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I - What is a sparse graph?
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Motivation: Integration of delta-weight mesh 3

Delta-weight mesh:

• A symmetric connected directed graph (VG, EG).

• δ : EG → R (edge deltas).

• w : EG → R (edge weights), symmetric.

Assume:

• org e, dst e are the endpoints of edge e.

• sym e is the unique inverse of edge e.

• δ is antisymmetric: δ[sym e] = − δ[e].

• w is symmetric and positive: w[sym e] = w[e] > 0.
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Motivation: Integration of delta-weight mesh 4

Terrain interpretation:

• Each vertex v is a point on the map.

• The height of the terrain at v is z[v].

• δ[e] is a measurement of z[dst e]− z[org e].

• Reliability of δ[e] is w[e].

• Loops are irrelevant, can be deleted.

• Parallel edges can be condensed to make G simple.

Can be interpreted also as electrical circuit, spring network, . . .
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Motivation: Integration of delta-weight mesh 5

Problem: given G, compute z.

• Determined only up to an additive constant.

• If G is a tree, ignore w, add δ along paths.

• If G is not a tree, δ is usually inconsistent.
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Motivation: Integration of delta-weight mesh 6

Weighted least-squares solution: satisfies the vertex equilibrium equations.

z[u] =

∑

e∈EG[u]

w[e](z[dst e]− δ[e])

∑

e∈EG[u]

w[e]
(1)
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Solving the equilibrium system 7

System Az = b with n = #VG equations and unknowns.

Matrix A has O(m) nonzero elements, m = #EG.

Gaussian elimination: cost O(nm0.5) (O(n1.5) if planar).

Gauss-Seidel iteration: O(m) per iteration (O(n) if planar). . .
. . . but needs at least Ω(n) iterations, sometimes Ω(n2) . . .
. . . so the total cost is Ω(nm) to Ω(n2m) (Ω(n2) to Ω(n3)).
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Solving the equilibrium system 8

Multiscale algorithm [Saracchini and Stolfi 2011]: Solve(G, δ, w) returns (z)
1. If VG = {v}, set z[v]← 0, return z.

2. Find maximal independent set R ⊆ VG of max degree g.

3. (G′, δ′, w′)← RemoveAndPatch(R, G, δ, w).

4. z ← Solve(G′, δ′, w′).

5. For all u ∈ R, set z[u]← Equilibrium(u, G, δ, w).

6. z ← GaussSeidel(z, G, δ, w).

7. Return z.
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Solving the equilibrium system 9

Analysis of multiscale Solve for PLANAR graph G:

• Step 2: Cost O(n).

• Step 3: Cost O(n).

• #V ′G ≤ β#VG for some β < 1.

• G′ is planar.

• Step 4: Cost O(n) by induction.

• Steps 6: O(1) iterations, cost O(m) = O(n).

Total cost: O(m) = O(n)!
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Extension to non-planar delta-weight meshes 10

We need a family of graphs F , where every G:

• is connected.

• is sparse (m ≤ An−B if n ≥ n0).

• has a minimum percentage of vertices of degree ≤ g.

• admits a RemoveAndPatch operation that preserves F .

• includes the regular 3D meshes with holes.

What could that family be?
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II - Characterizing triangulations
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Characterizing triangulable graphs 12

Informal statement:

• A 2-triangulation is a graph G drawn on a compact surface S (possibly with borders)
in such a way that every face is a triangle.

• A graph G is 2-triangulable if it admits a 2-triangulation.

• When is a graph 2-triangulable?

Every graph can be drawn on some surface, but the faces are not always triangles.
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Characterizing triangulable graphs 13

Formal (almost) definition statement:
A 2-triangulation is a triple G = (V, E, T ) where

• (V, E) is a simple undirected graph.

• Each t ∈ T is incident to 3 distinct edges and 3 distinct vertices.

• Each e ∈ E is incident to either one or two triangles.

• Each v ∈ V is incident to at least one edge.

• Two triangles share a vertex only as a result of sharing edges.

The last condition ensures that the union of all triangles is a proper surface.

14



Characterizing triangulable graphs 14

Simple examples:

• K3 is triangulable as a sphere or as a disk.

• K4 is triangulable as a sphere or as a disk.

• K5 is triangulable as a Möbius strip.

• K6 is triangulable as a Projective plane or as a Möbius strip.

Is K7 2-triangulable?
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Characterizing triangulable graphs 15

Extension to d dimensions:
A d-triangulation is a tuple G = (T0, T1, . . . , Td) where

• Each t ∈ Tk has a boundary which is a k-simplex of G.

• Each t ∈ Tk, k < d, is incident to some element of Td.

• Each t ∈ Td−1 is incident to at most two elements Td.

• Two elements of Td share a vertex only as a result of sharing facets.

The last condition ensures that the union of all Td is a d-dimensional pseudo-manifold
with border.

The last condition may be strengthened to ensure a d-manifold with border (but the
problem becomes hard for larger d).
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