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Estimating the Contribution of Computersto Productivity Growth

ABSTRACT

In this paper we explore the relationship between computers and productivity growth at the firm
level. We apply standard productivity and growth accounting techniques to data from 600 large
US firms over 1987-1994. While we find that computer make a positive and significant
contribution to output growth in the short term (using 1 year differences), the implied returns to
computers are two to five times greater when differences are taken over seven years instead of
oneyear. Our results challenge the conclusions drawn from aggregate data on computers and
productivity, but are consistent with case evidence that the combination of computers and
organizational co-investments make a substantial contribution to growth.

JEL Categories. O3 Technological Change; D24 Capital and Total Factor Productivity
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1. INTRODUCTION

In advanced economies, computers are a promising source of productivity growth. Rapid
technological innovation has led to a quality-adjusted price decline of computers of 20% or more
per year for several decades (Berndt and Griliches, 1990; Gordon, 1999). Since nominal
investment has increased even as prices declined during the past 30 years, the share of computers
in capital formation hasincreased dramatically. Computers may be the modern-day exemplar of
technological progress, but the connection between computers to productivity has proven elusive
to quantify. What is the relationship between computers and productivity growth?

Computers are a promising area for investigation into the sources of growth in modern economies
for several reasons. First, computers are the embodiments of significant investments in technical
progress. From 1978 to 1989, the computer industry had the highest level of R&D intensity of
any industry in the manufacturing sector (Griliches, 1994) and its products have exhibited
unprecedented quality improvements. Second, the value of computers may be substantially
attenuated or magnified by complementary investments. Computers are best described asa
“general purpose technology” whaose primary contribution is to make radically new production
methods possible when combined with complementary investments such as work systems,
organizational redesign and business processes (Bresnahan and Trajtenberg, 1995; Maone and
Rockart, 1991). David (1990) has compared the current computerization of the economy to the
historical example of eectrification 100 years earlier by noting that new ways to organize work
arerequired to exploit new general purpose technologies. Milgrom and Roberts (1990) argue that
computers have been an important driver of the shift from “ mass production” to “modern
manufacturing”. Advocates of organizational “reengineering” have argued that computer-enabled
work redesign can lead to vast productivity improvements (see e.g. Hammer and Champy, 1993)
while some prominent economists have specul ated that synergies with computerization may be

leading to significant changesin the economy as a whole (Greenspan, 1999).

Despite these promising e ements, how much, and even whether, computers contribute to
productivity growth remains atopic of debate. A decade after Solow (1987) quipped “we see
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the computer age everywhere except in the productivity statistics’, aggregate productivity growth
in the U.S. began to soar. In the period 1995-2000, U.S. multifactor productivity has grown by
2.7% per year, roughly double the average of the previous 25 years. Nonetheless, others
including Gordon (1999), have vigoroudy argued that while there has been tremendous
productivity growth in computer producing industries, there is only limited evidence of any

incremental productivity growth in computer using industries.

One explanation for this discrepancy is mismeasurement. Aggregate industry data may not
accurately reflect the value of variety, timeliness, customization and other intangibles (Boskin et
a., 1997), which may obscure the productivity effects of computersif the benefits of
computerization are disproportionately oriented toward intangible value. Firm-level data may
better reveal computers' contributions to the extent that consumers consider intangible benefits
when they make purchase decisons. Second, there is an issue of adjustment time and learning.
Investments in computers may make little direct contribution to overall performance of afirm or
the economy until they are combined with complementary investments in work practices, human
capital, and firm restructuring (Brynjolfsson and Yang, 1999; Brynjolfsson, Hitt and Y ang, 1999;
David, 1990; Greenwood and Jovanovich, 1998; Hall, 2000; Hammer, 1992). This may depress
the apparent contribution of computersin the short term but result in substantial contributionsin

the long term.

Research on computers' effects on firm-level productivity has been constrained by data availability
and has produced mixed results. Studies by Loveman (1990) and by Barua, Kriebe and
Mukhopadhyay (1995) found no evidence that computers contributed positively to output when
they examined a data set of 60 business unitsin the early 1980s. In contrast, studies employing
more recent firm-level data have found a correlation between levels of computer investment and
productivity level. Brynjolfsson and Hitt (1995, 1996) and Lichtenberg (1995) estimated several
production functions using data for approximately 350 large firms from 1988-1992, and found
high output elasticities for computers exceeding their capital costs.1 While several studies have

1 Theresults at the industry level have also been mixed. Morrison (1996) finds a zero or even negative correlation
between computers and productivity, while Siegel (1997) found a positive relationship after correcting for
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now found a positive correlation between computers and productivity levels, none has examined
productivity growth at the firm level. Analyzing the effect of computers on productivity growth
isimportant not only because it implicitly controls for firm heterogeneity, but also because of the

importance of productivity growth in determining future living standards.

In this paper our objectiveisto clarify the relationship between computers and productivity by
estimating the contribution of computers to growth and evaluating one possible mechanism that is
driving thisrelationship: therole of organizational co-investments. Using standard growth
accounting and productivity measurement approaches we examine the rel ationship between
growth in computer spending and growth in output for 600 large firms over 1987-1994. To the
extent that output growth exceeds a “normal” rate implied by economic theory, after accounting
for growth in other factors, we can conclude that computers contribute to productivity growth.
By performing the estimation at the firm rather than the industry level, we reduce difficulties of
mismeasured output and inputs, thus potentially obtaining a more accurate estimate of computers
contributions. We conduct the analysis varying the time horizon (difference length for the growth
calculation) to examine how the changes in computers contribution is affected by longer term
investments in complementary factors. Finally, we use multiple econometric approaches to
account for different types of biases introduced by firm heterogeneity, endogeneity of factor
spending, and dow adjustment of other factors.

We find evidence of a substantial relationship between computers and multifactor productivity
growth. Our results indicate that computers' short-run contribution to output is approximately
equal to thedirect user cost of computer capital. However, in the long run, we find that the
implied marginal product and growth contribution of computers rises by an economically and

satistically significant margin. Our interpretation is that the long-run contributions rise because

measurement error in input and output quantity. Other studies showing mixed resultsin industry data include
Berndt, Morrison and Rosenblum (1992), Berndt and Morrison (1995), Morrison and Berndt (1990) and Siegel
and Griliches (1991). Even studies which simply assume that computers were earning a normal rate of return have
come to contrasting conclusions about what thisimplies for their overall contribution to the economic growth. See
Lau and Tokutsu (1992), Jorgenson and Stiroh (1995), Bresnahan (1986), Brynjolfsson (1996), and Oliner and
Sichel (1994). See Brynjolfsson (1993), Brynjolfsson and Yang (1996) and Brynjolfsson and Hitt (2000) for more
comprehensive literature reviews.
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computers complement productivity-enhancing organizational changes carried out over a period

of several years.

Theremainder of the paper isorganized asfollows. Section 2 provides examines the role of
computer technology in productivity growth and discusses the measurement problemsinherent in
analyzing the productivity contribution of computers. Section 3 devel ops the theoretical
framework we employ in estimating productivity effects and introduces our data. The regression
results and an analysis of the importance of complementary factors are presented in Section 4.

We conclude with some possible interpretations of our results.

2. BACKGROUND

Since the 1960s, semiconductor chipmakers have increased the density of the lines that form
transistor circuits by about 10% ayear. Combined with numerous other improvements, this has
led to a doubling of microprocessor power every 18 months (See Figure 1). These improvements
have occurred so consistently that the trend is known in the computer industry as"Moore's Law,"
after a 1964 prediction by Gordon Moore, afounder of Intel Corporation. Improvementsin
semiconductors and other components account for the annual 20-30% quality-adjusted price
decline for computers (Berndt and Griliches, 1990; Gordon, 1990; Gordon, 1999) and reflect a

successful effort to advance the technological frontier for computer production.

Computers are primarily an intermediate good, so their effect on economic welfare depends on
how successfully they are used to create other goods and services. Both nominal and real
investments in computers have increased substantially over the past several decades (Figure 2),
and have further accelerated in the 1990s. Presumably companies perceive a significant potential
increase in profit and productivity from exploiting these new technologies. In part, thisreflects
the substitution of computers for labor or other types of capital along a given production
possibility frontier for computer consumers. Users of ever-cheaper computer equipment can
thereby achieve greater output for a given cost of inputs. However, after properly accounting for

the deflation of computer prices, thistype of output growth reflects investment growth, not
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productivity growth by computer users (Jorgenson and Stiroh, 1995). Griliches (1991) termsthis
a pecuniary spillover, because the combination of productivity growth and competition in the
computer-producing sector has allowed computer-using industries to purchase computer inputs at
prices below their quality-adjusted value. The economic impact of investment and pecuniary
spillovers can amount to billions of dollars; a sizable fraction of recent output growth in the
United States (Brynjolfsson, 1996; Jorgenson and Stiroh, 1995). Some authors suggest that the

entire contribution of computersisin the form of pecuniary spillovers (Gordon, 1999).

Computers may also affect the multifactor productivity growth of the firms that use them by
changing the production process itself and engendering complementary innovations within and
among firms. This could lead to an output elasticity that is greater than computers' input share
and thus a positive impact on productivity.

Firm-level cases strongly indicate that computers are in fact associated with changesin the
composition of both outputs and inputs complicating the problem of estimating their effects. For
example, Diewert and Smith (1994) analyzed a wholesaling firm that adopted a computer-based
inventory management system. After the system was introduced, the firm restructured the way
inventory was handled and realized multifactor productivity growth of over 9% per quarter.
Interestingly, while inventories per stock-keeping unit declined precipitoudly, there was virtually
no net reduction in total inventories, because the number of products carried increased
proportionately. A less careful study would like have missed many of the actual productivity
gainsif it merely looked at aggregates like inventory or sales.  More recently, firms have made
large investments in electronic commerce to improve service to customers as well asimprove
gpeed and flexibility in their inbound and outbound logistics. This has enabled new types of
customer focused strategies to be implemented. For example, several automakers, including
Toyota, have announced plans to offer cars on a build-to-order basis with ddivery in less than two
weeks. Numerous on-line book and music retailers can provide ailmost any title currently in
production delivered within 24 hours, and on-line computer retailers enable consumers to
customize their own personal computer on-line which is usually available for shipment within 10

days.
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To the extent that aggregate statistics do not reflect the consumer benefits from greater product
choice or faster time to market, the effects of computerization will be underestimated. On the
other hand, if the sales of individual firms are increased by offering these “intangible’ benefits,
then firm-level data will detect them.

The above cases al so reflect the emerging consensus that substantial investmentsin

“organizational capital” — the built-up knowledge reflected in a firm'’ s routines, procedures,
reporting structures, staff training, work flows, and product positioning— typically aso accompany
the implementation of the new information systems (See, for example, Cash, Eccles, Nohria and
Nolan, 1994; Malone, Rockart, 1991; or Lucas, 1996; Hitt and Brynjolfsson, 1997; Bresnahan,
Brynjolfsson and Hitt, 1999). Milgrom and Roberts (1990, 1992) argue that the combination of
computers and these complementary investments enable firms to pursue high-productivity

strategies that were unprofitable or infeasible in the past.

Thelong-run increase in output associated with a price decline in an input like computers may be
magnified as other complementary organizational factors are adjusted over time (Milgrom and
Roberts, 1996). In the short term, output rises because of increased quantities of computer
inputs. Over time, firmswill adjust quasi-fixed factors, such as physical capital, human capital,
bus ness processes, and other organizational characteristics to maximize the contribution of the

technology (Berndt and Fuss, 1986).

3. MODEL AND DATA

3.1. Theoretical Framework

We begin by applying the standard growth accounting framework that has been used extensively
for studying the productivity of inputs such as capital, labor, energy, and research and

development (R&D) (Berndt, 1991). We assume that the production process of the firmsin our
sample can be represented by a production function (F) that relates firm value-added (Q) to four
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inputs: ordinary capital stocks (K), computer capital stocks (C), labor (L) and, in some cases,
R&D (R).2 In addition, we assume that the production function is affected by time (t), and the
industry (j) in which afirm (i) operates. Thus.

Qu = F(Ki, L, G, Rl 101) @

Following common practice, we assume that this relationship can be approximated by a Cobb-
Douglas production function and its variants.3 For most of our analyses, we implement this
function with three inputs: ordinary capital, computer capital, and labor, written in levels or
logarithms of levels (lower-case | etters denote logarithms; firm and time subscripts on inputs are
omitted hereafter):

Q= A, j,)K"™L*C™, or (2a)
q=a(,j,t)+b, k+b, I +b;c (2b)

Theterm a, often referred to as multifactor productivity, captures differences in output across
firms and over time that are not accounted for by capital or labor. This productivity framework
isusually implemented in time series or pand data settings by taking the time difference of each of

the factors, with X representing the time difference of x:

R &b, &b, & b,& (3)

For each firm in each year, the output elasticities of non-computer inputs (b,,b,) are set to equal

their theoretical value. Under standard assumptions (cost minimization, competitive output and

2 Results on the computer elasticity are generally similar whether or not R&D isincluded in the regression.
Because of the large number of missing data points (including almost the entire service sector) we do not show
R&D in the main results, but do include R&D in some of the corroborating analyses.

3 The Cobb-Douglas functional form has the advantage that it is the smplest form that enables cal culation of the
relevant quantities of interst without introducing so many terms that the estimates are imprecise. More general
functional forms such as the transcendental logarithmic (trandlog) have been utilized in research on the levels of
computer investment and productivity (see Brynjolfsson and Hitt, 1995) with similar results.
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input markets, and factor quantitiesin long-run equilibrium), this equals the ratio of the cost of
the input to the value of output. Estimating these elasticities by averaging factor input shares over
the current and previous years, and rewriting the equation as a function of multifactor
productivity growth (&), where subscripts refer to time period, and r, w, p arethereal price of
physical units of capital, labor and output respectively, yields.

11K, r.Key 1wl Wl 4
e (bt 0.0 ot LI

The output easticity of computer capital (bs) could be calculated using aformula smilar to that
for ordinary capital. Alternatively, multifactor productivity growth can be first estimated
excluding the contribution of computers. Then this estimate can be used to estimate the computer
elasticity by regression (after adding an error term, assumed to satisfy the standard assumptions

necessary for ordinary least squares to be unbiased and efficient):

&= +b,&e (5)

3 (o) 1 rth rt-th-l 1 VvtLt Vvt-lLt-l
where: &o g (K o KoL o ML H L @ )F

(Coefficients with hats” represent econometric estimates.)

This approach, which was employed by Adams and Jaffe (1996) to study R& D productivity,
provides unbiased estimates when all factors are in competitive equilibrium. However, as shown
by Berndt and Fuss (1986), it may give biased estimates if a quasi-fixed factor, such as capital, is
not in equilibrium. In this case, the value of the service flows from that factor can be adjusted to
give accurate estimates of productivity growth. In particular, Berndt and Fuss show that the
expected ex post shadow rental price of capital should replace the ex ante renta pricein
calculating input shares, and that the expected shadow rental price of capital (z;) can be
approximated by multiplying the traditional Hall-Jorgenson ex ante rental price by Tobin’sq (f),
which isthe market value of the firm divided by the replacement cost of its physical capital stock.
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Tobin’s g incorporates information on the expectations of investors regarding future input and
output prices and thus the shadow price of installed capital. We implement this approach by
estimating equation (5) using the expected shadow price of capital (z =f ,r,) in place of the

capital rental price (r,), where f , isanormalized value of Tobin’s q for each firm in each year.4

Evaluating the Contribution of Computers. To interpret these results, we can compute the
margina product of computers — the marginal increase in output for an additional unit of
computer capital input — by differentiating the Cobb-Douglas production function. For
computers, the marginal product is given by:

3|
ISl

ip
I,C

O

MP, = =b, (7)

C

=
@)
Ol

r

where. pQ, r°C represent sample average output and computer (flow) quantities and
r ° represents the rental price of computers.

The margina product should equal 1 if thefirmsarein along-run equilibrium; each additional
dollar of input (flow) should result in adollar of output, assuming parameter estimates are
unbiased and all relevant costs are measured.

An dternative estimation approach combines the use of marginal product cal culations with the
productivity estimation framework. Instead of estimating the output easticity, we can directly
estimate the implied rental price of computers by weighting the growth in computer capital by its
factor share:

=gy (o

G
—=¢ controls+e 8
v+, e+ (8)

4 |n addition, the traditional growth accounting framework may also attribute changes in market power and
economies of scale to productivity growth. Whether these gains are legitimately part of productivity growth isa
matter of interpretation. For example, Morrison (1992) writes“... for some purposes scale economies are
appropriate to include as ‘ productivity growth’.”
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Thisanaysis (werefer to asa “rate of return” specification) has the advantage that it directly

accommodates heterogeneity in computer investment across firms and over time.

3.2. Data Sources and Construction

The data set for this study was created by combining two main data sources. a database of capital
stock of computers provided by Computer Intelligence InfoCorp (ClI); and public financial
information obtained from Compustat Il (Compustat). We also employed price deflators from
various government and private sources. In some analyses, we also used a data set of computer
hardware and related expenses obtained through surveys conducted by International Data Group
(IDG), and data from a survey we conducted for this research which asked chief information
officers about the benefits they expected from computerization. Appendix A provides additional

detail s on the data sources and construction.

Cll conducts a series of surveys that tracks specific pieces of computer equipment in use at
approximately 25,000 sites at different locations of the 1000 largest firmsin the United States.

ClI interviews information systems managers to obtain detailed information on each site's
information technology hardware. Site sampling frequency ranges from monthly to annually,
depending on the size of the site, and the interview process includes checks on hardware that was
reported in previous interviews which makes time series comparisons more accurate. Each piece
of hardware is market-valued and aggregated to form a measure of the total hardware value in use
at the firm. These data obviate the need to make assumptions about retirement rates or
depreciation, which are typically required when constructing capital series.® The Cll data provide
areatively narrow definition of computers that omits software, information system staff, and
telecommunications equipment. The data are available for the Fortune 1000 annually for the
period 1987 to 1994.

S This methodol ogy may introduce some error in the measurement of computer inputs because different types of
computers are aggregated by stock rather than flow values (weighted by rental price). The direction of such a bias
isunclear because it depends on assumptions about depreciation rates of various types of computers at each site.
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We consulted Standard & Poor's Compustat |1 database to obtain information on sales, |abor
expenses, capital stock, industry classification, employment, R&D spending, and other expenses
for al the firmsin the Cll database. These data were supplemented with price deflators from a
variety of sourcesto construct measures of the sample firms' inputs and outputs using procedures
consistent with earlier work (Hall, 1990; Brynjolfsson and Hitt, 1995). The procedure for
calculating rental prices of computers and other inputs appearsin Appendix B.

Sample. Using data from the ClI database and Compustat, we constructed a nearly balanced
panel of approximatey 600 firmsin the Fortune 1000 over an 8-year period for atotal of 4571
observations.5 We also have matching estimates of computer stock for 1411 of these observations
from IDG, which gathered data from a single officer in each firm and used a somewhat different
definition of computer capital. For the overlapping firms, the computer capital data had a
correlation of 73% between ClI and IDG.

During the sample period, the average factor shares of computers, capital, and labor were .01, .34
and .61 respectively. The firmsin the sample are quite large, averaging $1Bn in value-added. The
sample consists of 57% manufacturing firms, 41% service firms, and 2% mining, construction and
agriculture, and thereis at least one firm present from 41 different 2-digit SIC industries.
However, some service industries -- banking, insurance -- are largely excluded because many of
the firmsin these industries do not report ordinary capital stock on Compustat. Because these
industries are particularly computer-intensive, the firmsin our sample are somewhat less
computer-intensive than the economy as awhole. Altogether, our sample appears to be broadly
representative of large firmsin the U.S. economy and firmsin the sample account for about 15%

of total U.S. economic output.

4. RESULTS

6 The pand is unbalanced because some firms enter or leave the Fortune 1000 each year, merge, or for some other
reason fail to have complete or comparable financial data available for all eight years. To prevent the results from
being skewed by sample heterogeneity over time, we restrict the sampleto firms that participated in at least six of
the eight years of our sample.
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In this section we estimate the rel ationship between growth in computers and multifactor
productivity growth for the firmsin our sample. We begin with a base specification that estimates
the relationship between productivity growth and growth in computer input at varying difference
lengths, adding additional control variables for time and industry. We then extend this
gpecification by using instrumental variables to address reverse causality and random measurement
error and to adjust for disequilibrium effects on capital using ex-post rental prices. Finaly, to
corroborate our productivity results, we take an alternative approach and use a “ semi-reduced
form” specification that requires fewer assumptions about the ex-post rental price of capital and
addresses endogeneity of labor more directly, and replicate and extend previous results

concerning the impact of levels of computer investment on levels of output.

4.1. Productivity

Base Estimates. We begin by estimating a conventional multifactor productivity equation that
calculates the residual change in output after accounting for changes in ordinary capital and labor.
Using equation (5), we cal culate multifactor productivity growth (excluding computers from
capital), and regress the result against the change in computer capital services varying the length
of differencing.

The results of theseinitial regressions are shown in the first column of Table 1a. We begin by
examining firg differences (row 1, column 1). Wefind that the elasticity of computersis about
.01, and we cannot regject the hypothesis that the easticity is equal to the factor share of
computers (t=1.4). We do find that the elasticity is significantly different from zero (t=2.2).
When the analysisis repeated with longer difference lengths, we observe a general upward trend
in the estimated e agticity with a statistically significant difference between the one-year and the

seven-year first difference coefficients (p<.05).”

"we performed the analysis after removing a small number of outliers: those where the one-year multifactor
productivity change is greater than 1 (in logarithms), or a multi-year multifactor productivity changeis greater
than 2. In addition, we require that for all years afirm has no changes in the logarithm of capital or labor greater
than 2, and no changes in the logarithm of computers greater than 3. Thisled to the elimination of 12 firms,
leaving 599 for analysis. The estimates are similar when outliers are included.
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The effect of added control variables on this baseline specification are shown in columns 2-4 in
Table 1a, and graphically in Figure 3. When dummy variables for time are included, the agticity
estimates drop in short differences, but are essentially unchanged in longer differences. Industry
controls also appear to dightly lower the elasticity estimates across all difference specifications,
suggesting that there are some systematic variations in computer input growth and productivity
growth across industry. However, the fact that the effects of computers are still significant
suggests that firm-level variation is more important than industry-level variation. Asaresult, itis
likely to be difficult to assess the effects of computers on productivity growth using only industry-
level data.

Interestingly, regardless of the specification, the elasticity estimates for computers show the same
increasing trend as differences are lengthened. We cannot rgect the hypothesis that the dagticity

estimates are at least as large as the computer input sharein any of these analyses8

Instrumental Variables. Our earlier results assume that computer investment is determined by
exogenous factors and is not correlated with shocks in productivity. However, it may be possible
that either time-series or cross-sectional variation in productivity can also influence computer
investment. For example, if firms disproportionately increase investmentsin computersin years

where output is unexpectedly high, our short-difference easticity results will be upward biased.

However, if firms change their other expensesin response to demand shocks more than their
investments in computers, or if computer investment is countercyclical for other reasons, then
OL S may underestimate the contributions of computers. Similarly, different firms may have

different costs of making incremental investmentsin computers due to the structure of their past

8To probe this result further, we estimated regressions using varying difference length for particular years. For
example, for 1992 we can examine the 1992-1991, 1992-1990, 1992-1989, 1992-1988 and 1992-1987 differences.
The shorter difference results varied depending on the base year chosen, although they are usually positive and
closeto zero. However, eadticity estimates for fifth, sixth and seventh differences were consistently in the .02 to
.03 range.
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investments in computers or other factor inputs; if these investments are al so associated with

higher (lower) productivity, then our estimates will be biased upward (downward) as well.

Regardless of the direction of the bias we can obtain consistent estimates of the contribution of
computers using an instrumental variables estimator. This can also correct for the possibility of

measurement error in computer inputs.

For instruments, we model computer investment as being driven by the prices of pre-existing
complements and substitutes to computers (durable goods, non-durable goods, energy), capital
costs (BAA bond yields) and exogenous shocks to investment requirements (defense
expenditures) in time series. These are the instruments used for productivity analysis proposed by
Hall (1990). To mode cross-sectional variation in I'T adoption, we build on the idea that different
types of computer technologies have different costs of incremental investment. In particular,
firmsthat have aready invested heavily in client-server technology may be able to make additional
investments much more easily than firms that have relied heavily on mainframe technology and
need to undergo a costly (and time consuming) conversion. The adoption of client-server
technology is measured as the percentage of personal computers (PCs) connected to local area
networks and the ratio of PCsto mainframe terminals. In addition, firmswith a newer capital
stock may be better able to use computers either becauseit is likely to be more compatible with
computer technology (e.g. uses digital controls), or because newer capital indicates awillingness
or ability to use new technologies. Finally, we include measures on the reason the firm is making
the investment in computers® taken from a survey of 1S managers since the indirect cost of

computer investment may vary depending on the application.

Following Bartelsman, Caballero and Lyons (1994), we lag all our time series instruments by one

period, calculate prices as aratio to the price of energy and allow the effects of the instrumentsto

9 The survey contains nine questions about reasons for investing in information technology and asks the
respondent to rate the importance of each factor on aten point scale: increase product variety, quality, customer
service, timeliness, provide infrastructure, support business process redesign, reduce costs, improve bargaining
position with customers, improve management information. We have data for about half of the firmsin our
sample on these measures. Where datais unavailable, we include a dummy variable for each question for missing
data and the value of the variable itself is set to zero.
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vary by industry. The R? of first stage regressions ranged from 35% in short differences to 67%
in seventh differences. Although thisinstrument set is clearly lessthan idedl asit isvery difficult
to obtain time varying predictors of computers across different firms, we hope to at least
directionally compare the results of the instrumental variables analysis with our prior first- and

long-difference analysis.

The two-stage least squares (2SLS) estimates are presented in Table 1b and are compared to
other analysesin Figure 4. In short differences (first through third), the coefficients are
consstently larger in 2SL S than they are in the OLS regressions. This suggests that computer
investment may be less cyclical than other investmentsin the short-run. In fourth and longer
differences, the results drop to alevel comparable to the OLS results. Thisis at least partly due to
theloss of atime seriesvariation in the data as the difference length increases, reducing the
difference between OLS and 2SL S estimates. Although the standard errors are much larger in the
2S9L S specification, we can till rgject the null hypothesis that computers make no contribution to
productivity growth in first through fourth differences, and have no evidence that computers are
not at least as productive as other inputs in any specification.

Research and Development. Previous work has found that R& D investment is substantially
correlated with productivity level and growth (see e.q., Griliches, 1986; 1994). Because R&D
spending is likely to be driven by some of the same factors as information technology spending,
such as an overall emphasis on innovativeness, an industry environment or strategy that requires
greater speed to market or customer responsiveness, or just aintringic capability for innovation
within thefirm, it is possible that our IT coefficients are biased because we do not account for
R&D spending. We explore this possibility in Table 1¢c where we s multaneoudly include both
computer capital growth and R&D growth in the analysis. In column 1, we replicate our previous
analysis without R& D on the subset of firms that have reported R&D expenditure (primarily
manufacturing firms). Although the sample size is substantially reduced, we till find positive and,
in most cases, significant IT effects. Coefficients on computers rise from about .01 to .05 as the
difference length increases with a general upward (but not monotonically increasing) trend. In

columns 2 and 4 we show the equivalent coefficientsin aregression with R&D included, first with
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no other control variables (column 2) and then with industry and time controls (column 4). The
coefficient estimates are broadly similar to the analysis without R& D, and although tend to be less
precisely estimated due to the reduced sample size and multicollinearity between computers and
R&D growth, they still are generally positive, significant and show an upward trend as the
difference length isincreased. Interestingly, the R& D coefficient tends to only be significant in
first differences and shows no particular trend as the difference length increases. These results
suggest that our analysisisrobust to whether or not we explicitly include R&D in the analysis and
also that the upward trend in the coefficients is unique to information technology as opposed to
applying to investments in innovation more broadly. Moreover, to the extent that sources of
reverse causality are smilar for computers and R&D, this provides a further indication that these
types of specification errors do not appear to be biasing the results (at least in the long run) since

the same effects do not appear for R&D.

Adjusting for Input Quasi-Fixity. The fact that time controls and instrumental variables estimates
have a substantial effect on short difference easticity estimates suggests that firms were not
awaysin long-run equilibrium. Whilethe IV estimates correct for the endogeneity of IT with
respect to productivity, the do not account for possible biases in the measurement of TFP growth
due to quasi-fixity of capital. Because the economic value of capital can deviate from its
accounting value depending on short-term economic conditions such as capacity utilization,
traditional growth accounting methods will tend to overstate capital inputsin recessions and
understate capital inputsin periods of growth. If IT has a systematic relationship to economic
cyclesaswadll, this could lead to a biased estimate of the elasticity of computers.

To address the bias in productivity measurement we adjust the rental price of capital to
approximate their true shadow values by using Tobin’s q (following Berndt and Fuss (1986)). In
principal, a g-value greater than 1 implies that the shadow value of the firm’s capital is greater
than its ex ante cost as conventionally measured. However, sSince many firms have significant
intangible assets with zero book value, they may have values for average Tobin’s g that are
greater than 1 even when the shadow value of capital is below its long-run equilibrium value. One
way to correct for this heterogeneity isto normalize all values of g by dividing by each firm'sq



Computers and Productivity Growth Page 17

valuein our base year of 1990. Thus, only changesin q relative to 1990 are used to adjust the
capital flow weights.

In Table 2, changes in multifactor productivity growth are calculated using firm-specific ex post
rental pricesfor capital derived from Tobin’sg. When compared to the analysis assuming ex ante
rental prices, theresultsare smilar to the earlier analyss whether or not industry dummy variables
areincluded and for both OLS and 2SL S estimates. In particular, the coefficients rise as the
period of differencing isincreased. Thiswould suggest that the previous estimates are not driven

by assumptions about whether firms are using equilibrium levels of quasi-fixed inputs.

4.2 Esimating Production Functions instead of Productivity

To examine the possihility that our results are unique to this data set or the modeling approach we
employ, we now analyze the data using production functions instead of directly examining

productivity and compare results from our data to an alternate dataset from IDG.

All previous firm-level studies have focused on estimating production functions, in which the
elagticity of other factors (capital and labor) are estimated from the data, but are constrained to be
the same across firms. Theresults from a 4-input (computers, capital, labor, R& D) production
function estimation are shown in Table 3 using both our new data set, and the data set from
International Data Group (IDG) used in earlier research by Brynjolfsson and Hitt, and by
Lichtenberg. Overall, we find consistency both within this study and between this study and

previous work.

Thefirst column shows the results when we average output and al factor inputs across the time
dimension for the same firm and estimate a "between" regression by weighted least squares
(weights are the inverse of the square root of the number of observations per firm). In the cross-
sectional dimension of the data alone, the estimated elasticity is.035 for computers. When we
pool the data, as donein previous work, we find that the computer easticity estimatesin levels

are around .03 for computersin both data sets. In a more demanding first difference specification,
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evidence of the contribution of computersislost in statistical noise in the IDG sample, but not in
the broader and longer CIl data series. Altogether, when combined with the productivity
analyses, we find strong evidence that computers are a productive investment in both cross-

section and time-series analyses.

For the CIl sample, the estimated e asticity of ordinary capital and labor are near what would be
expected in the levels estimates, but the ordinary capital dasticity appears substantially biased
downward in first differences. Thisis possibly the result of labor endogeneity, which can result in
lower capital dadticity estimates. In fact, a Hausman test for the production function estimated in
level s suggests that labor is endogenous (but not capital or computers) when we used lagged
values of the independent variables as instruments. Asaresult, first difference estimates of a
production function with all the factorsincluded may be unrdiable.

4.3 Semi-Reduced Form Estimates

By dropping labor from the equation, we can remove potential biases from endogeneity of |abor
(Grilichesand Mairesse, 1984). In thisformulation, labor istreated as endogenoudy determined
by the quasi-fixed choices of computers and ordinary capital, thus reducing the possibility that
labor endogeneity introduces biasesin other coefficients. This resultsin a system of equations
that allows the estimation of theratio of capital and computer easticities to the labor dasticities
(seethe derivation in Griliches and Mairesse, 1984):

q=4d, +%k+ic+e

1
(8

g &
=Gk pete

Thisformulation can be estimated in levels or differences. Table 4 reports the estimates of this
each equation separately in first differences. We cannot reject equality of coefficient across the
two equations, so in the third column we estimate the equations smultaneously, imposing the

restriction that easticities are the same in both equations to improve efficiency. In Table 5, we
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allow the difference length to vary from 1 to 7 years. After adjusting for the 62% factor share for
labor, the coefficient estimates imply that the output elasticity of computers is monotonically
increasing from .009 to .044 as the difference length isincreased. Similar results are obtained
using instrumental variables estimates with the same instrument set as before (not shown),
although most of the increase in coefficient estimates occurs between the first and third
differences. In addition, the IV estimates are consistently higher than the OLS estimates. This
corroborates our earlier results using the productivity formulation, and it also suggests that,
ceteris paribus, OLS may underestimate the coefficient on computersin production functions

estimated in first or long-differences.

4.3 Rate of Return Specification

To further examine the contributions of computers and gauge the reliability of our earlier results,
we also estimate the effects of computersin arate of return specification, where the coefficient
estimate represents the implied rental price — the rental price at which computers contributions
equal their costs (Table 6). The numbersthat appear in the table are the implied rental price of
computers. When the estimates exceed our rental price estimate of 42% per year, it suggests that
computers have excess returns or a positive contribution to measured MFP. While thistable
shows somewhat lower contributions of computersin longer differences (on the order of 1.5-2.5
times the rental price), the returns cons stently rise from first to third differences and are
substantially above theoretical value of the rental price.

4.3 Interpretation of Elagticity Estimates

Across various specifications we find that the elasticity of computers starts at about .01 in first
differences and rises to as much as .04 in long differences. The long-difference estimates are up
to 8 times as large as would be expected if computers had "normal” returns. In this section, we
evaluate several alternative explanations for the large and increasing coefficient estimates, with a

focus on the mismeasurement of computer inputs and complementary factors.
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Random Measurement Error. One potential explanation isthat the results are a product of
random measurement error. Because our productivity analyses only have a single regressor, we
would expect that random input mismeasurement would bias down the computer elasticity
estimates. This bias should be most pronounced in shorter differences since the amount of
“ggna” (e.g. thetrue change in computer investment) is likely to be reduced by differencing more
than the “noise’, because noiseisless likely to be correlated over time. Thus, the signal-to-noise
ratio, which isinversaly proportional to the bias, islikely to increase aslonger differences are
taken (Griliches and Hausman, 1986).10 The fact that the coefficients rise as longer differences
are taken is consgstent with a measurement error explanation. However, an upward trend in the
coefficients still appearsin the instrumental variables regressions and furthermore, this explanation
implies that the true elasticity of computersis actually equal to or greater than our long difference
estimate.

If the long-run elasticity estimates are correct, then either the true returns to computer investment
are dramatically higher than the returnsto other investments or thereis some “ missng mass’ of
inputs to the production function that is correlated with computer stock. Only the latter
explanation is consistent with long-run equilibrium. We can determine how large any missing
mass must be in order to bring the marginal product of computers down to normal levels and how

this missing mass rel ates to factors we do observe.

Miscounted Technological Complements. One component of this missng mass may smply be
miscounted computer inputs that are counted as ordinary capital or labor. The analysis of this bias
issmilar to the analysis of “double counting” of R&D expenditure investigated by Griliches
(1988, Ch. 15) and Schankermann (1981). On the one hand, the marginal product of computers
is biased upward because the factor input quantity is understated. On the other hand, the estimate
of the computer elasticity is biased downward because other factors are absorbing some of the
effect that should be attributed to computers. Under some minor assumptions, the measured effect

10 |1 addition, because changesin different inputs for the same firm are nearly uncorrelated in our sample, the
same downward bias should be evident in our specifications that have multiple regressors, such as the semi-
reduced form estimates. Thisis a straightforward cal culation from the standard results on the effects of errorsin
variables with multiple regressors (see e.g. Greene, 1993).
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of computers represents a welghted average of the marginal products of computers and other

inputs, with the weights proportional the amount of misallocation (see Appendix C.2).

The reported stock of computers from CII that we use in our estimation probably does not
include all the computers actually at the sample firms. Because ordinary capital is calculated asa
residual after subtracting measured computer capital, any “ missng” computers will be
misclassified as ordinary capital. In addition, a study by IDG (1996) suggests that for a typical
information systems ingtallation based on client-server technol ogy, the lifecycle software and

operating costs (including computer labor) can be as much as five times the hardware costs.

To assess the approximate impact of such misclassification, assume that for every computer
detected by CII, thereis an equivalent amount of unmeasured computer capital that is erroneoudy
treated as ordinary capital. Using an annual capital computer capital of 42% (see Appendix B)
and multiplying this by five (as per the IDG study) to account for potential unmeasured computer
labor, implies that the annual flow of misclassified labor is up to 2.1 times the computer capital
stock for any given year. Finally, assume conservatively that the misclassified capital and labor is
perfectly correlated with the observed computer capital estimates.1l Using the equationsin
Appendix C.2 and assuming normal returns to ordinary capital or labor, thisyields a revised
marginal product estimate of computers of 1.2 in the short run and 1.8 in thelong run. Thisis
closer to the predicted value of 1.0, but it remains somewhat greater than what would be expected
in equilibrium. Thus, a correction of this type alone does not fully account for the high long-run

elasticity of computer capital.

Our data may also miss some of the technical complements to computers that do not appear in
other inputs. For instance, softwareis along-lived asset that is often charged as an expense in the
year of acquisition or development by standard accounting practices. Regression estimatesin
subsequent years will reflect the value of the overall system (hardware plus software), not just the

measured input quantity (hardware).

11 | the corrdlation with computer capital islessthan perfect, then the bias on the computer elasticity estimated
will be correspondingly smaller.
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As shown in Appendix C, the extent of the bias depends on the value of the omitted technical
complements and their correlation with measured computers. Assuming that they have the same
marginal product as other computer investments and are perfectly correlated with the observed
computer inputs, their cost would have to be approximatdy $6.50 per dollar of measured
computer input after the miscounting correction for computers to have "normal” returns.12 The
magnitude of this number isimplausibly large, suggesting that omitted factors are not the sole
explanation for excessreturns. Furthermore, it does not explain the rise in the coefficients as the

length of differencing increases.

Miscounted Organizational Complements. Asargued in the introduction, effective use of
computers often requires additional organizational adaptationsto the use of computers.

However, these adjustments may not be instantaneous. For example, a firm may not immediately
be able to optimize their organizational characteristics such aswork systems, incentives or human
capital levelsto take full advantage of new production possibilities enabled by computers. Asa
result, if there are other factors that are complementary to computers, comparing short-term
changes in output or productivity growth to short-term changesin computer investment may miss
the impact of these other complementary factors. However, if we analyze changes over long time
periods the impact of these complements may be more apparent. Thus, as argued by Bartelsman,
Caballero and Lyons (1994) in the context of production externalities, it may be possible to
observe the effects of sow-changing complementary factors by examining the change in dasticity

coefficients at various difference lengths (see further discussion in Appendix C.1).

This explanation is similar to but distinct from models based on “learning.” For example, afirm
may experiment with a new computer technology and over time learn the most effective uses of
computers. In oneinterpretation, thisisjust avariant of our organizational complementarities
story — the learning is the “complementary asset”, just one that arises over time rather than

through explicit investment. Whilethisis certainly a component of the overall story it isunlikey
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that learning without deliberate investment is the only component. There are numerous examples
(see asurvey in Hitt and Brynjolfsson, 2000) of explicit investmentsin complementary assets such
as supply chain redesign, organizational restructuring or human capital. Moreover, thereisavery
large computer services and consulting industry which exists primarily to transfer (at a cost!) the
“learning” on the use of computers from firm to firm. Finally, some of these hypothesized
organizational complements can and have been measured directly, such as changes in the structure
of thefirm in the form of vertical de-integration (Hitt, 1999) or changesin organizational design
to utilize greater levels of human capital (Bresnahan, Brynjolfsson and Hitt, 1999).

4.4 What Can the Reaults Tall Us about Aggregate Productivity Growth?

Using our easticity estimates for computers and the annual growth rate of computer capital of
about 25% per year, computers have added approximately .25% to .5% to output and
productivity growth at the firm level over thisperiod. Asthe factor share of computers grows,
so will the productivity contribution, ceteris paribus. Because our productivity calculation
reflects private returns, including rent stealing but not productivity spillovers, we cannot know

whether the aggregate impact on the economy issmaller or larger than the private returns.

If computers were more likely than other inputs to be used to capture rents from competitors,
then the aggregate returns to the economy would be less than the sum of the private returns we
measure. Because redistributing rentsis a zero-sum game, but computer expenditures are costly,
the net effect would be to lower aggregate profits. However, aggregate corporate profits do not
appear to be any lower in recent years and there is some evidence that they have risen (Poterba,
1997).

Thereis more evidence for an effect in the opposite direction. Some of the benefits of computers
spill over to consumers and other firms. For example, when two or more banks simultaneoudy

invest in an ATM network, consumers get most of the benefit. Similarly, when afirm like

12 The calculation of thisfigureisasfollows: 6.5= 1.8 (“excess marginal product” on total computer stock,
including double counting) x 3.6 (ratio of true computer stock - including the undercounted capital and labor - to
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Walmart demonstrates new | T-enabled efficiencies in supply chain management, its competitors
attempt to copy their innovations with varying degrees of success. This can explain some of the
discrepency between the firm-level result and the analyses using aggregate data. Moreover, the
outputs of many firms, especially those in the service sector, are not measured well, leading to
underestimates of aggregate productivity growth (Baily and Gordon, 1988; Gordon, 1996). Firm-
level data may help reduce problems from output mismeasurement because intangible benefits that
areinvisble to the econometrician are visble, presumably, to a firm's customers. Firms that
improve output quality, variety or timeliness through investmentsin computers will be able to
charge a higher price, force competitorsto lower ther prices, or both. These private benefits will
appear as a correlation between the firm’s output and its computer investment.13 In contragt, in
industry- or economy-level data, these differences among firmsin the same industry would be
obscured. However, when two or more competitors s multaneoudly introduce intangibl e benefits,
some or all of the benefits will be passed on to their customers and elude detection in revenue or
output data. Therefore, even regressions using firm-level data may underestimate the computers

contributions to intantible output.

To better understand whether computers were disproportionately contributing to unmeasured
components of GDP, we conducted a small survey of information systems managers at Fortune
500 firmsin 1997. We asked why managers were investing in computers (see Figure 5). In this
survey, managers ranked improving product quality and obtaining new customers higher than cost
savings, and four of the top five responses represent investments directed at improving intangible
aspects of output. When these intangibles are added to the “true” output of the firms and the
economy, this suggests that many of the contributions of computers to output go unmeasured,

evenin firm levd data

5. Conclusion

measured computer stock). Thisisalso closeto thefigureif double counting were not taken into effect.

13 A similar argument suggests that hidden costs computerization imposes on consumers will also be more evident
in firm level data.
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This paper presents direct evidence that computers contribute to productivity growth in a broad
cross-section of firms. Furthermore, as a general-purpose technology, the pattern of growth
contribution appears to suggest that computers are part of a larger system of technological and

organizational changes that increases productivity over time.

When we examine the data in one-year differences, we find that computers contribute to output
an amount roughly equal to their factor share.  Thisimplies that computers contribute to output
growth but not productivity growth. Over longer time horizons (between three and seven years),
computers appear to contribute substantially more than their factor share — between 2 and 8 times
as much as the short term impact. Thisimplies a substantial contribution to long-run productivity
growth. Theseresults, aswell as corroborating institutional evidence, are consistent with a story
that the long-term growth contributions of computers represent the combination of computers and
complementary organizationa investment. Other explanations for our results, such as
measurement error (either random or systematic), omitted variables such as R&D, and quasi-fixity
or endogeneity of other factor inputs do not fareaswell. Our instrumental variables regressions,
although limited by the quality of the instrument set, also suggest that reverse causality does not
appear lead to upward biases in the estimation of computers contribution. The fact that the
results are consistent when performed in differences, providing some control for time-invariant
firm heterogeneity, and robust to a “rate of return” analysis and industry controls, provides
evidence againgt a firm or industry heterogeneity story. It may be that “high performance’ firms
grow faster and invest more in computers for unrelated reasons (a story which is very hard to
examine without a clear description asto what the reason is), but industry effects or a high past
level of productivity or computer investment leading to high current productivity would not

explain our results.

It isimportant to note that conducted the analysis over atime period where there was not
extraordinary growth in the overall economy. This suggests that our results are not likely to be
biased by (although could be predictive of) the recent massive increases in valuation of technology
and computer companies. On the contrary, if computersindeed require several yearsto realize

their growth contribution, our current economic performance may at least in part reflect the
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massive computer investments as well as complementary organizational investments made in the
early 1990s.
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Table la Regression of Computer Growth on Multifactor Productivity Growth - Varying

Difference Length
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OoLS OoLS OoLS OoLS Sample

Difference | No controls Time Industry Time & Ind. Size

Controls Controls Controls
1 year .0104 .00464 .00924 .00319 3936
differences (.0043) (.0046) (.0043) (.0046)
2 year .0.0138 .00512 .0144 .00227 3364
differences (.0054) (.00564) (.0053) (.0056)
3 year .000796 .000295 .00332 -.00445 2775
differences (.0066) (.0065) (.0064) (.0064)
4 year .0227 .0129 .0218 0117 2190
differences (.0072) (.0075) (.0067) (.0070)
5 year .0244 .0234 .0186 .0180 1606
differences (.0084) (.0086) (.0077) (.0079)
6 year .0244 .0248 .0183 .0193 1020
differences (.010) (.010) (.0095) (.0095)
7 year 0277 0277 .0209 .0217 488
differences (.015) (.015) (.0014) (0.014)
Table 1b. Instrumental Variables Estimates

2SLS 2SLS Sample

Difference | No controls Industry Size

Controls
1 year .0195 .0161 3449
differences (.0073) (.0073)
2 year .0279 .0206 2948
differences (.0091) (.0090)
3 year .0343 .0231 2433
differences (.012) (.012)
4 year .0225 .0216 1929
differences (.013) (.012)
5 year .0194 .00484 1390
differences (.015) (.015)
6 year .0229 .0109 890
differences (.018) (.018)
7 year .0358 .0379 435
differences (.022) (.023)

Sample size reduced for 2SL S because of data availability for instruments.
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Table 1c: Productivity Growth Analysisincluding R&D
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Basdine
oLS With R&D
No Controls With R&D: OoLS Sample

or R&D OLS, No other Controls Time & Industry Controls Size
Cosfficient Computer Computer R&D Computer R&D

Growth Growth Growth Growth Growth
1 year .00993 .00964 .00964 .00985 .00575 1498
differences (.0068) (.0068) (.0068) (.0074) (.0034)
2 year 0217 0211 0211 .0186 .00190 1279
differences (.0081) (.00814) (.00814) (.0082) (.0032)
3 year .0199 .0194 .0194 .0210 .00116 1058
differences (.0103) (.0103) (.0103) (.0093) (.0031)
4 year .0256 .0248 .0248 .0229 .000476 842
differences (.0117) (.0117) (.0117) (.0102) (.0030)
5 year .0204 .0193 .0193 .0244 -.000770 625
differences (.0143) (.0144) (.0144) (.0121) (.0037)
6 year .0185 .0186 .0186 .0264 -0.00238 410
differences (.0184) (.018) (.018) (.0152) (.0051)
7 year .0507 .0545 .0545 .0519 -.00602 195
differences (.0272) (.0278) (.0278) (.0216) (.0076)

Sample size substantially reduced because of missing R&D data
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Table2: Regression of Computer Growth on Multifactor Productivity Growth Adjusted for

Quasi-fixed Capital with ex post Rental Prices - Varying Difference Length
OoLS 2SLS OoLS 2SLS Sample

Difference | Quas-fixed | Quads-fixed | Quas-fixed | Quas-fixed Size

Capital Capital Capital Capital

No controls | No controls | Ind. controls | Ind. controls

1 year .0115 .0195 .0103 .0153 3661
differences (.0044) (.0073) (.0045) (.0075)
2 year .0133 .0279 .0109 .0256 3130
differences (.0053) (.0091) (.0055) (.0097)
3 year .00550 .0343 .00200 .0263 2583
differences (.0067) (.012) (.0065) (.012)
4 year .0208 .0225 .0207 .0224 2041
differences (.0075) (.013) (.0068) (.012)
5 year .0245 .0194 .0195 .00969 1499
differences (.0087) (.015) (.0081) (.015)
6 year .0242 .0229 .0166 .00961 956
differences (.011) (.018) (.010) (.017)
7 year .0309 .0358 .0209 .0371 456
differences (.015) (.022) (.014) (.024)

Sample size dightly reduced for 2SL S because of data availability for instruments.
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Table 3: Production Function Approach
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Cll Cll Cll IDG IDG
Coefficient Between | Pooled | 1% Diff. | Pooled | 1° Diff.
Leves Levels
Computer Elasticity .0358 .0304 0117 .0248 -.0015
(.011) (.0040) (.0041) (.0068) (.0041)
Ordinary Capital Elagticity 201 .188 .0608 187 .0574
(.015) (.0058) (.012) (.010) (.017)
Labor Elagticity .706 720 743 734 719
(.016) (.0064) (.0139) (.012) (.025)
R&D Dummy (1=not 274 287 .00383 304 278
present) (.062) (.025) (.0041) (.044) (.078)
R&D Elasticity .0436 .0464 .0102 .0550 .0205
(.0112) (.0045) (.0057) (.0075) (.0070)
Controls Industry Y ear Y ear
Industry Industry
R? 97.0% 95.9% 50.3% 97.1% 56.9%
N 599 4571 3946 1411 934
Table4: Semi-Reduced Form Estimates - First Differences
Single Egn.: Single Egn.:
Coefficient VA Labor System
DComputer Capital .0219 .0251 .0240
(.0055) (.0050) (.0047)
DOrdinary Capital 373 400 391
(.013) (.012) (.011)
Control Y ear Y ear Y ear
R? 20.5% 24.4% 19.5%/24.3%
N 3936 3936 3936
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Table 5: Semi-Reduced Form Specification Varying Lag Length - ISUR Estimates

DComputer | DOrdinary Sample
Difference Capital Capital Size
1 year 0247 395 3936
differences (.0048) (.011)
2 year .0525 432 3364
differences (.0058) (.012)
3 year .0680 486 2775
differences (.0069) (.013)
4 year 0775 519 2190
differences (.0083) (.014)
5 year .0890 549 1606
differences (.010) (.016)
6 year .0910 590 1020
differences (.013) (.020)
7 year 115 580 488
differences (.019) (.028)
Table 6: Rate of Return Analysis
Difference No Time Industry Industry and
Length Controls Only Only Time
1 year .168 -.0111 .0552 .0160
differences (.175) (.035) (.0329) (.035)
2 year 474 189 341 .0100
differences (.151) (.159) (.153) (.061)
3 year 810 533 .606 278
differences (.179) (.184) (.181) (.185)
4 year 1.14 .982 .861 .659
differences (.183) (.190) (.177) (.184)
5 year .889 915 521 540
differences (.196) (.201) (.187) (.193)
6 year 932 972 613 .662
differences (.235) (.236) (.219) (.220)
7 year 877 877 .623 .623
differences (.329) (.329) (.309) (.309)
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Figure 1: Trendsin Semiconductor Manufacturing
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Figure 2: Nominal and Real Computer Investment
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Figure 3: Basdline Estimates of Computer Elasticity with Different Controls
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Figure 4. Computer Elasticity Estimates Under Different Specifications
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Figure5: Reasonsfor Investingin IT
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Appendix A: Variables and Data Construction

The variables used for this analysis were constructed as follows:

Sales. Total Sales asreported on Compustat [Item #12, Sales (Net)] deflated by 2-digit industry
level deflators from Gross Output and Related Series by Industry from the BEA (Bureau of
Economic Analysis, 1996) for 1987-1993, and estimated for 1994 using the five-year average
inflation rate by industry.

Ordinary Capital. Thisfigure was computed from total book value of capital (equipment,
structures and al other capital) following the method in Hall (1990). Gross book value of capital
stock [Compustat Item #7 - Property, Plant and Equipment (Total - Gross)] was deflated by the
GDP implicit price deflator for fixed investment. The deflator was applied at the cal culated
average age of the capital stock, based on the three-year average of the ratio of total accumulated
depreciation [calculated from Compustat item #8 - Property, Plant & Equipment (Total - Net)] to
current depreciation [Compustat item #14 - Depreciation and Amortization]. The calculation of
average age differs dightly from the method in Hall (1993), who made a further adjustment for
current depreciation. The constant dollar value of computer capital was subtracted from this
result. Thus, the sum of ordinary capital and computer capital equalstotal capital stock.

Computer Capital (ClIl). Total market value of all equipment tracked by CIlI for thefirm at all
sites. Market valuation is performed by a proprietary algorithm developed by Cll that takesinto
account current true rental prices and machine configurationsin determining an estimate.

Thistotal is deflated by the deflator for computer systems of -19.4% per year devel oped by
Robert Gordon (1990). The time trend Gordon found in prices through 1984 is assumed to
continue through 1994.

Computer Capital (IDG). Composed of mainframe and PC components. The mainframe
component is based on the IDG survey response to the following question (note: the IDG survey
guestions quoted below are from the 1992 survey; the questions may vary dightly from year to
year):

"What will be the approximate current value of all major processors, based on current resale or
market value? Include mainframes, minicomputers and supercomputers, both owned and leased
systems. Do NOT include personal computers.”

The PC component is based on the response to the following question:
"What will be the approximate number of personal computers and terminalsinstalled within your
corporation in [year] (including parents and subsidiaries)? Include laptops, brokerage systems,

travel agent systems and retailing systemsin all user departmentsand 1S."

The number of PCs and terminalsis then multiplied by an estimated value. The estimated val ue of
a PC was determined by the average nominal PC price over 1989-1991 in Berndt & Griliches
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(1990) study of hedonic prices for computers. The actual figureis $4,447. The value for
terminalsis based on the 1989 average (over models) list price for an IBM 3151 terminal of $608
(Pelaia, 1993). These two numbers were weighted by 58% for PCs and 42% for terminals, which
was the average ratio reported in a separate IDG survey conducted in 1993. Thetotal average
valuefor a"PC or termina” was computed to be $2,835 (nominal). This nominal value was
assumed each year, and inflated by the same deflator as for mainframes.

Thistotal Computer Capital (PCs and mainframes) is deflated by the deflator for computer
systems of -19.4% per year developed by Robert Gordon (Gordon, 1990). Thetimetrend
Gordon found in prices through 1984 is assumed to continue through 1994.

Labor Expense. Labor expense was either taken directly from Compustat (Item #42 - Labor and
related expenses) or calculated as a sector average labor cost per employee multiplied by total
employees (Compustat Item #29 - Employees), and deflated by the price index for Total
Compensation (Council of Economic Advisors, 1992).

The average sector labor cost is computed using annual sector-level wage data (salary plus
benefits) from the BLS from 1987 to 1994. We assume a 2040-hour work year to arrive at an
annual salary. For comparability, if the labor figure on Compustat is reported as being without
benefits (Labor expense footnote), we multiply actual labor costs by the ratio of total
compensation to salary.

Employees Number of employees was taken directly from Compustat (Item #29 - Employees).
No adjustments were made to this figure.

Materials. Materials was cal culated by subtracting undeflated |abor expenses (cal cul ated above)
from total expense and deflating by the 2-digit industry deflator for output. Total expense was
computed as the difference between Operating Income Before Depreciation (Compustat Item
#13), and Sales (Net) (Compustat I1tem #12).

Value-Added. Computed from deflated Sales (as calculated above) |ess deflated Materials.

R& D Capital. R&D Capital was computed by following Hall (1993). R&D expenditures
(Compustat Item #46 - Research and Devel opment Expense) were used as flows to create a
capital stock. Thefirst period value (1973) was multiplied by 4.3 to create an initial stock (this
figures comes from the perpetual discounting of a flow that is depreciated 15% per year and
discounted 8% per year - 1/(.08+.15) = 4.3). Thiswas deflated by an R&D deflator reported in
Hall (1993). Thefigurefor each successive year was computed by converting flow to constant
dollars, and adding to the previous year's stock, which is depreciated at 15% per year. This
method requires a complete series for R&D flow from 1973 to 1994. For companies that were
missing 2 or fewer pointsin the series, the missing data were interpolated as the average of the
nearest years. When the missing point was at the beginning or end of the series, the point was
computed from the three-year average growth rate in the nearest years. A total of 24 points were
corrected in thisway. This departs from the procedure used by Hall (1990). The annual R&D
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expenseistreated as part of Materials, unless R&D capital isincluded in the regression, in which
caseit isomitted entirely.

Tobin’sg. Computed by adding the market value of all stock equity (from Compustat) to the
book value of all outstanding debt (from Compustat) and dividing by total assets (from
Compustat).
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Appendix B: User Cost of Computersand Ordinary Capital

The net return to investments in computer capital is the outcome of a complex interaction among
several factors, including not only the traditional components of the Jorgensonian cost of capital -
- interest rates, depreciation, taxes and capital gains -- but potentially also factors such asthe
value of options and of learning. We briefly consider how these factors would likely combine to
derive an expected rate of return for computers.

Under the assumption that managers successfully choose the optimal level of computer capital to
maximize the net present value of the firm, we should observe areturn equal to itsimplicit rental
price. Thisisgiven by the Jorgensonian equation for the required rate of return on capital, which
can be written as follows (Christensen and Jorgenson, 1969):

_1l-uz-4ql (% - G.,) U
EP _1-—Ut’:‘rt +dt - q—tg+xt
where
EPt = expected rateof return for computer capital, in year t
re = investor’s required nominal rate of return (rate at which the future is discounted)
ot = depreciation rate for computer capital
at = therelative price of computers;, qt-qgt-1 iscapital gains, or losses
Ut = the corporate income tax rate
zt = the present value of $1 of tax depreciation allowances
et = the investment tax credit
Xt = effective tax rate on corporate property

According to Jorgenson and Stiroh (1993), reasonable values for these variables for 1990 are: rt =
.09; dt =.10; Dg =-.199; ut = .384; zt = .902; et = 0; xt = .01, which implies that the costs of

computer capital isabout 42.2%.14 Using adightly different formula, Lau and Tokutsu (1992)
and Lichtenberg (1994) also derived a cost of computer capital of 42%.

Similar calculationsyield an average estimate of 13.5% for ordinary capital, based on values of rt
=.09; d¢ variesby industry and time; Dg = .05; ut = .38; zt = .8; et = 0; xt = .01.15 This

14 Computers do not depreciate significantly in the sense of wearing out. However, they are retired when, because
of declinesin the cost of computer power, the value of the services of old equipment no longer justfiesincurring
complementary costs of space, electricity, programming labor, etc. Thevalue of .1 for di reflects these retirements
and is estimated based on the retirement data underlying the calculations in Jorgenson and Stiroh (1993) and
personal communication with Keven Stiroh.

15 Jorgenson and Stiroh (1993) do not report aggregate values for these variables. However, Lau and Tokutsu,
(1992) report that reasonable values are dy = .05 and = .05 for ordinary capital. Theremaining values are
equivalent to theose used for computer capital, with the exception of z, reflecting the longer service lives of non-
computer capital. Theinvestment tax credit, e, was eliminated in 1986. Beforethat, it was 10%. Our costs of
capital may therefore be dightly too high, to the extent that capital stock in place during our sample period was
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suggests that the required rate of return to computer is nearly 3 times as high asthe return
required for ordinary capital.

purchased before 1986. If avaluefor e of .01 for computers and .05 for other capital were used, the costs of capital
would fall to 41.5% and 10.3%, respectively.
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Appendix C: Omitted Variable Bias
C.1 Omitted Factors Not Counted Elsewhere

Suppose thereis an overal technical system that includes computers as well as other factors that
are not otherwise accounted for elsewhere in the productivity analysis such as software or past
training investments. Assume that this system (S) has a contribution (q) to output (O). For
exposition, let C and S have unit variance in the data. Let output be compaosed of the output

contribution of al other factors((@), theimpact of Sand random error:
o=48 +qS+e

In aregression of computers on output, the estimated coefficient on computers (d ) can be given
by the bivariate regression formula (note cov(C,@) =cov(C,e) = 0 by definition):

d.= % =0r where r - isthe correlation coefficient between C and S

When this estimate is then used to calculate marginal product, the estimate is biased upward

because the measured marginal product ( MP™"*!) includes the contribution of the entire
system, but only the input quantity C.

MPmeasured - qr CSO
c r.C
If C and therest of S have exactly the same marginal product the true marginal product of C is

given by:

C
@2)o
Mpérue - S - q O
r.C r.(S)

Thisbiasincreases as the C and the system become more closely correlated or C becomes a
smaller proportion of the overall syssem. Thisanalysis holdsin differences aswell, aslong as the
relationship is stable. However, because changesin S may occur at times different from changes
in C, the correlation between the computers and other factorsin the system (r ) may be

increasing in difference length leading to an increase thein bias.
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C.2 Effect of Misallocation Between Computers and Other Inputs

This derivation is based on the framework of Schankerman (1981). Consider the general case
where there are various components of computer expenditure or capital that are present in
estimates used for capital, labor, or materials. Let these be represented by functions K, L., and
M., al of which are functions of the observed level of computers (C). Assuming that the leve of
computer-related spending is small relative to the magnitude of other inputs (e.g. K. << K), the
impact of these omitted variables can be computed. For production function estimatesin levels,
the equation is (using notation as before):

Mc
Q- M.’

dmeasured - dactual _

{a cov(% ,C)+b cov(% ,C) + cov( C)}

var(C)

A smilar result can be derived from the productivity analysis (define the materials price per
physical unit as p, and the output price per physical unit as pg):

rkC Kc WIC Lc
var(c&{a cov( K & &+ b cov( i & &

P M P M
#ML‘FCOV(*I’&,&
qu_ pmMc Q- pmMc

Under the assumption that the levels of the factors are uncorrelated with growth ratesto afirst
order approximation, the expression can be simplified by removing the ratio terms (e.g. KJ/K)
outside the covariance term. Ignoring the materials terms and assuming perfect correlation
between measured and omitted computer inputs yields a Ssmple equation for the relationship
between the actual and measured marginal products of computers. For thiscalculation let K=
txCand L=t,C. Then with the above assumptions we have:

d measured - d true _

cov(

MPpsimete = 11 +;L 7L MR+ MR + MPpsimeet)
k c

In other words, the elasticity is a weighted average of the various marginal products (MP).



Computers and Productivity Growth Page 44

Bibliography

Adams, J. D. and A.B. Jaffe (1996) “Bounding the Effects of R&D.” RAND Journal of
Economics, Winter.

Baily, M. N. and R. J. Gordon (1988). The Productivity Slowdown, Measurement Issues, and the
Explosion of Computer Power. in Brookings Papers on Economic Activity. W. C. Brainard
and G. L. Perry. Washington, DC, The Brookings Institution: 347-431.

Barua, Anitesh. Kriebdl, Charles H. Mukhopadhyay, Tridas (1995) "Information Technologies
and Business Vaue: An Analytic and Empirical Investigation.” Information Systems Research
6(1): 3-23.

Bartedlsman, E. J. , Caballero, R. J. and R.K. Lyons (1994). “Customer- and Supplier-Driven
Externalities” American Economic Review 84 (4): 1075-1084.

Basu, Susanto. Fernald, John G. (1997). "Returnsto Scalein U.S. Production: Estimates and
Implications." Journal of Political Economy 105(2): 249-283.

Berndt, E. (1991). The Practice of Econometrics. Classic and Contemporary. Reading, MA,
Addison-Wedey.

Berndt, E. and Z. Griliches (1990). “Price Indexes for Microcomputers. An Exploratory Study.”
NBER Working Paper 3378.

Berndt, E. R. and M. A. Fuss (1986). “Productivity Measurement with Adjustments for
Variationsin Capacity Utilization and Other Forms of Temporary Equilibrium.” Journal of
Econometrics 33(1): 7-29.

Berndt, E. R. and C. J. Morrison (1995). “High-tech Capital Formation and Economic
Performance in U.S. Manufacturing Industries: An Exploratory Analysis.” Journal of
Econometrics 65: 9-43.

Berndt, E. R., C. J. Morrison and L. S. Rosenblum (1992). High-Tech Capital, Economic
Performance and Labor Composition in U.S. Manufacturing Industries: An Exploratory
Analyss. MIT Working Paper 3414EFA.

Boskin, Michad J. Dulberger, Ellen R. Gordon, Robert J. Griliches, Zvi. Jorgenson, Dale W.
(1997). "The CPl Commission: Findings and Recommendations." American Economic
Review 87(2): 78-83.

Bresnahan, T. F. (1986). “ Measuring the Spillovers from Technical Advance: Mainframe
Computersin Financial Services.” The American Economic Review 76( 4): 742-755.

Bresnahan, Timothy, Brynjolfsson, Erik and and Lorin M. Hitt (1999, forthcoming) “Technology,
Organization and the Demand for Skilled Labor,” The New Relationship: Human Capital in
the American Corporation, Margaret M. Blair and Thomas A. Kochan, eds. Brookings
Institution Press.

Bresnahan, T. F. and M. Trajtenberg, (1995) “General Purpose Technologies. 'Engines of
Growth'?’, Journal of Econometrics, 65: 83-108.




Computers and Productivity Growth Page 45

Brynjolfsson, E. (1993). “The Productivity Paradox of Information Technology.”
Communications of the ACM  35(12): 66-77.

Brynjolfsson, E. (1996). The Contribution of Computers to Consumer Welfare. Information
Systems Research, Autumn.

Brynjolfsson, E. and L. Hitt (1994). Computers and Economic Growth: Firm-level Evidence.
MIT Sloan Working Paper 3714.

Brynjolfsson, E. and L. Hitt (1995). “Information Technology as a Factor of Production: The
Role of Differences Among Firms.” Economics of Innovation and New Technology 3(4):
183-200.

Brynjolfsson, E. and L. Hitt (1996). The Customer Counts. Informationweek: September 8, p.
38-43.

Brynjolfsson, E. and L. Hitt (1996). “Paradox Lost? Firm-level Evidence on the Returns to
Information Systems Spending.” Management Science 42(4), p. 541-558.

Brynjolfsson, E. and Yang, S. (1997) "The Intangible Benefits and Costs of Computer
Investments; Evidence from Financial Markets," in Proceedings of the International
Conference on Information Systems, Atlanta, GA, 1997.

Brynjolfsson, E. and Yang, S. (1997) "Information Technology and Productivity: A Review of
the Literature," in Zelkowitz, M. ed., Advances in Computers, Vol. 43.

Bureau of Economic Analysis (1996). Gross Output and Related Series by Industry. Computer
Disk.

Cartwright, D. W. (1986). “Improved Deflation of Purchases and Computers.” Survey of Current
Business 66(3): 7-9.

Cash, J. I., R. G. Eccles, N. Nohriaand R. Nolan, (1994) Building the Information Age
Organization: Structure, Control and Information Technologies, 3rd Edition ed., Boston:
Richard D. Irwin.

Christensen, L. R. and D. W. Jorgenson (1969). “The Measurement of U.S. Real Capital Input,
1929-1967.” Review of Income and Wealth 15(4): 293-320.

Council of Economic Advisors, Ed. (1996). Economic Report of the President. Washington,
D.C., US Government Printing Office.

Davenport, T. H. (1993). Process Innovation: Reengineering Work through Information
Technology. Boston, Harvard Business School Press.

David, P. A. (1990). “The Dynamo and the Computer: A Historical Perspective on the Modern
Productivity Paradox”, American Economic Review Papers and Proceedings, | (2): 355-361.

Delong, J. B. and L. H. Summers, (1991) “Equipment Investment and Economic Growth”, The
Quarterly Journal of Economics, 106(2): 445-502.

Diewert, W. E. and A. M. Smith. (1994). Productivity Measurement for a Distribution Firm.
NBER Working Paper 4812.




Computers and Productivity Growth Page 46

Gordon, R. J. (1990). The Measurement of Durable Goods Prices. Chicago, University of
Chicago Press (for NBER).

Gordon, R., (1996) "Problems in the Measurement and Performance of Service-Sector
Productivity in the United States’, NBER Working Paper 5519.

Gordon, R. J. (1999). “Hasthe ‘New Economy’ Rendered the Producitivity Slowdown
Obsolete?” Working Paper, Northwestern University, June.

Greene (1993). Econometric Analysis. New Y ork, MacMillan.

Gurbaxani, V. and Mendelson, H. (1992). “ An Empirical Analyss of Software and Hardware
Spending.” Decision Support Systems 8 (1): 1-16.

Greenspan, A. (1997) Monetary Policy Testimony and Report to the Congress, Committee on
Banking and Financia Services, U.S. House of Representatives, July 22. Available from:
http://www.bog.frb.fed.usBOARDDOCS/HH/

Greenwood, J. and Jovanovich, B. (1998). “ Accounting for Growth,” NBER Working Paper
6647.

Griliches, Z. (1979). “Issuesin Assessing the Contribution of Research and Development to
Productivity Growth.” Bell Journal of Economics 10(1): 92-116.

Griliches, Z. (1986). “Productivity, R& D, and Basic Research at the Firm Leve in the 1970's.”
American Economic Review 76(1): 141-155.

Griliches, Z. (1991). “The Search for R&D Spillovers,” NBER Working Paper 3768.
Griliches, Z. (1988). Technology, Education, and Productivity. New Y ork, Basil Blackwell.

Griliches, Z. (1994). “Productivity, R&D and the Data Constraint.” American Economic Review
84(2): 1-23.

Griliches, Z. and J. Hausman (1986). “Errorsin Variablesin Pand Data.” Journal of
Econometrics 31: 93-118.

Griliches, Z. and J. Mairesse (1984). Productivity and R&D at the Firm Level. in R& D, Patents
and Productivity. Z. Griliches. Chicago, University of Chicago Press. 339-374.

Hall, B. H. (1990). The Manufacturing Sector Master File: 1959-1987, Documentation. NBER
Working Paper 3366.

Hall, B. H. (1993). “The Stock Market's Valuation of R&D Investment During the 1980's.”
American Economic Review 83(2): 259-264.

Hall, R. E. (1999). The Stock Market and Capital Accumulation, NBER Working Paper No.
7180. (June)

Hammer, M. and J. Champy (1993). Reengineering the Corporation. New Y ork, Harper Business.

Hitt, Lorin M. (1999) “Information Technology and Firm Boundaries. Evidence from Pand Data,”
Information Systems Research, 10(9, June): 134-149.



Computers and Productivity Growth Page 47

Hitt, Lorin M. and Erik Brynjolfsson (1997) “Information Technology and Internal Firm
Organization: An Exploratory Analysis,” Journal of Management Information Systems 14
(2): 81-101.

Hulten, C.R. (1992). “Growth Accounting When Technical Change Is Embodied in Capital.”
American Economic Review, 82(4): 964-980.

IDG (1996). Maximizing Return on Investment of Network Computing. International Data
Group Specia Advertising Supplement.

Jaffe, A. (1994). The Span of the Effect of R&D in the Firm and Industry. Bureau of the Census
Center for Economic Studies Discussion Paper 94-7.

Jorgenson, D. W. and K. Stiroh (1995). “Computers and Growth.” Journal of Economics of
Innovation and New Technology 3: 295-316.

Jovanovic, Boyan and Dmitriy Stolyarov (1997). "Learning, Complementarities and
Asynchronous Use of Technology" NBER working paper, January.

Kemerer, C. F. and G. L. Sosa, (1991) “Systems Devel opment Risks in Strategic Information
Systems.”_Information and Software Technology 33(3): 212-223.

Lau, L. J. and I. Tokutsu (1992). The Impact of Computer Technology on the Aggregate
Productivity of the United States: An Indirect Approach. Department of Economics, Stanford
University Working Paper.

Lichtenberg, F. R. (1995). “The Output Contributions of Computer Equipment and Personal: A
Firm-Level Analysis.” Economics of Innovation and New Technology 3: 201-217.

Lucas, H. C., (1996) The T-Form Organization: Using Technology to Design Organizations for
the 21st Century, Jossey-Bass Publishers, San Francisco.

Mairesse, J. (1991). “R&D and Productivity: A Survey of Econometric Studies at the Firm
Level.” STI Review 8: 9-43.

Malone, T. and J. Rockart. (1991) “Computers, Networks and the Corporation”, Scientific
American, 265 (3): 128-136.

Mead, T., "Should a Recession Curb Y our Computer Appetite?’, Datamation, 128, (December 1,
1990).

Milgrom, P. and J. Roberts (1990). “The Economics of Modern Manufacturing: Technol ogy,
Strategy, and Organization.” American Economic Review 80(3): 511-528.

Milgrom, P. and J. Roberts (1992). Economics, Organization and Management, Prentice-Hall.
Milgrom, P. and J. Roberts (1996). “The LeChatelier Principle.” American Economic Review
86(1): 173.

Morrison, C. J. and E. R. Berndt (1990). Assessing the Productivity of Information Technol ogy
Equipment in the U.S. Manufacturing Industries. National Bureau of Economic Research
Working Paper 3582.




Computers and Productivity Growth Page 48

Morrison, C. J. (1992) Productivity Measurement with Adjustements for Variationsin Capacity
Utilization and Other Forms of Temporary Equilibrium.” Review of Economics and Statistics
74(3): 381-393.

Oliner, S, D. and Sichd, D.E. (1994), “Computers and Output Growth Revisited: How Big isthe
Puzzle?' Brookings Papers on Economic Activity, 1994(2): 273-334.

Pelaia, E. (1993). IBM Terminal Prices, personal communication with IBM Representative.

Romer, P.M. (1986) "Increasing Returns and Long-Run Growth," Journal of Political Economy,
94, 5, 1002-37.

Schankerman, M. (1981). “The Effects of Double-Counting and Expensing on the Measured
Returnsto R&D.” Review of Economics and Statistics 63: 454-458.

Siegd, D. and Z. Griliches (1991). Purchased Services, Outsourcing, Computers and
Productivity in Manufacturing. National Bureau of Economic Research Working Paper 3678.

Solow, R. M. (1957). “Technical Change and the Aggregate Production Function.” Review of
Economics and Statistics 39(August): 312-320.

Solow, R.M (1987). “ We d Better Watch Out,” New Y ork Times Book Review, July 12, p.36.

Wolff, E.N. (1996). “The Productivity Slowdown: The Culprit at Last? Follow-Up on Hulten
and Wolff.” American Economic Review, 86(5): 1239-1252.




