantity Index Table for 
Fixed Private Capital (1998)
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Figure 3: Baseline Estimates of Computer Elasticity with Different Controls 
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Figure 4:  Computer Elasticity Estimates Under Different Specifications 
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Figure 5:  Reasons for Investing in IT 
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Appendix A: Variables and Data Construction 

 
The variables used for this analysis were constructed as follows: 
 
Sales. Total Sales as reported on Compustat [Item #12, Sales (Net)] deflated by 2-digit industry 
level deflators from Gross Output and Related Series by Industry from the BEA (Bureau of 
Economic Analysis, 1996) for 1987-1993, and estimated for 1994 using the five-year average 
inflation rate by industry. 
 
Ordinary Capital.  This figure was computed from total book value of capital (equipment, 
structures and all other capital) following the method in Hall (1990).  Gross book value of capital 
stock [Compustat Item #7 - Property, Plant and Equipment (Total - Gross)] was deflated by the 
GDP implicit price deflator for fixed investment.  The deflator was applied at the calculated 
average age of the capital stock, based on the three-year average of the ratio of total accumulated 
depreciation [calculated from Compustat item #8 - Property, Plant & Equipment (Total - Net)] to 
current depreciation [Compustat item #14 - Depreciation and Amortization].  The calculation of 
average age differs slightly from the method in Hall (1993), who made a further adjustment for 
current depreciation.  The constant dollar value of computer capital  was subtracted from this 
result.  Thus, the sum of ordinary capital and computer capital equals total capital stock. 
 
Computer Capital (CII).  Total market value of all equipment tracked by CII for the firm at all 
sites.  Market valuation is performed by a proprietary algorithm developed by CII that takes into 
account current true rental prices and machine configurations in determining an estimate. 
 
This total is deflated by the deflator for computer systems of -19.4% per year developed by 
Robert Gordon (1990).  The time trend Gordon found in prices through 1984 is assumed to 
continue through 1994.  
 
Computer Capital (IDG).   Composed of mainframe and PC components.  The mainframe 
component is based on the IDG survey response to the following question (note:  the IDG survey 
questions quoted below are from the 1992 survey;  the questions may vary slightly from year to 
year): 
 
"What will be the approximate current value of all major processors, based on current resale or 
market value?  Include mainframes, minicomputers and supercomputers, both owned and leased 
systems.  Do NOT include personal computers."   
 
The PC component is based on the response to the following question: 
 
"What will be the approximate number of personal computers and terminals installed within your 
corporation in [year] (including parents and subsidiaries)?  Include laptops, brokerage systems, 
travel agent systems and retailing systems in all user departments and IS." 
 
The number of PCs and terminals is then multiplied by an estimated value.  The estimated value of 
a PC was determined by the average nominal PC price over 1989-1991 in Berndt & Griliches' 
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(1990) study of hedonic prices for computers.  The actual figure is $4,447.  The value for 
terminals is based on the 1989 average (over models) list price for an IBM 3151 terminal of $608 
(Pelaia, 1993).  These two numbers were weighted by 58% for PCs and 42% for terminals, which 
was the average ratio reported in a separate IDG survey conducted in 1993.  The total average 
value for a "PC or terminal" was computed to be $2,835 (nominal).  This nominal value was 
assumed each year, and inflated by the same deflator as for mainframes. 
 
This total Computer Capital (PCs and mainframes) is deflated by the deflator for computer 
systems of -19.4% per year developed by Robert Gordon (Gordon, 1990).  The time trend 
Gordon found in prices through 1984 is assumed to continue through 1994.  
 
 
Labor Expense.  Labor expense was either taken directly from Compustat (Item #42 - Labor and 
related expenses) or calculated as a sector average labor cost per employee multiplied by total 
employees (Compustat Item #29 - Employees), and deflated by the price index for Total 
Compensation (Council of Economic Advisors, 1992). 
 
The average sector labor cost is computed using annual sector-level wage data (salary plus 
benefits) from the BLS from 1987 to 1994.  We assume a 2040-hour work year to arrive at an 
annual salary.  For comparability, if the labor figure on Compustat is reported as being without 
benefits (Labor expense footnote), we multiply actual labor costs by the ratio of total 
compensation to salary.   
 
Employees.  Number of employees was taken directly from Compustat (Item #29 - Employees).  
No adjustments were made to this figure. 
 
Materials. Materials was calculated by subtracting undeflated labor expenses (calculated above) 
from total expense and deflating by the 2-digit industry deflator for output.  Total expense was 
computed as the difference between Operating Income Before Depreciation (Compustat Item 
#13), and Sales (Net) (Compustat Item #12). 
  
Value-Added.  Computed from deflated Sales  (as calculated above) less deflated Materials. 
 
R&D Capital.  R&D Capital was computed by following Hall (1993).  R&D expenditures 
(Compustat Item #46 - Research and Development Expense) were used as flows to create a 
capital stock.  The first period value (1973) was multiplied by 4.3 to create an initial stock (this 
figures comes from the perpetual discounting of a flow that is depreciated 15% per year and 
discounted 8% per year - 1/(.08+.15) = 4.3).    This was deflated by an R&D deflator reported in 
Hall (1993).  The figure for each successive year was computed by converting flow to constant 
dollars, and adding to the previous year's stock, which is depreciated at 15% per year.  This 
method requires a complete series for R&D flow from 1973 to 1994.   For companies that were 
missing 2 or fewer points in the series, the missing data were interpolated as the average of the 
nearest years.  When the missing point was at the beginning or end of the series, the point was 
computed from the three-year average growth rate in the nearest years.  A total of 24 points were 
corrected in this way.  This departs from the procedure used by Hall (1990).  The annual R&D 
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expense is treated as part of Materials, unless R&D capital is included in the regression, in which 
case it is omitted entirely. 
 
Tobin’s q.  Computed by adding the market value of all stock equity (from Compustat) to the 
book value of all outstanding debt (from Compustat) and dividing by total assets (from 
Compustat). 
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Appendix B: User Cost of Computers and Ordinary Capital 
 
The net return to investments in computer capital is the outcome of a complex interaction among 
several factors, including not only the traditional components of the Jorgensonian cost of capital -
- interest rates, depreciation, taxes and capital gains -- but potentially also factors such as the 
value of options and of learning.  We briefly consider how these factors would likely combine to 
derive an expected rate of return for computers. 
 
Under the assumption that managers successfully choose the optimal level of computer capital to 
maximize the net present value of the firm, we should observe a return equal to its implicit rental 
price.  This is given by the Jorgensonian equation for the required rate of return on capital, which 
can be written as follows (Christensen and Jorgenson, 1969): 
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t t

t t
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1δ ( )
 

where 
E Πt = expected rate of return for computer capital, in year t 
rt = investor’s required nominal rate of return (rate at which the future is discounted)  
δτ = depreciation rate for computer capital 
qt = the relative price of computers;  qt-qt-1 is capital gains, or losses 
ut = the corporate income tax rate 
zt = the present value of $1 of tax depreciation allowances 
et = the investment tax credit 
xt = effective tax rate on corporate property 
 
According to Jorgenson and Stiroh (1993), reasonable values for these variables for 1990 are: rt = 
.09; δτ = .10; ∆q  = -.199; ut =  .384; zt =  .902; et = 0; xt = .01, which implies that the costs of 
computer capital is about 42.2%.14  Using a slightly different formula, Lau and Tokutsu (1992) 
and Lichtenberg (1994) also derived a cost of computer capital of 42%.   
 
Similar calculations yield an average estimate of 13.5% for ordinary capital, based on values of rt 
= .09; δτ varies by industry and time;  ∆q = .05; ut =  .38; zt =  .8; et = 0; xt = .01.15  This 

                                                
14 Computers do not depreciate significantly in the sense of wearing out.  However, they are retired when, because 
of declines in the cost of computer power, the value of the services of old equipment no longer justfies incurring 
complementary costs of space, electricity, programming labor, etc.  The value of .1 for δτ reflects these retirements 
and is estimated based on the retirement data underlying the calculations in Jorgenson and Stiroh (1993) and 
personal communication with Keven Stiroh. 
15 Jorgenson and Stiroh (1993) do not report aggregate values for these variables.  However, Lau and Tokutsu, 
(1992) report that reasonable values are δτ = .05 and  = .05 for ordinary capital.  The remaining values are 
equivalent to theose used for computer capital, with the exception of zt, reflecting the longer service lives of non-
computer capital.  The investment tax credit, e, was eliminated in 1986.  Before that, it was 10%.  Our costs of 
capital may therefore be slightly too high, to the extent that capital stock in place during our sample period was 
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suggests that the required rate of return to computer is nearly 3 times as high as the return 
required for ordinary capital.  

                                                                                                                                                       
purchased before 1986.  If a value for e of .01 for computers and .05 for other capital were used, the costs of capital 
would fall to 41.5% and 10.3%, respectively. 
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Appendix C:  Omitted Variable Bias 

C.1  Omitted Factors Not Counted Elsewhere 
 
Suppose there is an overall technical system that includes computers as well as other factors that 
are not otherwise accounted for elsewhere in the productivity analysis such as software or past 
training investments.  Assume that this system (S) has a contribution (θ) to output (O).  For 
exposition, let C and S have unit variance in the data.  Let output be composed of the output 
contribution of all other factors ( $O ), the impact of S and random error: 
 
O O S= + +$ θ ε  
 
In a regression of computers on output, the estimated coefficient on computers (δc ) can be given 

by the bivariate regression formula (note cov( , $ ) cov( , )C O C= =ε 0  by definition): 
 

δ θ θρc CS
C S

C
= =cov( , )

var( )
 where ρCS  is the correlation coefficient between C and S 

 
When this estimate is then used to calculate marginal product, the estimate is biased upward 
because the measured marginal product ( MPmeasured ) includes the contribution of the entire 
system, but only the input quantity C. 
 

MP
O

r CC
measured CS

c

= θρ
   

If C and the rest of S have exactly the same marginal product the true marginal product of C is 
given by: 
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( )
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θ
θ  

This bias increases as the C and the system become more closely correlated or C becomes a 
smaller proportion of the overall system.  This analysis holds in differences as well, as long as the 
relationship is stable.  However, because changes in S may occur at times different from changes 
in C, the correlation between the computers and other factors in the system ( ρCS ) may be 
increasing in difference length leading to an increase the in bias.   
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C.2 Effect of Misallocation Between Computers and Other Inputs 
 
 
This derivation is based on the framework of Schankerman (1981).  Consider the general case 
where there are various components of computer expenditure or capital that are present in 
estimates used for capital, labor, or materials.  Let these be represented by functions Kc, Lc, and 
Mc, all of which are functions of the observed level of computers (C).  Assuming that the level of 
computer-related spending is small relative to the magnitude of other inputs (e.g. Kc << K), the 
impact of these omitted variables can be computed.  For production function estimates in levels, 
the equation is (using notation as before): 
 

δ δ α βmeasured actual c c c
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A similar result can be derived from the productivity analysis (define the materials price per 
physical unit as pm and the output price per physical unit as pq): 
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Under the assumption that the levels of the factors are uncorrelated with growth rates to a first 
order approximation, the expression can be simplified by removing the ratio terms (e.g. Kc/K) 
outside the covariance term.  Ignoring the materials terms and assuming perfect correlation 
between measured and omitted computer inputs yields a simple equation for the relationship 
between the actual and measured marginal products of computers.  For this calculation let Kc= 
τkC and Lc= τlC.  Then with the above assumptions we have: 
 

MP MP MP MPc
estimated

k c
k k l l c

estimated=
+ +

+ +1
1τ τ

τ τ( )  

 
In other words, the elasticity is a weighted average of the various marginal products (MP). 
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