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1. The two algorithms below solve the same problem: given an integer n > 0 and the
letters = (x[0], z[1],..z[n — 1]) of some word (uppercase only, ‘A’ to ‘Z’, without
accent marks), returns a letter that occurs twice in the word; or ‘*’ if all the letters
are distinct.

For example, if x = (‘B', ‘A", ‘N’, ‘A’ ‘N’  ‘A"), they return ‘A’; if x = (‘G’, ‘A", ‘R’, ‘L', ‘T’, ‘C'),
they return ‘*’. (As before, the notation [v] before a statement means “v is the number
of times that this statement gets executed when the algorithm is executed once”.)

Algorithm A(n, x) Algorithm B(n, )

for ¢ from 1 ton — 1 do for ¢ from 0 to n — 2 do

for j from 0 to ¢ — 1 do; for j from ¢+ 1 to n — 1 do;

/] if z[j] = xli] /] if z[j] = «[d]
return z|il; return z|il;
endif; endif;

endfor; endfor;
endfor; endfor;
return ‘x’; return ‘x’;

For each algorithm:

(a) Find a “best-case” input word = with n = 100 letters, that minimizes the count
f. What is the value of f for that word?

ind a “worst-case” input word x with n = etters, that maximizes the coun
b) Find a “ t 7 t d ith 100 lett that imi th t
f. What is f for that word?

(c) Give upper and lower bounds for the count f(n,x) in the general case, as a
function of n only.

(d) What is the asymptotic class (in the O/€2/O notation) of f(n,z), as a function
of n only?



2. Consider the algorithm below, that finds the maximum and minimum of a list of n
numbers at the same time:

Algorithm MinMaz(n, x)

1< 0;
while ¢ < n do
[f] ife+1<n
if x[i] < xfi + 1]
a < xi]; b < x[i + 1];
else
a < xfi + 1]; b+ z[if;
endif;
else
a + x[i]; b < x[i]
endif;
if 1 =0 or a < zmin
[90] Tmin < a;
endif;
if1=0o0rb> zmaz
[01] zmaz <— b;
endif;
i1+ 2; // < note!
endwhile;

return rmin, rmaz;

Assuming that n is even (to simplify the analysis), determine the following quantities
as a function of n:
(a) the number of times f that the main loop is executed.

(b) The total number h of comparisons between elements of the list, namely “z[i] <
z[j]”, “a < zmin”, and “b > rmaz”.

(¢) An upper (worst case) bound for gy and g¢;, the number of times that zmin and
rmaz are updated, respectively.

(d) A lower (best-case) bound for gy and g;.

(e) The expected values of gy and ¢, assuming that the elements of z are all distinct
and all possible orders are equally likely.



3. Find upper and lower bounds for the following summations, using the integral method.
Recall that 2 — 1 < |2| <z, /o = 2%/2, and log, z = Inz/Ina for any  and a such
that the formulas are defined. Recall also that [Inzde = z(Inz — 1).

(a) s(n) =21 nVi+2
(b) s(n) = Zi:l nl0gy i
(c) s(n)= Zi:l n L”2/i2J

4. The factorial function is defined as f(n) =n! =[_, i =1x2X3 x--- X n.

(a) Write a summation formula for the natural logarithm of the factorial, g(n) =
In f(n).

(b) Find upper and lower bounds for g(n), using the integral method.

(c¢) From those bounds, get upper and lower bounds for the factorial f(n).

(d) Based on these bounds, what is the asymptotic class of f(n)?

5. Consider the function f, from the natural numbers N to N, defined recursively by

0 if n =0,
f("):{ (n mod 10) + f([n/10]) if n > 0. (1)

(a) What is f(235)7

(b) Determine the maximum and minimum values of f(n), for any number n with k
decimal digits as a function of k£ alone.

(c) What is the asymptotic class of f(n) as a function of k7 And as a function of n?

6. Consider the function g, from the natural numbers N to the integers Z, defined recur-
sively by the homogeneous linear recurrence

5) if n=020,
gn)=4¢ 0 ifn=1, (2)
g(n—1)4+6g(n—2) ifn > 2.

(a) Tabulate the value of g(n) for a few values of n.
(b) Write the characteristic polynomial of the recurrence.
(c) Dtermine the roots r; of the polynomial.
d) Dtermine the explicit formula for g(n).
)

What is the asymptotic class of g as a function of n?

(
(d



7. The following recursive algorithm Permute(n, z, k, use) generates all permutations of
the elements of a list = (x[0].. z[n — 1]) of n arbitrary elements, leaving the first &
elements fixed.

In particular, if £ = 0 the procedure generates all permutations; if £ = n, it generates
a single permutation, namely the given list x itself. For each generated permutation,
Permute calls the function use, provided by the calling program, with arguments (n, x).
The elements of x are rearranged while call is in progress, but, at the end, they will
be restored to their original order.

For example, if n = 5, x = (07,97,27,35,45), and k = 2, then Permute(n,z, k, use)
will call

use(5, (07,97,27,35,45))
use(5, (07,97,27,45,35))
use(5, (07,97, 35, 27,45))
use(5, (07,97, 35, 45, 27))
use(5, (07,97, 45, 35, 27))
use(5, (07,97, 45,27, 35))

and the list  will again contain (07, 97,27, 35, 45).

Algorithm Permute(n, x, k, use)

ifk=n
[u] use(n, x);
else
for ¢ from k£ ton — 1 do
[f] swap x[k] < xi];

Permute(n, z, k + 1, use);
swap x|k] <> x[i];
endfor;
endif;

(a) Assuming that the algorithm is correct, determine the number u of times the
procedure use is called (including inside the recursive calls) when Permute is
called with generic n and k.

(b) Write a recursive formula for f(n, k), the total number of times that two elements
are swapped (including inside the recursive calls) when Permute is called with
generic n and k.

(c¢) Find a non-recursive formula for f(n, k). The formula should depend only on the
difference m = n — k, not on n an k explicitly.

(d) Prove that the formula satisfies the recursive definition, by induction on m.



8. The algorithm Scramble below rearranges a list x = (x[0],.. z[n — 1]) of n elements
according to a permutation p. The permutation is a list (p[0],..p[n]) of n integer
indices, all distinct, all between 0 and n — 1. The effect of the algorithm is to put in
x[i] the value of x[p[i]], for all ¢ in 0..n — 1.

For example, if we have x = (05, 15,25, 35,45,55,65) and p = (3,4,6,1,0,5,2) on
input, then we will have x = (35,45,65,15,05,55,25) at the end. (Note that the
“obvious” algorithm “for ¢ in 0..n — 1 do z[i] +— [p[i]]” would not work; try it.)

Algorithm Scramble(n, x, p)
foriin 0..m — 1 do
if pli] > 0
// Start of a new cycle:
t < xfi]; j < i;

while p[j] # ;
/] k < plil;

xlj] < x[kl;
plj] < plil = n; // Makes p[j] negative.
J < k;

endwhile;

zlj] < t; pli] < plil = n;

endif;
endfor;

// Restore the permutation p:
foriin 0..m — 1 do
pli] < pli] +n;
endfor;
Determine the number of times f that the inner loop is executed, as a function of n.
Hint: simulate the example above to understand how the algorithm works. What is
the asymptotic class of f as a function of n?



