INSTITUTO DE COMPUTAÇÃO - UNICAMP

Graduação

MC358-B Fundamentos Matemáticos da Computação 2022 - Semestre 2 - Jorge Stolfi Primeira Prova - 2022-09-12

Nome											
RA			A	ssina	tura						
Item											ТОТ
Nota											

A prova é individual e sem consulta.

Não são permitidos computadores ou calculadoras.

Desligue e guarde celulares, toca-músicas e outros dispositivos.

Não separe as folhas deste caderno de prova.

Não é permitido o uso de outro rascunho além destas folhas.

Escreva seu nome completo, e assine a tinta.

Valem apenas as respostas nos espaços indicados.

Não é necessário efetuar cálculos puramente numéricos.

Após distribuída a prova:

- * quem sair da sala não poderá retornar.
- * depois que alguém sair, ninguém mais poderá entrar.

,	onha que A,B,C são três conjuntos. Escreva fórmulas usando os operadores \cup os seguntes conjuntos:
	os elementos que estão em A e estão em apenas um dos conjuntos B e ${\cal C}.$
	resposta
	os elementos que estão em exatamente \mathbf{um} dos três conjuntos A,B,C .
	resposta
)	os elementos que estão em exatamente dois dos três conjuntos A, B, C .
	resposta
ej	a A o cojunto $\{1,2,3,4,5,6\}$. Determine todas as partições de A tais que
	todas as partes da partição tem exatamente 2 elementos.
	resposta
)	a soma dos elementos em cada parte da partição é 7.
	resposta

1.

2.

	$(x \in \mathbb{N}) (\forall y \in \mathbb{N})$ iste pelo meno		ie $x + 2 > y$	y, para um natural y qualquer.
		resposta		
\mathbf{V}	ou F ?			
	$(x \in \mathbb{N})(\exists y \in \mathbb{N})$ istem naturais	P(x,y). $x \in y \text{ tal que } x + 2 > 0$	> y.	
		resposta		
${f V}$ (ou F ?			
	$(x \in \mathbb{N})(\forall y \in \mathbb{N})$ ra um natural	P(x,y). x tal que $x + 2 > y$,	para um na	tural y .
		resposta		
\mathbf{V}	ou F ?			
	$y \in \mathbb{N}$ $(\exists y \in \mathbb{N})$ iste um y natu	P(x,y). ural em que $x+2>y$, para cada	natural x .
		resposta		1
\mathbf{V}	ou F ?			
	$y \in \mathbb{N}$) $(\exists x \in \mathbb{N})$ iste pelo meno		ie um quais	squer y satisfaz $x + 2 > y$.
		resposta		
	ou F ?			

4.	Suponha	definidos
т.		acminado

- \bullet H conjunto de de todos os humanos,
- S conjunto de de todos os estudantes $(S \subseteq H)$,
- J conjunto de todos os jogadores de futebol $(J \subseteq H)$,
- P predicado tal que $P(x) \leftrightarrow "x \text{ \'e perfeito"},$
- C predicado tal que $C(x,y) \leftrightarrow "x$ é cunhado de y", e
- G predicado tal que $G(x,y) \leftrightarrow \text{``}x$ gosta de y''.

Escreva as afirmações abaixo **usando notação simbólica apenas**. Para cada frase entre colchetes '[...]', defina primeiro um predicado auxiliar cujo significado é essa frase, **usando notação simbólica apenas**.

not	cação simbólica apenas.	,
(a)	Nem todo estudante joga futebol.	
	resposta	
(b)	Cada jogador de futebol tem um cunhado perfeito.	
	resposta	
(c)	Tem estudante que não gosta de quem [tem algum cunhado que é jogador d	e futebol].
	resposta	
(d)	Quem é perfeito gosta de quem [gosta de todos seus cunhados].	
	resposta	

5. Considere a tabela-verdade abaixo de uma certa proposição composta F formada a partir de proposições elementares $x,\,y$ e z:

x	y	z	F
\mathbf{V}	\mathbf{V}	\mathbf{V}	F
\mathbf{V}	$ \mathbf{V} $	\mathbf{F}	\mathbf{F}
\mathbf{V}	\mathbf{F}	$ \mathbf{V} $	\mathbf{V}
\mathbf{V}	\mathbf{F}	\mathbf{F}	\mathbf{V}
\mathbf{F}	$ \mathbf{V} $	$ \mathbf{V} $	\mathbf{F}
\mathbf{F}	$ \mathbf{V} $	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	$ \mathbf{V} $	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	\mathbf{F}

Escreva uma fórmula equivalente a F, usando as variáveis $x, y \in z$, e:

(a)	apenas	os	operadores	Λ,	V	е	_
(~	, apenas	00	operadores	, ·,	•	_	

resposta			

(b) apenas os operadores \neg e \rightarrow

