
TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

A Multi-Scale Signal Filtering and Comparison
Heuristic for DNA Sequence Matching

Helena Cristina da Gama Leitão, Rafael Felipe Veiga Saracchini, Jorge Stolfi

Abstract—We address a basic problem of bioinformatics: namely, evaluating the similarity of two genomic sequences. We describe
robust methods for evaluating the similarity of down-sampled DNA or RNA sequences. We implemented the method as a
proof-of-concept sequence matching program. We achieve robust down-sampling by encoding the nucleotide sequence into a packed
3-channel representation and using signal filtering techniques with Gaussian-like smoothing kernels. By using a multi-scale approach,
we achieve scalability without significant loss of signal quality along down-sampled strings.
We show that the comparison method is robust under simple mutations such as isolated single-nucleotide substitutions, scattered
insertions or deletions of short nucleotide sequences, reliably discriminating homologous and non-homologous pairs of sequences.
Moreover, our filtering approach ensures that all levels of the multi-scale pyramid (except the original sequence) are practically free
from aliasing artifacts and have the same degree of smoothing.
Nucleotide sequence can be effectively compared by proper multi-scale numeric encoding, filtering and sub-sampling.

Index Terms—Signal filtering, multi-scale, bio-sequence analysis, DNA similarity.

F

1 INTRODUCTION

We address a basic problem of bioinformatics: namely,
evaluating the similarity of two genomic sequences (RNA
or DNA). The goal such comparisons is to detect apparent
homologous subsequences, derived from a common ances-
tor sequence by multiple replication steps, in which the
sequences were modified by insertion, deletion and replace-
ment of nucleotides.

Our proposed approach starts by encoding the DNA or
RNA sequence as a three-channel numeric signal, where
each nucleotide is represented by a triplet of integers.
We then view each channel as a sampled signal, and use
standard signal filtering techniques to remove its high-
frequency components. Each sample triplet in the filtered
sequence can be visualized as a point along a smooth curve
in three-dimensional space, whose shape depends on the
local density of each nucleotide type.

The main contribution of this paper is the observation
that, with proper filtering, the encoded sequence can be
downsampled to provide a shorter representation of the
original one, without introducing aliasing artifacts. Thanks
to the filtering, the downsampled sequence is little affected
by shifts in the downsampling phase, such as would be
caused by isolated nucleotide insertions or deletions, or
embedding of the same nucleotide sequence in different
contexts.

The filtering and downsampling process can be iterated
to produce a multi-scale description of the original DNA

• Helena Leitão is with the Institute of Computing, Federal Fluminense
University, Brazil.
E-mail:hcgl@ic.uff.br

• Rafael Saracchini and Jorge Stolfi are with the Institute of Computing,
State University of Campinas, Brazil.
E-mail: ra069320@ic.unicamp.br, stolfi@ic.unicamp.br

This work was partly supported by Brazilian Government grants CNPq(grant
301016/92-5 and 550905/07-3),FAPESP and FAPERJ.

sequence. At each step, the number of samples is halved,
reducing the processing costs by half or more; and twice as
many nucleotides can be inserted or deleted at some point
of the original sequence without significant change in the
filtered and downsampled one.

At any level of this multi-scale representation, two en-
coded and filtered signals can be compared by an approx-
imate string matching algorithm based on the dynamic
programming paradigm [11]. The algorithm quantifies the
likelihood of two given DNA strings being homologous. The
multi-scale representation allows long segments of DNA to
be compared at a small fraction of the cost of comparing
the two sequences directly. The proper filtering before each
downsampling step is essential for the functioning of this
algorithm.

Although we consider here only the uni-directional
matching of DNA sequences, the multi-scale comparison
technique could be easily applied to other kinds of biose-
quences; and bi-directional matching can be handled by
running the algorithm a second time, after reversing and
complementing one of the sequences.

To prove the validity of the concept, we produced a
prototype implementation (in C language) of a sequence
comparison algorithm and tested it on some homologous
and non-homologous sequences.

1.1 Related work

Several approaches were proposed in order to speed up the
pairing and matching of DNA or RNA sequences, relying
in the translation of the character string representation to
alternative forms of representation.

Ravichandran et al. [10] proposed a query-based align-
ment method that maps biological sequences to time-
domain waveforms, and then processes the waveforms
for alignment in the time-frequency plane. This work was

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

extended by Machado et al. [9], who used time-frequency
analysis by wavelet decomposition.

A graphical method based on dinucleotides and their
positional information was proposed by Bari et al. [2], pre-
senting a graphical representation of DNA sequences based
on nucleotide ring structure. ?[Entender!] In the proposed
representation, DNA sequences were converted into 16 din-
ucleotides on the surface of the hexagon.

The multi-scale analysis of DNA sequences was ini-
tially proposed by Futschik et al. [5] and Knijnenburg et
al. [7], who employed a multi-scale segmentation of the
sequences. Both methods convert each biosequence into a
single-channel numerical signal z. Knijnenburg et al. [7]
defined z as the physical distance from each point of the
sequence to a functional genomic element, and applied to it
a multi-scale segmentation algorithm by Vicken et al. [12].
Futschik et al. [5] instead defined z as the local G + C
content, and used multi-scale statistical analysis to obtain
the segmentation. The encoding used in our method can
be seen as an extension of the latter, using a three-channel
signal to capture the full information contained in the local
nucleotide ratios.

2 METHODS

2.1 Tetrahedral encoding of DNA

DNA and RNA sequences are commonly represented as
a sequence of letters from the alphabet B = {A, T, C, G}
denoting the four nucleotides that may appear in DNA
(with U instead T for RNA). Since our methods require arith-
metical operations on sequence elements, like averaging and
interpolation, we map each nucleotide to a point of three-
dimensional space R3.

Like Anastassiou [1], we encode each DNA letter by a
distinct vertex of a regular tetrahedron T3 in R3. However
we position the tetrahedron so that all vertex coordinates
are +1 or −1, namely

A → (+1,+1,−1)
T → (+1,−1,+1)
C → (−1,+1,+1)
G → (−1,−1,−1)

(1)

See figure 2.1. A discussion of alternative encodings can be
found in a earlier version of this work [4].

We will use the words datum for each element x[j] of
such an encoded sequence (a point of R3), and sample for
each of its three coordinates. We assume that the index j
runs from 0 to n − 1, where n is the number of datums in
the sequence. Note that a datum sequence can be viewed
as a three separate sequences of numeric samples, that is, a
three-channel discrete signal.

3 FILTERING AND DOWNSAMPLING

By downsampling a discrete signal x we mean assembling
another signal x′ by taking one every δ samples, starting
with some sample x[σ]. The integer δ is the downsampling
stride, and σ is the downsampling offset.

Fig. 1. The tetrahedron T3 whose corners encode the letters of the DNA
alphabet B.

3.1 Aliasing

Before downsampling a sample sequence x, we must make
sure that it contains no Fourier components whose fre-
quencies are at or above the Nyquist limit (one half-cycle
every δ samples). Otherwise, the downsampling will turn
those high-frequency components of x into low-frequency
components of x′, which will be impossible to separate
from the genuine low-frequency components of x′. This
phenomenon is known as frequency aliasing in signal theory.
Worse, the downsampled sequence x′ will vary drastically
if the sequence x gets shifted by one position.

For example, consider the two DNA sequences

X = (A, T, A, G, T, C, G, C, C, A)
Y = (T, A, G, T, C, G, C, C, A, C)

(2)

Note that the sequence Y is basically X shifted 1 base to
the left. If we down-sample both sequences by taking only
the letters with even indices (δ = 2), we would get X ′ =
(A, A, T, G, C) and Y ′ = (T, G, C, C). Now Y ′ appears to be X ′

shifted 2 bases to the left, which would imply a shift of 4
bases of the original sequences.

If the downsampled sequence is obtained by averaging
adjacent samples, namely if x′[i] = (x[2i] + x[2i+1])/2, the
aliasing problem is somewhat reduced, but still present. For
example, consider the two numeric sequences

x = (0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0)
y = (2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0)

(3)

The sequences obtained by averaging pairs of consecu-
tive samples and downsampling with step 2 would be
x′ = (1, 1, 1, 1, 1, 1) and y′ = (2, 0, 2, 0, 2, 0).

3.2 Convolution filtering

In order to avoid aliasing artifacts, we apply a smooth-
ing filter to a sequence x before downsampling it. The
filtering consists of convolution with a kernel defined by a
kernel radius L and a table w of kernel weights w[r] where
−L ≤ r ≤ +L. Namely,

x′[i] =
+L∑
r=−L

w[r]x[δi+ σ − r] (4)

Formula 4 is to be applied for all indices j such that all
indices in the right-and side are valid. Therefore, the offset

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

σ must satisfy L ≤ σ < L + δ. Then, if x has n samples,
the length of x′ will be n′ = b(n − σ − L + 1)/δc; unless
n ≤ σ + L, in which case x′ is empty (n′ = 0) by definition.

The kernel weights are usually positive, symmetric
(w[−r] = w[r]) and decrease with increasing |r|. Therefore,
each filtered sample x′[i] is the weighted average of origi-
nal samples x[j] in a “fuzzy” window centered at sample
x[δi+ σ], which has the largest weight in that average.

In particular, the first and last samples of the new se-
quence x′ are the local averages around samples x[σ] and
x[δ(n′ − 1) + σ] of the original one. In other words, the
filtering, as defined above, trims between L and L + δ − 1
samples from each end of the sequence x, before the down-
sampling proper (which reduces the length of the remaining
sequence by a factor of about 1/δ).

The radius L must be at least bδ/2c, so that there is no
gap between the windows of successive datums x′[i] and
x′[i + 1]. Moreover, every sample x[j] must give the same
total contribution to x′; that is,

+∞∑
k=−∞

w[j + kδ] = 1/δ (5)

for any j in {0 .. δ − 1}, with the convention that w[r] is
zero if |r| > L.

3.3 Multi-scale analysis of signals
In multi-scale signal analysis, a given discrete numerical
sequence x is transformed into a hierarchy or pyramid of
discrete signals x(0), .. x(h); where x(0) is the original signal
x, and each subsequent signal x(k) with k ≥ 1 is a down-
sampled and filtered version of the previous one x(k−1). In
principle one can use different parameters L(k), δ(k), σ(k),
and a different table of kernel weights w(k) for each level.
The lengths of these sequences will be n(k), where n(0) = n
is the length of x, and n(k) = b(n(k−1)−σ(k)−L(k)+1)/δ(k)c
for k ≥ 1

Each level x(k) of the pyramid can also be seen as the
result of filtering and downsampling the original sequence
x = x(0) with the cumulative parameters δ∗(k), σ∗(k), L∗(k)

and a cumulative kernel weight table w∗(k). For the first level
we have δ∗(1) = δ(1), σ∗(1) = σ(1), L∗(1) = L(1), and
w∗(1) = w(1). For k ≥ 2, the cumulative parameters are
defined recursively as

δ∗(k) = δ(k)δ∗(k−1)

σ∗(k) = σ(k)δ∗(k−1) + σ∗(k−1)

L∗(k) = L(k)δ∗(k−1) + L∗(k−1)
(6)

The cumulative weights w∗(k) are similarly defined as the
convolution of w∗(k−1) with w(k), after the latter has been
“stretched” by inserting δ∗(k−1)−1 zeros between successive
weights.

3.4 Multi-scale analysis of DNA sequences
With the encoding described in section 2.1, multi-scale anal-
ysis can be applied to DNA sequences as well. Specifically,
each original DNA sequenceX is transformed by the encod-
ing into a datum sequence x = x(0) with the same length,
and from these we derive x(1), .. x(h), by filtering each
channel as a numeric discrete signal, and downsampling

the datum sequence. See figure 3.4. We found it convenient
to use δ(1) = 1 and σ(1) = L(1), so that level z(1) is
merely a smoothed and truncated version of x(0), without
downsampling; and δ(k) = 2 for all k ≥ 2.

x(0)

x(1)

x(2)

x(3)

Fig. 2. Multi-scale versions of a DNA sequence with 250 nucleotides,
encoded as corners of T3, filtered and downsampled as described in
section 3.2 and 3.4. The three channels are plotted in red, green, and
blue, respectively.

The kernel weights that we use are w(k)[r] =
W (k)[r]/D(k), where W (k), D(k), and the radii L(k) are
given in table 3.4. The power spectra of these kernels are
shown in figure 3.4.

k = 1 k ≥ 2

L(k) 6 10
D(k) 35440 61364

W (k)[0] 9992 9992
W (k)[±1] 7786 9193
W (k)[±2] 3680 7161
W (k)[±3] 1055 4722
W (k)[±4] 183 2636
W (k)[±5] 19 1245
W (k)[±6] 1 498
W (k)[±7] 169
W (k)[±8] 48
W (k)[±9] 12
W (k)[±10] 2

V (k) 2.00 6.00

Fig. 3. Elements of the filtering kernels used in the example. The last
line V (k) is the variance of the kernel w(k), viewed as a probability
distribution on the indices with mean 0.

We define the degree of smoothing U (k) of each level k by
the recurrence U (0) = 0 and U (k) = (U (k−1)+V (k))/(δ(k))2

for all k ≥ 1; where V (k) is the variance of the filtering

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

Fig. 4. Power spectra of the filtering kernels w(k) of table 3.4, for the
initial step k = 1 (top) and subsequent steps k ≥ 2 (bottom).

kernel w(k), interpreted as a probability distribution on the
indices {−L(k) .. +L(k)}. See figure 3.4.

Fig. 5. Idealized power spectrum of an unfiltered periodic random binary
signal with a 256-sample period (top) and its spectra after 1, 2, and 3
filtering steps. The vertical line shows the maximum frequency that is
preserved without aliasing by the combined downsamplings from level 0
to the indicated level.

The quantity U (k) is an estimate of the variance of
the impulse response function of the linear process that
transforms the unfiltered sequence x(0) into x(k). This pro-
cess is not shift-invariant, but, with the filtering kernels of
table 3.4, the response for each input sample is very close to
a Gaussian hump with variance U (k) and a fractional mean.
In particular, the definition U (0) = 0 is consistent with the
fact that the original unfiltered sequence x(0) is not smooth
at all. With our choices of kernels and steps, this recurrence
gives U (k) = 2.00 for all k ≥ 1. We take this to mean that
all scales are smoothed to the same degree, and equally safe
from aliasing artefacts.

3.5 Visualizing DNA sequences as space curves

Each level x(k) of the multi-scale hierarchy of a DNA se-
quence is a sequence of points x(k)[0], .. x(k)[n− 1] in three-
dimensional space. These points can be interpolated with a
cubic spline for any real argument t in the range [0 àn− 1],
to yield a smooth curve x(k)(t) in three-dimensional space.
This curve can be plotted with arbitrary 3D rendering meth-
ods or viewed with interactive 3D visualization tools. See
figure 3.5.

Fig. 6. Three-dimensional plot of a DNA segment from a Drosophila
sp. genome, originally with 250 nucleotides, filtered by the w(1) filter of
table 3.4, with no downsampling, and then with the w(2) filter, down-
sampled with step δ(2) = 2. The beads along the curve are the actual
datums; the connecting lines were reconstructed by cubic interpolation.
The entire curve was magnified by the scale factor s = 1.440 relative to
the origin (the center of the tetrahedron) for clarity.

For k = 0, the curve intersects itself at a tetrahedron
vertex at every integer t, and therefore is quite uninforma-
tive; but for k ≥ 1 self-intersections are rare, and the general
shape of the curve conveys useful information, as we shall
see. At successive stages, the curve becomes necessarily
simpler, losing the smaller details (and being trimmed at
each end) while retaining the larger ones. See figure 3.5.
These curves can be effective tools for visual comparison of
sequences with up to a couple hundred datums [4].

4 COMPARISON OF FILTERED DNA SEQUENCES

We now proceed to describe the comparison of DNA se-
quences that have been encoded, filtered, and downsampled
as described in the previous sections.

4.1 Evolution model

Recall that the goal of biosequence comparison is to detect
homologous subsequences, that are derived from the same
ancestral sequence. Specifically, we assume that the two
sequences X and Y to be compared were independently
created from some ancestral sequence Z by multiple bio-
logical replications, and suffered several evolutionary events
during this process; where each event may be

• a point mutation that replaces a single nucleotide by a
different one;

• a short deletion that deleted a few consecutive nu-
cleotides; or

• a short insertion that inserts a few nucleotides be-
tween two consecutive ones.

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

x(1), s = 1.000 x(2), s = 1.200

x(3), s = 1.440 x(4), s = 1.728

Fig. 7. Three-dimensional plots of a DNA segment from a Drosophila
sp. genome, originally with 500 nucleotides, filtered and downsampled
at various scales by the filter kernels of table 3.4. Each curve was
magnified by the indicated scale factor s, for clarity.

In real genomes one may also have rearrangement events,
in which the DNA chain is broken into several relatively
large pieces that are re-attached in a different order, possibly
with some pieces being lost, duplicated, or imported from
some “foreign” DNA. Our algorithm does not try to model,
identify, or account for such rearrangements. If X and Y con-
tain some ancestral substring Z that was modified by such
events, our algorithm will hopefully report it as several ho-
mologous pairs of sub-strings (X ′1, Y

′
1), (X

′
2, Y

′
2), . . ., where

each pair (X ′j , Y
′
j) is derived from a maximal segment of Z

that was not split by any of the rearrangement events.
Any string can be turned into any other string by a series

of single-letter insertions and deletions; but the inclusion of
the three classes of events above can be justified by biology
and statistics. Namely, we assume that

• the number of evolutionary events that occurred
since the common ancestor is small compared to the
length of the two strings;

• events occur independently and at random places in
the string, with uniform probability;

• the probability of a point mutation is substantially
greater than that of a deletion and insertion in the
same spot; and

• the probability of a short insertion or deletion decays
exponentially with the number of nucleotides added
or lost.

These assumptions imply that the letters of two homologous
strings X,Y can be paired, preserving their order, so that
paired letters are equal; except for a relatively few places
where the pairing is disturbed by short insertions and
short deletions. In contrast, non-homologous strings are as
dissimilar as any two random sub-strings of a genome can
be. Like most homology detection methods, our algorithm
is based on this hypothesis: that two maximal sub-strings

that are sufficiently similar, in this sense, are likely to be
homologous.

Our comparison criterion is meant to operate on ver-
sions x, y of the original strings that have been numerically
encoded, filtered, and downsampled, as described in sec-
tion 3.4. Even so, the two sequences can be compared by a
variant of the well-known dynamic programming algorithm
that finds the longest common subsequence of two strings.
The running time of that algorithm is proportional to the
product of the lengths of the two strings. Therefore, if x and
y contain only one sample for every K letters of X and Y ,
the comparison will require about 1/K2 as much memory
and 1/K2 or 1/K3 as much computing time, relative to the
cost of comparing X and Y directly.

4.2 Pairings
Formally, we define a pairing between two arbitrary se-
quences x and y as a sequence of pairs (r0, s0), .. (rp, sp),
where each ri is an index into x, and each si is an index into
y.

If x and y are raw nucleotide sequences X and Y , each
pair (ri, si) can be interpreted as a hypothesis that the
nucleotides X[ri] and Y [si] are homologous, that is, are
replicas of the same nucleotide of the hypothetical common
ancestral sequence. If x and y are numerically encoded,
filtered, and downsampled versions of X and Y , then each
pair (ri, si) can be interpreted as saying that the part of X
summarized by datum x[ri] and the part of Y summarized
by datum y[si] probably contain a significant number of
homologous letter pairs.

Each pair (ri, si) is called a rung of the pairing. The sum
ri + si is the position of the rung, and the difference si − ri
is its offset.

Each pair of successive rungs (ri, si) and (ri+1, si+1) is
said to be a step of the pairing. Since we are not considering
segment rearrangements, we require the pairing to be strictly
monotonic, meaning that it must satisfy ri < ri+1 and si <
si+1 in every step. Note that the pairing has p steps and p+1
rungs.

The pairing is said to span the substrings of x and y that
starts with elements x[r0] and y[s0] and end with elements
x[rp] and y[sp], respectively.

4.3 Perfect and connected pairings
A perfect pairing is one where every step is normal, that
is, ri+1 = ri + 1 and si+1 = si + 1. A step that is not
normal is a skipping step, that leaves a break (one or more
unpaired elements) in one or both of the two sequences,
before the next matched pair of elements. Such steps are
meant to model evolutionary events where a small stretch
of DNA was inserted into one sequence or deleted from the
other. (We do not attempt to distinguish between these two
possibilities.)

In this work we consider only pairings that are connected,
namely where every step (ri, si) → (ri+1, si+1) satisfies
ri+1 = ri + 1 or si+1 = si + 1. In other words, at each
step the pairing may have a break on either sequence, but
not on both at the same time. A step that skips bases on both
sequences would represent either a multi-base substitution
(deletion of a string of bases and insertion of an unrelated

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

string) in one of the sequences, or insertion of two unrelated
strings on both sequences at about the same spot. Both
events are assumed to be too rare to consider in the initial
search for homologous sub-strings.

The problem we are solving can be now restated as
follows: given two biosequences X and Y , respectively with
m and n letters, find a connected strictly monotonic pairing
r, s between them, consisting mostly of normal steps, such
that the corresponding sub-sequences X ′, Y ′ (defined by
X ′[i] = X[ri] and Y ′[i] = Y [si]) are sufficiently similar.
In the process of solving this problem for the original
biosequences X and Y , we solve the same problem at each
scale k, for the filtered and downsampled sequences x(k)

and y(k).

4.4 Likelihood of a DNA sequence pairing
Our algorithm implicitly requires the assignment of numer-
ical quality scores to a given candidate pairing r, s between
two filtered and downsampled sequences x, y. In this evalu-
ation, we must consider the similarity of the paired datums
x[ri] and y[si], and the number of imperfections (skipping
steps and unpaired bases) in the pairing itself. In this and the
following functions, we derive our scoring function based
on the log likelihood criterion which underlies the scoring
functions for DNA alignment often used in computational
biology.

Let’s consider first the evaluation of a pairing r, s,
with p steps, between two unfiltered DNA sequences
X,Y . Let PrH((X, r) ↔ (Y, s)) denote the likelihood that
the substrings of X and Y spanned by the pairing are
homologous—that is, descend from a common ancestral
DNA sequence Z . We use the simplistic formula

PrH((X, r)↔ (Y, s)) =

(
p∏
i=0

PrP(X[ri]↔ Y [si])

)

×
(

p∏
i=1

PrI(ri − ri−1, si − si−1)
)

(7)

Here, the nucleotide pairing factor PrP(X[ri] ↔ Y [si]), asso-
ciated to each rung (ri, si) of the pairing, can be interpreted
as the probability that the same ancestral nucleotide Z[k]
yielded X[ri] in one sequence and Y [si] in the other, ac-
counting for possible point mutations. We assume that this
factor depends only on the two nucleotides (and therefore
could be provided by a table with 4×4 entries). In particular,
if we assume that any nucleotide may mutate into any other
with the same probability µ, then

PrP(X[ri], Y [si])

=

{
(1− µ)2 + 1

3µ
2 if X[ri] = Y [si], and

2µ(1− µ) + 2
3µ

2 if X[ri] 6= Y [si].
(8)

For example, if µ = 0.1, then PrP(X[ri]↔ Y [si]) is≈ 0.8133
if the nucleotides are the same, and ≈ 0.1867 if they are
different.

The insertion/deletion factor PrI(ri − ri−1, si − si−1) in
formula (7), associated with a step (ri−1, si−1) → (ri, si),
can be interpreted as the probability of the step advancing
ri − ri−1 nucleotide positions in sequence X and si − si−1
nucleotides in sequence Y . Recall that we are considering

only connected pairings, so at least one of these differences
is 1; so can write the step-associated factor as PrI(λi) where
λi = max{ri − ri−1 − 1, si − si−1 − 1} is the length of
the presumed insertion or deletion, i. e. the number of
nucleotides that are skipped and left unpaired in that step.
Note that λi = 0 if the step is normal. We assume that
PrI(λi) decreases exponentially when λi ≥ 1. Namely,

PrI(λi)

=

1− η if λi = 0, and

ητλi−1 1− τ
1− τλmax

if 1 ≤ λi ≤ λmax.
(9)

where η if the probability of an insertion or deletion oc-
curring at all after any nucleotide, λmax is the maximum
number of nucleotide insertions or deletions considered at
one spot, and τ is the probability factor for each additional
unpaired nucleotide. For example, if η = 0.05, τ = 0.90,
and λmax = 20, then PrI(1) = 0.95, PrI(2) ≈ 0.00578,
PrI(3) ≈ 0.00520, PrI(4) ≈ 0.00468, . . . , PrI(20) ≈ 0.00087.

4.5 Similarity score for paired DNA sequences

We now define the similarity of two unfiltered nucleotide
sequences X and Y under the pairing r, s as the negative of
the logarithm of formula (7), namely

SH(X, r, Y, s) =

p∑
i=0

SP(X[ri], Y [si]) +

p∑
i=1

SI(λi) (10)

where

SP(X[ri], Y [si]) =

{
wE if X[ri] = Y [si], and
wD if X[ri] 6= Y [si]

(11)

with
wE = − log((1− µ)2 + 1

3µ
2), wD = − log(µ(1−mu) + 2

3µ
2);

and

SI(λi) =

{
wN if λi = 0, and
wB + (λi − 1)wS if 1 ≤ λi ≤ λmax

(12)

with

wN = − log(1− η) (13)
wB = −log(η(1− τ)/(1− τλmax)) (14)
wS = −log(τ) (15)

Formula (10) can be written also as

SH(X, r, Y, s) = wEnE(X, r, Y, s) + wDnD(X, r, Y, s)

+ wNnN(r, s) + wBnB(r, s) + wSnS(r, s) (16)

where wE, wD, wN, wB, and wS are the real coefficients defined
above, and

• nE(X, r, Y, s) is the number of equal nucleotides
paired by r, s, that is,

∑p
i=0(X[ri] = Y [si]);

• nD(X, r, Y, s) is the number of unequal paired nu-
cleotides, that is, that is,

∑p
i=0(X[ri] 6= Y [si]);

• nN(r, s) is the number of normal steps of the pairing,
namely

∑p
i=1((ri − ri−1 = 1) ∧ (si − si−1 = 1));

• nB(r, s) is the number of breaks (skipping steps),
namely

∑p
i=1((ri − ri−1 > 1) ∨ (si − si−1 > 1));

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

• nS(r, s) is the total number of nucleotides that were
left unpaired in both sequences, namely

∑p
i=1((ri −

ri−1 − 1) + (si − si−1 − 1));

Note that

nD(X, r, Y, s) = p− nE(X, r, Y, s), and
nN(r, s) = p− 1− nB(r, s)

Since the logarithm is a monotone function, the similarity
SH(X, r, Y, s) defined by formula (16) is minimum when
the likelihood of the pairing defined by formula (7) is
maximum.

4.6 Optimum pairings for DNA sequences
It is well-known that the optimum (maximum-score) pairing
between two DNA sequences X,Y , with any additive local
scoring criterion, can be found with the dynamic program-
ming algorithm [11].

However, if the coefficients of the scoring formulas (11)–
(12) and (16) (wE, wD, wB, wS, and wN) are defined as in
section 4.4, they will be all positive. Then the maximum-
score pairing between two sequences x, y, respectively with
m and n datums, will always have maximal length: that is,
r0 = 0 or s0 = 0, and rp = m − 1 or sp = n − 1. That
is because the score increases even when one extends the
pairing with a rung between two dissimilar elements, or a
skipping step.

We avoid this inconvenient behavior by the standard
trick of subtracting from the score a bias term proportional
to the total number λ = (rp − r0 + 1) + (sp − s0 + 1) of
datums spanned by the pairing on both sequences. We also
subtract a constant bias wC, to ensure that a pairing will not
have a positive score unless it has a certain minimum span
λ.

Since nE + nD is the number of rungs p, it can be seen
that λ = 2(nE + nD) + nS. Therefore, the effect we seek
can be implemented by formulas (11)– (12) and (16), after
subtracting suitable bias from the coefficients wE, wD, and
wS, and subtracting the constant bias term wC.

The coefficient wD and wS must be negative, but wE

positive; so that the total score decreases when the pairing
is extended with a discrepant rung or a skipping step, but
increases when it is extended with a normal step and a rung
between equal nucleotides.

The coefficient wB should be negative too in order to pe-
nalize breaks in the sequences. The coefficient wB should be
larger than wD in absolute value, reflecting the assumption
that insertions and deletions are less common than single-
nucleotide replacements. On the other hand, wS should be
much smaller than wD in absolute value, reflecting the as-
sumption that the probability of insertions/deletions varies
little with their length.

With the proper coefficient values, the score for the
optimum pairing between homologous sequences should be
positive and should increase as their total length increases;
while even the best pairing between unrelated sequences
should be negative. Good values for the weights can be de-
termined iteratively by computing the optimum pairing for
homologous and non-homologous sequences, and adjusting
the weights to as to get the best separation between the two
classes.

4.7 Similarity score for paired datum sequences
Let x and y be filtered sequences of numeric datums. A
pairing r, s between them represents an approximate coarse-
scale pairing between the underlying DNA strings X and
Y . Namely, suppose that successive datums in x (or y)
correspond to places in X (or in Y) that are δ nucleotides
apart. A rung (ri, si) of the pairing can be interpreted as
the tentative hypothesis that the segment of X summarized
by datum x[ri] and the segment of Y summarized by y[si]
homologous, apart from a relative displacement of about
±δ/2.

The likelihood of that hypothesis can be roughly esti-
mated from the datums x[ri] and y[si], because they de-
scribe the local density of each nucleotide, at certain places
in each sequence. Although similar nucleotide densities do
not imply homology, dissimilar densities make homology
less likely.

Specifically, suppose that the datum d is an element x[i]
of a sequence x that was obtained by encoding, filtering, and
downsampling a DNA sequence X . Let X[k] be an element
in string X at the center of the window that is summarized
by datum x[i]. Let U be any of the four nucleotides A, T, C, G,
and let u = (u0, u1, u2) be its numeric code per table (1). We
can estimate the probability that X[k] is U by the formula

Pr(X[k] = U | d) = 1 + d0u0 + d1u1 + d2u2
4

(17)

In particular, if d is one of the corners of the tetrahedron,
formula (16) is categorical on the corresponding nucleotide.
E. g., if d = (+1,+1,−1), then Pr(X[k] = A | d) = 1
and Pr(X[k] = T | d) = Pr(X[k] = C | d) =
Pr(X[k] = G | d) = 0. Moreover, if d is (+1, 0, 0), at
the midpoint of the edge between the A and T corners,
then Pr(X[k] = A | d) = Pr(X[k] = T | d) = 1/2 and
Pr(X[k] = C | d) = Pr(X[k] = G | d) = 0. If d is at the
center of a face, e. g. d = (+1/3,+1/3,+1/3), the the three
corner nucleotides get probability 1/3, and the fourth one
gets probability zero. Finally, if d is the center (0, 0, 0) of the
tetrahedron, formula (16) assigns the same probability 1/4
to each nucleotide.

From that, we can estimate the probability that the two
original nucleotides are the same, that is

Pr(X[k] = Y [l] | d, e)
=
∑
U∈B

Pr(X[k] = U | d) Pr(Y [l] = U | e) (18)

Using formula (16), formula (17) evaluates to

Pr(X[k] = Y [l] | d, e) =
1 + d0e0 + d1e1 + d2e2

4

=
1 + d · e

4
(19)

Note that the maximum value of the inner product d · e is
+3, which occurs (only) when d and e are the same corner;
in that case (only), formula (18) gives Pr(X[k] = Y [l] |
d, e) = 1. The minimum value of the dot product d · e for
d, e in the tetrahedron T3 is −1, which occurs when d is
a corner and e is anywhere on the opposite face (or vice-
versa), or when d lies on some edge and e lies anywhere on
the opposite edge. In (only) that case, formula (18) gives
Pr(X[k] = Y [l] | d, e) = 0.

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

For any other combination of d and e, formula (18) gives
a probability Pr(X[k] = Y [l] | d, e) strictly between 0 and 1.
In particular, if both samples are at the center of T 3 — that
is, d = e = (0, 0, 0) — then Pr(X[k] = Y [l] | d, e) = 1/4; as
one would expect if the nucleotides X[k] and Y [l] were ran-
domly and independently drawn with equal probabilities.

We now can generalize the scoring function SH of for-
mula (10) to pairings between datum sequences instead of
DNA sequences. For that purpose, we use the same scoring
formulas (10) and (16), namely

SH(x, r, y, s) =

p∑
i=0

SP(x[ri], y[si]) +

p∑
i=1

SI(λi) (20)

The insertion/deletion term SI, that depends only on the
pairing, is the same as before, given by formula (12). The
pairing score term SP, on the other hand, must be gen-
eralized for datum triplets with fractional samples, rather
than nucleotides. We define SP(d, e) as the expected value
of SP(X[k], Y [l]) as defined by formula (11), namely

SP(d, e) = wE Pr(X[k] = Y [l] | d, e)
+ wD (1− Pr(X[k] = Y [l] | d, e))

= wE

1 + d · e
4

+ wD

3− d · e
4

(21)

Then formula (16) also holds, except that nE and nD must
be replaced by

nE(X, r, Y, s) =

p∑
i=0

Pr(X[k] = Y [l] | x[ri], y[si]) (22)

nD(X, r, Y, s) =

p∑
i=0

(1− Pr(X[k] 6= Y [l] | x[ri], y[si]))(23)

with Pr(X[k] = Y [l] | x[ri], y[si]) given by formula (18).
With proper coefficients, the score SH(x, r, y, s) easily dif-

ferentiates correct pairings of homologous sequences from
pairings between non-homologous sequences, provided the
pairing is long enough. See figure 4.7.

The values of the coefficients (wE, wD, wN, wB, wS, wC)
must be different for each scale. Note that as the filtering
level increases the sample values are averages taken over
increasingly wider intervals. Moreover, at scale k any break
that skips less than 2k samples on each sequence will
disappear.

4.8 Multi-scale matching of DNA sequences

We now describe briefly the use of multi-scale analysis to
efficiently identify homologous sub-sequences in to DNA
or RNA sequences X and Y . The method is similar to the
multi-scale algorithm that we developed some time ago to
efficiently find matching segments on the outlines of pottery
fragments [3], [8]. For lack of space, the details will have to
be described in a separate paper.

The dynamic programming (DP) algorithm [11] can be
used to find the optimum pairing (r, s) of two filtered and
downsampled datum sequences x and y derived from X
and Y . That pairing can be mapped into a pairing (r′, s′)
between the original strings, which can be used as a rough
guess for computing the optimum pairing between them,
with substantial savings of processing time.

Fig. 8. The original homologous sequences are fragments of chromo-
some 4 of two Drosophila species (D. simulans, GenBank CM000365.1,
and D. yakuba, CM000191.2). The two DNA sequences were “cleaned”
by deleting all letters other than A, T, C and G, leaving 807,946
and 1,363,842 bases, respectively. These reduced sequences then
were aligned with the LastZ tool [6] version 1.02.00, with parameters
--notrivial --identity=70..100. From the resulting pairings,
the first 15 same-sense pairings with at least 2048 rungs and matching
letters in at least 85% of the rungs were selected to be the homologous
pairs of the test. The non-homologous pairs were obtained by pairing the
first subsequence from each homologous pair with the second sequence
of a different random pair, and trimming the longer of the two to the
length of the shorter. The weights used at each level are in Table 4.7.

level k wE
k wD

k wB
k wS

k wC
k

00 1.0 -1.333 -0.000 -0.000 -0.000
01 1.0 -0.450 -0.000 -0.000 -0.000
02 1.0 -0.420 -0.000 -0.000 -0.000
03 1.0 -0.400 -0.000 -0.000 -0.000
04 1.0 -0.380 -0.000 -0.000 -0.000
05 1.0 -0.370 -0.000 -0.000 -0.000
06 1.0 -0.360 -0.000 -0.000 -0.000
07 1.0 -0.350 -0.000 -0.000 -0.000
08 1.0 -0.345 -0.000 -0.000 -0.000
09 1.0 -0.340 -0.000 -0.000 -0.000
10 1.0 -0.340 -0.000 -0.000 -0.000

Specifically, recall that the original DP algorithm builds a
matrixM with one elementM [i, j] for each index i ofX and
each index j of Y . Its cost is proportional to nmλmax, where
n and m are the lengths of the two original strings, with
m ≤ n, and λmax is the maximum length of an insertion

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9

to be considered. We instead use a modification of the DP
algorithm that computes only a relatively small subset of
the elements of the matrix M . These elements comprise a
narrow strip that surrounds the elements M [r′k, s

′
k] that are

specified by the rungs of the pairing (r′, s′). The cost of this
pairing refinement algorithm is only nλ2max, or λmax/m times
the cost of the full DP algorithm.

This technique can be applied at each level of a multi-
scale hierarchy of filtered and downsampled signals, from
coarsest to finest. That is, we run the full DP algorithm
at some sufficiently coarse scale k, where the original se-
quences have been downsampled with step δ∗(k), and the
maximum insertion length has been divided by that factor
too. The DP processing cost will then be reduced by a
factor 1/(δ∗(k))3, relative to what it would cost if applied to
the original sequences. Then we map the optimum pairing
found to the next finer scale k − 1, and we refine it, as
described above, to obtain an optimum pairing at that scale.
This process is then repeated to scales k− 2, k− 3, . . . , until
we get a pairing for the level 0 (original) sequences.

As the sequences get filtered and downsampled at in-
creasing scales, the mutations and insertions get averaged
with the adjacent samples. Therefore, the similarity score
for filtered versions x(k) and y(k) of two homologous DNA
sequences may be relatively low, even under the optimum
pairing; possibly lower than the score for two totally unre-
lated sequences. Therefore, it is usually necessary to keep
multiple candidate pairings at each level, rather than just
the one with maximum score. When going from level k to
level k − 1, the algorithm maps and refines each candidate,
then discards the half of the set with the lowest scores.
As discussed in the pottery fragments paper [8], even with
multiple candidates the processing time is still much less
than that of the original DP algorithm applied at scale 0
directly.

5 CONCLUSIONS

We implemented the method as a proof-of-concept sequence
matching program. We described formulas for compar-
ing nucleotide sequences that have been numerically en-
coded, filtered, and sub-sampled. Tests indicate that the
formulas can discriminate between homologous and non-
homologous (random) pairs of sequences, and that the
discrimination increases with the length of the sequences.
These formulas can be used with the standard dynamic
programming algorithm to find approximate optimal pair-
ings between two presumed homologous sequences, at a
fraction of the cost of running the algorithm on the original
sequences.

ACKNOWLEDGEMENTS

This work was partly supported by Fapesp grant, CNPq
grant, and Faperj.

REFERENCES

[1] D. Anastassiou. Digital signal processing of biomolecular se-
quences. Technical Report CU/EE/TR2000-20-042, Department of
Electrical Engineering, Columbia University, 2002.

[2] ATM Golam Bari, Mst Rokeya Reaz, AKM Tauhidul Islam, Ho-Jin
Choi, and Byeong-Soo Jeong. effective encoding for dna sequence
visualization based on nucleotides ring structure. Evolutionary
bioinformatics online, 9:251, 2013.

[3] Helena Cristina da Gama Leitão. Reconstrução Automática de Obje-
tos Fragmentados. PhD thesis, Institute of Computing, University of
Campinas, Campinas, SP, Brazil, November 1999. (In Portuguese).

[4] Helena Cristina da Gama Leitão, Rafael Felipe Veiga Saracchini,
and Jorge Stolfi. Geometric encoding, filtering, and visualization
of genomic sequences. In IVAPP 2015 - Proceedings of the 6th Interna-
tional Conference on Information Visualization Theory and Applications,
Berlin, Germany, 11-14 March, 2015., pages 219–224, 2015.

[5] Andreas Futschik, Thomas Hotz, Axel Munk, and Hannes Sieling.
Multiscale DNA partitioning: Statistical evidence for segments.
Bioinformatics, page btu180, 2014.

[6] Robert S. Harris and Cathy Riemer. Lastz release 1.02.00, build
january 12, 2010, 2010.

[7] Theo A. Knijnenburg, Stephen A. Ramsey, Benjamin P. Berman,
Kathleen A. Kennedy, Arian F. A. Smit, Lodewyk F. A. Wessels,
Peter W. Laird, Alan Aderem, and Ilya Shmulevich. Multiscale
representation of genomic signals. Nature Methods, 2014.

[8] Helena C. G. Leitão and Jorge Stolfi. A multiscale method for
the reassembly of two-dimensional fragmented objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(9):1239–
1251, September 2002.

[9] J. A. Tenreiro Machado, António C. Costa, and Maria Dulce
Quelhas. Wavelet analysis of human DNA. Genomics, 98(3):155–
163, sep 2011.

[10] L. Ravichandran, A. Papandreou-Suppappola, A. Spanias,
Z. Lacroix, and C. Legendre. Waveform mapping and time-
frequency processing of DNA and protein sequences. IEEE Trans-
actions on Signal Processing, 59(9):4210–4224, 2011.

[11] M. Schoniger and W. M. Waterman. A local algorithm for DNA
sequence alignment with inversions. Bulletin of Mathemathical
Biology, 54(4):521–536, 1992.

[12] Koen L. Vincken, Andre S. E. Koster, and Max A. Viergever.
Probabilistic multiscale image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(2):109–120, 1997.

