Introduction to Information Retrieval

Jian-Yun Nie University of Montreal Canada

Outline

- What is the IR problem?
- How to organize an IR system? (Or the main processes in IR)
- Indexing
- Retrieval
- System evaluation
- Some current research topics

The problem of IR

Goal = find documents relevant to an information need from a large document set

IR problem First applications: in libraries (1950s) **ISBN**: 0-201-12227-8 Author: Salton, Gerard **Title**: Automatic text processing: the transformation, analysis, and retrieval of information by computer Editor: Addison-Wesley **Date**: 1989 **Content**: <Text>

- external attributes and internal attribute (content)
- Search by external attributes = Search in DB
- IR: search by content

Possible approaches

- 1. String matching (linear search in documents)
 - Slow
 - Difficult to improve
- 2. Indexing (*)
 - Fast
 - Flexible to further improvement

Indexing-based IR

Query

indexing indexing (Query analysis) Representation, <u>Representation</u> (keywords) Query (keywords) evaluation

Document

Main problems in IR

- Document and query indexing
 - How to best represent their contents?
- Query evaluation (or retrieval process)
 - To what extent does a document correspond to a query?
- System evaluation
 - How good is a system?
 - Are the retrieved documents relevant? (precision)
 - Are all the relevant documents retrieved? (recall)

Document indexing

- Goal = Find the important meanings and create an internal representation
 - Factors to consider:

String

Coverage

(Recall)

- Accuracy to represent meanings (semantics)
- Exhaustiveness (cover all the contents)
- Facility for computer to manipulate
- What is the best representation of contents?
 - Char. string (char trigrams): not precise enough

Phrase

Accuracy

(Precision)

Concept

- Word: good coverage, not precise
- Phrase: poor coverage, more precise
- Concept: poor coverage, precise

Word

Keyword selection and weighting

How to select important keywords?

Simple method: using middle-frequency words Frequency/Informativity

tf*idf weighting schema tf = term frequency

- frequency of a term/keyword in a document
 The higher the tf, the higher the importance (weight) for the doc.
- df = document frequency
 - no. of documents containing the term
 - distribution of the term
- idf = inverse document frequency
 - the unevenness of term distribution in the corpus
 - the specificity of term to a document

The more the term is distributed evenly, the less it is specific to a document

weight(t,D) = tf(t,D) * idf(t)

Some common *tf*idf* schemes

- tf(t, D)=freq(t,D)
- tf(t, D)=log[freq(t,D)] n = #docs containing t
- tf(t, D)=log[freq(t,D)]+1 N = #docs in corpus
- tf(t, D)=freq(t,d)/Max[f(t,d)]

weight(t,D) = tf(t,D) * idf(t)

Normalization: Cosine normalization, /max, ...

idf(t) = log(N/n)

Stopwords / Stoplist

- function words do not bear useful information for IR of, in, about, with, I, although, ...
- Stoplist: contain stopwords, not to be used as index
 - Prepositions
 - Articles
 - Pronouns
 - Some adverbs and adjectives
 - Some frequent words (e.g. document)
- The removal of stopwords usually improves IR effectiveness
- A few "standard" stoplists are commonly used.

Stemming

- Reason:
 - Different word forms may bear similar meaning (e.g. search, searching): create a "standard" representation for them
- Stemming:
 - Removing some endings of word computer compute computes computing computed computation
 comput

Porter algorithm

(Porter, M.F., 1980, An algorithm for suffix stripping, *Program*, **14**(3) :130-137)

- Step 1: plurals and past participles
 - SSES -> SS
 caresses -> caress
 - (*v*) ING -> motoring -> motor
- Step 2: adj->n, n->v, n->adj, ...
 - (m>0) OUSNESS -> OUS callousness -> callous
 - (m>0) ATIONAL -> ATE relational -> relate
- Step 3:
 - (m>0) ICATE -> IC
 triplicate -> triplic
- Step 4:
 - (m>1) AL ->

revival -> reviv

(m>1) ANCE ->

allowance -> allow

- Step 5:
 - (m>1) E -> probate -> probat
 - (m > 1 and *d and *L) -> single letter
 - controll -> control

Lemmatization

- transform to standard form according to syntactic category.
 - E.g. verb + $ing \rightarrow verb$
 - noun + $s \rightarrow$ noun
 - Need POS tagging
 - More accurate than stemming, but needs more resources
- crucial to choose stemming/lemmatization rules noise v.s. recognition rate
- compromise between precision and recall

light/no stemming severe stemming -recall +precision +recall -precision

Result of indexing

Each document is represented by a set of weighted keywords (terms):

 $\mathsf{D}_1 \to \{(\mathsf{t}_1,\,\mathsf{w}_1),\,(\mathsf{t}_2,\!\mathsf{w}_2),\,\ldots\}$

- e.g. $D_1 \rightarrow \{(\text{comput, 0.2}), (\text{architect, 0.3}), ...\}$ $D_2 \rightarrow \{(\text{comput, 0.1}), (\text{network, 0.5}), ...\}$
- Inverted file:

comput \rightarrow {(D₁,0.2), (D₂,0.1), ...}

Inverted file is used during retrieval for higher efficiency.

Retrieval

- The problems underlying retrieval
 - Retrieval model
 - How is a document represented with the selected keywords?
 - How are document and query representations compared to calculate a score?
 - Implementation

Cases

- 1-word query:
 - The documents to be retrieved are those that include the word
 - Retrieve the inverted list for the word
 - Sort in decreasing order of the weight of the word
- Multi-word query?
 - Combining several lists
 - How to interpret the weight? (IR model)

IR models

- Matching score model
 - Document D = a set of weighted keywords
 - Query Q = a set of non-weighted keywords

• $R(D, Q) = \Sigma_i w(t_i, D)$ where t_i is in Q. Boolean model

- Document = Logical conjunction of keywords
- Query = Boolean expression of keywords
- $R(D, Q) = D \rightarrow Q$

e.g.
$$D = t_1 \wedge t_2 \wedge \dots \wedge t_n$$

 $Q = (t_1 \wedge t_2) \vee (t_3 \wedge \neg t_4)$
 $D \rightarrow Q$, thus $R(D, Q) = 1$.

Problems:

- R is either 1 or 0 (unordered set of documents)
- many documents or few documents
- End-users cannot manipulate Boolean operators correctly
 - E.g. documents about *kangaroos* **and** *koalas*

Extensions to Boolean model (for document ordering)

D = $\{\dots, (t_i, w_i), \dots\}$: weighted keywords

Interpretation:

- D is a member of class t_i to degree w_i.
- In terms of fuzzy sets: µ_{ti}(D) = w_i

A possible **Evaluation**:

$$\begin{split} &\mathsf{R}(\mathsf{D},\,\mathsf{t}_{\mathsf{i}})=\mu_{\mathsf{ti}}(\mathsf{D});\\ &\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{1}\wedge\mathsf{Q}_{2})=\mathsf{min}(\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{1}),\,\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{2}));\\ &\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{1}\vee\mathsf{Q}_{2})=\mathsf{max}(\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{1}),\,\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{2}));\\ &\mathsf{R}(\mathsf{D},\,\neg\mathsf{Q}_{1})=\mathsf{1}-\mathsf{R}(\mathsf{D},\,\mathsf{Q}_{1}). \end{split}$$

Vector space model

Vector space = all the keywords encountered

Document

$$D = < a_1, a_2, a_3, ..., a_n >$$

 a_i = weight of t_i in D

Query

Q = $< b_1, b_2, b_3, ..., b_n >$ $b_i = \text{weight of } t_i \text{ in } Q$ • R(D,Q) = Sim(D,Q)

Matrix representation							ion
Docume space	ent t ₁	t ₂	t ₃		t _n	<	← Term
	D_1	a ₁₁	a ₁₂	a ₁₃	•••	a_{1n}	space
	D ₂	a ₂₁	a ₂₂	a ₂₃	•••	a _{2n}	
	D ₃	a ₃₁	a ₃₂	a ₃₃		a _{3n}	
	D _m	a _{m1}	a _{m2}	a _{m3}		a _{mn}	
	Qb_1	b ₂	b ₃		b _n		0 F

Some formulas for Sim

Dot product $Sim(D,Q) = \sum_{i} (a_i * b_i)$ t1 $Sim(D,Q) = \frac{\sum_{i} (a_{i} * b_{i})}{\sqrt{\sum_{i} a_{i}^{2} * \sum_{i} b_{i}^{2}}}$ Cosine +7 $Sim(D,Q) = \frac{2\sum_{i} (a_{i} * b_{i})}{\sum_{i} a_{i}^{2} + \sum_{i} b_{i}^{2}}$ Dice $\sum (a_i * b_i)$ $Sim(D,Q) = \frac{\sum_{i}^{n} (a_{i} + b_{i})}{\sum_{i}^{n} a_{i}^{2} + \sum_{i}^{n} b_{i}^{2} - \sum_{i}^{n} (a_{i} + b_{i})}$ Jaccard

Implementation (space)

- Matrix is very sparse: a few 100s terms for a document, and a few terms for a query, while the term space is large (~100k)
- Stored as: $D1 \rightarrow \{(t1, a1), (t2, a2), \dots\}$

 $t1 \rightarrow \{(D1,a1), \ldots\}$

Implementation (time)

- The implementation of VSM with dot product:
 - Naïve implementation: O(m*n)
 - Implementation using inverted file:

Given a query = $\{(t1,b1), (t2,b2)\}$:

- 1. find the sets of related documents through inverted file for t1 and t2
- 2. calculate the score of the documents to each weighted term (t1,b1) \rightarrow {(D1,a1 *b1), ...}
- 3. combine the sets and sum the weights (Σ)
- O(|Q|*n)

Other similarities Cosine: $Sim(D,Q) = \frac{\sum_{i}^{i} (a_{i} * b_{i})}{\sqrt{\sum_{j}^{i} a_{i}^{2} * \sum_{j}^{i} b_{i}^{2}}} = \sum_{i}^{i} \frac{a_{i}}{\sqrt{\sum_{j}^{i} a_{j}^{2}}} \frac{b_{i}}{\sqrt{\sum_{j}^{i} b_{j}^{2}}}$

- use $\sqrt{\sum a_j^2}$ and $\sqrt{\sum b_j^2}$ to normalize the weights after indexing
- Dot product

(Similar operations do not apply to Dice and Jaccard)

Probabilistic model

- Given D, estimate P(R|D) and P(NR|D)
- P(R|D) = P(D|R) * P(R)/P(D) (P(D), P(R) constant) $\propto P(D|R)$ [1 present

$$D = \{t_1 = x_1, t_2 = x_2, \dots\} \qquad x_i = \begin{cases} 1 & \text{present} \\ 0 & absent \end{cases}$$

$$P(D | R) = \prod_{\substack{(t_i = x_i) \in D}} P(t_i = x_i | R)$$

= $\prod_{t_i} P(t_i = 1 | R)^{x_i} P(t_i = 0 | R)^{(1-x_i)} = \prod_{t_i} p_i^{x_i} (1-p_i)^{(1-x_i)}$
 $P(D | NR) = \prod_{t_i} P(t_i = 1 | NR)^{x_i} P(t_i = 0 | NR)^{(1-x_i)} = \prod_{t_i} q_i^{x_i} (1-q_i)^{(1-x_i)}$

30

Prob. model (cont'd)

For document ranking $Odd(D) = \log \frac{P(D \mid R)}{P(D \mid NR)} = \log \frac{\prod_{t_i} p_i^{x_i} (1 - p_i)^{(1 - x_i)}}{\prod_{t_i} q_i^{x_i} (1 - q_i)^{(1 - x_i)}}$ $= \sum_{t_i} x_i \log \frac{p_i(1-q_i)}{q_i(1-p_i)} + \sum_{t_i} \log \frac{1-p_i}{1-q_i}$ $\propto \sum_{i} x_i \log \frac{p_i(1-q_i)}{q_i(1-p_i)}$

31

Prob. model (cont'd)

- How to estimate p_i and q_i?
- A set of *N* relevant and irrelevant samples; $p_i = \frac{r_i}{R_i}$ $q_i = \frac{R_i}{N-R_i}$

r _i Rel. doc. with t _i	n _i -r _i Irrel.doc with t _i	n _i Doc. with t _i
R _i -r _i Rel. doc. without t _i	N-R _i - n+r _i Irrel.doc without t _i	N-n _i Doc. without ti
R _i Rel. doc	N-R _i Irrel.doc . 32	N Samples

Prob. model (cont'd)

$$Odd(D) = \sum_{t_i} x_i \log \frac{p_i(1-q_i)}{q_i(1-p_i)}$$

$$= \sum_{t_i} x_i \frac{r_i (N - R_i - n_i + r_i)}{(R_i - r_i)(n_i - r_i)}$$

Smoothing (Robertson-Sparck-Jones formula)

$$Odd(D) = \sum_{t_i} x_i \frac{(r_i + 0.5)(N - R_i - n_i + r_i + 0.5)}{(R_i - r_i + 0.5)(n_i - r_i + 0.5)} = \sum_{t_i \in D} w_i$$

• When no sample is available:

$$p_i=0.5$$
,
 $q_i=(n_i+0.5)/(N+0.5)≈n_i/N$

May be implemented as VSM

$$Score(D,Q) = \sum_{t \in Q} w \frac{(k_1 + 1)tf}{K + tf} \frac{(k_3 + 1)qtf}{k_3 + qtf} + k_2 |Q| \frac{avdl - dl}{avdl + dl}$$
$$K = k_1((1-b) + b \frac{dl}{avdl - dl})$$

- k1, k2, k3, d: parameters
- qtf: query term frequency
- dl: document length
- avdl: average document length

(Classic) Presentation of results

- Query evaluation result is a list of documents, sorted by their similarity to the query.
- E.g.

doc10.67 doc20.65 doc30.54

. . .

System evaluation

Efficiency: time, space

- Effectiveness:
 - How is a system capable of retrieving relevant documents?
 - Is a system better than another one?
- Metrics often used (together):
 - Precision = retrieved relevant docs / retrieved docs
 - Recall = retrieved relevant docs

- -Precision change w.r.t. Recall (not a fixed point)
- -Systems cannot compare at one Precision/Recall point
- -Average precision (on 11 points of recall: 0.0, 037, ..., 1.0)

An illustration of P/R calculation

MAP (Mean Average Precision)

$$MAP = \frac{1}{n} \sum_{Q_i} \frac{1}{|R_i|} \sum_{D_j \in R_i} \frac{j}{r_{ij}}$$

- r_{ij} = rank of the j-th relevant document for Q_i
- $|R_i| = #$ rel. doc. for Q_i
- n = # test queries
 E.g. Rank:

 1
 5
 8
 2nd rel. doc.

 3rd rel. doc.

$$MAP = \frac{1}{2} \left[\frac{1}{3} \left(\frac{1}{1} + \frac{2}{5} + \frac{3}{10} \right) + \frac{1}{2} \left(\frac{1}{4} + \frac{2}{8} \right) \right]$$
39

Some other measures

- Noise = retrieved irrelevant docs / retrieved docs
- Silence = non-retrieved relevant docs / relevant docs
 - Noise = 1 Precision; Silence = 1 Recall
- Fallout = retrieved irrel. docs / irrel. docs
- Single value measures:
 - F-measure = 2 P * R / (P + R)
 - Average precision = average at 11 points of recall
 - Precision at n document (often used for Web IR)
 - Expected search length (no. irrelevant documents to read before obtaining n relevant doc.)

Test corpus

- Compare different IR systems on the same test corpus
- A test corpus contains:
 - A set of documents
 - A set of queries
 - Relevance judgment for every documentquery pair (desired answers for each query)
- The results of a system is compared with the desired answers.

An evaluation example (SMART)

Run nun	nber:	1	2	
Num_que	eries:	52	52	
Total r	number of	documents	over all	queries
Ret	crieved:	780	780	
Rel	Levant:	796	796	
Rel	_ret:	246	229	
Recall	- Precis	ion Average	es:	
at	0.00	0.7695	0.7894	
at	0.10	0.6618	0.6449	
at	0.20	0.5019	0.5090	
at	0.30	0.3745	0.3702	
at	0.40	0.2249	0.3070	
at	0.50	0.1797	0.2104	
at	0.60	0.1143	0.1654	
at	0.70	0.0891	0.1144	
at	0.80	0.0891	0.1096	
at	0.90	0.0699	0.0904	
at	1.00	0.0699	0.0904	

Average pi	recision	for all	points
11-pt <i>A</i>	Avg:	0.2859	0.3092
% Char	nge:		8.2
Recall:			
Exact:	;	0.4139	0.4166
at 5	docs:	0.2373	0.2726
at 10	docs:	0.3254	0.3572
at 15	docs:	0.4139	0.4166
at 30	docs:	0.4139	0.4166
Precision:	;		
Exact: 0.2936	:	0.3154	
At 5	docs:	0.4308	0.4192
At 10	docs:	0.3538	0.3327
At 15	docs:	0.3154	0.2936
At 30	docs:	0.1577	0.1468

The TREC experiments

Once per year

- A set of documents and queries are distributed to the participants (the standard answers are unknown) (April)
- Participants work (very hard) to construct, finetune their systems, and submit the answers (1000/query) at the deadline (July)
- NIST people manually evaluate the answers and provide correct answers (and classification of IR systems) (July – August)
- TREC conference (November)

TREC evaluation methodology

- Known document collection (>100K) and query set (50)
- Submission of 1000 documents for each query by each participant
- Merge 100 first documents of each participant -> global pool
- Human relevance judgment of the global pool
- The other documents are assumed to be irrelevant
- Evaluation of each system (with 1000 answers)
 - Partial relevance judgments
 - But stable for system ranking

Tracks (tasks)

- Ad Hoc track: given document collection, different topics
- Routing (filtering): stable interests (user profile), incoming document flow
- CLIR: Ad Hoc, but with queries in a different language
- Web: a large set of Web pages
- Question-Answering: When did Nixon visit China?
- Interactive: put users into action with system
- Spoken document retrieval
- Image and video retrieval
- Information tracking: new topic / follow up /

CLEF and NTCIR

- CLEF = Cross-Language Experimental Forum
 - for European languages
 - organized by Europeans
 - Each per year (March Oct.)
- NTCIR:
 - Organized by NII (Japan)
 - For Asian languages
 - cycle of 1.5 year

Impact of TREC

- Provide large collections for further experiments
- Compare different systems/techniques on realistic data
- Develop new methodology for system evaluation
- Similar experiments are organized in other areas (NLP, Machine translation, Summarization, ...)

Some techniques to improve IR effectiveness

- Interaction with user (relevance feedback)
 - Keywords only cover part of the contents
 - User can help by indicating relevant/irrelevant document
- The use of relevance feedback
 - To improve query expression:

$$Q_{new} = \alpha^* Q_{old} + \beta^* Rel_d - \gamma^* Nrel_d$$

where Rel_d = centroid of relevant documents NRel_d = centroid of non-relevant documents

Modified relevance feedback

- Users usually do not cooperate (e.g. AltaVista in early years)
- Pseudo-relevance feedback (Blind RF)
 - Using the top-ranked documents as if they are relevant:
 - Select m terms from n top-ranked documents
 - One can usually obtain about 10% improvement

Query expansion

- A query contains part of the important words
- Add new (related) terms into the query
 - Manually constructed knowledge base/thesaurus (e.g. Wordnet)
 - Q = information retrieval
 - Q' = (information + data + knowledge + ...)
 (retrieval + search + seeking + ...)
 - Corpus analysis:
 - two terms that often co-occur are related (Mutual information)
 - Two terms that co-occur with the same words are related (e.g. T-shirt and coat with wear, ...)

Global vs. local context analysis

- Global analysis: use the whole document collection to calculate term relationships
- Local analysis: use the query to retrieve a subset of documents, then calculate term relationships
 - Combine pseudo-relevance feedback and term co-occurrences
 - More effective than global analysis

Some current research topics: Go beyond keywords

- Keywords are not perfect representatives of concepts
 - Ambiguity:
 - *table* = data structure, furniture?
 - Lack of precision:

"operating", "system" less precise than "operating_system"

Suggested solution

- Sense disambiguation (difficult due to the lack of contextual information)
- Using compound terms (no complete dictionary of compound terms, variation in form)
- Using noun phrases (syntactic patterns + statistics)
- Still a long way to go

Language models

Logical models

- How to describe the relevance relation as a logical relation?
 - D => Q
- What are the properties of this relation?
- How to combine uncertainty with a logical framework?
- The problem: What is relevance?

Related applications: Information filtering

- IR: changing queries on stable document collection
- IF: incoming document flow with stable interests (queries)
 - yes/no decision (in stead of ordering documents)
 - Advantage: the description of user's interest may be improved using relevance feedback (the user is more willing to cooperate)
 - Difficulty: adjust threshold to keep/ignore document
 - The basic techniques used for IF are the same as those for IR – "Two sides of the same coin"

... doc3, doc2, doc1 \longrightarrow IF \checkmark_{ianore}

User profile

IR for (semi-)structured documents

- Using structural information to assign weights to keywords (Introduction, Conclusion, ...)
 - Hierarchical indexing
- Querying within some structure (search in title, etc.)
 - INEX experiments
- Using hyperlinks in indexing and retrieval (e.g. Google)

PageRank in Google

- Assign a numeric value to each page
- The more a page is referred to by important pages, the more this page is important
- *d:* damping factor (0.85)
- Many other criteria: e.g. proximity of query words
 - "...information retrieval ..." better than "... information ... retrieval ..."

IR on the Web

- No stable document collection (spider, crawler)
- Invalid document, duplication, etc.
- Huge number of documents (partial collection)
- Multimedia documents
- Great variation of document quality
- Multilingual problem

Final remarks on IR

IR is related to many areas:

- NLP, AI, database, machine learning, user modeling...
- Iibrary, Web, multimedia search, ...
- Relatively week theories
- Very strong tradition of experiments
- Many remaining (and exciting) problems
- Difficult area: Intuitive methods do not necessarily improve effectiveness in practice

Why is IR difficult

- Vocabularies mismatching
 - Synonymy: e.g. car v.s. automobile
 - Polysemy: table
- Queries are ambiguous, they are partial specification of user's need
- Content representation may be inadequate and incomplete
- The user is the ultimate judge, but we don't know how the judge judges...
 - The notion of relevance is imprecise, context- and userdependent
- But how much it is rewarding to gain 10% improvement!