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• Primal and dual forms

• Linear separability revisted

• Feature mapping

• Kernels for SVMs
• Kernel trick

• requirements

• radial basis functions

SVM – review

• We have seen that for an SVM learning a linear classifier

f(x) = w>x+ b

is formulated as solving an optimization problem over w :

min
w∈Rd

||w||2 + C
NX
i

max (0,1− yif(xi))

• This quadratic optimization problem is known as the primal problem.

• Instead, the SVM can be formulated to learn a linear classifier

f(x) =
NX
i

αiyi(xi
>x) + b

by solving an optimization problem over αi.

• This is know as the dual problem, and we will look at the advantages

of this formulation.



Sketch derivation of dual form
The Representer Theorem states that the solution w can always be

written as a linear combination of the training data:

w =
NX
j=1

αjyjxj

Proof: see example sheet .

Now, substitute for w in f(x) = w>x+ b

f(x) =

⎛⎝ NX
j=1

αjyjxj

⎞⎠>x+ b =
NX
j=1

αjyj
³
xj
>x

´
+ b

and for w in the cost function minw ||w||2 subject to yi
³
w>xi+ b

´
≥ 1,∀i

||w||2 =
⎧⎨⎩X
j

αjyjxj

⎫⎬⎭>
⎧⎨⎩X
k

αkykxk

⎫⎬⎭ =X
jk

αjαkyjyk(xj
>xk)

Hence, an equivalent optimization problem is over αj

min
αj

X
jk

αjαkyjyk(xj
>xk) subject to yi

⎛⎝ NX
j=1

αjyj(xj
>xi) + b

⎞⎠ ≥ 1,∀i
and a few more steps are required to complete the derivation.

Primal and dual formulations
N is number of training points, and d is dimension of feature vector x.

Primal problem: for w ∈ Rd

min
w∈Rd

||w||2 + C
NX
i

max (0,1− yif(xi))

Dual problem: for α ∈ RN (stated without proof):

max
αi≥0

X
i

αi−
1

2

X
jk

αjαkyjyk(xj
>xk) subject to 0 ≤ αi ≤ C for ∀i, and

X
i

αiyi = 0

• Complexity of solution is O(d3) for primal, and O(N3) for dual

• If N << d then more efficient to solve for α than w

• Dual form only involves (xj
>xi). We will return to why this is an

advantage when we look at kernels.



Primal and dual formulations

Primal version of classifier:

f(x) = w>x+ b

Dual version of classifier:

f(x) =
NX
i

αiyi(xi
>x) + b

At first sight the dual form appears to have the disad-

vantage of a K-NN classifier — it requires the training

data points xi. However, many of the αi’s are zero. The

ones that are non-zero define the support vectors xi.

Support Vector Machine

w

Support Vector
Support Vector

b

||w||

wTx + b = 0

f(x) =
X
i

αiyi(xi
>x) + b

support vectors



Handling data that is not linearly separable

• introduce slack variables

• linear classifier not appropriate

??

min
w∈Rd,ξi∈R+

||w||2 + C
NX
i

ξi

subject to

yi
³
w>xi+ b

´
≥ 1− ξi for i = 1 . . . N

Solution 1: use polar coordinates

0

0

• Data is linearly separable in polar coordinates 

• Acts non-linearly in original space

r

θ

θ

r

Φ :

Ã
x1
x2

!
→

Ã
r
θ

!
R2 → R2

> 0< 0



Solution 2: map data to higher dimension

0

0
X = x21

Y = x22

Z =
√
2x1x2

• Data is linearly separable in 3D

• This means that the problem can still be solved by a linear classifier

Φ :

Ã
x1
x2

!
→

⎛⎜⎝ x21
x22√
2x1x2

⎞⎟⎠ R2→ R3

SVM classifiers in a transformed feature space

f(x) = 0

Rd RD

Φ

Φ : x→ Φ(x) Rd → RD

Learn classifier linear in w for RD:

f(x) = w>Φ(x) + b



Classifier, with w ∈ RD:

f(x) = w>Φ(x) + b

Learning, for w ∈ RD

min
w∈RD

||w||2 + C
NX
i

max (0,1− yif(xi))

• Simply map x to Φ(x) where data is separable

• Solve for w in high dimensional space RD

• Complexity of solution is now O(D3) rather than O(d3)

Primal Classifier in transformed feature space

Classifier:

f(x) =
NX
i

αiyi xi
>x+ b

→ f(x) =
NX
i

αiyiΦ(xi)
>Φ(x) + b

Learning:

max
αi≥0

X
i

αi −
1

2

X
jk

αjαkyjykxj
>xk

→ max
αi≥0

X
i

αi −
1

2

X
jk

αjαkyjykΦ(xj)
>Φ(xk)

subject to

0 ≤ αi ≤ C for ∀i, and
X
i

αiyi = 0

Dual Classifier in transformed feature space



• Note, that Φ(x) only occurs in pairs Φ(xj)>Φ(xi)

• Once the scalar products are computed, complexity is again

O(N3); it is not necessary to learn in the D dimensional space,

as it is for the primal

• Write k(xj,xi) = Φ(xj)>Φ(xi). This is known as a Kernel

Classifier:

f(x) =
NX
i

αiyi k(xi,x) + b

Learning:

max
αi≥0

X
i

αi −
1

2

X
jk

αjαkyjyk k(xj,xk)

subject to

0 ≤ αi ≤ C for ∀i, and
X
i

αiyi = 0

Dual Classifier in transformed feature space

Special transformations

Φ :

Ã
x1
x2

!
→

⎛⎜⎝ x21
x22√
2x1x2

⎞⎟⎠ R2→ R3

Φ(x)>Φ(z) =
³
x21, x

2
2,
√
2x1x2

´⎛⎜⎝ z21
z22√
2z1z2

⎞⎟⎠
= x21z

2
1 + x22z

2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= (x>z)2

Kernel Trick

• Classifier can be learnt and applied without explicitly computing Φ(x)

• All that is required is the kernel k(x, z) = (x>z)2

• Complexity is still O(N3)



Example kernels

• Linear kernels k(x,x0) = x>x0

• Polynomial kernels k(x,x0) =
³
1+ x>x0

´d
for any d > 0

— Contains all polynomials terms up to degree d

• Gaussian kernels k(x,x0) = exp
³
−||x− x0||2/2σ2

´
for σ > 0

— Infinite dimensional feature space

Valid kernels – when can the kernel trick be used?

• Given some arbitrary function k(xi,xj), how do we know

if it corresponds to a scalar product Φ(xi)
>Φ(xj) in some

space?

• Mercer kernels: if k(, ) satisfies:
— Symmetric k(xi,xj) = k(xj,xi)

— Positive definite, α>Kα ≥ 0 for all α ∈ RN , where K is
the N ×N Gram matrix with entries Kij = k(xi,xj).

then k(, ) is a valid kernel.

• e.g. k(x, z) = x>z is a valid kernel, k(x, z) = x−x>z is not.



f(x) =
NX
i

αiyik(xi,x) + b

N = size of training data

weight (may be zero)
support vector

SVM classifier with Gaussian kernel

Gaussian kernel k(x,x0) = exp
³
−||x− x0||2/2σ2

´
Radial Basis Function (RBF) SVM

f(x) =
NX
i

αiyi exp
³
−||x− xi||2/2σ2

´
+ b
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RBF Kernel SVM Example

• data is not linearly separable in original feature space



σ = 1.0 C =∞
f(x) = 1

f(x) = 0

f(x) = −1

f(x) =
NX
i

αiyi exp
³
−||x− xi||2/2σ2

´
+ b

σ = 1.0 C = 100

Decrease C, gives wider (soft) margin



σ = 1.0 C = 10

f(x) =
NX
i

αiyi exp
³
−||x− xi||2/2σ2

´
+ b

σ = 1.0 C =∞

f(x) =
NX
i

αiyi exp
³
−||x− xi||2/2σ2

´
+ b



σ = 0.25 C =∞

Decrease sigma, moves towards nearest neighbour classifier

σ = 0.1 C =∞

f(x) =
NX
i

αiyi exp
³
−||x− xi||2/2σ2

´
+ b



Kernel block structure
RBF kernel (C = 1, gamma = 0.25)
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Kernel Trick - Summary

• Classifiers can be learnt for high dimensional features spaces, without 
actually having to map the points into the high dimensional space

• Data may be linearly separable in the high dimensional space, but not 
linearly separable in the original feature space

• Kernels can be used for an SVM because of the scalar product in the dual 
form, but can also be used elsewhere – they are not tied to the SVM formalism

• Kernels apply also to objects that are not vectors, e.g.

• We will see other examples of kernels later in regression and unsupervised 
learning

k(h, h0) =
P
kmin(hk, h

0
k) for histograms with bins hk, h

0
k



Background reading

• Bishop, chapters 6.2 and 7

• Hastie et al, chapter 12

• More on web page: 

http://www.robots.ox.ac.uk/~az/lectures/ml


