Lecture 3: Dual problems and Kernels

- Primal and dual forms
- Linear separability revisted
- Feature mapping
- Kernels for SVMs
- Kernel trick
- requirements
- radial basis functions

SVM - review

- We have seen that for an SVM learning a linear classifier

$$
f(x)=\mathbf{w}^{\top} \mathbf{x}+b
$$

is formulated as solving an optimization problem over \mathbf{w} :

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

- This quadratic optimization problem is known as the primal problem.
- Instead, the SVM can be formulated to learn a linear classifier

$$
f(\mathbf{x})=\sum_{i}^{N} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

by solving an optimization problem over α_{i}.

- This is know as the dual problem, and we will look at the advantages of this formulation.

Sketch derivation of dual form

The Representer Theorem states that the solution w can always be written as a linear combination of the training data:

$$
\mathrm{w}=\sum_{j=1}^{N} \alpha_{j} y_{j} \mathbf{x}_{j}
$$

Proof: see example sheet .
Now, substitute for \mathbf{w} in $f(x)=\mathbf{w}^{\top} \mathbf{x}+b$

$$
f(x)=\left(\sum_{j=1}^{N} \alpha_{j} y_{j} \mathbf{x}_{j}\right){ }^{\top} \mathbf{x}+b=\sum_{j=1}^{N} \alpha_{j} y_{j}\left(\mathbf{x}_{j}^{\top} \mathbf{x}\right)+b
$$

and for \mathbf{w} in the cost function $\min _{\mathbf{w}}\|\mathbf{w}\|^{2}$ subject to $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \forall i$

$$
\|\mathbf{w}\|^{2}=\left\{\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}\right\} \top\left\{\sum_{k} \alpha_{k} y_{k} \mathbf{x}_{k}\right\}=\sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{k}\right)
$$

Hence, an equivalent optimization problem is over α_{j}

$$
\min _{\alpha_{j}} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{k}\right) \text { subject to } y_{i}\left(\sum_{j=1}^{N} \alpha_{j} y_{j}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{i}\right)+b\right) \geq 1, \forall i
$$

and a few more steps are required to complete the derivation.

Primal and dual formulations

N is number of training points, and d is dimension of feature vector \mathbf{x}.
Primal problem: for $\mathbf{w} \in \mathbb{R}^{d}$

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

Dual problem: for $\boldsymbol{\alpha} \in \mathbb{R}^{N}$ (stated without proof):
$\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j}{ }^{\top} \mathbf{x}_{k}\right)$ subject to $0 \leq \alpha_{i} \leq C$ for $\forall i$, and $\sum_{i} \alpha_{i} y_{i}=0$

- Complexity of solution is $O\left(d^{3}\right)$ for primal, and $O\left(N^{3}\right)$ for dual
- If $N \ll d$ then more efficient to solve for α than \mathbf{w}
- Dual form only involves $\left(\mathbf{x}_{j}{ }^{\top} \mathbf{x}_{i}\right)$. We will return to $w h y$ this is an advantage when we look at kernels.

Primal and dual formulations

Primal version of classifier:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+b
$$

Dual version of classifier:

$$
f(\mathbf{x})=\sum_{i}^{N} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

At first sight the dual form appears to have the disadvantage of a K-NN classifier - it requires the training data points \mathbf{x}_{i}. However, many of the α_{i} 's are zero. The ones that are non-zero define the support vectors \mathbf{x}_{i}.

Support Vector Machine

Handling data that is not linearly separable

- introduce slack variables

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, \xi_{i} \in \mathbb{R}^{+}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \xi_{i}
$$

subject to
$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}$ for $i=1 \ldots N$

- linear classifier not appropriate ??

Solution 1: use polar coordinates

- Data is linearly separable in polar coordinates
- Acts non-linearly in original space

$$
\Phi:\binom{x_{1}}{x_{2}} \rightarrow\binom{r}{\theta} \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

Solution 2: map data to higher dimension

$\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ \sqrt{2} x_{1} x_{2}\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

- Data is linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

SVM classifiers in a transformed feature space

Learn classifier linear in \mathbf{w} for \mathbb{R}^{D} :

$$
f(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathrm{x})+b
$$

Primal Classifier in transformed feature space

Classifier, with $\mathbf{w} \in \mathbb{R}^{D}$:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathbf{x})+b
$$

Learning, for $\mathbf{w} \in \mathbb{R}^{D}$

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

- Simply map x to $\Phi(\mathrm{x})$ where data is separable
- Solve for \mathbf{w} in high dimensional space \mathbb{R}^{D}
- Complexity of solution is now $O\left(D^{3}\right)$ rather than $O\left(d^{3}\right)$

Dual Classifier in transformed feature space

Classifier:

$$
\begin{aligned}
f(\mathbf{x}) & =\sum_{i}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b \\
\rightarrow f(\mathbf{x}) & =\sum_{i}^{N} \alpha_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right)^{\top} \Phi(\mathbf{x})+b
\end{aligned}
$$

Learning:

$$
\begin{aligned}
& \max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k} \mathbf{x}_{j}{ }^{\top} \mathbf{x}_{k} \\
\rightarrow & \max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k} \Phi\left(\mathbf{x}_{j}\right)^{\top} \Phi\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

subject to

$$
0 \leq \alpha_{i} \leq C \text { for } \forall i, \text { and } \sum_{i} \alpha_{i} y_{i}=0
$$

Dual Classifier in transformed feature space

- Note, that $\Phi(\mathrm{x})$ only occurs in pairs $\Phi\left(\mathrm{x}_{j}\right)^{\top} \Phi\left(\mathrm{x}_{i}\right)$
- Once the scalar products are computed, complexity is again $O\left(N^{3}\right)$; it is not necessary to learn in the D dimensional space, as it is for the primal
- Write $k\left(\mathrm{x}_{j}, \mathrm{x}_{i}\right)=\Phi\left(\mathrm{x}_{j}\right)^{\top} \Phi\left(\mathrm{x}_{i}\right)$. This is known as a Kernel

Classifier:

$$
f(\mathrm{x})=\sum_{i}^{N} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathrm{x}\right)+b
$$

Learning:

$$
\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k} k\left(\mathbf{x}_{j}, \mathbf{x}_{k}\right)
$$

subject to

$$
0 \leq \alpha_{i} \leq C \text { for } \forall i, \text { and } \sum_{i} \alpha_{i} y_{i}=0
$$

Special transformations

$$
\begin{aligned}
& \Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \begin{aligned}
\Phi(\mathbf{x})^{\top} \Phi(\mathbf{z}) & =\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)\left(\begin{array}{c}
z_{1}^{2} \\
z_{2}^{2} \\
\sqrt{2} z_{1} z_{2}
\end{array}\right) \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}
\end{aligned}
\end{aligned}
$$

Kernel Trick

- Classifier can be learnt and applied without explicitly computing $\Phi(\mathrm{x})$
- All that is required is the kernel $k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}$
- Complexity is still $O\left(N^{3}\right)$

Example kernels

- Linear kernels $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}$
- Polynomial kernels $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{\top} \mathbf{x}^{\prime}\right)^{d}$ for any $d>0$
- Contains all polynomials terms up to degree d
- Gaussian kernels $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$ for $\sigma>0$
- Infinite dimensional feature space

Valid kernels - when can the kernel trick be used?

- Given some arbitrary function $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, how do we know if it corresponds to a scalar product $\Phi\left(\mathbf{x}_{i}\right)^{\top} \Phi\left(\mathrm{x}_{j}\right)$ in some space?
- Mercer kernels: if $k($,$) satisfies:$
- Symmetric $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
- Positive definite, $\boldsymbol{\alpha}^{\top} \mathrm{K} \boldsymbol{\alpha} \geq 0$ for all $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, where K is the $N \times N$ Gram matrix with entries $\mathrm{K}_{i j}=k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$.
then $k($,$) is a valid kernel.$
- e.g. $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$ is a valid kernel, $k(\mathbf{x}, \mathbf{z})=\mathbf{x}-\mathbf{x}^{\top} \mathbf{z}$ is not.

SVM classifier with Gaussian kernel

$\mathrm{N}=$ size of training data
$f(\mathbf{x})=\sum_{i}^{N} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Gaussian kernel $k\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\exp \left(-\left.\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right|^{2} / 2 \sigma^{2}\right)$ Radial Basis Function (RBF) SVM
$f(\mathrm{x})=\sum_{i}^{N} \alpha_{i} y_{i} \exp \left(-\left\|\mathrm{x}-\mathbf{x}_{i}\right\|^{2} / 2 \sigma^{2}\right)+b$

RBF Kernel SVM Example

- data is not linearly separable in original feature space

$\sigma=1.0 \quad C=100$

Decrease C, gives wider (soft) margin

$\sigma=1.0 \quad C=10$

$\sigma=1.0 \quad C=\infty$

$\sigma=0.25 \quad C=\infty$

Decrease sigma, moves towards nearest neighbour classifier

$\sigma=0.1 \quad C=\infty$

Kernel block structure

Kernel Trick - Summary

- Classifiers can be learnt for high dimensional features spaces, without actually having to map the points into the high dimensional space
- Data may be linearly separable in the high dimensional space, but not linearly separable in the original feature space
- Kernels can be used for an SVM because of the scalar product in the dual form, but can also be used elsewhere - they are not tied to the SVM formalism
- Kernels apply also to objects that are not vectors, e.g.

$$
k\left(h, h^{\prime}\right)=\sum_{k} \min \left(h_{k}, h_{k}^{\prime}\right) \text { for histograms with bins } h_{k}, h_{k}^{\prime}
$$

- We will see other examples of kernels later in regression and unsupervised learning

Background reading

- Bishop, chapters 6.2 and 7
- Hastie et al, chapter 12
- More on web page:
http://www.robots.ox.ac.uk/~az/lectures/ml

