Lecture 3: Dual problems and Kernels

C4B Machine Learning	Hilary 2011	A. Zisserman
----------------------	-------------	--------------

- Primal and dual forms
- Linear separability revisted
- Feature mapping
- Kernels for SVMs
 - Kernel trick
 - requirements
 - radial basis functions

SVM - review

• We have seen that for an SVM learning a linear classifier

$$f(x) = \mathbf{w}^\top \mathbf{x} + b$$

is formulated as solving an optimization problem over $\ensuremath{\mathbf{w}}$:

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$

- This quadratic optimization problem is known as the primal problem.
- Instead, the SVM can be formulated to learn a linear classifier

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i}(\mathbf{x}_{i}^{\top} \mathbf{x}) + b$$

by solving an optimization problem over α_i .

• This is know as the dual problem, and we will look at the advantages of this formulation.

Sketch derivation of dual form

The Representer Theorem states that the solution \mathbf{w} can always be written as a linear combination of the training data:

$$\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j$$

Proof: see example sheet .

Now, substitute for w in $f(x) = \mathbf{w}^\top \mathbf{x} + b$

$$f(x) = \left(\sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j\right)^{\top} \mathbf{x} + b = \sum_{j=1}^{N} \alpha_j y_j \left(\mathbf{x}_j^{\top} \mathbf{x}\right) + b$$

and for \mathbf{w} in the cost function $\min_{\mathbf{w}} ||\mathbf{w}||^2$ subject to $y_i\left(\mathbf{w}^\top \mathbf{x}_i + b\right) \geq 1, \forall i$

$$||\mathbf{w}||^{2} = \left\{\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}\right\}^{\top} \left\{\sum_{k} \alpha_{k} y_{k} \mathbf{x}_{k}\right\} = \sum_{jk} \alpha_{j} \alpha_{k} y_{j} y_{k} (\mathbf{x}_{j}^{\top} \mathbf{x}_{k})$$

Hence, an equivalent optimization problem is over α_j

$$\min_{\alpha_j} \sum_{jk} \alpha_j \alpha_k y_j y_k(\mathbf{x}_j^\top \mathbf{x}_k) \text{ subject to } y_i \left(\sum_{j=1}^N \alpha_j y_j(\mathbf{x}_j^\top \mathbf{x}_i) + b \right) \ge 1, \forall i$$

and a few more steps are required to complete the derivation.

Primal and dual formulations

N is number of training points, and d is dimension of feature vector \mathbf{x} .

Primal problem: for $\mathbf{w} \in \mathbb{R}^d$

$$\min_{\mathbf{w}\in\mathbb{R}^d} ||\mathbf{w}||^2 + C\sum_i^N \max\left(0, 1 - y_i f(\mathbf{x}_i)\right)$$

Dual problem: for $\boldsymbol{\alpha} \in \mathbb{R}^N$ (stated without proof):

 $\max_{\alpha_i \ge 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k (\mathbf{x}_j^\top \mathbf{x}_k) \text{ subject to } 0 \le \alpha_i \le C \text{ for } \forall i, \text{ and } \sum_i \alpha_i y_i = 0$

- Complexity of solution is $O(d^3)$ for primal, and $O(N^3)$ for dual
- If N << d then more efficient to solve for α than ${\bf w}$
- Dual form only involves $(\mathbf{x}_j^{\top}\mathbf{x}_i)$. We will return to why this is an advantage when we look at kernels.

Primal version of classifier:

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

Dual version of classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i}(\mathbf{x}_{i}^{\top} \mathbf{x}) + b$$

At first sight the dual form appears to have the disadvantage of a K-NN classifier – it requires the training data points \mathbf{x}_i . However, many of the α_i 's are zero. The ones that are non-zero define the support vectors \mathbf{x}_i .

Handling data that is not linearly separable

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i+b\right) \ge 1-\xi_i \text{ for } i=1\dots N$$

Solution 1: use polar coordinates

- Data is linearly separable in polar coordinates
- Acts non-linearly in original space

$$\Phi: \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) \to \left(\begin{array}{c} r\\ \theta \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^2$$

Solution 2: map data to higher dimension

- Data is linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

SVM classifiers in a transformed feature space

Learn classifier linear in \mathbf{w} for \mathbb{R}^D :

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{\Phi}(\mathbf{x}) + b$$

Classifier, with $\mathbf{w} \in \mathbb{R}^D$:

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{\Phi}(\mathbf{x}) + b$$

Learning, for $\mathbf{w} \in \mathbb{R}^D$

$$\min_{\mathbf{w}\in\mathbb{R}^D} ||\mathbf{w}||^2 + C\sum_i^N \max(0, 1 - y_i f(\mathbf{x}_i))$$

- Simply map \mathbf{x} to $\Phi(\mathbf{x})$ where data is separable
- Solve for ${\bf w}$ in high dimensional space \mathbb{R}^D
- Complexity of solution is now $O(D^3)$ rather than $O(d^3)$

Dual Classifier in transformed feature space

Classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b$$

$$\rightarrow f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})^{\top} \Phi(\mathbf{x}) + b$$

Learning:

$$\max_{\alpha_i \ge 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \mathbf{x}_j^\top \mathbf{x}_k$$

$$\rightarrow \max_{\alpha_i \ge 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \Phi(\mathbf{x}_j)^\top \Phi(\mathbf{x}_k)$$

subject to

$$\mathsf{0} \leq lpha_i \leq C ext{ for } orall i, ext{ and } \sum_i lpha_i y_i = \mathsf{0}$$

Dual Classifier in transformed feature space

- Note, that $\Phi(\mathbf{x})$ only occurs in pairs $\Phi(\mathbf{x}_j)^{\top} \Phi(\mathbf{x}_i)$
- Once the scalar products are computed, complexity is again $O(N^3)$; it is not necessary to learn in the D dimensional space, as it is for the primal
- Write $k(\mathbf{x}_j, \mathbf{x}_i) = \Phi(\mathbf{x}_j)^\top \Phi(\mathbf{x}_i)$. This is known as a Kernel

Classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \mathbf{k}(\mathbf{x}_{i}, \mathbf{x}) + b$$

Learning:

$$\max_{\alpha_i \ge 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \, k(\mathbf{x}_j, \mathbf{x}_k)$$

subject to

$$0 \leq lpha_i \leq C$$
 for $orall i$, and $\sum_i lpha_i y_i = 0$

Special transformations

$$\Phi : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \rightarrow \mathbb{R}^3$$
$$\Phi(\mathbf{x})^\top \Phi(\mathbf{z}) = \begin{pmatrix} x_1^2, x_2^2, \sqrt{2}x_1x_2 \end{pmatrix} \begin{pmatrix} z_1^2 \\ z_2^2 \\ \sqrt{2}z_1z_2 \end{pmatrix}$$
$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$
$$= (x_1 z_1 + x_2 z_2)^2$$
$$= (\mathbf{x}^\top \mathbf{z})^2$$

Kernel Trick

- Classifier can be learnt and applied without explicitly computing $\Phi(\mathbf{x})$
- All that is required is the kernel $k(\mathbf{x},\mathbf{z}) = (\mathbf{x}^{ op}\mathbf{z})^2$
- Complexity is still $O(N^3)$

Example kernels

- Linear kernels $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{x}'$
- Polynomial kernels $k(\mathbf{x}, \mathbf{x}') = \left(1 + \mathbf{x}^{\top} \mathbf{x}'\right)^d$ for any d > 0

- Contains all polynomials terms up to degree d

• Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \exp\left(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2\right)$ for $\sigma > 0$

- Infinite dimensional feature space

Valid kernels – when can the kernel trick be used?

- Given some arbitrary function $k(\mathbf{x}_i, \mathbf{x}_j)$, how do we know if it corresponds to a scalar product $\Phi(\mathbf{x}_i)^{\top} \Phi(\mathbf{x}_j)$ in some space?
- Mercer kernels: if k(,) satisfies:
 - Symmetric $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - Positive definite, $\alpha^{\top} K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^N$, where K is the $N \times N$ Gram matrix with entries $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$.

then k(,) is a valid kernel.

• e.g. $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$ is a valid kernel, $k(\mathbf{x}, \mathbf{z}) = \mathbf{x} - \mathbf{x}^{\top} \mathbf{z}$ is not.

SVM classifier with Gaussian kernel

N = size of training data $f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$ $\underset{\text{weight (may be zero)}}{\text{support vector}}$

Gaussian kernel $k(\mathbf{x}, \mathbf{x}') = \exp\left(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2\right)$

Radial Basis Function (RBF) SVM

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2} / 2\sigma^{2}\right) + b$$

RBF Kernel SVM Example

data is not linearly separable in original feature space

 $\sigma = 1.0 \quad C = 100$

Decrease C, gives wider (soft) margin

 $\sigma = 1.0 \quad C = 10$

Close

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2}/2\sigma^{2}\right) + b$$

 $\sigma = 1.0$ $C = \infty$

$\sigma = 0.25$ $C = \infty$

SMO (L1) 0.6 Kernel RBF 0.4 Kernel argument 0.25 feature y 0.2 C-constant Inf 0 epsilon,tolerance 1e-3,1e-3 -0.2 Background -0.4 Load data -0.6 -0.6 -0.2 0.2 0.4 0.6 0.8 -0.4 0 Create data feature x Reset Comment Windov Train SVM SVM (L1) by Sequential Minimal Optimizer Kernel: rbf (0.25), C: Inf Kernel evaluations: 42795 Info Number of Support Vectors: 18 Margin: 0.2358

Close

Decrease sigma, moves towards nearest neighbour classifier

Training error: 0.00%

Kernel Trick - Summary

• Classifiers can be learnt for high dimensional features spaces, without actually having to map the points into the high dimensional space

• Data may be linearly separable in the high dimensional space, but not linearly separable in the original feature space

• Kernels can be used for an SVM because of the scalar product in the dual form, but can also be used elsewhere – they are not tied to the SVM formalism

• Kernels apply also to objects that are not vectors, e.g.

 $k(h,h') = \sum_k \min(h_k,h'_k)$ for histograms with bins h_k,h'_k

• We will see other examples of kernels later in regression and unsupervised learning

Background reading

- Bishop, chapters 6.2 and 7
- Hastie et al, chapter 12
- More on web page: <u>http://www.robots.ox.ac.uk/~az/lectures/ml</u>