#### Dois Problemas em Grafos

Jorge Stolfi

Instituto de Computação

Universidade Estadual de Campinas (UNICAMP) Caixa Postal 6176 - 13084-971 Campinas, SP, Brasil stolfi@ic.unicamp.br

Palestra apresentada na Série de Seminários do DTC-IC-UNICAMP, 2011-08-26 10:30-12:00.

Last modified 2011-08-26 09:51:06 by stolfi



This work is released under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of that license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California 94140, USA.

# Dois Problemas em Grafos

1

Jorge Stolfi

Instituto de Computação (IC) Universidade Estadual de Campinas (UNICAMP) Campinas, SP, Brasil stolfi@ic.unicamp.br



### Motivation: Integration of delta-weight mesh

3

Delta-weight mesh:

- A symmetric connected directed graph  $(V_G, E_G)$ .
- $\delta : E_G \to \mathbb{R}$  (edge deltas).
- $w: E_G \to \mathbb{R}$  (edge weights), symmetric.

Assume:

- ORG e, DST e are the endpoints of edge e.
- SYM e is the unique inverse of edge e.
- $\delta$  is antisymmetric:  $\delta[\text{SYM } e] = -\delta[e]$ .
- w is symmetric and positive: w[sym e] = w[e] > 0.

### Motivation: Integration of delta-weight mesh

4

Terrain interpretation:

- Each vertex v is a point on the map.
- The height of the terrain at v is z[v].
- $\delta[e]$  is a measurement of z[dst e] z[org e].
- Reliability of  $\delta[e]$  is w[e].
- Loops are irrelevant, can be deleted.
- Parallel edges can be condensed to make G simple.

Can be interpreted also as electrical circuit, spring network, ...

## Motivation: Integration of delta-weight mesh

5

Problem: given G, compute z.

- Determined only up to an additive constant.
- If G is a tree, ignore w, add  $\delta$  along paths.
- If G is not a tree,  $\delta$  is usually inconsistent.



#### Solving the equilibrium system

System Az = b with  $n = \#V_G$  equations and unknowns. Matrix A has O(m) nonzero elements,  $m = \#E_G$ . Gaussian elimination: cost  $O(nm^{0.5})$  ( $O(n^{1.5})$  if planar). Gauss-Seidel iteration: O(m) per iteration (O(n) if planar)... ... but needs at least  $\Omega(n)$  iterations, sometimes  $\Omega(n^2)$  ... ... so the total cost is  $\Omega(nm)$  to  $\Omega(n^2m)$  ( $\Omega(n^2)$  to  $\Omega(n^3)$ ).

## Solving the equilibrium system

8

Multiscale algorithm [Saracchini and Stolfi 2011]: SOLVE $(G, \delta, w)$  returns (z)1. If  $V_G = \{v\}$ , set  $z[v] \leftarrow 0$ , return z.

2. Find maximal independent set  $R \subseteq V_G$  of max degree g.

**3**. 
$$(G', \delta', w') \leftarrow \text{RemoveAndPatch}(R, G, \delta, w).$$

4. 
$$z \leftarrow \text{Solve}(G', \delta', w').$$

5. For all 
$$u \in R$$
, set  $z[u] \leftarrow \text{EQUILIBRIUM}(u, G, \delta, w)$ .

**6**. 
$$z \leftarrow \text{GAUSSSEIDEL}(z, G, \delta, w)$$
.

7. Return z.

#### Solving the equilibrium system

9

Analysis of multiscale SOLVE for PLANAR graph G:

- Step 2: Cost O(n).
- Step 3: Cost O(n).
- $\#V'_G \leq \beta \#V_G$  for some  $\beta < 1$ .
- G' is planar.
- Step 4: Cost O(n) by induction.
- Steps 6: O(1) iterations, cost O(m) = O(n).

Total cost: O(m) = O(n)!

10

We need a family of graphs  $\mathcal{F}$ , where every G:

- is connected.
- is sparse  $(m \leq An B \text{ if } n \geq n_0)$ .
- has a minimum percentage of vertices of degree  $\leq g$ .
- admits a REMOVEANDPATCH operation that preserves  $\mathcal{F}$ .
- includes the regular 3D meshes with holes.

What could that family be?



12

Informal statement:

- A 2-triangulation is a graph G drawn on a compact surface S (possibly with borders) in such a way that every face is a triangle.
- A graph G is 2-triangulable if it admits a 2-triangulation.
- When is a graph 2-triangulable?

Every graph can be drawn on some surface, but the faces are not always triangles.

13

## Formal (almost) definition statement:

A 2-triangulation is a triple G = (V, E, T) where

- $\bullet~(V,E)$  is a simple undirected graph.
- Each  $t \in T$  is incident to 3 distinct edges and 3 distinct vertices.
- Each  $e \in E$  is incident to either one or two triangles.
- Each  $v \in V$  is incident to at least one edge.
- Two triangles share a vertex only as a result of sharing edges.

The last condition ensures that the union of all triangles is a proper surface.

14

Simple examples:

- $K_3$  is triangulable as a sphere or as a disk.
- $K_4$  is triangulable as a sphere or as a disk.
- $K_5$  is triangulable as a Möbius strip.
- $K_6$  is triangulable as a Projective plane or as a Möbius strip.

ls  $K_7$  2-triangulable?

15

#### Extension to d dimensions:

A d-triangulation is a tuple  $G = (T_0, T_1, \ldots, T_d)$  where

- Each  $t \in T_k$  has a boundary which is a k-simplex of G.
- Each  $t \in T_k$ , k < d, is incident to some element of  $T_d$ .
- Each  $t \in T_{d-1}$  is incident to at most two elements  $T_d$ .
- Two elements of  $T_d$  share a vertex only as a result of sharing facets.

The last condition ensures that the union of all  $T_d$  is a d-dimensional pseudo-manifold with border.

The last condition may be strengthened to ensure a d-manifold with border (but the problem becomes hard for larger d).

