by M. Dash and H. Liu

Group 10

Stanlay Irawan HD97-1976M Loo Poh Kok HD98-1858E Wong Sze Cheong HD99-9031U

Slides: http://www.comp.nus.edu.sg/~wongszec/group10.ppt

Agenda:

- Overview and general introduction. (pk)
- Four main steps in any feature selection methods. (pk)
- Categorization of the various methods. (pk)
- Algorithm = Relief, Branch & Bound. (pk)
- Algorithm = DTM, MDLM, POE+ACC, Focus. (sc)
- Algorithm = LVF, wrapper approach. (stan)
- Summary of the various method. (stan)
- Empirical comparison using some artificial data set. (stan)
- Guidelines in selecting the "right" method. (pk)

(1) Overview.

- various feature selection methods since the 1970's.
- common steps in all feature selection tasks.
- key concepts in feature selection algorithm.
- categorize 32 selection algorithms.
- run through some of the main algorithms.
- pros and cons of each algorithms.
- compare the performance of different methods.
- guideline to select the appropriate method.

(2) What is a feature?

TRS_DT	TRS_TYP_CD	REF_DT	REF_NUM	CO_CD	GDS_CD	QTY	UT_CD	UT_PRIC
21/05/93	00001	04/05/93	25119	10002J	00 HVi	10	CTN	22.000
21/05/93	00001	05/05/93	25124	10002J	032J	200	DOZ	1.370
21/05/93	00001	05/05/93	25124	10002J	033Q	500	DOZ	1.000
21/05/93	00001	13/05/93	25217	10002J	024K	5	CTN	21.000
21/05/93	00001	13/05/93	25216	10026H	006C	20	CTN	69.000
21/05/93	00001	13/05/93	25216	10026H	008Q	10	CTN	114.000
21/05/93	00001	14/05/93	25232	10026H	006C	10	CTN	69.000
21/05/93	00001	14/05/93	25235	10027E	003A	5	CTN	24.000
21/05/93	00001	14/05/93	25235	10027E	001M	5	CTN	24.000
21/05/93	00001	22/04/93	24974	10035E	009F	50	CTN	118.000
21/05/93	00001	27/04/93	25033	10035E	015A	375	GRS	72.000
21/05/93	00001	20/05/93	25313	10041Q	010F	10	CTN	26.000
21/05/93	00001	12/05/93	25197	10054R	002E	25	CTN	24.000

(3) What is classification?

- main data mining task besides association-rule discovery.
- predictive nature with a given set of features, predict the value of another feature.

• common scenario:

- Given a large legacy data set.
- Given a number of known classes.
- Select an appropriate smaller training data set.
- Build a model (eg. Decision tree).
- Use the model to classify the actual data set into the defined classes.

(4) Main focus of the author.

- survey various known feature selection methods
- to select subset of relevant feature
- to achieve classification accuracy.

Thus: relevancy -> correct prediction

(5) Why can't we use the full original feature set?

- too computational expensive to examine all features.
- not necessary to include all features (ie. irrelevant gain no further information).

(6) Four main steps in a feature selection method.

Generation = select feature subset candidate.

Evaluation = compute relevancy value of the subset.

Stopping criterion = determine whether subset is relevant.

Validation = verify subset validity.

(7) Generation

- select candidate subset of feature for evaluation.
- Start = no feature, all feature, random feature subset.
- Subsequent = add, remove, add/remove.
- categorise feature selection = ways to generate feature subset candidate.
- 3 ways in how the feature space is examined.
 - (7.1) Complete
 - (7.2) Heuristic
 - (7.3) Random.

(7.1) Complete/exhaustive

- examine all combinations of feature subset. {f1,f2,f3} => { {f1},{f2},{f3},{f1,f2},{f1,f3},{f2,f3},{f1,f2,f3} }
- order of the search space $O(2^p)$, p # feature.
- optimal subset is achievable.
- too expensive if feature space is large.

(7.2) Heuristic

- selection is directed under certain guideline
 - selected feature taken out, no combination of feature.
 - candidate = $\{ \{f1, f2, f3\}, \{f2, f3\}, \{f3\} \}$
- incremental generation of subsets.
- search space is smaller and faster in producing result.
- miss out features of high order relations (parity problem).
 - Some relevant feature subset may be omitted {f1,f2}.

(7.3) Random

- no predefined way to select feature candidate.
- pick feature at random (ie. probabilistic approach).
- optimal subset depend on the number of try
 - which then rely on the available resource.
- require more user-defined input parameters.
 - result optimality will depend on how these parameters are defined.
 - eg. number of try

(8) Evaluation

• determine the relevancy of the generated feature subset candidate towards the classification task.

```
Rvalue = J(candidate subset)
if (Rvalue > best_value) best_value = Rvalue
```

- <u>5 main type of evaluation functions.</u>
 - (8.1) distance (euclidean distance measure).
 - (8.2) information (entropy, information gain, etc.)
 - (8.3) dependency (correlation coefficient).
 - (8.4) consistency (min-features bias).
 - (8.5) classifier error rate (the classifier themselves).

(8.1) Distance measure

- $\bullet \quad \mathbf{z}^2 = \mathbf{x}^2 + \mathbf{y}^2$
- select those features that support instances of the same class to stay within the same proximity.
- instances of same class should be closer in terms of distance than those from different class.

(8.2) Information measure

- entropy measurement of information content.
- information gain of a feature : (eg. Induction of decision tree)
 gain(A) = I(p,n) E(A)
 gain(A) = before A is branched sum of all nodes after branched
- select A if gain(A) > gain(B).

(8.3) Dependency measure

- correlation between a feature and a class label.
- how close is the feature related to the outcome of the class label?
- dependence between features = degree of redundancy.
 - if a feature is heavily dependence on another, than it is redundant.
- to determine correlation, we need some physical value. value = distance, information

(8.4) Consistency measure

• two instances are *inconsistent* if they have *matching feature values* but group under *different class label*.

	f ₁	f ₂	class	
instance 1	а	b	c1	inconsistent
instance 2	а	b	c2	

- select {f1,f2} if in the training data set there exist no instances as above.
- heavily rely on the training data set.
- min-feature = want smallest subset with consistency.
- problem = 1 feature alone guarantee no inconsistency (eg. IC #).

Filter approach

• ignored effect of selected subset on the performance of classifier.

Wrapper approach

- evaluation fn = classifier
- take classifier into account.
- loss generality.
- high degree of accuracy.

(8.5) Classifier error rate.

- wrapper approach.
 error_rate = classifier(feature subset candidate)
 if (error_rate < predefined threshold) select the feature subset
- feature selection loss its generality, but gain accuracy towards the classification task.
- computationally very costly.

(9) Comparison among the various evaluation method.

method	generality	time	accuracy
distance	yes	low	-
information	yes	low	-
dependency	yes	low	-
consistency	yes	moderate	-
classifier error rate	no	high	very high

generality = how general is the method towards diff. classifier?

time = how complex in terms of time?

accuracy = how accurate is the resulting classification task?

(10) Author's categorization of feature selection methods.

	Measures	Generation						
	Weasures	Heuristic Complete		Random				
	Distance	Relief	Branch & Bound (BB)					
	Information	Decision Tree Method	Minimal Description					
	Illioilliation	(DTM)	Length Method (MDLM)					
		Probability of Err & Ave						
De	Dependency	Correlation Coefficient						
		Method (POE+ACC)						
	Consistency		Focus	LVF				
	Classifier Error	SBS, SFS	AMB & B	LVW				
	Rate	3D3, 3F3	AIVID & D					

(11.1) Relief [generation=heuristic, evaluation=distance].

- Basic algorithm construct :
 - each feature is assigned cumulative weightage computed over a predefined number of sample data set selected from the training data set.
 - feature with weightage over a certain threshold is the selected feature subset.

• Assignment of weightage:

- instances belongs to similar class should stay closer together than those in a different class.
- near-hit instance = similar class.
- near-miss instance = different class.
- W = W $diff(X,nearhit)^2 + diff(X,nearmiss)^2$

- 1. selected_subset = {}
- 2. init. all feature weightage = 0 (eg. for 2 features : w_1 =0, w_2 =0)
- 3. for i = 1 to no of sample

```
get one instance X from the training data set D.

get nearhit H = instance in D where dist(X,H) is closest & X.class=H.class
get nearmiss M = instance in D where dist(X,M) is closest & X.class<>M.class
update weightage for all features:
```

```
weightage = weightage -diff(x,h)<sup>2</sup> +diff(x,m)<sup>2</sup>

eg. weightage<sub>1</sub> = weightage<sub>1</sub> -diff(x<sub>1</sub>,h<sub>1</sub>)<sup>2</sup> +diff(x<sub>1</sub>,m<sub>1</sub>)<sup>2</sup>

eg. weightage<sub>2</sub> = weightage<sub>2</sub> -diff(x<sub>2</sub>,h<sub>2</sub>)<sup>2</sup> +diff(x<sub>2</sub>,m<sub>2</sub>)<sup>2</sup>
```

4. for j = 1 to no_of_feature (eg. 2)

if weightage_j >= Threshold, add feature_j to selected_subset

feature	X	W	-(x-hit) ²	+(x-miss) ²	=w	X	W	-(x-hit) ²	$+(x-miss)^2$	=w
shoe size	x ₁	0	$-(4-5)^2$	+(4-1) ²	-1+9	x ₂	8	$-(2-1)^2$	$+(2-5)^2$	+16
hair length	x ₁	0	-(2-1) ²	$+(2-3)^2$	-1+1	x ₂	0	$-(5-5)^2$	$+(5-4)^2$	+1

^{*} if (threshold=5), the feature "shoe size" will be selected.

- $W = W diff(X,nearhit)^2 diff(X,nearmiss)^2$
 - try to decrease weightage for instances belong to the same class (*note: their dist. diff. should be small).
 - try to increase weightage for instances belong to diff class (*note: their dist. diff. should be large).
 - If (W<=0), then sign of irrelevancy or redundancy.
 - If (W>0), then instances in diff. class is further apart as expected.

Disadvantages:

- applicable only to binary class problem.
- insufficient training instances fool relief.
- if most features are relevant, relief select all (even if not necessary).

• Advantages:

- noise-tolerant.
- unaffected by feature interaction (weightage is cumulative & det. collectively).

(11.2) Branch & Bound. [generation=complete, evaluation=distance]

- is a very old method (1977).
- Modified assumption :
 - find a minimally size feature subset.
 - a bound/threshold is used to prune irrelevant branches.
- F(subset) < bound, remove from search tree (including all subsets).
- Model of feature set search tree.

 $F = \{ f1, f2, f3 \}$

2 Methods:

- 1) Decision Tree Method (DTM)
 - Run C4.5 over training set.
 - The features that are selected are the union of all features in the pruned decision tree produced by C4.5.
 - An information based function selects the feature at each node of the decision tree

DTM Algorithm. Parameters (D)

- 1. $T = \emptyset$
- 2. Apply C4.5 to training set, D
- 3. Append all features appearing in the pruned decision tree to T
- 4. Return *T*

D =Training Set

Uses Information based Heuristic for node selection.

•
$$I(p,n) = -\left(\frac{p}{p+n}\right)\log_2\left(\frac{p}{p+n}\right) - \left(\frac{n}{p+n}\right)\log_2\left(\frac{n}{p+n}\right)$$

- p = # of instances of class label 1
- n = # of instances of class label 0
- Entropy "a measure of the loss of information in a transmitted signal or message".
- $E(F_i) = (\frac{p_0 + n_0}{p + n})I(p_0, n_0) + (\frac{p_1 + n_1}{p + n})I(p_1, n_1)$
 - p_x = # of instances with feature value = x, class value = 1 (positive)
 - $n_x = \#$ of instances with feature value = x, class value = 0 (negative)

•
$$E(C) = \frac{6+2}{16}I(6,2) + \frac{1+7}{16}I(1,7) = 0.677421$$

- Feature to be selected as root of decision tree has minimum entropy.
- Root node partitions, based on the values of the selected feature, instances into two nodes.
- For each of the two sub-nodes, apply the formula to compute entropy for remaining features. Select the one with minimum entropy as node feature.
- Stop when each partition contains instances of a single class or until the test offers no further improvement.
- C4.5 returns a pruned-tree that avoids over-fitting.
- \therefore The union of all features in the pruned decision tree is returned as T.

Hand-run of CorrAL Dataset:

• Computation of Entropy across all features for selecting <u>root</u> of the decision tree :

	Feature - F	E(<i>F</i>)	
		0.850603	
	B1	0.882856	
	B0	0.882856	
	A1	0.882856	conv
A .	A0	0.882856	ору.
	С	0.677421	

DTM returns $\{A_0, A_1, B_0, B_1, C\}$

2) Koller and Sahami's method

- Intuition:
 - Eliminate any feature that does not contribute any additional information to the rest of the features.
- Implementation attempts to approximate a Markov Blanket.
- However, it is suboptimal due to naïve approximations.

1 Method:

- Minimum Description Length Method (MDLM)
 - Eliminate useless (irrelevant and/or redundant) features
 - 2 Subsets: U and V, $U \cap V = \emptyset$, $U \cup V = S$

 \forall v, v \in V, if F(u) = v, u \in U where F is a fixed non-class dependent function, then features in V becomes useless when is U becomes known.

- $-\mathbf{F}$ is formulated as an expression that relates:
 - the # of bits required to transmit the classes of the instances
 - the optimal parameters
 - the useful features
 - the useless features
- Task is to determine *U* and *V*.

- Uses Minimum Description Length Criterion (MDLC)
 - MDL is a mathematical model for Occam's Razor.
 - Occam's Razor principle of preferring simple models over complex models.
- MDLM searches all possible subsets: 2^N
- Outputs the subset satisfying MDLC
- MDLM finds useful features only if the observations (the instances) are Gaussian

MDLM Algorithm. Parameters (D):

- 1. Set $MDL = \infty$
- 2. For all feature subsets *L*:

```
1.1 Compute Length_L = \sum_{i=1}^{i=q} \frac{P_i}{2} \log \frac{|D_L(i)|}{|D_L|} + h_L

where h_L = \frac{1}{2}(N-M)(N+M+3) \log P + \sum_{i=1}^{i=q} M(M+3) \log P_i,

N – total number of features,

M – number of features in the candidate subset,

P – total number of instances in D,

P_i – number of instances with class label i,

q – total number of class labels,

D_L – covariance matrix formed from all the useful feature vectors,

D_L(i) – covariance matrix formed from the useful feature vectors of class i,

|.| – denotes determinant.
```

$$T = L$$
, $MDL = Length_L$

3. Return T D = Training Set

- Suggested implementation
 - For all feature subsets:
 - 1. Calculate the covariance matrices of the whole feature vectors for all classes: D_{l}
 - 2. Calculate the covariance matrices of the whole feature vectors for each separate class: $D_l(i)$
 - 3. Obtain the covariance matrix for useful subsets as sub-matrixes of D_L and $D_L(i)$
 - 4. Compute the determinants of the sub-matrices D_{l} and $D_{l}(i)$
 - 5. Compute Length, given 1,2,3,4 as in step 2 of the algorithm
- Return subset that has the minimum description length.
- Hand-run of CorrAL dataset returns {C} with minimum description length of 119.582.

Category VII - Generation Heuristic/Evaluation Dependence

2 methods

- 1) POE + ACC (Probability of Error and Average Correlation Coefficient)
 - First feature selected is feature with smallest probability of error (P_{ℓ}) .
 - The next feature selected is feature that produces minimum weighted sum of P_{e} and average correlation coefficient ACC.
 - ACC is mean of correlation coefficients of all candidate features with features previously selected at that point.
 - This method can rank all the features based on the weighted sum.
 - Stopping criterion is the required number of features.
 - The required parameters are the number of features and the weights w_1 and w_2 .

POE + ACC Algorithm .Parameters (M, w_1, w_2)

- 1. $T = \emptyset$
- 2. Find feature with minimum P_e and append to T
- 3. For i = 1 to M-1 Find the next feature with minimum $w_1(P_e) + w_2(ACC)$ Append it to T
- 4. Return T

```
M = Required number of features

w_1 = Weight for POE

w_2 = Weight for ACC
```

• To calculate P_e

- First compute the a priori probability of different classes
- For each feature, calculate the class-conditional probabilities given the class label.
- Then for each feature value, find the class label for which the product of a priori class probability and class-conditional probability given the class label is a maximum
- Finally count the number of mismatches between the actual and predicted class values and select the feature with minimum mismatches

To calculate ACC:

Compute correlation coefficient of the candidate feature x, with each feature previous selected. (Correlation coefficient measures the amount of linear association between any 2 random variables):

$$ACC(x) = (\sum^{n} Corr(x,y)) / n \text{ where } n = |T|, y \in T$$

Hand-run of CorrAL Dataset:

- A priori class probabilities of *D*:
 - for class 0 = 9/16, class 1 = 7/16
- For feature *C*: class-conditional probability calculation:

	class = 0	class = 1
P (C=0)	2/9	6/7
P (C=1)	7/9	1/7

• Calculating product of a priori class probability and classconditional probability given the class label:

	x = 0	x = 1
P (C=0 Class = x)	2/9 * 9/16 = 0.125	6/7 * 7/16 = 0.375
P(C=1 Class = x)	7/9 * 9/16 = 0.4375	1/7 * 7/16 = 0.0625

• Thus when C takes value of 0, the prediction is class = 1 and when C takes the value of 1, the prediction is class = 0.

- Using this, the number of mismatches between the actual and predicted class values is counted to be 3 (instances 7, 10 and 14)
- \forall : P_e of feature C = 3/16 or 0.1875.
- According to the author, this is the minimum among all the features and is selected as the first feature.
- In the second step, the P_e and ACC (of all remaining features $\{A_0, A_1, B_0, B_1, I\}$ with feature C) are calculated to choose the feature with minimum $[w_1(P_e) + w_2(ACC)]$
- Stop when required number of features have been selected.
- For hand-run of CorrAL, subset $\{C, A_{\emptyset}, B_{\emptyset}, I\}$ is selected.

2) PRESET

- Uses the concept of a rough set
- First find a reduct and remove all features not appearing in the reduct (a reduct of a set P classifies instances equally well as P does)
- Then rank features based on their significance measure (which is based on dependency of attributes)

3 Methods:

- 1) Focus
 - Implements the Min-Features bias
 - Prefers consistent hypotheses definable over as few features as possible
 - Unable to handle noise but may be modified to allow a certain percentage of inconsistency

Focus Algorithm. Parameters (D, S)

- 1. T = S
- 2. For i = 0 to *N-1*

For each subset L of size i

If no inconsistency in the training set D then

$$T = L$$

return T

D = Training Set S = Original Feature Set

- Focus performs breath-first generation of feature subsets:-
 - It first generates subsets of size one, then two, and so on.
 - For each subset generated, check whether there are any inconsistencies.
 - A subset is inconsistent when there are at least two instances in the dataset having equal values for all the features under examination. Eg, for subset $\{A_0\}$, instances 1 and 4 have the same A_0 instance value (ie:- 0) but different class labels (0 and 1 respectively)
 - Continues until it finds the first subset that is not inconsistent or when the search is complete.

Hand-run of CorrAL Dataset:

- Consistent feature sets are:
 - $\{A_0, A_1, B_0, B_1\}$ $\{A_0, A_1, B_0, B_1, I\}$ $\{A_0, A_1, B_0, B_1, C\}$ $\{A_0, A_1, B_0, B_1, I, C\}$
- However Focus returns the smallest consistent subset that is $\{A_0, A_1, B_0, B_1\}$.
- Trivial implementation of Focus:
 - http://www.comp.nus.edu.sg/~wongszec/cs6203_focus.pl
 - To run, type: perl cs6203_focus.pl

• 2) Schlimmer's Method

- Variant of Focus: Uses a systematic enumeration scheme as generation procedure and the inconsistent criterion as the evaluation function
- Uses a heuristic function that makes the search for the optimal subset faster.

• 3) MIFES_1

 Also very similar to Focus: Represents the set of instances in the form of a matrix.

CATEGORY XII (Consistency – Random)

LVF Algorithm

- Las Vegas Algorithm
- Randomly search the space of instances which makes probabilistic choices more faster to an optimal solution
- For each candidate subsets, LVF calculates an inconsistency count based on the intuition
- An inconsistency threshold is fixed in the beginning (Default = 0)
- Any subsets with inconsistency rate > threshold, **REJECT**

CATEGORY XII (Consistency – Random)

LVF Algorithm

• INPUT MAX-TRIES

D - Dataset

N - Number of attributes

 γ - Allowable inconsistency rate

• **OUTPUT** sets of M features satisfying the inconsistency rate

<u>CATEGORY XII (Consistency – Random)</u>

LVF Algorithm

```
C_{\text{best}} = N;
FOR I = 1 to MAX-TRIES
S = randomSet(seed);
C = numOfFeatures(S);
IF (C < C_{best})
IF (InconCheck(S,D) \leq \gamma);
S_{\text{best}} = S; C_{\text{best}} = C;
print Current Best(S)
ELSE IF ((C = C_{best}) AND (InConCheck(S,D) < \gamma))
print Current Best(S)
END FOR
```

<u>CATEGORY XII (Consistency – Random)</u>

LVF Algorithm

ADVANTAGE

- Find optimal subset even for database with Noise
- User does not have to wait too long for a good subset
- Efficient and simple to implement, guarantee to find optimal subset if resources permit

DISADVANTAGE

• It take more time to find the optimal subset (whether the data-set is consistent or not)

FILTER VS WRAPPER

FILTER METHOD

Consider attributes independently from the induction algorithm

- Exploit general characteristics of the training set (statistics: regression tests)
- Filtering (of irrelevant attributes) occurs before the training

FILTER VS WRAPPER

WRAPPER METHOD

- Generate a set of candidate features
- Run the learning method with each of them
- Use the accuracy of the results for evaluation (either training set or a separate validation set)

WRAPPER METHOD

- Evaluation Criteria (Classifier Error Rate)
 - ≈ Features are selected using the classifier
 - ≈ Use these selected features in predicting the class labels of unseen instances
 - ≈ Accuracy is very high
- Use actual target classification algorithm to evaluate accuracy of each candidate subset
- Generation method: heuristics, complete or random
- The feature subset selection algorithm conducts a search for a good subset using the induction algorithm, as part of evaluation function

WRAPPER METHOD

DISADVANTAGE

- Wrapper very slow
- Higher Computation Cost
- Wrapper has danger of overfitting

CATEGORY XIII: CER - Heuristics

SFS (Sequential Forward Selection)

- Begins with zero attributes
- Evaluates all features subsets w/ exactly 1 feature
- Selects the one with the best performance
- Adds to this subsets the feature that yields the best performance for subsets of next larger size
- If EVAL() is a heuristics measure, the feature selection algorithm acts as a filter, extracting features to be used by the main algorithm; If it is the actual accuracy, it acts as a wrapper around that algorithm

CATEGORY XIII: CER – Heuristics

SFS (Sequential Forward Selection)

```
SS = 0
BestEval = 0
REPEAT
  BestF = None
  FOR each feature F in FS AND NOT in SS
    SS' = SS \cup \{F\}
    IF Eval(SS') > BestEval THEN
            BestF = F; BestEval = Eval(SS')
  IF BestF \Leftrightarrow None THEN SS = SS \cup {BestF}
UNTIL BestF = None \ \mathbf{OR} \ SS = FS
RETURN SS
```

CATEGORY XIII: CER – Heuristics

SBS (Sequential Backward Selection)

- Begins with all features
- Repeatedly removes a feature whose removal yields the maximal performance improvement

CATEGORY XIII: CER – Heuristics

SBS (Sequential Backward Selection)

```
SS = FS
BestEval = Eval(SS)
REPEAT
  WorstF = None
  FOR each feature in F in FS
  SS' = SS - \{F\}
  IF Eval(SS') >= BestEval THEN
  WorstF = F; BestEval = Eval(SS')
  IF WorstF \Leftrightarrow None THEN SS = SS - {WorstF}
UNTIL WorstF = None OR SS = 0
RETURN SS
```

<u>CATEGORY XIII: CER – Complete</u>

- Combat the disadvantage of **B&B** by permitting evaluation functions that are not monotonic.
- The bound is the inconsistency rate of dataset with the full set of features.

CATEGORY XIII: CER - Complete

- Legitimate test: Determine whether a subset is a child note of a pruned node, by applying **Hamming distance**.
- InConCal() calculates the consistency rate of data given a feature subsets by ensuring :
 - No duplicate subset will be generated
 - No child of pruned node (Hamming distance)

<u>CATEGORY XIII: CER – Complete</u>

```
= inConCal(S, D);
PROCEDURE ABB(S,D)
  FOR all feature f in S
  S_1 = S - f; enQueue(Q_1, S_1);
  END FOR
  WHILE notEmpty(Q)
  S_2 = deQueue(Q);
  IF (S<sub>2</sub> is legitimate \land inConCal(S<sub>2</sub>,D) <= •)
  ABB(S_2, D);
  END WHILE
END
```

CATEGORY XIII: CER - Complete

- **ABB** expands the search space quickly but is inefficient in reducing the search space although it guarantee optimal results
- Simple to implement and guarantees optimal subsets of features
- **ABB** removes irrelevant, redundant, and/or correlated features even with the presence of noise
- Performance of a classifier with the features selected by
 ABB also improves

CATEGORY XIII: CER - Random

LVW Algorithm

- Las Vegas Algorithm
- Probabilistic choices of subsets
- Find Optimal Solution, if given sufficient long time
- Apply Induction algorithm to obtain estimated error rate
- It uses randomness to guide their search, in such a way that a correct solution is guaranteed even if unfortunate choices are made

CATEGORY XIII: CER - Random

LVW Algorithm

```
Err = 0; k = 0; C = 100;
REPEAT
  S_1 = \text{randomSet}(); C_1 = \text{numOfFeatures}(S1);
  err1 = LearnAlgo(S_1, D_{train}, NULL);
  IF (err1 < err) OR (err1 = err AND C_1 < C))
  output the current best;
  k = 0; err = err1; C = C_1; S = S_1;
  END IF
  k = k + 1;
UNTIL err is not updated for K times;
err2 = LearnAlgo(S, D_{train}, D_{test});
```

CATEGORY XIII: CER – Random

LVW Algorithm

- LVW can reduce the number of features and improve the accuracy
- Not recommended in applications where time is critical factor
- Slowness is caused by learning algorithm

EMPIRICAL COMPARISON

- Test Datasets
 - ≈ Artificial
 - ≈ Consists of **Relevant** and **Irrelevant** Features
 - ≈ Know beforehand which features are relevant and which are not
- Procedure
 - ≈ Compare Generated subset with the known relevant features

CHARACTERISTIC OF TEST DATASETS

	CORRAL	PAR3+3	MONK3		
Relevant	4	3	3		
Irrelevant	1	3	3		
Correlated	1	0	0		
Redundant	0	3	0		
Noisy	NO	NO	YES		

RESULTS

- Different methods works well under different conditions
 - ≈ **RELIEF** can handle noise, but not redundant or correlated features
 - ≈ **FOCUS** can detect redundant features, but not when data is noisy
- No single method works under all conditions
- Finding a good feature subset is an important problem for real datasets. A good subset can
 - ≈ Simplify data description
 - ≈ Reduce the task of data collection
 - ≈ Improve accuracy and performance

RESULTS

- Handle Discrete? Continuos? Nominal?
- Multiple Class size?
- Large Data size?
- Handle Noise?
- If data is not noisy, able to produce optimal subset?

Feature Selection for Classification

Some Guidelines in picking the "right" method?

Based on the following 5 areas. (i.e. mainly related to the characteristic of data set on hand).

Data types - continuous, discrete, nominal

- Data size large data set?
- Classes ability to handle multiple classes (non binary)?
- Noise ability to handle noisy data?
- Optimal subset produce optimal subset if data not noisy?

Feature Selection for Classification

Comparison table of the discussed method.									
							ı		
Method	Generation	Evaluation	Contin.	Discrete	Nominal	Large Dataset	Multiple Classes		Optimal Subset
B & B	complete	distance	у	у	n		у) -	y++
MDLM	complete	information	у	у	n	-	у	-	n
Focus	complete	consistency	n	у	у	n	у	n	У
Relief	heuristic	distance	у	у	у	у	n	у	n
DTM	heuristic	information	у	у	у	у	у	-	n
POE+ACC	heuristic	dependency	у	у	у	-	у	-	n
LVF	random	consistency	n	у	у	у	у	у*	y**
-	method does	not discuss ab	out the p	articular o	haracteri	stic.			
y++	if certain assumptions are valid.								
y*	user is require	quired to provide the noise level.			y**	provided	there are	enough re	esources.
*note : "classifier error rate" not included (ie. Depend on specify classifier).									