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| - What is a sparse graph?




Motivation: Integration of delta-weight mesh

Delta-weight mesh:

e A symmetric connected directed graph (V, Fq).

e §: Ec — R (edge deltas).

e w: Fg — R (edge weights), symmetric.
Assume:

® ORG €, DST € are the endpoints of edge e.

e syMm e is the unique inverse of edge e.

e § is antisymmetric: §[syme] = — §lel.

e w is symmetric and positive: w(syme] = wle] > 0.




Motivation: Integration of delta-weight mesh

Terrain interpretation:
e Each vertex v is a point on the map.
e The height of the terrain at v is z[v].
e §le] is a measurement of z[psT €] — z|oRaG €.
e Reliability of §le] is wle].
e Loops are irrelevant, can be deleted.
e Parallel edges can be condensed to make G simple.

Can be interpreted also as electrical circuit, spring network, . ..




Motivation: Integration of delta-weight mesh

Problem: given (G, compute z.
e Determined only up to an additive constant.
o If G is a tree, ignore w, add § along paths.

o If GG is not a tree, § is usually inconsistent.




Motivation: Integration of delta-weight mesh

Weighted least-squares solution: satisfies the vertex equilibrium equations.

Z wle|(z[psT €] — §le])

_ €€Eg [u]




Solving the equilibrium system

System Az = b with n = #V/; equations and unknowns.
Matrix A has O(m) nonzero elements, m = # E.
Gaussian elimination: cost O(nm"?) (O(n'®) if planar).

Gauss-Seidel iteration: O(m) per iteration (O(n) if planar)...
... but needs at least ()(n) iterations, sometimes 2(n?) ...
...s0 the total cost is Q(nm) to Q(n*m) (Q(n?) to Q(n?)).




Solving the equilibrium system

Multiscale algorithm [Saracchini and Stolfi 2011]: SOLVE(G, §, w) returns (2)
L If Vo = {v}, set z[v] « 0, return z.

2. Find maximal independent set R C 1z of max degree g.
3. (G, §',w") «— REMOVEANDPATCH(R, G, §,w).

4. z — SOLVE(G', §',w').

5. For all u € R, set z[u] « EQUILIBRIUM(u, G, §, w).

6. 2z « (GAUSSSEIDEL(z, G, §,w).

7. Return z.




Solving the equilibrium system

Analysis of multiscale SOLVE for PLANAR graph G:

e Step 2: Cost O(n).

e Step 3: Cost O(n).

o #V/ < B#V for some 3 < 1.

e (&' is planar.

e Step 4: Cost O(n) by induction.

e Steps 6: O(1) iterations, cost O(m) = O(n).
Total cost: O(m) = O(n)!
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Extension to non-planar delta-weight meshes
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We need a family of graphs F, where every G:
® is connected.
e is sparse (m < An — B if n > ny).
e has a minimum percentage of vertices of degree < g.
e admits a REMOVEANDPATCH operation that preserves F.
e includes the regular 3D meshes with holes.

What could that family be?
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Il - Characterizing triangulations
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Characterizing triangulable graphs
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Informal statement:

e A 2-triangulation is a graph G drawn on a compact surface S (possibly with borders)
in such a way that every face is a triangle.

e A graph G is 2-triangulable if it admits a 2-triangulation.
e When is a graph 2-triangulable?

Every graph can be drawn on some surface, but the faces are not always triangles.
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Characterizing triangulable graphs
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Formal (almost) definition statement:
A 2-triangulation is a triple G = (V, E, T') where
e (V, FE) is a simple undirected graph.
e Each t € T is incident to 3 distinct edges and 3 distinct vertices.
e Each e € F is incident to either one or two triangles.
e Each v € V is incident to at least one edge.
e Two triangles share a vertex only as a result of sharing edges.

The last condition ensures that the union of all triangles is a proper surface.
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Characterizing triangulable graphs
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Simple examples:

e /(5 is triangulable as a sphere or as a disk.

e K, is triangulable as a sphere or as a disk.

e K5 is triangulable as a Mobius strip.

e i is triangulable as a Projective plane or as a Mobius strip.

Is K7 2-triangulable?
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Characterizing triangulable graphs
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Extension to d dimensions:
A d-triangulation is a tuple G = (T, 11, . .., Ty) where
e Each ¢t € T}, has a boundary which is a k-simplex of G.
e Each t € T}, k < d, is incident to some element of T}.
e Each t € T;_4 is incident to at most two elements T7.
e Two elements of T} share a vertex only as a result of sharing facets.

The last condition ensures that the union of all T;; is a d-dimensional pseudo-manifold
with border.

The last condition may be strengthened to ensure a d-manifold with border (but the
problem becomes hard for larger d).
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