#! /usr/bin/python3 # Last edited on 2024-09-18 22:43:04 by stolfi from math import sin, cos, tan, sqrt, pi, inf, floor, sqrt import rn import sys import re from slicing_lib import make_edge, make_face, check_repeated_edge, prte, prtf def triangulate(Ni, Vind, Vlst, Elst, Flst, prec, verbose): # See the main program and {make_vertices} for the description of the object. # # Subdivides the faces of the original mesh of the object Into # triangles. Assumes that the vertices are given by the structured # table {Vind} and flat list {Vlst}, the edges are given by the flat # list {Elst},and the faces are given by the flat list {Flst}. The # lists {Vlst,Elst,Flst} are indexed from 1; element 0 is not used. # # Returns new flat lists {Ftri} and {Etri} of faces and edges # of the triangulation. No new vertices are created. The # original edges are preserved with their original indices, # and the new diagonal edges are appended after them, with {etype=1}. # The faces are replaced by the triangles. # # Original faces "fu.{ki}" (upper chain) and "fs.{ky}" (stokes) are # split into two triangles, with the same label plus ".{kt}" appended # where {kt} is either 0 or 1. Each plaza "fp.{kx}" is split into {Ni} # triangles, with labels "fp.{kx}.{ki}" where {ki} is in {0..Ni-1}. # # The diagonal added to a quadrangular face will have the same label # as the face, with "d" instead of "f". The diagonals of plazas will # have labels "dp.{kx}.{ki}" where {ki} ranges in {1..Ni-1}. Nv_in = len(Vlst)-1 # Total vertex count (input and output). Ne_in = len(Elst)-1 # Total input edge count. Nf_in = len(Flst)-1 # Total input faces. Nv_ot = 2*(Ni+2) # Expected output vertex count. Ne_ot = 6*Ni + 6 # Expected output edge count. Nf_ot = 4*Ni + 4 # Expected output face (triangle) count. sys.stderr.write("Expecting %d edges\n" % Ne_ot) sys.stderr.write("Expecting %d faces\n" % Nf_ot) assert Nv_ot == Nv_in, "{Ni,Vlst} inconsistent" Etri = Elst.copy() + [None]*(Ne_ot-Ne_in) Ftri = [None]*(Nf_ot+1) Eset = set() # Set of edges as pairs, to check for repetitions. for je in range(1,Ne_in+1): e = Elst[je] Eset.add((e[0],e[1])) ne = Ne_in # Number of edges created so far. nf = 0 # Number of faces created so far. def Svdi(kv_org, kv_dst, elab): # Adds the diagonal edge from {Vlst[kv_org]} to {Vlst[kv_dst]} to {Etri}, # reoriented in increasing index sense. nonlocal ne, nf if kv_org > kv_dst: kv_org, kv_dst = kv_dst, kv_org etype = 1 e = make_edge(Vlst[kv_org], Vlst[kv_dst], ne+1, etype, elab, prec) assert e != None if verbose: prte(e, prec) ne += 1 Etri[ne] = e check_repeated_edge(ne, Etri, Eset, prec) return None def Tri(kva,kvb,kvc,flab): # Adds to {Etri} the triangle with vertices {Vlst[kva],Vlst[kvb],Vlst[kvc]} # assumed to be CCW seen from outside. nonlocal ne, nf nf += 1 t = make_face((kva,kvb,kvc), nf, flab, Vlst, prec) if verbose: prtf(t, Vlst, prec) Ftri[nf] = t for f in Flst[1:]: Nx,Ny,Nz,Fiv,kf,flab = f; if verbose: sys.stderr.write("\n") sys.stderr.write(" IN: ") prtf(f, Vlst, prec) sys.stderr.write("\n") if flab[0:2] == "fu" or flab[0:2] == "fs": # Upper chain or spoke face: assert len(Fiv) == 4 Tri(Fiv[0],Fiv[1],Fiv[3], flab + ".0") Tri(Fiv[1],Fiv[2],Fiv[3], flab + ".1") Svdi(Fiv[1],Fiv[3],"d" + flab[1:]) elif flab[0:2] == "fp": # Plaza face: assert len(Fiv) == Ni+2; kx = int(flab[3]) assert kx == 0 or kx == 1 for ki in range(Ni): if verbose: sys.stderr.write("\n") kva = Vind['vu'][kx][ki] kvb = Vind['vu'][kx][ki+1] kvc = Vind['vc'][kx] if kx == 0: Tri(kva,kvb,kvc, flab + f".{ki}") else: Tri(kvc,kvb,kva, flab + f".{ki}") if ki < Ni-1: Svdi(kvb,kvc,"d" + flab[1:] + f".{ki+1}") else: assert False, f"invalid face label '{flab}'" sys.stderr.write("generated %d faces (expected %d)\n" % (nf, Nf_ot)) if nf < Nf_ot: sys.stderr.write("!! missing some faces\n") assert nf <= Nf_ot sys.stderr.write("generated %d edges (expected %d)\n" % (ne, Ne_ot)) if ne < Ne_ot: sys.stderr.write("!! missing some edges\n") assert ne <= Ne_ot return Etri, Ftri