Lecture 2: The SVM classifier

C4B Machine Learning

Hilary 2011

A. Zisserman

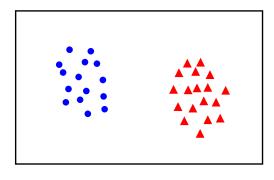
- Review of linear classifiers
 - · Linear separability
 - Perceptron
- Support Vector Machine (SVM) classifier
 - Wide margin
 - Cost function
 - Slack variables
 - · Loss functions revisited

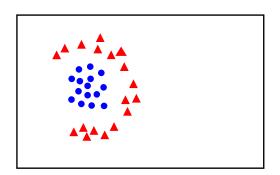
Binary Classification

Given training data (\mathbf{x}_i, y_i) for i = 1...N, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \ge 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

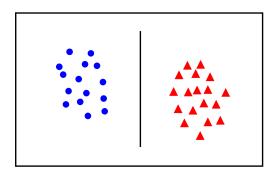
i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

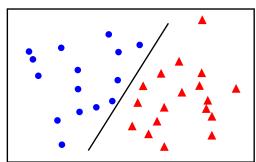




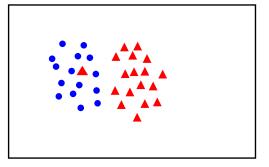
Linear separability

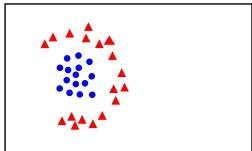
linearly separable





not linearly separable

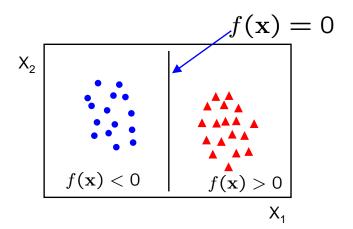




Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

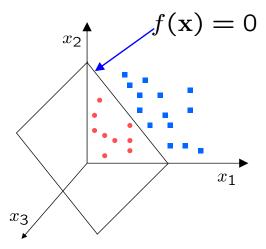


- in 2D the discriminant is a line
- w is the normal to the plane, and b the bias
- W is known as the weight vector

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$



• in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to `carry' the training data

For a linear classifier, the training data is used to learn **w** and then discarded

Only **w** is needed for classifying new data

Reminder: The Perceptron Classifier

Given linearly separable data \mathbf{x}_i labelled into two categories $y_i = \{-1,1\}$, find a weight vector \mathbf{w} such that the discriminant function

$$f(\mathbf{x}_i) = \mathbf{w}^\top \mathbf{x}_i + b$$

separates the categories for i = 1, .., N

• how can we find this separating hyperplane?

The Perceptron Algorithm

Write classifier as $f(\mathbf{x}_i) = \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}_i + w_0 = \mathbf{w}^{\top} \mathbf{x}_i$ where $\mathbf{w} = (\tilde{\mathbf{w}}, w_0), \mathbf{x}_i = (\tilde{\mathbf{x}}_i, 1)$

- Initialize $\mathbf{w} = 0$
- Cycle though the data points { x_i, y_i }
 - ullet if $old x_i$ is misclassified then $old w \leftarrow old w + lpha \operatorname{sign}(f(old x_i)) old x_i$
- Until all the data is correctly classified

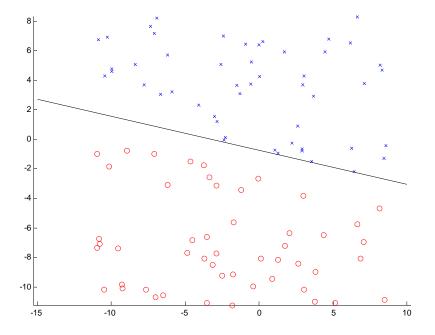
For example in 2D

- Initialize $\mathbf{w} = 0$
- \bullet Cycle though the data points { $\boldsymbol{x}_{i},\,\boldsymbol{y}_{i}$ }
 - ullet if $old x_i$ is misclassified then $old w \leftarrow old w + lpha \, {\sf Sign}(f(old x_i)) \, old x_i$
- Until all the data is correctly classified

before update X_2 X_1

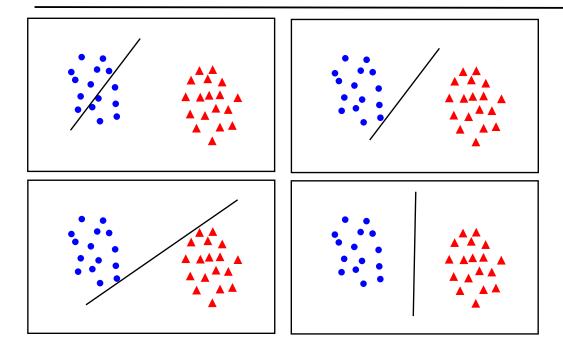
after update X_{2} $\mathbf{w} \leftarrow \mathbf{w} - \alpha \mathbf{x}_{i}$

NB after convergence $\mathbf{w} = \sum_{i}^{N} \alpha_{i} \mathbf{x}_{i}$



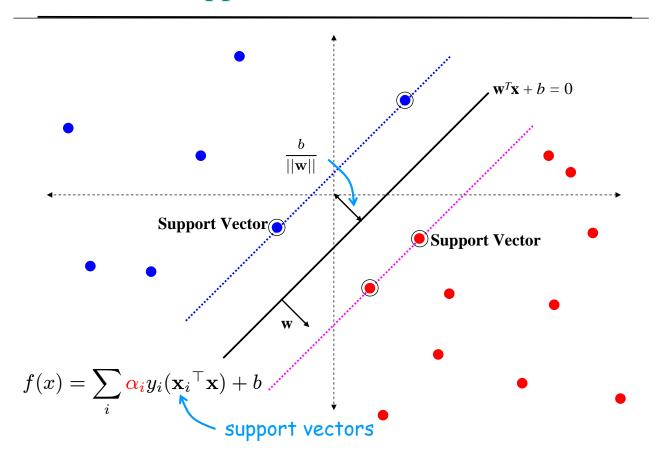
- if the data is linearly separable, then the algorithm will converge
- convergence can be slow ...
- separating line close to training data
- we would prefer a larger margin for generalization

What is the best w?



• maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine

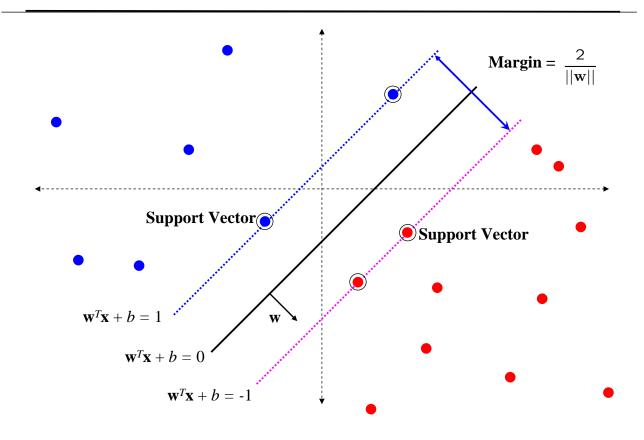


SVM – sketch derivation

- Since $\mathbf{w}^{\top}\mathbf{x} + b = 0$ and $c(\mathbf{w}^{\top}\mathbf{x} + b) = 0$ define the same plane, we have the freedom to choose the normalization of \mathbf{w}
- Choose normalization such that $\mathbf{w}^{\top}\mathbf{x}_{+} + b = +1$ and $\mathbf{w}^{\top}\mathbf{x}_{-} + b = -1$ for the positive and negative support vectors respectively
- Then the margin is given by

$$\frac{\mathbf{w}^{\top} \left(\mathbf{x}_{+} - \mathbf{x}_{-} \right)}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||}$$

Support Vector Machine



SVM - Optimization

• Learning the SVM can be formulated as an optimization:

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||} \text{ subject to } \mathbf{w}^{\top} \mathbf{x}_i + b \overset{\geq}{\leq} 1 \quad \text{ if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1 \dots N$$

• Or equivalently

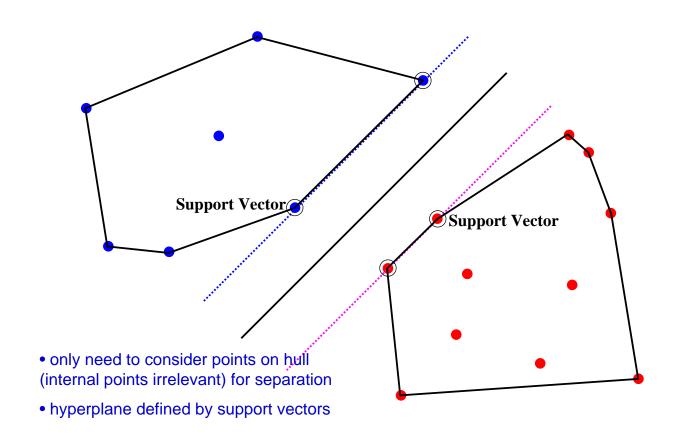
$$\min_{\mathbf{w}} ||\mathbf{w}||^2 \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \geq 1 \text{ for } i = 1 \dots N$$

• This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

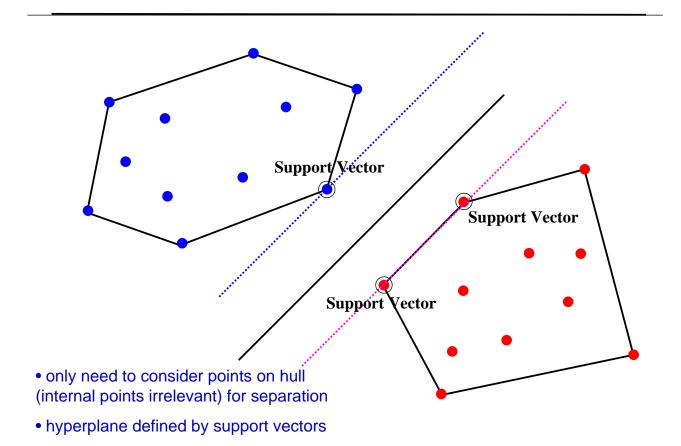
SVM – Geometric Algorithm

- Compute the convex hull of the positive points, and the convex hull of the negative points
- For each pair of points, one on positive hull and the other on the negative hull, compute the margin
- Choose the largest margin

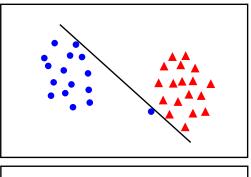
Geometric SVM Ex I



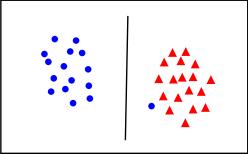
Geometric SVM Ex II



Linear separability again: What is the best w?



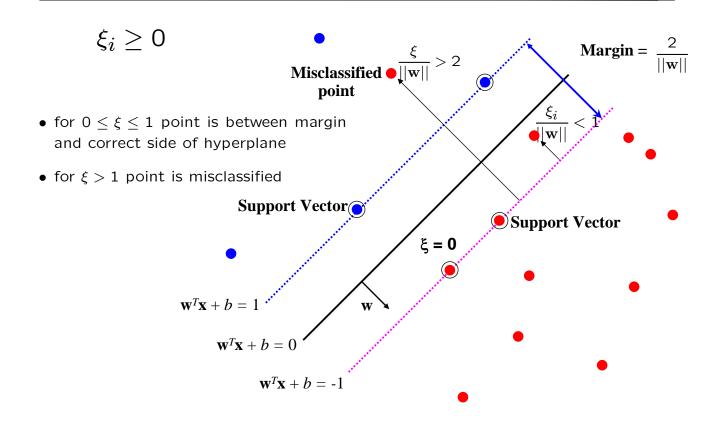
• the points can be linearly separated but there is a very narrow margin



 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Introduce "slack" variables for misclassified points



"Soft" margin solution

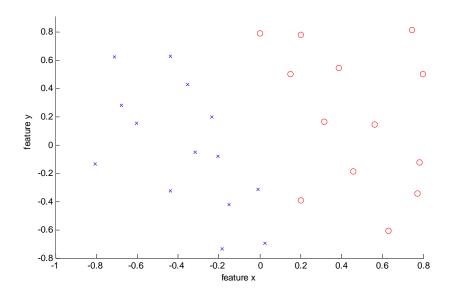
The optimization problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

subject to

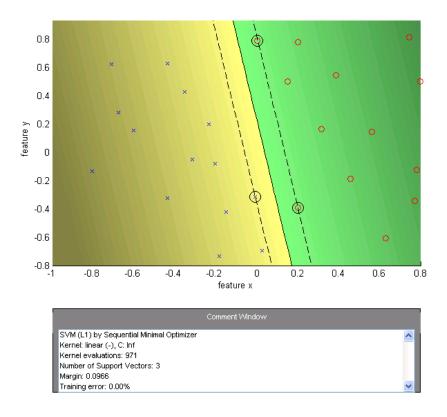
$$y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

- ullet Every constraint can be satisfied if ξ_i is sufficiently large
- ullet C is a regularization parameter:
 - small C allows constraints to be easily ignored \rightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C = \infty$ enforces all constraints: hard margin
- ullet This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

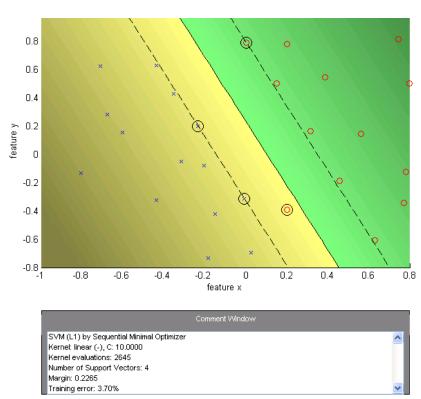


- data is linearly separable
- but only with a narrow margin

C = Infinity hard margin



C = 10 soft margin



Application: Pedestrian detection in Computer Vision

Objective: detect (localize) standing humans in an image

• cf face detection with a sliding window classifier

- reduces object detection to binary classification
- does an image window contain a person or not?

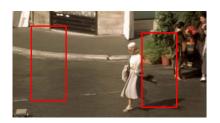
Method: the HOG detector

Training data and features

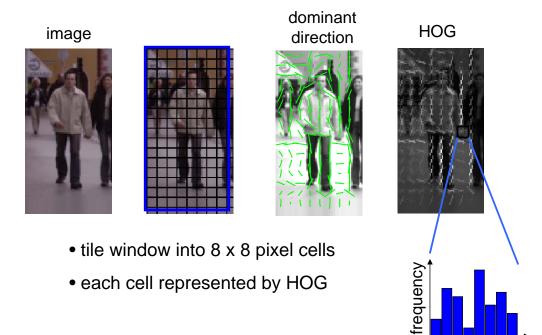
Positive data – 1208 positive window examples

Negative data – 1218 negative window examples (initially)



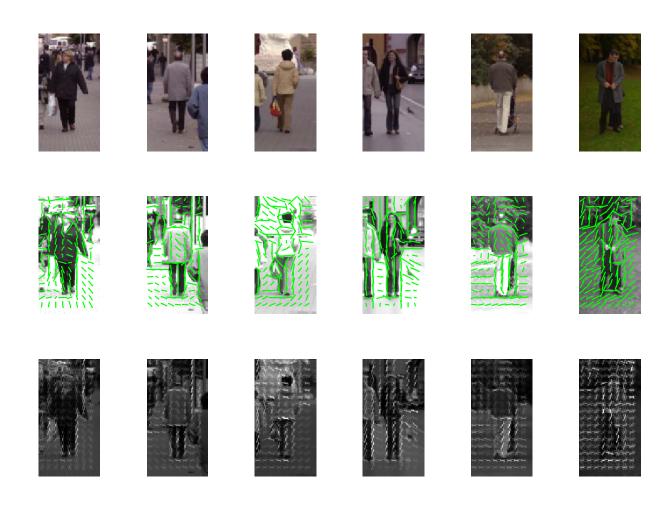


Feature: histogram of oriented gradients (HOG)

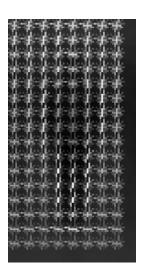


Feature vector dimension = 16×8 (for tiling) $\times 8$ (orientations) = 1024

orientation



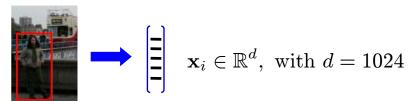
Averaged examples



Algorithm

Training (Learning)

• Represent each example window by a HOG feature vector



• Train a SVM classifier

Testing (Detection)

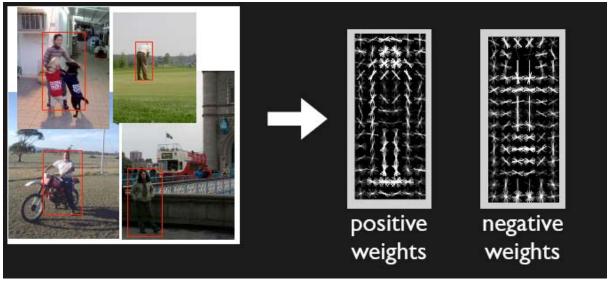
• Sliding window classifier

$$f(x) = \mathbf{w}^{\top} \mathbf{x} + b$$

Dalal and Triggs, CVPR 2005

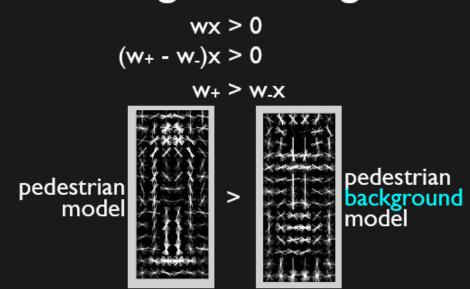
Learned model

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$



Slide from Deva Ramanan

What do negative weights mean?



Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

Optimization

Learning an SVM has been formulated as a constrained optimization problem over ${\bf w}$ and ${\boldsymbol \xi}$

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_i^N \xi_i \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \geq 1 - \xi_i \text{ for } i = 1 \dots N$$

The constraint $y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \geq 1 - \xi_i$, can be written more concisely as

$$y_i f(\mathbf{x}_i) \geq 1 - \xi_i$$

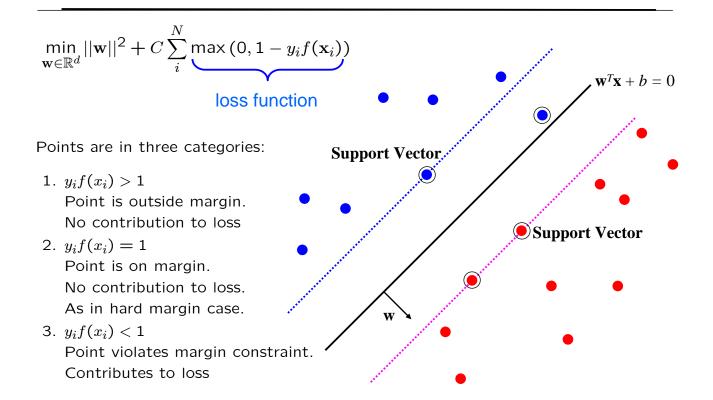
which is equivalent to

$$\xi_i = \max(0, 1 - y_i f(\mathbf{x}_i))$$

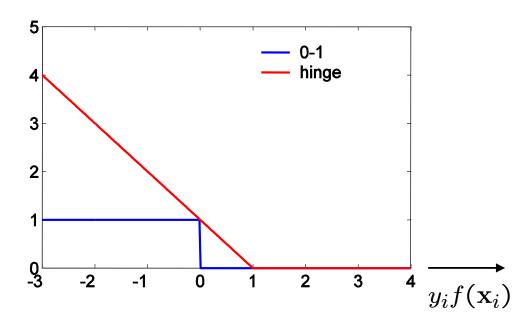
Hence the learning problem is equivalent to the unconstrained optimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$
regularization loss function

Loss function



Loss functions



- ullet SVM uses "hinge" loss $\max\left(0,1-y_if(\mathbf{x}_i)
 ight)$
- an approximation to the 0-1 loss

Background reading and more ...

• Next lecture – see that the SVM can be expressed as a sum over the support vectors:

$$f(x) = \sum_i {\color{blue}\alpha_i y_i(\mathbf{x}_i}^{\top}\mathbf{x}) + b$$
 support vectors

- On web page:
 http://www.robots.ox.ac.uk/~az/lectures/ml
- links to SVM tutorials and video lectures
- MATLAB SVM demo