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k:ﬂ« Outline

= What is the IR problem?

= How to organize an IR system? (Or
the main processes in IR)

= Indexing

= Retrieval

= System evaluation

"= Some current research topics

2



LwThe problem of IR

» Goal = find documents relevant to an information need from a large document set

_ IR
Retrieval syste

- — Answer list
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IR problem

iIrst applications: in libraries (1950s)
ISBN: 0-201-12227-8
Author: Salton, Gerard

Title: Automatic text processing: the transformation,
analysis, and retrieval of information by computer

Editor: Addison-Wesley
Date: 1989
Content: <Text>

external attributes and internal attribute
(content)

Search by external attributes = Search in
DB

IR: search by content e




&m Possible approaches

1. String matching (linear search in
documents)

- Slow
- Difficult to improve
2. Indexing (*)
- Fast
- Flexible to further improvement



k&w Indexing-based IR

Document Query

ingexing indexing
Query analysis)
Representation,____Represengation
(keywords) Query (keywords)
evaluation




Main problems in IR

Document and query indexing
= How to best represent their contents?

" Query evaluation (or retrieval process)

= To what extent does a document
correspond to a query?

= System evaluation
= How good is a system?

= Are the retrieved documents relevant?
(precision)

= Are all the relevant documents retrieved?
(recall)
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Document indexing

Goal = Find the important meanings and create
an internal representation

= Factors to consider:
= Accuracy to represent meanings (semantics)
= Exhaustiveness (cover all the contents)
= Facility for computer to manipulate

= What is the best representation of contents?
= Char. string (char trigrams): not precise enough

Word: good coverage, not precise

Phrase: poor coverage, more precise

= Concept: poor coverage, precise

Coverage < > Accuracy
(Recall) String Word Phrase Concept (Precision)
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Keyword selection and

\%&W weighting

= How to select important keywords?

= Simple method: using middle-frequency
WO rd S Frequency/Informativity

A
frequency informativity
4

N

] ‘\——
Min.

123 ... Rank

Max.
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tf*idf weighting

erm frequency
= frequency of a term/keyword in a document
The higher the tf, the higher the importance (weight) for
the doc.
= df = document frequency

" no. of documents containing the term
= distribution of the term

= |df = inverse document frequency
= the unevenness of term distribution in the corpus
" the specificity of term to a document

The more the term is distributed evenly, the less it is
specific to a document

weight(t,D) = tf(t,D) * idf(t) 11



Some common trxidf

schemes

tf(t, D)=freq(t,D) idf(t) = log(N/n)

tf(t, D)=log[freq(t,D)] n = #docs containing t
tf(t, D)=logl[freq(t,D)]+1 N = #docs in corpus
tf(t, D)=freq(t,d)/Max[f(t,d)]

weight(t,D) = tf(t,D) * idf(t)

Normalization: Cosine normalization, /max, ...
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Document Length

I Normalization

= Sometimes, additional normalizations
e.g. length:

weight(t, D)

voted (t,D) =
pivoted(t, D) - slope

normalized _weight(t, D)
(1-slope)* povot

Probability
of relevance

pivot

/ Probability of retrieval

> Doi.éength



-

Stopwords / Stoplist

= function words do not bear useful information for IR
of, in, about, with, |, although, ...
= Stoplist: contain stopwords, not to be used as index

Prepositions

Articles

Pronouns

Some adverbs and adjectives

Some frequent words (e.g. document)

= The removal of stopwords usually improves IR
effectiveness

= A few “standard” stoplists are commonly used.
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L&W Stemming

= Reason:

= Different word forms may bear similar meaning (e.g.
search, searching): create a “standard” representation for

them
= Stemming:

= Removing some endings of word

computer
compute
computes
computing
computed
computation

.

comput

15



Porter algorithm

(Porter, M.F., 1980, An algorithm for suffix
stripping, Program, 14(3) :130-137)

Step 1: plurals and past participles

= SSES -> SS caresses -> caress

= (*v*) ING -> motoring -> motor
Step 2: adj->n, n->v, n->adj, ...

= (m>0) OUSNESS -> OUS callousness -> callous
= (m>0) ATIONAL -> ATE relational -> relate

Step 3:

= (m>0) ICATE -> IC triplicate -> triplic
Step 4:

= (m>1) AL -> revival -> reviv

= (m>1) ANCE -> allowance -> allow
Step 5:

“ (m>1) E-> probate -> probat

" (m > 1and *d and *L) -> single letter conirgll -> control



Lemmatization

= transform to standard form according to syntactic
category.
E.g. verb + ing - verb
noun + s - Nnoun

= Need POS tagging
= More accurate than stemming, but needs more resources

= crucial to choose stemming/lemmatization rules
noise v.s. recognition rate

= compromise between precision and recall

light/no stemming severe stemming
-recall +precision +£ecall -precisio>n
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L&N Result of indexing

= Each document is represented by a set of
weighted keywords (terms):

Dy - {(ty, wy), (t,,W5), ...}

e.q. D, - {(comput, 0.2), (architect, 0.3), ...}
D, - {(comput, 0.1), (network, 0.5), ...}

= |nverted file:
comput - {(D,0.2), (D,,0.1), ...}

Inverted file is used during retrieval for higher efficiency.
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i«“ Retrieval
A

®" The problems underlying retrieval

= Retrieval model

* How is a document represented with the
selected keywords?

= How are document and query
representations compared to calculate a
score?

" Implementation

19



i«ﬁ Cases
h

= 1-word query:
The documents to be retrieved are those that
iInclude the word
- Retrieve the inverted list for the word

- Sort in decreasing order of the weight of the
word

= Multi-word query?
- Combining several lists

- How to interpret the weight?
(IR model)

20



«@M IR models
b

= Matching score model

= Document D = a set of weighted
keywords

= Query Q = a set of non-weighted
keywords

= R(D, Q) = 2 w(t, D)
where tis in Q.

21



Boolean model

= Document = Logical conjunction of keywords
= Query = Boolean expression of keywords
= R(D,Q)=D -Q

-

eg. D=t0Ot0O.. 0Ot
Q = (t, 0t) O(t,0-t,)
D - Q, thus R(D, Q) = 1.

Problems:
= R s either 1 or O (unordered set of documents)
" many documents or few documents

= End-users cannot manipulate Boolean operators
correctly

E.g. documents about kangaroos and koalas
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CXLENSIONS O pbooiIean
model

L&M (for document ordering)

= D={..., (t, w), ...}: weighted keywords
= Interpretation:

= D is a member of class t. to degree w..

= |n terms of fuzzy sets: (D) = w,

A possible Evaluation:

R(D, t) = py(D);

R(D, Q, 0Q,) = min(R(D, Q,), R(D, Q,));

R(D, Q,0Q,) = max(R(D, Q,), R(D, Q,));

R(D, -Q,) = 1-R(D, Q,).
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Vector space model

<t, t, t,..,t>
= Document
D = <a,a, ag ..., a >
a.= weightof t.in D
= Query
Q= <b, b, b, ..b>

b.= weight of t.in Q
= R(D,Q) = Sim(D,Q)

ector space = all the keywords encountered

24



‘L Matrix representation

Document t. t L t S
space™ Lo ’ " ) ;I/‘g(r:rtr;r
D, | @y; 8, a3 dip space
:)2 a21 a22 a23 a2n
D3 a31 a32 a33 a3n
D.la,, a., a.; Aan
Qb, b, bs b,

25



&W Some formulas for Sim
k\

Dot product
Cosine
Dice

Jaccard

Sim(D, Q) = Z (a,*b,)

tl
Z (a,*b,) D

Sim(D,0) = —

\/ >a *y b e

25 (4,%b) .

Sim(D,0) = —T :

Z a’ + Z b,

S (0, *b)

Sim(D,0) = '

I

Zai2 +lzbi2 _z(ai*bi)
7 ™6



L&M Implementation (space)

Matrix is very sparse: a few 100s terms for
a document, and a few terms for a query,
while the term space is large (~100k)

Stored as:
D1 - {(t1, al), (t2,a2), ...}

tl - {(D1,al), ...}

27



Implementation (time)

= The implementation of VSM with dot product:
= Naive implementation: O(m*n)
* Implementation using inverted file:
Given a query = {(tl1,bl), (t2,b2)}:

1. find the sets of related documents through inverted file for tl
and t2

2. calculate the score of the documents to each weighted term
(t1,b1l) - {(D1,al *bl), ...}
3.combine the sets and sum the weights (})

= O(|Q[*n)

28



Other similarities

Cosine:

> (@*h)

Sim(D, Q) =

\/Zaz*Zb ZJ \/sz

- use Za and ijztO normalize the
weights after indexing

- Dot product

(Similar operations do not apply to Dice

and Jaccard)
29



1 Probabilistic model

= Given D, estimate P(R|D) and P(NR|D)
= P(R|D)=P(D|R)*P(R)/P(D) (P(D), P(R) constant)

b

[0 P(D|R) . t
resen

D = {t=x, t=x%x, ...} x =0 P
10 absent

= P(D|R)= [P =xR)
(1,=x,)0D

=[] PG =1R)" Pt; =0| )™ =[] p," (1= p)"™
t; t

P(D|NR) =[] P(z; =1| NR)" P(t, = 0| NR)!™ = Ma" (- 7)o

30



l&w Prob. model (cont’d)

For document ranking
1— (I-x;)
POD|R) |_|p (1-p)

= oy |‘|q (-q)"

—Zx logg(l1 p)+210g

D in lOg pz(l ql)
7 q.(1-p,)

31



l&w Prob. model (cont’d)

= How to estimate p. and
q7

= A set of N relevant and
irrelevant samples;.

pi_E qz'_N_Ri

l

r n.-r.

Rel. Irrel.doc

doc. .

witht  |with t

R-r. N-R.-

Rel. n+r,

doc. Irrel.doc

without |.

L without
ti

R N-R.

Rel. doc Irrel.doc

32
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Doc.
with t,

N-n,

Doc.
without
ti

Samples



Prob. model (cont’'d)

0dd(D) =y x, log rd-4,)

7 q.(1-p,)
_ r(N-R —n +r)
Z (R, —r)(n,—r)

- Smoothlng (Robertson-Sparck-Jones formula)

+0.5)(N - R —n, +r+05)_
Odd(D) = Zx (R —7, +0.5)(n. —r- +0.5) =2 v

= When no sample is available:
p,=0.5,

q.=(n,+0.5)/(N+0.5)=n/N
= May be implemented as VSM

33



i«” BM25
A

Score(D,Q) = W(kl +Dif (ks +Dgtf +k, |0 avdl —dl
f K+if Kk +qif avdl +dI
dl
K=k((1-b)+b
((175) avdl—dl)

= k1, k2, k3, d: parameters

= gtf: query term frequency

= dl: document length

= avdl: average document length

34



(Classic) Presentation of

r It
M&W esults

" Query evaluation result is a list of
documents, sorted by their similarity to
the query.

= E.Q.
docl0.67
doc2 0.65
doc30.54
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B System evaluation

= Efficiency: time, space
= Effectiveness:

= How is a system capable of retrieving relevant
documents?

" |s a system better than another one?

= Metrics often used (together):

" Precision = retrieved relevant docs / retrieved
docs

= Recall = retrieygdidelgyapt Hecs / relevant docs




General form of

I Wrecision/recall

Preﬁision
1.0

> Recall
1.0

-Precision change w.r.t. Recall (not a fixed point)
-Systems cannot compare at one Precision/Recall point

-Average precision (on 11 points of recall: 0.0, BT, ..., 1.0)



An illustration of P/R

List |Rel?

Doc |Y

1

DocC

2

Doc |Y

3
Assulng:%creleiant docs.

|Doc

1.0

0.8F

0.6F

0.4}

0.2F

0.0

| calculation

Precision A

(0.2, 1.0)

(0.6, 0.75)
0.4, 0.67)
* (0.6, 0.6)

£(0.2,0.5)

> Recall

1.0
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MAP (Mean Average

L&W PreC|S|on)

= r, = rank of the j-th relevant document for Q
= |R| = #rel. doc. for Q
" n = # test queries

= E.g. Rank: 1 al 1% rel. doc.
5 8 2" rel. doc.
10 3" rel. doc.
1 .11
MAP =—[—(=+_ —) —(— —)]

2731 2°4 8 39



l«&ﬁm Some other measures

= Noise = retrieved irrelevant docs / retrieved docs

= Sjlence = non-retrieved relevant docs / relevant docs
= Noise = 1 - Precision; Silence = 1 - Recall

= Fallout = retrieved irrel. docs / irrel. docs

= Single value measures:
* F-measure=2P*R /(P + R)
= Average precision = average at 11 points of recall

= Precision at n document (often used for Web IR)

= Expected search length (no. irrelevant documents to read
before obtaining n relevant doc.)

40



SLW Test corpus
A

= Compare different IR systems on the
same test corpus

= A test corpus contains:
= A set of documents

= A set of queries

=Relevance judgment for every document-
query pair (desired answers for each query)

®" The results of a system is compared
with the desired answers.

41



An evaluation example
(SMART)

un number: 1

. Average precision for all points
Num queries: 52 52

Total number of documents over all queries l11-pt Avg: 0.2859 0.3092
Retrieved: 780 780 % Change: 8.2
Relevant: 796 796 Recall:

Rel ret: 246 229 Exact: 0.4139 0.410606

Recall - Precision Averages: at 5 docs: 0.2373 0.2726
at 0.00 0.7695  0.7894 at 10 docs: 0.3254  0.3572
at 0.10 0.6618  0.6449 at 15 docs: 0.4139 0.4166
o e e at 30 docs:  0.4139  0.4166
at 0.40 0.2249  0.3070 Precision:
at 0.50 0.1797 0.2104 Exact: 0.3154
at 0.60 0.1143 0.1654 0.2936
at 0.70 0.0891 0.1144 At 5 docs: 0.4308 0.4192
at 0.80 0.0891  0.1096 At 10 docs: 0.3538 0.3327
at 0.30 0.0699  0.0904 At 15 docs: 0.3154 0.2936
at 1.00 0.0699  0.0904 At 30 docs: 0.1577 0.1468

42



The TREC experiments

Once per year

= A set of documents and queries are distributed

to the participants (the standard answers are
unknown) (April)

= Participants work (very hard) to construct, fine-
tune their systems, and submit the answers
(1000/query) at the deadline (July)

= NIST people manually evaluate the answers and
provide correct answers (and classification of IR
systems) (July - August)

= TREC conference (November)

43



TREC evaluation

k&w methodology

I(<5n6))wn document collection (>100K) and query set

Submission of 1000 documents for each query by
each participant

Merge 100 first documents of each participant ->
global pool

Human relevance judgment of the global pool
The other documents are assumed to be irrelevant
Evaluation of each system (with 1000 answers)

= Partial relevance judgments
= But stable for system ranking

44



Tracks (tasks)

-

Ad Hoc track: given document collection, different
topics

Routing (filtering): stable interests (user profile),
iIncoming document flow

CLIR: Ad Hoc, but with queries in a different
language

Web: a large set of Web pages
Question-Answering: When did Nixon visit China?
Interactive: put users into action with system
Spoken document retrieval

Image and video retrieval

Information tracking: new topic / follow up 45



CLEF and NTCIR

= CLEF = Cross-Language Experimental
Forum

= for European languages
= organized by Europeans
= Each per year (March - Oct.)

= NTCIR:
= Organized by NIl (Japan)
= For Asian languages
= cycle of 1.5 year

46



Impact of TREC

-k

Provide large collections for further
experiments

Compare different systems/techniques on
realistic data

Develop new methodology for system
evaluation

Similar experiments are organized in other
areas (NLP, Machine translation,
Summarization, ...)

47



Some technigues to

g 'Mprove IR effectiveness

= |nteraction with user (relevance

feedback)
- Keywords only cover part of the contents

- User can help by indicating
relevant/irrelevant document

"= The use of relevance feedback
= To Improve query expression:
Q. = a*Q, + B*Rel d - y*Nrel d

where Rel d = centroid of relevant documents
NRel d = centroid of non-relevant documents

48



&W Effect of RF

2" retrieval

st retrieval

49



Modified relevance

&m feedback

= Users usually do not cooperate (e.q.
AltaVista in early years)

» Pseudo-relevance feedback (Blind RF)

= Using the top-ranked documents as if they
are relevant:
= Select m terms from n top-ranked documents
= One can usually obtain about 10% improvement

50



Query expansion

= A gquery contains part of the important
words

= Add new (related) terms into the query

= Manually constructed knowledge
base/thesaurus (e.g. Wordnet)
= Q = information retrieval
* Q' = (information + data + knowledge + ...)
(retrieval + search + seeking + ...)

= Corpus analysis:

= two terms that often co-occur are related (Mutual
information)

= Two terms that co-occur with the samej\i/ords are
related (e.g. T-shirt and coat with wear, ~...)



Global vs. local context
liw analysis

®= Global analysis: use the whole
document collection to calculate term
relationships

®= Local analysis: use the query to retrieve
a subset of documents, then calculate
term relationships

= Combine pseudo-relevance feedback and
term co-occurrences

= More effective than global analysis

52



Some current research
topics:
Go beyond keywords

Keywords are not perfect representatives of concepts
= Ambiguity:

table = data structure, furniture?
= Lack of precision:

“operating”, “system” less precise than “operating_system”

= Suggested solution

= Sense disambiguation (difficult due to the lack of contextual
information)

= Using compound terms (no complete dictionary of compound
terms, variation in form)

= Using noun phrases (syntactic patterns + statistics)
= Still a long way to go

53



Theory ...

R .
= Bayesian networks
"P(Q|D)
D1 D2 D3 ... Dm
tl t2 t3  t4 .0 tn

Inference Q revision

= _language models
54



n@m Logical models

= How to describe the relevance relation as
a logical relation?

D=>Q
= What are the properties of this relation?

= How to combine uncertainty with a
logical framework?

= The problem: What is relevance?

55



Related applications:
Information filtering

IR: changing queries on stable document
collection

= |F: incoming document flow with stable
Interests (queries)
= yes/no decision (in stead of ordering documents)

= Advantage: the description of user’s interest may be
improved using relevance feedback (the user is more
willing to cooperate)

= Difficulty: adjust threshold to keep/ignore document
= The basic techniques used for IF are the same as
those for IR - “Two side he skeap coin”
... doc3, doc2, docl— |F }< _
ignore
User profile 56




IR for (semi-)structured

h documents

= Using structural information to assign
weights to keywords (Introduction,
Conclusion, ...)
= Hierarchical indexing

= Querying within some structure (search in
title, etc.)
= INEX experiments

= Using hyperlinks in indexing and retrieval
(e.g. Google)

57



&m PageRank in Google

/
C< PR(I)
PR(A)=(1-d)+d ’
Qe @ PRAO=(-d)+d) o

= Assign a numeric value to each page

= The more a page is referred to by important pages, the
more this page is important

= d: damping factor (0.85)

= Many other criteria: e.g. proximity of query words

= “...information retrieval ..."” better than “... information ...
retrieval ...”



li% IR on the Web

No stable document collection (spider,
crawler)

= |nvalid document, duplication, etc.

= Huge number of documents (partial
collection)

= Multimedia documents
= Great variation of document quality
= Multilingual problem

59



kSLW Final remarks on IR

= |R is related to many areas:

= NLP, Al, database, machine learning, user
modeling...

" |ibrary, Web, multimedia search, ...
= Relatively week theories
= Very strong tradition of experiments
= Many remaining (and exciting) problems

= Difficult area: Intuitive methods do not
necessarily improve effectiveness in
practice
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Why Is IR difficult

= Vocabularies mismatching
= Synonymy: e.g. car v.s. automobile
= Polysemy: table

= Queries are ambiguous, they are partial specification of
user’'s need

= Content representation may be inadequate and
iIncomplete

= The user is the ultimate judge, but we don’t know how
the judge judges...

= The notion of relevance is imprecise, context- and user-
dependent

= But how much it is rewarding to gain 10% improvement!
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