
1 Introduction

The goal of this note is to study, mathematically and computationally, the
dynamics of a simple neuronal net model. While the model is far from
realistic, especially with regards to topology and synaptic stengths, it is
hoped that its study will give some useful insight about the behavior of real
nets.

2 The model

The evolution of a real neuronal net through time is a continuous process.
Even the firing events, which happen at arbitrary (non-synchronized) times,
are fast but not instantaneous changes in the potentials of the affected neu-
rons. The model we describe below is supposed to approximate this continu-
ous process by a discrete-time process, with an implicit time step of 1. This
time step is assumed to be large enough for each firings to be modeled as an
instantaneous event that causes discontinuous step-like changes in the po-
tentials; but also small enough for the probability of the same neuron firing
twice in the same time step to be negligible.

The network model N has N abstract neurons, identified by indices in
{0.. N − 1}. The state of neuron i at some time t is a real variable Ui(t), its
potential — which is assumed to model the the electric potentia difference
across the membrane of a real neuron. The state of the network at time t is
the vector U(t) of those N potentials.

The network’s state, by definition, evolves autonomously in a discrete,
synchronous, non-deterministic fashion. That is, the state U(t + 1) at each
integer time t + 1 is a random variable with a probability distribution that
depends on the state U(t) only.

Specifically, the evolution of the network from U(t) to U(t+1) is modeled
as the result of zero or more firing events. Between those two times, each
neuron i may fire (at most once) with a probability that depends only on its
potential at time t. Namely, let Xi(t) be a variable that is 1 if neuron i fires,
and 0 otherwise. We assume that the N random variables Xi(t), for each
time t, are independent, and

Pr(Xi(t) = 1) = Φ(Ui(t)) (1)

where Φ is some monotonic function from R to [0 1].
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After a neuron fires, its potential is assumed to be reset to zero, and the
potentials of all other neurons that did inot fire are assumed to increase by
a fixed constant. In biological terms, this would correspond to each neuron
having an excitatory synaptic connection to every other neuron, with the
same synaptic strength. To simplify the scaling laws (see section 3.2), the
increment is written w/N where w is the total synaptic weight. Note that,
in this model, the increment does not depend on the potentials of the two
neurons, until the post-synaptic neuron reaches the saturation potential.

On the other hand, if a neuron does not fire between times t and t + 1,
its potential is assumed to decay by some factor µ in (0 1] (modeling the
leakage current across the membrane of the neuron).

Combining these cases, the state of a neuron i at time t + 1 can be
expressed by the formula

Ui(t+ 1) =

{
0 if Xi(t) = 1,
µ
(
Ui(t) + w

N
Xtot(t)

)
otherwise.

(2)

where

Xtot(t) =
N−1∑
j=0

Xj(t) (3)

is the number of neurons that fired between t and t = 1.
Note that the potential increment w/NXtot(t) resulting from other neu-

rons firing is assumed to be lost if neuron i fires between times t and t + 1;
otherwise, all those increments are reduced by decay factor µ.

Some of the theoretical analysis is simpler if Φ(U) is assumed to be linear
on the neuron potential U up to some saturation potential Umax. That is

Φ(U) =


0 if U ≤ 0,
1 if U ≥ Umax,
U

Umax
if 0 < U < Umax.

(4)

With proper choice of measurement unit for the potential, we can assume
that Umax = 1.

A more realistic choice for Φ would be a steep sigmoid that is essentially
zero for U below some threshold potential Umin > 0, and essentially 1 above
the staturation potential Umax. Many authors assume an infinitely steep
sigmoid with Umin = Umax, namely a step function that is 0 for U < Umax

and 1 for U ≥ Umax

2



2.1 Limitations of the model

The behavior of the model differs in many ways from that of a real neural
net. In the latter:

• Each neuron has synapses to and from a proper subset of the other
neurons.

• Each synapse has a different strength, which is believed to change with
time.

• When a neuron j fires, the change in the potential of a post-synaptic
neuron i is not a fixed increment, but decreases as the potential Ui
increases. A more realistic model could be Ui = Ulim− λ(Ulim−Ui) for
some Ulim ≥ Umax and some λ ∈ (0 1).

• The probability of a neuron firing depends on its recent firing history
as well as its current potential Ui(t).

• The firing probability function Φ of real neurons is usually a very sharp
sigmoid, almost a step function that jumps from 0 to 1 at potential
U = Umax. The use of a smoother function Φ could make sense, however
as a way to compensate for the discretization of time.

• When a neuron i fires, it loses only the potential increments due to
those neurons j that fired before it. Moreover, those increments that
are not lost will decay by different factors depending on when exactly
they occurred within the time interval.

• If a neuron j fires sufficiently early between times t and t + 1, the
potential increment that it contributes to another neuron i may cause
the latter to fire before time t+1. Thus, firing avalanches can be faster
in the real network than in the simulated one. If realistic times are
desired, the time step must be comparable or smaller than the natural
firing delay in such avalanches.

2.2 Modeling neurons with refractory state

Optionally we may assume that neurons enter a refractory state after firing,
that lasts a certain number h > 0 of time steps. During the refractory period,
their potential is assumed to remain at zero, and further firings are inhibited.
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That is, we introduce another state variable Ri(t) for each neuron, the
refractory counter, with integer values in {0, 1, . . . , h}; and we replace equa-
tions (1) and (2) by

Ri(t+ 1) =


0 if Ri(t) = 0 and Xi(t) = 0
h if Ri(t) = 0 and Xi(t) = 1
Ri(t)− 1 otherwise

(5)

Pr(Xi(t) = 1) =

{
0 if Ri(t) > 0
Φ(Ui(t)) otherwise

(6)

and

Ui(t+ 1) =

{
0 if Ri(t+ 1) > 0
µUi(t) + w

N

∑
j 6= iXj(t) otherwise

(7)

It remains to be seen whether the inclusion of refractory states in the model
leads to a qualitatively different behavior. ?[I would guess that it does not
make much difference to the qualitative dynamics, but makes the math a lot
more complicated.]

3 Scaling laws

3.1 Changing the time step

We now consider the effect of changing that time step. That is, we consider
how the parameters Φ, µ and w should be changed to yield a network N ′
whose evolution in one time step is as close as possible to that of N in r time
steps, for some real number r > 0. For simplicity we consider first the case
when r is a small integer.

Obviously, in the absence of firings the neuron potentials U ′i in N ′ should
decay at each time step by a factor µ′ = µr.

The total synaptic weight w′ should be almost the same as w. The main
difference is that firings that are assumed to occur simultaneously in N ′ may
occur during r different time steps in N , and their effect will be modified
differently by the natural decay. To improve the match between N ′ and N ,
we could set

w′ = · · · . (8)
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The probability that a neuron i will not fire during a time step of N ′ is the
probability that it will not fire during any of the r corresponding steps of N .
To a first approximation, assuming that the potential Ui in N during those
r steps is constant and equal to the potential U ′i in N ′, we get

Φ′(U) = 1− (1− Φ(U))r (9)

for all U in [0 +∞). Note that if Φ is linear up to U = Umax then Φ′ is a
complemented power, Φ(U) = 1− (1− U/Umax)

r. If Φ is a sigmoid between
Umin and Umax then Φ′ too is a sigmoid, albeit with a different shape.

These formulas can be used for any real-valued step scale r, including
less than 1. For realistic results, however, one must ensure that the step
remains in the range where the basic assumptions are plausible: namely, the
step is small enough for the probability of a neuron firing twice in the same
step is negligible, and for the extra delay introduced in chained firing to be
reasonable; but large enough for the firings to be considered instantaneous
events.

3.2 Scaling for the number of neurons

To a first approximation, the model’s behavior sould be fairly independent
of the number of neurons N because of the factor 1/N in formula (2) — at
least for large N . That is, the behavior of a net with 2000 neurons whould
be very similar to that of a net with 1000 neurons, except that all statistics
that refer to neuron count should be doubled. The scaling is expected to
break down at very small N , however.

4 Neuron age distribution

Since every neuron (or subset of k neurons) in the model is equivalent to
any other, the state U(t) of the net can be represented, without loss of
information, by its potential distribution, namely the number of neurons that
have a given potential u, for each u in [0 +∞).

Indeed, let define the (firing) age of a neuron i as the number τi(t) of
time steps that elapsed since its last firing, that is

τi(t+ 1) =

{
0 if Xi(t+ 1) = 1
τi(t) + 1 otherwise

(10)
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The age τi(t) is undefined from the start of the simulation until the first time
that the neuron i fires. After every neuron has fired at least once, the exact
potential Ui(t) of each neuron can be computed from its age and the ages of
all other neurons, by the formula

Ui(t) =
w

N

∑
j

(τj(t) < τi(t))µ
τi(t)−τj(t) (11)

Therefore, after every neuron has fired at least once, all the information about
the state of the net at time t can be represented by the age distribution,
the sequence of natural numbers S(t) = (S0(t), S1(t), . . .) where Sτ (t) is the
number of neurons with age τ at the integer time t.

Note that an infinite sequence S of natural numbers is a possible age dis-
tribution for a network of N neurons if and only if

∑∞
τ=0 Sτ = N . Therefore

an age distribution has at most N non-zero elements. We will denote by SN
the set of all such sequences.

From now on we will use the term network state to mean the age distri-
bution of the neurons, rather than the vector of potentials U . Using the age
distribution to represent the state has both mathematical and computational
advantages. For example, any sequence of SN is a valid the initial state of
a simulation, in the sense that it could possibly arise after the network has
been evolving for a long time. In contrast, not every vector U of real numbers
in [0 +∞) is valid in this sense. Indeed, after a neuron has fired at least
once, its potential is restricted to a countable subset of that interval.

4.1 Potentials and probabilities from age distribution

Note that, by formula (11), the potential Ui(t) of a neuron i depends only
on its age τi(t) and the ages of the other neurons. Therefore, the potential of
all neurons with a certain age τ can be computed from the age distribution
alone. In fact, we can define a linear operator V that, applied to an age
distribution S, yields the infinite list V S of the corresponding potentials, in
[0 +∞):

(V S)τ =
w

N

τ−1∑
σ=0

Sσµ
τ−σ (12)

Since all the neurons with the same age have the same potential, they all have
the same firing probability. These probabilities can be expressed as another
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operator P that, applied to the age distribution, returns the corresponfing
list of firing probabilities:

(P S)τ = Φ((V S)τ ) (13)

This operator is non-linear in general, since Φ(U) must be a number in [0 1].
However, if Φ is linear for potentials below a certain bound Umax, then P is
linear for all states S where all neurons have potential less than Umax.

5 Certain death

5.1 Evolution of the age distribution

The evolution of the network then can be described by a stochastic mapping
between age distributions. Namely, the distribution S(t+1) is obtained from
S(t) by selecting a certain number Kτ (t) ≤ Sτ (t) of neurons with each age
τ , and simulating their firing. Those neurons have their ages reset to zero,
while all other neurons get their ages incrementd by 1. That is,

Sτ (t+ 1) =

{
Ktot(t) if τ = 0,
Sτ−1(t)−Kτ−1(t) if τ ≥ 1.

(14)

where Ktot(t) is the total number of neurons that fired at time t, that is,
Ktot(t) = Xtot(t) =

∑∞
σ=0Kσ(t).

6 Network death

If S be an infinite sequence of natural numbers, we define the right shift of
S as the infinte sequence BS such that

(BS)τ =

{
0 if τ = 0,
Sτ−1 if τ ≥ 1.

(15)

If the network is in a certain state S(t) at time t, and no neuron fires between
t and t + 1 (that is, Xtot(t) = 0), the state S(t + 1) will be simply BS(t).
The potentials Vτ (t + 1) of that state, as a function of neuron age, will be
the same as before, except that shifted by 1 and scaled by µ:

Vτ (t+ 1) =

{
0 if τ = 0,
µVtau−1 if τ ≥ 1.

(16)
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I.e., V BS = µBV S; that is, if the network is in state S and no neuron fires
in the next time step, the potentials of all states are reduced by teh factor
µ. By induction, V Bk S = µkBk V S for any state S and any natural k.

The probability that no neuron fires between t and t+ 1 is

Pr(Xtot(t) = 0) =
∞∏
τ=0

(1− Φ(Vtau(t)))Sτ (t) (17)

Therefore, the probability that the network never fires again once it reaches
state S is

Pr(net dies from S) =
∞∏
k=0

∞∏
τ=0

(1− Φ((V
k
BS)τ ))

(Bk S)τ (18)

Note that (Bk S)τ is zero for all τ < k; and, for τ ≥ k, we have (Bk S)τ =
Sτ−k, (V Bk S)τ = (V S)τ−k. Therefore we can replace τ by σ + k and write

Pr(net dies from S) =
∏∞

k=0

∏∞
σ=0(1− Φ((V Bk S)σ+k))

(Bk S)σ+k

=
∏∞

σ=0

(∏∞
k=0(1− Φ(µk(V S)σ))

)Sσ (19)

Now suppose that Φ is sub-linear for small enough arguments. That is, there
is some potential Uinf and some constant α > 0 such that Φ(U) ≤ αU ≤ 1 for
all U ≤ Uinf . Let S be a state for which all neurons have potential (V S)σ at
most Uinf . In that case, µk(V S)σ ≤ Uinf , and Φ(µk(V S)σ) ≤ αµk(V S)σ ≤ 1.
Then the innermost product in formula (19) can be bounded by P (α(V S)σ)
where

P (x) =
∞∏
k=0

(1− µkx)) (20)

and therefore

Pr(net dies from S) ≥
∞∏
σ=0

(P (α(V S)σ))Sσ (21)

It can be shown that P (x) is strictly positive for any µ < 1 and x ≤ 1. ?[(Is
it true?)] It follows that formula (19) is strictly positive; that is, once all
neurons have potential Uinf or less, there is a positive probability that no
neuron will ever fire again.

To conclude the argument, observe that for any state S ′, and any m ∈ N,
there is a nonzero probability that the network in state S ′ will remain without
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firing for m steps; after which all neuron potentials will be reduced by a factor
µm. Therefore, if µ < 1, from any state S ′ there is a positive probability that
the network will reach a state S where all neurons have potentials Uinf or
less.

? [Does that mean that, if µ < 1, the network will die with probability 1?]

7 Metastable states

There is empirical evidence of long-lived state sets; that is, the network
occasionally evolves into a cluster P ⊆ SN of similar states, and remains in
that cluster for a long time.

To study the limit when N → ∞, is is convenient to replace the age
distribution S by the normalized age distribution s = S/N . Namely, wecon-
sider the state of the network to be an infinite sequence of non-negative real
numbers such that

∑
τ sτ converges to 1. Let S∞ be set of all such sequences.

In the limit of infinite N , the evolution of the network then becomes a de-
terministic operator from S∞ to S∞. Namely, from each normalized state s
we can compute the potentials of neurons of any age τ , as in formula (12)

(V s)τ = w
τ−1∑
σ=0

sσµ
τ−σ (22)

Then, the firing probability (P S)τ = Φ((V S)τ ) for the neurons with a certain
age τ becomes the fraction (P s)τ = Φ((V s)τ ) of neurons in the infinite net
with that age that fire between time t and time t+ 1. Therefore, a network
in state s(t) evolves deterministically to the unique state s(t+ 1) = E(s(t)),
where E is the operator on S∞ defined by

(E s)τ =

{ ∑∞
τ=0(P s)τ if τ = 0,

sτ−1 − (P s)τ−1 for τ ≥ 1.
(23)

We can then ask whether the E operator has any fixed points
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