Dois Problemas em Grafos

Jorge Stolfi

Instituto de Computação
Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176-13084-971 Campinas, SP, Brasil
stolfi@ic.unicamp.br

Palestra apresentada na Série de Seminários do DTC-IC-UNICAMP, 2011-08-26 10:30-12:00.

Last modified 2011-08-26 09:51:06 by stolfi

This work is released under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
To view a copy of that license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900,

Mountain View, California 94140, USA.

| |
| ---: | ---: |
| I - What is a sparse graph? |
| |
| |

Delta-weight mesh:

- A symmetric connected directed graph $\left(V_{G}, E_{G}\right)$.
- $\delta: E_{G} \rightarrow \mathbb{R}$ (edge deltas).
- $w: E_{G} \rightarrow \mathbb{R}$ (edge weights), symmetric.

Assume:

- ORG $e, \operatorname{DST} e$ are the endpoints of edge e.
- Sym e is the unique inverse of edge e.
- δ is antisymmetric: $\delta[\operatorname{SYM} e]=-\delta[e]$.
- w is symmetric and positive: $w[\operatorname{sym} e]=w[e]>0$.

Motivation: Integration of delta-weight mesh

Terrain interpretation:

- Each vertex v is a point on the map.
- The height of the terrain at v is $z[v]$.
- $\delta[e]$ is a measurement of $z[\operatorname{DST} e]-z[\mathrm{ORG} e]$.
- Reliability of $\delta[e]$ is $w[e]$.
- Loops are irrelevant, can be deleted.
- Parallel edges can be condensed to make G simple.

Can be interpreted also as electrical circuit, spring network, ...

Motivation: Integration of delta-weight mesh

Problem: given G, compute z.

- Determined only up to an additive constant.
- If G is a tree, ignore w, add δ along paths.
- If G is not a tree, δ is usually inconsistent.

Weighted least-squares solution: satisfies the vertex equilibrium equations.

$$
\begin{equation*}
z[u]=\frac{\sum_{e \in E_{G}[u]} w[e](z[\operatorname{DST} e]-\delta[e])}{\sum_{e \in E_{G}[u]} w[e]} \tag{1}
\end{equation*}
$$

System $A z=b$ with $n=\# V_{G}$ equations and unknowns.
Matrix A has $O(m)$ nonzero elements, $m=\# E_{G}$.
Gaussian elimination: cost $O\left(n m^{0.5}\right)\left(O\left(n^{1.5}\right)\right.$ if planar).
Gauss-Seidel iteration: $O(m)$ per iteration $(O(n)$ if planar)...
\ldots but needs at least $\Omega(n)$ iterations, sometimes $\Omega\left(n^{2}\right) \ldots$
\ldots so the total cost is $\Omega(n m)$ to $\Omega\left(n^{2} m\right)\left(\Omega\left(n^{2}\right)\right.$ to $\Omega\left(n^{3}\right)$).

Multiscale algorithm [Saracchini and Stolfi 2011]: $\operatorname{Solve}(G, \delta, w)$ returns (z)

1. If $V_{G}=\{v\}$, set $z[v] \leftarrow 0$, return z.
2. Find maximal independent set $R \subseteq V_{G}$ of max degree g.
3. $\left(G^{\prime}, \delta^{\prime}, w^{\prime}\right) \leftarrow \operatorname{RemoveAndPatch}(R, G, \delta, w)$.
4. $z \leftarrow \operatorname{SolvE}\left(G^{\prime}, \delta^{\prime}, w^{\prime}\right)$.
5. For all $u \in R$, set $z[u] \leftarrow \operatorname{EqUiLibrium}(u, G, \delta, w)$.
6. $z \leftarrow \operatorname{GAUSSSEIDEL}(z, G, \delta, w)$.
7. Return z.

Analysis of multiscale Solve for PLANAR graph G :

- Step 2: Cost $O(n)$.
- Step 3: Cost $O(n)$.
- $\# V_{G}^{\prime} \leq \beta \# V_{G}$ for some $\beta<1$.
- G^{\prime} is planar.
- Step 4: Cost $O(n)$ by induction.
- Steps 6: $O(1)$ iterations, cost $O(m)=O(n)$.

Total cost: $O(m)=O(n)$!

Extension to non-planar delta-weight meshes

We need a family of graphs \mathcal{F}, where every G :

- is connected.
- is sparse ($m \leq A n-B$ if $n \geq n_{0}$).
- has a minimum percentage of vertices of degree $\leq g$.
- admits a RemoveAndPatch operation that preserves \mathcal{F}.
- includes the regular 3D meshes with holes.

What could that family be?

II - Characterizing triangulations

Characterizing triangulable graphs

Informal statement:

- A 2-triangulation is a graph G drawn on a compact surface S (possibly with borders) in such a way that every face is a triangle.
- A graph G is 2-triangulable if it admits a 2-triangulation.
- When is a graph 2-triangulable?

Every graph can be drawn on some surface, but the faces are not always triangles.

Characterizing triangulable graphs

Formal (almost) definition statement:

A 2-triangulation is a triple $G=(V, E, T)$ where

- (V, E) is a simple undirected graph.
- Each $t \in T$ is incident to 3 distinct edges and 3 distinct vertices.
- Each $e \in E$ is incident to either one or two triangles.
- Each $v \in V$ is incident to at least one edge.
- Two triangles share a vertex only as a result of sharing edges.

The last condition ensures that the union of all triangles is a proper surface.

Characterizing triangulable graphs

Simple examples:

- K_{3} is triangulable as a sphere or as a disk.
- K_{4} is triangulable as a sphere or as a disk.
- K_{5} is triangulable as a Möbius strip.
- K_{6} is triangulable as a Projective plane or as a Möbius strip.

Is K_{7} 2-triangulable?

Characterizing triangulable graphs

Extension to d dimensions:

A d-triangulation is a tuple $G=\left(T_{0}, T_{1}, \ldots, T_{d}\right)$ where

- Each $t \in T_{k}$ has a boundary which is a k-simplex of G.
- Each $t \in T_{k}, k<d$, is incident to some element of T_{d}.
- Each $t \in T_{d-1}$ is incident to at most two elements T_{d}.
- Two elements of T_{d} share a vertex only as a result of sharing facets.

The last condition ensures that the union of all T_{d} is a d-dimensional pseudo-manifold with border.

The last condition may be strengthened to ensure a d-manifold with border (but the problem becomes hard for larger d).

Créditos das imagens	16

