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ABSTRACT

Among the possible forms of photographic fabrication and manip-
ulation, there is an increasing number of composite pictures con-
taining people. With such compositions, it is very common to see
politicians depicted side-by-side with criminals during election cam-
paigns, or even Hollywood superstars relationships being wrecked
by allegedly affairs depicted in gossip magazines. Thinking about
this problem, in this paper we analyze telltales obtained from high-
lights in the eyes of every person standing in a picture in order to
decide whether or not those people were really together at the mo-
ment of such image acquisition. We validate our approach with a
data set containing realistic photographic compositions, as well as
authentic unchanged pictures. As a result, our proposed extension
improves the classification accuracy of the state-of-art solution in
more than 20%.

Index Terms— Composite Photographs of People, Digital
Forensics, Eye Specular Highlights

1. INTRODUCTION

In every minute of our digital lives we are struck by an ever-growing
flood of information. Drowned within such an amount of informa-
tion, we have too much at stake to take everything we have access to
as the sole truth. Once taken as genuine for granted, photographs are
no more perceived as a “piece of truth”.

With the advance of digital image processing and computer
graphics techniques, it has never been so easy to manipulate images
and, therefore, forge new realities. When such modifications are no
longer innocent image adjustments and start implying legal threats
to a society, it becomes imperative to devise and deploy efficient
and effective approaches to detect such activities [1]. Unfortunately,
most of times, these modifications seek to deceive viewers, change
opinions or even affect how people perceive reality [1].

To keep the pace with the advances in digital image processing
and computer graphics tools, forensics experts strive for developing
modern and sophisticated tools to identify forgeries. However, in
this “arms race”, for each new forensics method developed, a new
method to perform a more sophisticated forgery is developed as a
counterpart. This leads forensics approaches to aim at detecting all
possible tampering telltales present in a given image in order to un-
dermine forgers.
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Recently, some researchers have successfully presented foren-
sics approaches exploring features such as compression artifacts [2],
statistical descriptors [3], acquisition telltales [4, 5], and illumina-
tion inconsistencies [6, 7, 8]. Please refer to [1] for a comprehensive
survey.

Approaches based on illumination inconsistencies are of partic-
ular interest since a perfect illumination adjustment in a digital com-
posite is very difficult to obtain. Normally, a composition involves
splicing together two or more images, each one potentially having a
different illumination condition, hardening the forgery creation. An-
other advantage of this class of methods is that it can be used to
analyze analog pictures [1].

Among all different possible forms of photo manipulation, there
is an astonishing number of composites of people. With such mon-
tages it is very common to see politicians depicted side-by-side with
criminals during election campaigns or even Hollywood superstars’
relationships being wrecked by allegedly affairs depicted in gossip
magazines. Thinking about this problem, Johnson and Farid [7] pro-
posed a method to analyze eye highlights telltales of every person
standing in a still picture depicting two or more people and to con-
front the analyzed clues to decide whether or not those people were
together for real in the moment of image acquisition.

Although the authors presented promising results with their ap-
proach, in this paper we extend their work giving the forensics com-
munity a step further with respect to the detection of composite pho-
tographs of people. We extend the original features proposed by
Johnson and Farid in [7] and propose to take all the full advantage of
recent machine learning algorithms to improve the previous work.

We validate our approach with a data set comprising realistic
photomontages as well as natural still images. The proposed exten-
sion improves the classification accuracy of Johnson and Farid’s pre-
vious solution in more than 20%. Finally, envisioning the use of such
amethod in a forensics scenario, we also discuss some method’s lim-
itations and present future directions for further improvements.

2. STATE-OF-THE-ART

Forensics methods that analyze image lighting inconsistencies to re-
veal traces of digital tampering are promising given that it is difficult
to match the different lighting conditions when creating a compos-
ite. Johnson and Farid [6] presented an approach for estimating the
light source direction from a single image assuming some simplify-
ing conditions: (1) the surface is Lambertian (it reflects light isotrop-
ically); (2) it has a constant reflectance value; (3) it is illuminated by
a point light source infinitely far away. Johnson and Farid further
extended this solution to complex lighting environments [8].

In Johnson and Farid [7], the authors present another technique



which also investigates lighting inconsistencies but this time for the
particular case of composition (fakes) involving people. According
to the authors, specular highlights that appear on the eye are a pow-
erful cue to the shape, color, and location of the light source in the
scene [7]. Inconsistencies in these light properties can be used as
telltales for detecting tampering. The method is based on the fact
that the position of a specular highlight is determined by the relative
positions of the light source, the reflective surface of the eye, and
the viewer (i.e., the camera). Roughly speaking, the method can be
divided into three stages, as Fig. 1 depicts.

The first stage aims at estimating the direction of the light source
for each eye present in the picture. The second stage (characteriza-
tion) seeks to estimate the position of the light source based on the
specular highlights present in the eyes and on the corresponding es-
timated directions of the light source. The calculated position of the
light source is then used to calculate the angular error for each spec-
ular highlight (given by the angle between the estimated direction of
the light source and the vector direction connecting the eye specular
highlight position to the light source position). Finally, the third and
final stage (decision) calculates the average angular error and use
a classical hypothesis test with an 1% significance level to decide
whether or not a given image under investigation is a composite.

The authors tested their technique for estimating the 3-D light
direction on synthetic images of eyes that were rendered using the
PBRT environment and with a few real images. The come out with a
decision for a given image, the authors determine whether the spec-
ular highlights in an image are inconsistent considering only the av-
erage angular error and a classical hypothesis test.

In a forensic scenario, only the average angular error for decid-
ing about inconsistencies might be rather limiting. In possession of
an image for investigation, we can explore other important informa-
tion to use in conjunction with the average angular error. We found
out that the location of the viewer (e.g., camera) is also important,
as well as other characteristics described in Section 3. Therefore, in
this paper we extend Johnson and Farid’s approach [7] so as to con-
sider more discriminative features and have more confidence when
deciding about the authenticity of an image under investigation. In
addition, instead of using a classical hypothesis test (like [7]), we
propose to analyze the calculated features with a two-class super-
vised machine learning classification approach. With the new pro-
posed features and the decision rule, our approach improves the prior
work in more than 20%.

3. OUR METHOD

In this work, we extend the method proposed by Johnson and Farid
in [7] by using more discriminative features in the problem charac-
terization stage and a supervised machine learning classifier in the
decision stage. In this section, we review Stages 1 and 2 of John-
son and Farid’s method [7], then present the new proposed features
to be used along with their features and a new decision stage for the
method which is able to analyze all the composed features at once.

The first stage consists of estimating the direction of the light
source for each eye in the picture. The authors assume that the eyes
are perfect reflectors and use the law of reflection:

L=2(VIN)N -V, 1)

where the 3-D vectors L, N and V correspond to the direction to
the light, the surface normal at the highlight, and the direction in
which the highlight will be seen. Therefore, the light direction L
can be estimated from the surface normal N and viewer direction
V at a specular highlight. However, it is difficult to estimate these
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Fig. 1. Diagram depicting Johnson and Farid’s three-stage ap-
proach [7].

two vectors in the 3-D space from a single 2-D image. In order to
circumvent this difficulty it is possible to estimate a transformation
matrix H that maps 3-D world coordinates to 2-D image coordinates
by making some simplifying assumptions such as:

1. the limbus (the boundary between the sclera and iris) is mod-
eled as a circle in the 3-D world system and as an ellipse in
the 2-D image system;

2. the distortion of the ellipse with respect to the circle is related
to the pose and position of the eye relative to the camera;

3. and points on a limbus are coplanar.

With these assumptions, H becomes a 3x3 planar projective
transform, in which the world points X and image points x are rep-
resented by 2-D homogeneous vectors, x = HX. Then, the matrix
H as well as the circle center point C = (C; C2 1), and radius r
(recall that C' and r represent the limbus in world coordinates) are
obtained by minimizing the error function:

m

E(P;H) = Zn}inﬂxi — HX;|)?, )
i=1

where X is on the circle parameterized by P = (C1 C- r)T, and m
is the total amount of data points in the image system. The matrix
H is decomposed to obtain the matrix H, representing the transfor-
mation of the world system in the camera system, and the matrix R
representing the rotation between them.

The camera direction V and the surface normal N can then be
calculated in the world system. V is R~ v, where v represents the
direction of the camera in the camera system, and it can be calculated
by v = —x./||x.||, where x. is the center point of the limbus in the
camera system obtained with x. = HC. The surface normal N at a
specular highlight is computed from a 3-D model of the human eye
first proposed by [9]. Then, N is given by N = S + V, where S
represents the specular highlight in the world coordinate, measured
with respect to the center of the limbus and to the human eye model.
The first stage of the method in [7] is completed by calculating the
light source direction L by replacing V and N in Eq 1. In order to
compare light source estimates in the image system, the light source
estimate is converted to camera coordinates: [ = RL.

The second stage is based on the assumption that all estimated
directions /; converge toward the position of the light source, where



i =1,...,n and n is the number of specular highlights in the picture.
This position can be estimated by minimizing the error function

E(x) = Z 0i(x), 3)

where 0;(x) represents the angle between the vector to the light
source at position x and the estimated direction Z;, at the ‘" spec-
ular highlight p,. ;(x) is given by

0;(x) = arccos (liTi> . “)
[lx —p,ll

Being x the point representing the light source position obtained by
Eq. 3, the angular error of the i*" specular highlight is 6; (x).

For an image that has undergone composition it is expected that
the angular errors are higher than in pristine images. Based on this
statement the authors apply a hypothesis test with the angular er-
ror average to identify whether or not the image under investigation
contains is the result of a composition.

In this paper, we make the important observation that in the
forensic scenario, beyond the angular error average, there are other
important characteristics that must also be taken into account in the
decision-making stage in order to further improve the quality of any
eye-highlight-based detector.

Therefore, we first decide to take into account the standard de-
viation of angular errors (6;), given that even in the original images
there is a non-null standard deviation. This is due the successive
minimization of functions and simplification of the problem, adopted
in the previous steps.

Another key feature is related to the position of the viewer (the
device that captured the image). In a pristine image (one that is not
a result of a composition) the camera position must be the same for
all persons in the photograph, i.e., the estimated directions v must
converge to a single camera position.

To find the camera position and take it into account, we mini-
mize the following function

E(x) = iﬂi (x), (5)

where j3; (x) represents the angle between the estimated direction of
the camera v; and direction of the vector pointing from the specular
highlight p, to the camera, calculated by

Ti) ) (6)

Bi(x) = arccos (vi
|lx —pll

Considering X to be viewer position obtained by Eq. 5, the angular
error of the i*" specular highlight is 3; (¥). In order to use this infor-
mation in the decision-making stage, we can average all the available
angular errors. In this case, it is also important to analyze the stan-
dard deviation of angular errors f3;.

Our extended approach now comprises four characteristics of
the image instead of just one as the prior work we rely upon:

1. (LME) — mean of the angular errors 6;, related to the light
source L;

2. (LSE) - standard deviation of the angular errors 0;, related to
the light source L;

3. (VME) — mean of the ang. errors [3;, related to the viewer V;

4. (VSE) — standard desviation of the angular errors f3;, related
to the viewer V.

In order to set forth the standards for a more general and easy to
extend smart detector, instead of using a simple hypothesis testing in
the decision stage, we turn to a supervised machine learning scenario
in which we feed a Support Vector Machine classifier (SVM) or a
combination of those with the calculated features.

4. EXPERIMENTS

Although the method proposed by Johnson and Farid in [7] has
a great potential, the authors have validated their approach using
mainly PBRT synthetic images which is rather limiting. In contrast,
in this paper we perform our experiments using a data set comprising
everyday still pictures typically with more than three megapixels in
resolution. We acquired 120 images in which 60 images are normal
(without any tampering or processing) and the other 60 images are
composed by manipulated images (tampered with using splicing of
people). The images always depict two or more people (Fig. 2).

(a) Pristine (No manipulation)

(b) Fake

Fig. 2. Examples of data set images.

The experiment pipeline begins with the limbus point extraction
for every person in every image. The limbus point extraction can be
performed using a manual marker around the iris, or with an auto-
matic method such as [10]. As this is not our primary focus in this
paper, we used manual markers. Afterwards, we characterize the im-
ages, considering the features described in Section 3. Since one fea-
ture vector is extracted for one single image, we obtain 120 features
vectors, that together compound a single data set. As some features
in our proposed method rely upon non-linear minimization methods,
which are initialized with random seeds, we can extract features us-
ing different seeds with no additional mathematical effort. Thus, we
extract five feature vectors for each image. As a result, we obtain
five data sets.

We then feed two-class classifiers with these features in order
to achieve a final outcome. For this task, we use an out-of-the-box
SVM with a standard RBF kernel. For a fair comparison, we perform
5-fold cross validation in all the experiments. We present results for
a single classifier (a), and we also present results for a pool of five
classifiers (one for each data set), analyzing an image in conjunction
in a classifier-fusion fashion approach (b, c, d):

a. Single Classifier (SC): a single classifier fed with the pro-
posed features to predict the class (pristine or fake).

b. Classifier Fusion with Majority Voting (MV): a new sam-
ple is classified by a pool of five classifiers. Each classifier
casts for a class vote in a winner-takes-all approach.

c. Classifier Fusion with OR Rule (One Pristine): similar to
MYV except that the decision rule decides for non-fake if at
least one classifier casts a vote in this direction.

d. Classifier Fusion with OR Rule (One Fake): similar to MV
except that the decision rule decides for fake if at least one
classifier casts a vote in this direction.



To show the behavior of each round compared with Johnson and
Farid’s approach we used an ROC curve, in which the y-axis (Sensi-
tivity) represents the fake images correctly classified as fakes and the
z-axis (1 - Specificity) represents pristine images incorrectly classi-
fied. Figure 3 shows the results for our proposed approach (with four
different classifier decision rules) compared to the results of Johnson
and Farid’s approach. All the proposed classification decision-rules
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Fig. 3. Classification results for Johnson and Farid’s method [7]
compared to the methods we introduce in this paper.

perform better than the prior work we rely upon in this paper. This
allows us to come up with two conclusions: first, the new proposed
features indeed make difference and contribute for the final classifi-
cation decision; and second, different classifiers can take advantage
of different seeds used in the calculation of the features. Note that
with 40% specificity, we detect 92% of fakes correctly while the
prior work Johnson and Farid’s prior work achieves = 64%.

Another way to compare our approach to Johnson and Farid’s
one is to assess the classification behavior on the “Equal Error Rate”
(EER) point. Table 1 shows this comparison.

The best proposed method (shaded cell) — Classifier Fusion with
OR Rule (One Pristine) decreases the classification error in 21%
when compared to Johnson and Farid’s approach at the EER point.
Even if we consider just a single classifier (no fusion at all), the pro-
posed extension performs 7% better than the prior work we rely upon
considering the ERR point.

5. CONCLUSIONS AND FUTURE WORK

Johnson and Farid’s method [7] as well as our proposed extension
to their work have a great potential for detecting composite pho-
tographs of people as long as there are visible eyes in the image
under investigation.

In this paper, we extended Johnson and Farid’s prior [7] in
such a way we now derive more discriminative features for detect-
ing traces of tampering in composite photographs of people and
use the calculated features with powerful decision-making classi-
fiers based on simple, yet powerful, combinations of the Support
Vector Machines. The new features and the new decision-making
process reduced the classification error in more than 20% (or in ab-
solute value, 11%) when compared to the prior work. To validate
our ideas, we have used a data set of real composite photographs

Table 1. Equal Error Rate — Four proposed approaches and the base-
line [7]. Percentage (%) in terms of relative values.

EER (%) | Imprv. over baseline (%)
Single Classifier 44
Fusion MV 40 15
Fusion One Pristine 37 21
Fusion One Fake 41 13
Johnson and Farid’s 48 -

of people and images typically with more than three mega-pixels in
resolution. We intend to make this data set open to the community
(http://www.ic.unicamp.br/~rocha/pub/communications.html).

It is worth noting, however, the classification results are still af-
fected by some drawbacks in which we are now striving to circum-
vent. First of all, the accuracy of light direction estimation relies
heavily on the camera calibration step. If the eyes are occluded by
eyelids or are too small, the limbus selection becomes too difficult
to accomplish, demanding an experienced user. Second, the focal
length estimation method is often affected by numerical instabilities
due to the starting conditions of the minimization function suggested
in [7]. Some improvements would lead us to a better light direction
estimation and higher success rate. Finally, we intend to take advan-
tage of the focus information as a possible characteristic, since in an
image without forgeries, the focus value must be very similar across
different people in a scene. In our future work, we intend to evaluate
the effectiveness of these features individually.
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