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Abstract: The car manufacturing industry, one of the largest energy consuming industries, 

has been making a considerable effort to improve its energy intensity by implementing 

energy efficiency programs, in many cases supported by government research or financial 

programs. While many car manufacturers claim that they have made substantial progress in 

energy efficiency improvement over the past years through their energy efficiency programs, 

the objective measurement of energy efficiency improvement has not been studied due to 

the lack of suitable quantitative methods. This paper proposes stochastic and deterministic 

frontier benchmarking models such as the stochastic frontier analysis (SFA) model and the 

data envelopment analysis (DEA) model to measure the effectiveness of energy saving 

initiatives in terms of the technical improvement of energy efficiency for the automotive 

industry, particularly vehicle assembly plants. Illustrative examples of the application of 

the proposed models are presented and demonstrate the overall benchmarking process to 

determine best practice frontier lines and to measure technical improvement based on the 

magnitude of frontier line shifts over time. Log likelihood ratio and Spearman rank-order 

correlation coefficient tests are conducted to determine the significance of the SFA model 

and its consistency with the DEA model. ENERGY STAR® EPI (Energy Performance Index) 

are also calculated. 
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1. Introduction 

The growing awareness of global energy demand issues has become one of major contributors to 

create the concept of sustainability. According to International Energy Agency, the average energy  

use per person has increased 10%, while the world population has increased 27% from 1990 to 2008. 

Energy-related CO2 emissions are expected to rise from an estimated 31.2 Gt in 2011 to 37.0 Gt in 

2035. The concept of sustainability was first used to describe an economic vision in equilibrium with 

basic ecological support systems in the 1970s. The concept has since been applied to a wide range of areas, 

including the car manufacturing industry, thus, motivating the change in energy consumption trends. 

The typical vehicle manufacturing plants of car companies consume energy at different rates, depending 

on many external or internal factors, such as plant utilization, heating degree days (HDD) and cooling 

degree days (CDD), which are positively correlated to such factors as heating and cooling energy 

requirements, product type and size. Although car companies recognize that energy consumption is a 

large but mandatory expense, most of them have recently invested in energy saving initiatives for their 

plants every year to reduce energy consumption inspired by the concept of sustainability and its 

implication for firm values such as enhanced brand value or cost savings in energy. A notable fact is 

that those energy saving initiatives have been, in many cases, supported by government research or 

financial programs (e.g., R&D and funding programs offered by US Department of Energy Office of 

Energy Efficiency and Renewable Energy) because those initiatives are also aligned with the government’s 

energy saving polices. The benefits from energy demand reduction could be significant, ranging from 

energy conservation and reduced environmental impact to an enhanced competitive position. 

Regarding the energy use associated with the U.S. automotive enterprise, over 200 trillion BTU 

(British thermal units) per year has been roughly estimated, as shown in Figure 1 (note: auto-manufacturing 

industries include motor vehicle manufacturing, motor vehicle body and trailer manufacturing, and 

motor vehicle parts manufacturing classified in NAICS (North American Industry Classification System). 

However, if a complex supply chain is included in calculating the contribution, the total energy 

consumption related to the car manufacturing industry will be considerably greater, as the complex 

supply chain includes the following: producing raw materials, such as steel, aluminum, plastics, and 

glass; forming and fabricating parts, components, and subsystems; assembling hundreds of these 

elements to manufacture the vehicles; and distributing and selling the vehicles. 

Table 1 summarizes and compares the intensity of utility use (e.g., electricity/vehicle, fuel/vehicle 

and water/vehicle) and carbon emission to produce one vehicle among major car companies. Note that 

Scopes 1 and 2 refer to the direct emissions by the firm at its installations and to the indirect emissions 

by the firm through electricity use, respectively. Scope 3 often refers to supply chain emissions.  

Some car making companies report their Scope 3 emissions to the Carbon Disclosure Project (CDP), 

which is an independent organization supported by major institutional investors. Note that the energy 

data in this section are based on on-site energy consumption except that the flow diagram in Figure 1 is 
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based on the source Btu and the carbon emission amount in Scopes 1 and 2 emission types in Table 1 

includes the indirect emission for purchased utilities in the energy generation sites. 

Figure 2 depicts the magnitude of total energy consumption in the car manufacturing industry 

compared to Boeing and major US government agencies; as shown, energy consumption in the car 

manufacturing industry is considerably greater, with the exception of the U.S. Department of Defense, 

with an energy consumption of approximately 900 trillion BTU. 

Figure 1. Energy flows into the US auto manufacturing industry 2011 (data sources: [1,2]). 

 

Figure 2. Energy consumption in auto manufacturing industries in 2011. 
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Table 1. Resources used to manufacture a vehicle (2012). 

Intensity  

(Use per Vehicle) 

General 

Motors 
Volkswagen Ford BMW 

Toyota  

(North America) 
Equivalence 

Energy (Electricity + Fuel)  

Mwh/Vehicle 
2.30 2.21 2.45 2.44 2.13 

Energy for the production of  

4 vehicles equals approximately 

the average annual electricity 

consumption for a U.S. residential 

utility customer 

Carbon (Scopes 1 & 2) 

Ton/Vehicle 
0.88 0.89 0.9 0.68 0.78 

Carbon emitted from the 

production of 1 vehicle equals 

approximately the carbon offset of 

80 trees grown for 10 years 

Water m3/Vehicle 4.62 4.55 4.3 2.1 3.41 

Water for the production of  

1 vehicle is similar to that  

required to fill a small pool 

Data source 

GM 

Sustainability 

Report [3] 

Volkswagen 

Sustainability 

Report [4] 

Ford 

Sustainability 

Report [5] 

BMW 

Sustainability 

Report [6] 

Toyota  

North American 

Environmental Report [7] 

Note: the average annual electricity 

consumption for a U.S. residential 

utility customer was 11,280 kWh, 

an average of 940 kWh per month 

according to U.S. Energy 

Information Administration  

in 2011 

 



Energies 2014, 7 6200 

 

Although the total energy consumption is large, the energy intensity of the car manufacturing 

industry is not so large. When energy intensity is calculated as the share of total energy expenditures 

(electricity and fuel) as a fraction of total operating expenditures (the sum of materials’ costs,  

labor compensation and new capital expenditures), the U.S. motor vehicle manufacturing industry  

(NAICS code: 3361) is merely 0.4%, compared to other energy intensive industry. For example, the 

energy intensity of the U.S. lime manufacturing (32741) and the U.S. industrial gas manufacturing 

industries (32512) is 37.15% and 34.60%, respectively. 

Nonetheless, as the benefits from reducing energy demand are significant, many car companies 

have invested considerably in strategic energy saving initiatives with the support of government R&D 

or financial subsidies. Now, as a logical following step, car companies and the government endeavor  

to investigate whether the implemented energy saving initiatives have been effective and further, 

institutionalized as a managed process or as a part of organizational capability because they seek to 

determine whether their investment or subsidies were justified and whether they have been recovered. 

An industry or a company, if the energy saving initiative are implemented and fully institutionalized, 

starts to have the potential to deliver sustained energy savings, thereby demonstrating best practices  

in decreasing energy intensity (kWh/vehicle in the context of car manufacturing industry). When the 

industry or company obtains the potential to deliver sustained energy savings and the potential is 

expressed as best practices, a structural technical improvement in the industry (or company) is 

considered to have been made. Therefore, it is possible to use the term technical improvement as a 

performance indicator to identify the effectiveness of energy saving initiatives, in other words, the 

extent to which strategic energy saving initiatives become institutionalized or part of organizational 

standard processes. The challenge is the lack of suitable quantitative methods to measure a structural 

technical improvement objectively. This paper applies a benchmarking approach to measure technical 

improvement. A benchmark is a process for identifying best practices in an industry (or a large 

company controlling many individual producers insides) and estimating each industry’s or company’s 

efficiency by measuring the difference between actual performance and best practices. In the context 

of the car manufacturing industry, the difference between the actual energy use at a plant and its best 

practice, i.e., the lowest achievable energy use, is considered. The problem is that what is the best 

achievable is influenced by different operating conditions of plants (e.g., heating or cooling energy 

requirements, product size, or plant utilization), thus, the measuring of best practices must account for 

these different operation conditions. A suitable benchmark model should normalize these conditions 

and identify a frontier line that connects the best practices in the industry. This paper utilized a 

benchmarking approach, with the shifts of a frontier line between the time period from 𝑡 and 𝑡 + ∆𝑡 

used as a proxy to measure a structural technical improvement. Figure 3 depicts the idea process for 

measuring the effectiveness of energy saving initiatives with a benchmarking process. 

This paper aims to determine and to measure the effectiveness of energy reduction initiatives  

in terms of a technical improvement that corresponds to a certain structural change in industry-wide 

energy efficiency between two distinct time periods, namely, by proposing benchmarking models: SFA 

(stochastic frontier analysis) models based on Hicksian neutral technological change concept and DEA 

(data envelopment analysis) models incorporating the Malmquist Productivity Change Index (Section 3 

discusses Hicksian concept and Malmquist index in detail). Through the SFA and DEA benchmarking 
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processes, it is possible to identify best practice frontier lines and to analyze the technical improvement 

based on the magnitude of the frontier line shifts over time. 

Figure 3. The idea process for measuring the effectiveness of energy saving initiatives. 

 

It is possible to more holistically understand the factors affecting energy consumption by checking 

the consistency of the analytical results from two different models, SFA and DEA [8]. Previous findings 

from performance benchmarking literature indicate that DEA and SFA have comparative advantages 

against each other, thereby offering the possibility of complementary use. In general, DEA is preferable 

in applications in which the frontier model cannot be expressed in algebraic form or does not have a 

known inefficiency distribution. The SFA method is preferable when certain classical assumptions are 

satisfied regarding the composite error terms, including the contributions from the inefficiency distribution 

and measurement errors. Often, SFA and DEA estimates are highly correlated in terms of rank order, 

regardless of inefficiency and random error variation, meaning that the feasibility and robustness of the 

model estimation can be demonstrated by showing a high correlation between two models. Hence, in 

this paper, the Spearman rank correlation is used to check the consistency of two different models. 

This paper also calculates ENERGY STAR® plant energy performance indicator values based on the 

SFA models. 

The paper is organized as follows: Section 2 surveys some efforts and studies related to energy use 

in the automotive industry and overviews benchmarking models including parametric and non-parametric 

approaches. Section 3 describes SFA and DEA and the concept of technical improvement in additional 

detail with graphics and proposes benchmarking models to assess the significance of technical 

improvements in energy use alongside background data about energy consumption in vehicle 

manufacturing processes. Section 4 provides illustrative studies by using hypothetical but representative 

panel data sets (note: panel data refer to a group of cross-sectional data sets separated into periods of 

time, thus, appearing as a combination of cross-sectional and time series data sets). For confidentiality 

reasons, hypothetical data sets are used for the studies. In addition to implementing models, the final 

proposed models are analyzed and validated. Section 5 concludes the paper. Appendix A shows the 

resulting parameters obtained from SFA and DEA models. Appendix B summarize the results of 

comparison between the estimated models in this study and those of previous estimated models. 
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(kWh/vehicle) in the car 
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magnitude of frontier 
line shifts (e.g., in 
Equation (1) or  

in Equation 

(13)) as a proxy of 
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2. Literature Review 

Several studies related to demand, supply and management for energy use in the car manufacturing 

industry have been conducted. 

Galitsky and Worrell [9] collected energy efficiency improvement opportunities available to car 

manufacturers. They identified many energy efficiency improvement opportunities for each automotive 

manufacturing operation. Boyd [10] developed plant-level energy performance indicators (EPIs) in 

support of the Environmental Protection Agency’s ENERGY STAR program in which 35 automotive 

manufacturing plants of five auto companies had participated. The participating plants were plants 

having only body welding, assembly and painting operations. Sullivan et al. [11] discussed calculating 

the environmental burdens of the part manufacturing and vehicle assembly stage of the vehicle life 

cycle. Their approach is bottom-up, with a particular focus on energy consumption and CO2 emissions. 

They applied their models to both conventional and advanced vehicles, the latter of which include 

aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. Oh and Hildreth [12] 

proposed a novel decision model based on activity based costing (ABC) and stochastic programming 

that was developed to accurately evaluate the impact of load curtailments and to determine whether to 

accept an energy load curtailment offer in the smart grid. 

Many previous studies on SFA and DEA, as well as the comparison of their differences are 

available. In research on SFA, Aigner et al. [13] and Meeusen and Broeck [14] proposed the stochastic 

frontier production function independently. The original model specification considered a production 

function specified for cross-sectional data in which an error term is divided into two components, one to 

account for random effects and another to account for technical inefficiency. Subsequently, the original 

model specification has been used in a large number of empirical applications over the past decades 

and has also been altered or extended in several ways. One extension is the two-stage estimation 

procedure to measure the technical change over two time periods in which firm-level efficiencies are 

predicted using the estimated stochastic frontiers, after which the predicted firm-level efficiencies are 

regressed upon firm-specific variables (such as managerial skill level change and first decision maker’s 

characteristics) to distinguish reasons for technical changes over time. However, the two-stage estimation 

procedure has been criticized because it is inconsistent with its assumptions regarding the independence 

of the inefficiency effects over two time periods. This paper follows the model specifications proposed 

by Battese and Coelli [15] that addressed the issues inherent to the two-stage procedure. 

Regarding research on DEA, Charnes, Cooper, and Rhodes [16] proposed the constant returns of 

scale (CRS) restricted DEA model by combining the Farrell efficiency rating concept and a non-parametric 

mathematical programming better known as CCR (Charnes-Cooper-Rhodes) model, named after its 

inventors. The CCR model was updated by Banker, Charnes, and Cooper [17], who relaxed the 

constant returns of scale restriction to be variable returns to scale (VRS), thereby able to evaluate both 

the technical efficiency and the scale efficiency of decision making units (DMUs). The DEA model 

with the VRS concept is also called a BCC (Banker-Charnes-Cooper) model, likewise named after its 

inventors. To implement the VRS concept, the BCC model added an additional constraint to the CCR 

model, that is, the convexity restriction. When a panel data set is available and one would like to 

measure the technical improvement using DEA models, the Malmquist total factor productivity (TFP) 

index can be used to reveal a positive or negative technical change across consecutive years. The 
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Malmquist TFP index [18] requires four distance function values, and each distance function has an 

equivalent DEA model. This paper discusses those four distance functions in detail in Section 3.3. 

Despite the fact that both SFA and DEA methods are benchmarking methods based on efficiency 

frontier analysis, they differ markedly. SFA is a parametric model that requires a modeler’s assumption 

in building models. SFA is well suited to separate firms’ inefficiency from statistical noise. By contrast, 

DEA is a non-parametric model not subject to a modeler’s assumption and useful when multiple inputs 

and outputs should be incorporated, but susceptible when outliers in the data set exist. Lin and Tseng [8] 

compared SFA and DEA extensively and summarized the differences. 

Although the literature on the various methods to establish a benchmark including SFA and DEA is 

vast, those methods can be categorized into four approaches for benchmarking, as specified in Table 2. 

Regarding examples in the table, OLS (Ordinary Least Squares) means a linear regression model that 

aims to find a line such that the sum of squares of the errors of a line passing through the data is 

minimized. OLS reveals overall sample-based information, representing average practices. Corrected 

OLS aims to find a frontier line by shifting an OLS line up (production model) or down (cost model) 

until a single observation with a measured efficiency index of one remains. Structural time series 

models are upgraded time series models incorporating distinct parameters that may shift over time 

because of structural shifts, such as slowly declining or increasing productivity growth. A stochastic 

DEA model follows a linear programming model, such as DEA, but is extended to account for the 

influence of statistical noise. 

Table 2. Four benchmarking approaches (modified from [19]). 

Approach Brief Description Examples 

Statistical 

methods 

Parametric modeling that requires parameter 

estimation, with data allowing for imprecision; the 

frontier line could be a production or a cost function 

Ordinary least squared error 

(OLS), Corrected OLS, SFA, 

Structural time series 

Non-parametric 

methods 

Non-parametric modeling without any assumptions 

regarding population distributions (inefficiency 

distribution, measurement error distribution) 

Total factor productivity 

indexes, DEA 

Hybrid methods 
A method combining non-parametric and parametric 

methods using a reinforced learning algorithm 
Stochastic DEA (Daraio [20]) 

Engineering 

model methods 

Creating an artificial reference model as “bottom-up” 

based on expert knowledge and information to use as 

a benchmark 

Swedish NPAM (network 

performance assessment model), 

Bottom-up energy model 

3. Proposed Benchmarking Models to Measure Technical Improvement in Efficiency 

This section outlines two primary methods to measure technical or efficiency change: SFA and 

DEA. SFA and DEA models are commonly represented by a form of frontier line that can be considered 

an optimal combination of outputs producible from a set of inputs (or an optimal combination of outputs 

with the lowest inefficiency). Observed shifts of the frontier line from one point in time to another 

suggest technical improvement, thereby implying, moreover, an institutionalized structural technological 

change in a given industry or company. 
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The rationale for developing two models concurrently is the fact that SFA and DEA have competitive 

advantages against each other and could be used complementarily. In detail, when the DEA frontier 

estimate is biased high because of outlier data beyond the true frontier, the DEA method erroneously 

extends the estimated frontier outward. If the SFA method can distinguish between inefficiency and 

noise with sufficient accuracy, then this method can be used to detect the DEA outlier problem. Similarly, 

DEA can be used to detect the type-II error in SFA when the SFA frontier line reduces to a standard 

linear regression line. Figure 4 illustrates various relationships between energy intensity and non-energy 

factors (where the best practice indicates the lowest energy use achievable at the given operation 

conditions), with Figure 4a,b depicting a concave-up increasing energy intensity and a concave-up 

decreasing energy intensity, respectively. The concave-up increasing patterns may be observed when 

the energy intensity increases as the input variables (e.g., HDD, CDD, or wheelbase) increase, while 

the concave-up decreasing patterns may be observed when the input variables (e.g., plant utilization) 

have a negative relationship with the energy intensity. 

Figure 4. Various relationships between energy intensity and non-energy factors  

(based on a cross-sectional data set). (a) Concave-up increasing energy intensity;  

(b) Concave-up decreasing energy intensity. 

  

(a) (b) 

It is pertinent to observe that the plant energy efficiency at one point in time is subject to the impact 

of a structural technical improvement as follows: 

 The frontier line may shift independently of a set of observations where plants appear less 

efficient in the (t + ∆t)-th year than in the t-th year. This occurrence happens when a technical 

improvement is made in the industry (or company) during the time period between the t-th and 

the (t + ∆t)-th years, but the energy performances of target assessing plants remains unchanged 

and thus, the latter’s energy efficiency appears less efficient because the difference between the 

actual efficiency score and the best practice score increases. In the Malmquist literature, this 

occurrence is called technical change. Figure 5a depicts this case. 

 A set of observations may move independently closer to a frontier line while the frontier line 

remains unchanged during the period between the t-th and (t + ∆t)-th years. This occurrence 

happens when a technical improvement has not been made during the time period, but the target 
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assessing plants have improved their energy performance during the same time period and, 

thus, their energy efficiency appears more efficient in the (t + ∆t)-th year than in the t-th year 

because the difference between the actual energy use and the best practice decreases. In the 

Malmquist literature, this occurrence is called efficiency change. Figure 5b depicts this case. 

Aside from the two cases above, both a frontier line shift and a positive movement of a set of 

observations can happen simultaneously, in which case it may not be easy to differentiate the energy 

performance improvement of individual plants because the efficiency improvement of individual plants 

can be offset by the technical improvement of the industry. While SFA is likely to have trouble in 

distinguishing technical improvements from efficiency improvements, DEA can do so by implementing 

the Malmquist total factor productivity (TFP) index, which will be discussed in detail in Section 3.3. 

This study uses Spearman’s rank-order correlation coefficient test to determine the consistency in 

ranks between SFA and DEA models in the illustrative study. The rationale for using this test is that 

though efficiency levels (or scores) differ between models, these methods may nonetheless generate 

similar rankings. If the two models’ rankings are completely different, then any action taken based on 

the assessment may be temporary and depend on which frontier model is employed. 

Figure 5. Two main sources affecting changes in the plant energy efficiency over time.  

(a) Shifts in frontier line independent of a set of observations; (b) Movement of a set of 

observations closer to the frontier line. 

  

(a) (b) 

3.1. Background of the Vehicle Assembly Process 

A typical automobile manufacturing process generally consists of three main processes: body shop, 

paint shop, and general assembly. The body shop transforms raw materials into the structure of the 

vehicle. Then, the paint shop applies a protective and visual coating to the product. Finally, the general 

assembly assembles all sub-components, such as the engine and seats, into the vehicle. 

Two main types of energy utility used in a typical vehicle assembly plant are electricity and fuel 

(including natural gas). In general, fuel is used for direct heating or to generate steam that is considered 

as a secondary utility similar to compressed air in vehicle assembly plants. Steam is then used mainly 

in painting but is also utilized for space heating, car wash and other non-manufacturing activities. 

Electricity is the main energy source in vehicle assembly plants, and its main uses are painting,  
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HVAC (heating, ventilation, and air conditioning), lighting, compressed air systems, and welding and 

materials handling/tools. 

Figure 6 associates automotive manufacturing operations with the distribution of their energy use. 

Four identified largest energy-consuming operations are painting (27%–50%), HVAC and lighting 

(11%–20% and 15%–16%, respectively), and compressed air (9%–14%). 

Figure 6. A typical vehicle assembly process and its energy distribution (modified from [21]). 

 

3.2. Stochastic Frontier Analysis (SFA) 

The SFA models in this study follow the model specification proposed by Battese and Coelli [15] 
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in vehicle manufacturing plants (note: the background on the inclusion of each term in each model is 
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electricity model and the quadratic term of plant utilization included in fuel model? Why is the 
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wheelbase of a vehicle used as a control variable rather than some other variable(s) that may also 

reflect the vehicle size?). The proposed SFA model for electricity is: 

𝐸𝑖
𝑌𝑖

⁄ = 𝐴 + β1𝑊𝐵𝐴𝑆𝐸𝑖 + β2𝐻𝐷𝐷𝑖 + β3𝐻𝐷𝐷𝑖
2
  

+ β4𝐶𝐷𝐷𝑖 +  β5𝐶𝐷𝐷𝑖
2 + β6𝑈𝑡𝑖𝑙𝑖 +  β7𝑌𝑒𝑎𝑟𝑖 +  𝑢𝑖 − v𝑖 

(1) 

where: 

𝐸𝑖: Total site electricity use at plant 𝑖 in kWh; 

𝑌𝑖: Number of vehicles produced; 

𝑊𝐵𝐴𝑆𝐸𝑖 : Wheelbase (the distance between its front and rear wheels) of the largest vehicle 

produced in the plant in inch; 

𝐻𝐷𝐷𝑖: Thousand heating degree days for the plant location and year; 

𝐻𝐷𝐷𝑖
2: 𝐻𝐷𝐷𝑖 squared; 

𝐶𝐷𝐷𝑖: Thousand cooling degree days for the plant location and year; 

𝐶𝐷𝐷𝑖
2: 𝐶𝐷𝐷𝑖 squared; 

𝑈𝑡𝑖𝑙𝑖 : Plant utilization rate, defined as output/capacity, where the denominator, capacity is a 

normalized capacity defined as equal to capacity line rate (or job per hour) × 235 working days ×  

16 working hours per day; 

𝑌𝑒𝑎𝑟𝑖: 𝑡 and 𝑡 + ∆𝑡 where ∆𝑡 is the time period at which a significant technical improvement in 

energy efficiency is observed; and  

β: Vector of parameters to be estimated. 

Note that HDD is a metric for quantifying the amount of heating that buildings in a  

particular location require for a certain period (e.g., a specific month or year) such that HDD = 

∑ max (0.65℉ (or 60℉) −  average day temperature)𝑛𝑜.𝑑𝑎𝑦𝑠 . Similar to HDD, CDD is a metric for 

quantifying the amount of cooling that buildings in a particular location require for a certain period 

(e.g., a specific month or year) such that CDD = ∑ max (0, average day temperature −𝑛𝑜.𝑑𝑎𝑦𝑠

65℉ (or 60℉)). Note that our study scales HDD and CDD by 1000. The variable 𝑣 represents a 

measurement error to be distributed as a symmetric normal distribution, and 𝑁(0, σ𝑣
2) 𝑁(0, σ𝑣

2) and the 

variable 𝑢  account for a technical inefficiency to be distributed as a half normal distribution, 

𝑁+(0, σ𝑢
2 ). Meanwhile, the proposed SFA model for fuel is: 

𝐹𝑖
𝑌𝑖

⁄ = 𝐴 + β1𝑊𝐵𝐴𝑆𝐸𝑖 +  β2𝐻𝐷𝐷𝑖 + β3𝐻𝐷𝐷𝑖
2   

+β4𝑈𝑡𝑖𝑙𝑖 + β5𝑈𝑡𝑖𝑙𝑖
2  +  β6𝑌𝑒𝑎𝑟𝑖 + 𝑢𝑖 − v𝑖 

(2) 

where, all the notations are specified identically to Equation (1) except that 𝐹𝑖 is the total site fuel use 

at plant 𝑖 in 106 BTU. Note that this fuel model may not account for the real operation if the given 

plant uses steam-powered absorption chillers for air conditioning. Such chillers contribute more to the 

“fuel” load than the “electricity” load. If it is the case, CDD should be included in this model. 

Equations (1) and (2) require several parameters to be solved, such as β, σ𝑣
2 and σ𝑢

2 . This paper uses 

the maximum likelihood method for parameter estimation and utilizes the parameterization of Battese 

and Corra [22], who replaced σ𝑣
2  and σ𝑢

2  with ε = 𝑢 − v , σ = σ𝑢
2 + σ𝑣

2 , λ = √
σ𝑢

2

σ𝑣
2  and γ =

σ𝑢
2

(σ𝑣
2+σ𝑢

2 )
.  

This parameterization is useful for calculating the maximum likelihood estimates because the 

parameter γ is now confined to exist between 0 and 1, a range that can be more easily searched to 
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provide a good estimate in an iterative maximization process. The first step of the maximum likelihood 

method is defining the log-likelihood function of the model and the log of the density function for ε: 

𝑙𝑜𝑔 φ𝜀(ε) = −
1

2
𝑙𝑜𝑔 (

π

2
) −

1

2
𝑙𝑜𝑔 σ2 + 𝑙𝑜𝑔Φ (

ελ

√σ2
) −

1

2
 
ε2

σ2
  

with N independent observations, the log of the joint density function ε1, … , ε𝑁 is: 

𝑙𝑜𝑔φ(ε1, … , ε𝑁) =  ∑ 𝑙𝑜𝑔φ𝜀(ε𝑖)
𝑁

𝑖=1
  

= −
1

2
𝑁 𝑙𝑜𝑔 (

π

2
) −

1

2
𝑁 𝑙𝑜𝑔 σ2 + ∑ 𝑙𝑜𝑔Φ (

λε𝑖

√σ2
)

𝑁

𝑖=1
−

1

2σ2
∑ ε𝑖

2
𝑁

𝑖=1
 

 

To emphasize that the error term ε depends on the parameter (vector) β, the log likelihood function 

can be expressed alternatively as: 

𝑙(β, σ2, λ) = −
1

2
𝑁 𝑙𝑜𝑔 (

π

2
) −

1

2
𝑁 𝑙𝑜𝑔 σ2 + ∑ 𝑙𝑜𝑔Φ (

λ(𝑦𝑖 − 𝑓(𝑥𝑖; β))

√σ2
)

𝑁

𝑖=1

−
1

2σ2
 ∑(𝑦𝑖 − 𝑓(𝑥𝑖; β))2.

𝑁

𝑖=1

 

The function 𝑙(β, σ2, λ) is the log-likelihood function, which depends on parameters to be estimated 

(in this case β, σ2 and λ) and on the data (𝑥1, 𝑦1), …, (𝑥𝑁, 𝑦𝑁). The derivation of the log likelihood 

function is available in Bogetoft and Otto [23]. With σ2 replaced with 
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖; β))2𝑁

𝑖=1 , first-order 

partial derivatives for the function can be obtained. 

First, the partial derivative of 𝑙(β, λ) with respect to β is: 

𝜕

𝜕β𝑗
𝑙(β, λ) = −

λ

𝜎
∑

ϕ (
λε𝑖

σ )

Φ (
λε𝑖

σ )
𝑋𝑗𝑖

𝑁

𝑖=1
+

∑ ε𝑖𝑋𝑗𝑖
𝑁
𝑖=1

σ2
(1 +

λ

𝑁σ
∑

ϕ (
λε𝑖

𝜎 )

Φ (
λε𝑖

𝜎 )
ε𝑖

𝑁

𝑖=1
). 

Second, the partial derivative of 𝑙(β, λ) with respect to λ is: 

𝜕

𝜕λ
𝑙(β, λ) = ∑

ϕ (
λ𝜖𝑖

σ )

Φ (
𝜆𝜖𝑖

σ )

ϵi

σ

𝑁

𝑖=1
. 

Coelli et al. [24] suggested a one-sided likelihood-ratio test to determine whether the variation in 

inefficiency (𝑢𝑖) is significant. The purpose of the test is to compare the parameter estimates in an 

ordinary least square regression model (OLS) with respect to the null-hypothesis, 𝐻0: γ =
σ𝑢

2

(σ𝑣
2+σ𝑢

2 )
= 0, 

and the parameter estimates in SFA under the alternative hypothesis, 𝐻1: γ > 0. The test value is 

calculated using Equation (3). 

𝐿𝑅 = −2 {𝑙𝑛 [
𝐿(𝑂𝐿𝑆)

𝐿(𝑆𝐹𝐴)
]} = −2{𝑙𝑛[𝐿(𝑂𝐿𝑆)] − 𝑙𝑛[𝐿(𝑆𝐹𝐴)]} (3) 

where, 𝐿(𝑂𝐿𝑆) and 𝐿(𝑂𝐿𝑆) are the values of the likelihood function under OLS and SFA, respectively. 

In the illustrative study, this paper will calculate and compare the 𝐿𝑅 statistic with 𝜒1−2α
2 (1), then 

determine to accept or reject the null hypothesis. In other words, if the 𝐿𝑅 statistic exceeds α% critical 

value, we reject the null hypothesis of no inefficiency effects. If the null hypothesis 𝐻0: γ = 0 is 
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accepted, it would indicate that σ𝑢
2  is zero and hence that the inefficiency term 𝑢𝑖 should be removed 

from the model, thus, specifying parameters that can be consistently estimated using OLS. 

This study developed an Excel spreadsheet tool to obtain the maximum likelihood estimation of 

subset parameters in the aforementioned SFA models rapidly and intuitively. The tool can accommodate 

panel data, a half-normal inefficiency distribution and a normal measurement error distribution. Section 4 

will show what the tool looks like. Regarding an energy performance indicator developed by a credential 

governmental organization, the U.S. Environmental Protection Agency (EPA) introduced energy 

performance indicators (EPIs) through its ENERGY STAR program to encourage a variety of U.S. 

industries to use energy more efficiently. One of the EPIs was developed for a plant-level energy 

performance indicator to benchmark manufacturing energy use in the automobile industry based on  

the SFA model [10]. Because a typical SFA model has a composite error term including symmetric 

(normal) measurement errors denoted by v𝑖 and one-sided (half-normal) inefficiencies denoted by 𝑢𝑖, 

the frontier model takes the form of the following equation, as in Equations (1) and (2): 

𝐸𝑖
𝑌𝑖

⁄ = 𝑓(𝑋; β) + ε𝑖 (4) 

where, ε𝑖 = 𝑢𝑖 − v𝑖, 𝑣𝑖~ 𝑁(0, σ𝑣
2) and 𝑢𝑖~ 𝑁+(0, σ𝑢

2 ). In addition, 𝐸𝑖 is the energy use of company 𝑖; 

𝑌𝑖 is the measured production or service measured of company 𝑖; 𝑋𝑖 is the economic decision variables 

(i.e., labor-hours worked, materials processed, plant capacity, or utilization rates) or external factors 

(i.e., heating and cooling energy loads); and β is the vector of parameters to be estimated statistically. 

Given company data, Equation (4) can be expressed as Equation (5), thereby providing a way to 

compute the difference between the actual energy use and the predicted frontier energy use: 

𝐸𝑖
𝑌𝑖

⁄ − 𝑓(𝑋; β) + v𝑖 = 𝑢𝑖 (5) 

Then, the EPI of company i is calculated from the probability distribution of 𝑢𝑖 as follows: 

𝐸𝑃𝐼 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ≥
𝐸𝑖

𝑌𝑖
⁄ − 𝑓(𝑋; β) + v𝑖)  

= 1 − 𝐹(
𝐸𝑖

𝑌𝑖
⁄ − 𝑓(𝑋; β) + v𝑖) 

(6) 

𝐹() is the cumulative probability density function of the appropriate one-sided density function for 

𝑢𝑖 (e.g., gamma, exponential, truncated normal, and other functions). The value 1 − 𝐹() in Equation (6) 

defines the EPI score and may be interpreted as a percentile ranking of the company’s energy 

efficiency. However, in practice, the only measureable value is ui – vi = Ei/Yi – f(X;B). By implication, 

the EPI score 1 − 𝐹(𝑢𝑖 − v𝑖) is affected by the random component of v𝑖, that is, the score will reflect 

the random influences that are not accounted for by the function 𝐹(). Because this ranking is based on 

the distribution of inefficiency for the entire industry, but normalized to the specific regression factors 

of the given company, this statistical model enables the user to answer the hypothetical but practical 

question, “How does my company compare to everyone else’s in my industry, if all other companies 

were similar to mine?”. This study will calculate the EPI scores of each plant based on the proposed 

SFA models in Section 4. Yee and Oh [25] used the EPI score as described in this section for selecting 

the optimal supply partner for composing semantic web services, when performance metrics for 

sustainable supply chain are important for automatic business composition, particularly at the service 

matchmaking phase. 
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3.3. Data Envelopment Analysis (DEA) 

When a panel data set is available and one is interested in measuring the technical improvement in 

energy efficiency, the Malmquist total factor productivity (TFP) index can be used to reveal a positive 

or negative technical change across two distinct years such as 𝑡 and 𝑡 + ∆𝑡. One advantage of using the 

Malmquist TFP index is that it can be decomposed into a structural technical change (improvement or 

deterioration) and a technical efficiency change, where the structural technical change may account for 

the technical improvement (e.g., frontier line shifts between two distinct years), while the efficiency 

change indicates how well companies are improving to the frontier line. For example, when a frontier 

line shifts independently of the DMU set, DMUs appear less efficient, reflecting a positive technical 

change. By contrast, when a set of DMUs moves independently closer to the frontier line, DMUs appear 

more efficient, resulting in a positive technical efficiency change. If the frontier line shifts to a higher 

efficiency and simultaneously, a set of DMUs shifts to a higher efficiency, a positive TFP has occurred. 

Depending on the orientation used to measure the efficiency, (i.e., either output oriented or input 

oriented) the TFP indices differ. Recently, a new approach adopting a directional distance function was 

introduced to provide a flexibility in measurement by allowing negative input and output quantities. 

For more details on the underlying theory and application of directional distance function, see  

Nin et al. [26]. 

For the consistency between SFA and DEA models, a new vector variable 𝑍𝑖 =

(HDD𝑖 , CDD𝑖 , Wheelbase𝑖 ,
1

Utilization𝑖
 ) is introduced to represent the systematic external factors given 

for i-th company or plant. Note that 𝑍𝑖 takes the inverse of utilization because this study is based on 

the assumption of strong disposability where all the variables must have a non-decreasing relationship 

with the energy intensity. Then, our interest in defining the minimum energy intensity requirement to 

produce one unit of vehicle under the given external condition to i-th plant is expressed in the 

following function: 

(
𝐸𝑖

𝑌𝑖
⁄ )∗ = 𝑖𝑛𝑓{𝑐𝑎𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑍𝑖  𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒} (7) 

Equation (7) motivates the minimal energy density requirement in terms of micro-economic 

concept. It is possible to connect this motivation expressed in Equation (7) with the interpretation of 

input distance function that we need to calculate TFP indices. For more specific details of the theoretical 

development on this connection, see Boyd [27]. An input oriented distance function corresponding to 

Equation (7) is as follows: 

𝐷𝐼(𝑍𝑖 ,
𝐸𝑖

𝑌𝑖
⁄ ) = 𝑠𝑢𝑝 {∅: (

𝐸𝑖
𝑌𝑖

⁄

∅
) 𝑐𝑎𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑍𝑖 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒} (8) 

Since a distance function is defined, it is possible to calculate the TFP index. In our context,  

the TFP index requires four distance function values, specifically, 𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
), 𝐷𝐼

𝑡+∆𝑡(𝑍𝑡 ,
𝐸𝑡

𝑌⁄
𝑡
), 

𝐷𝐼
𝑡(𝑍𝑡+∆𝑡,

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
) , and 𝐷𝐼

𝑡+∆𝑡(𝑍𝑡+∆𝑡 ,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

) , where the notation 𝐷𝐼
𝑡(𝑍𝑡+∆𝑡 ,

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
) 

represents the distance from the period 𝑡 + ∆𝑡 observation to the period 𝑡 technology. Vector forms, 𝑍𝑡 
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and 
𝐸𝑡

𝑌⁄
𝑡
 represent (𝑍1𝑡 , 𝑍2𝑡 , … , 𝑍𝑁𝑡) and (

𝐸1𝑡
𝑌⁄

1𝑡
,
𝐸2𝑡

𝑌⁄
2𝑡

, … ,
𝐸𝑁𝑡

𝑌⁄
𝑁𝑡

), respectively. The subscript 

“I” has been introduced to remind that this is an input -orientated measures. 

Note that each distance function has an equivalent DEA model. For example, 𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
) is 

identical to the following DEA model: 

𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
) = minϕ,λϕ  

s.t. – 𝑍𝑖𝑡 + 𝑍𝑡λ ≥ 0,  

– ϕ (
𝐸𝑖𝑡

𝑌𝑖𝑡
⁄ ) + (

𝐸𝑡
𝑌⁄

𝑡
) λ ≤ 0  

λ ≥ 0 

(9) 

The remaining three DEA models are simple variants of this form. Table 3 summarizes all the forms. 

Table 3. DEA models required to calculate Malmquist TFP indices. 

Input Oriented Envelopment Forms 

𝐷𝐼
𝑡+∆𝑡 (

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
, 𝑍𝑡+∆𝑡) =  minϕ,λ ϕ,  

s.t. – 𝑍𝑖𝑡+∆𝑡 + 𝑍𝑡+∆𝑡λ ≥ 0,  

– ϕ(
𝐸𝑖𝑡+∆𝑡

𝑌𝑖𝑡+∆𝑡
⁄ ) +

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
λ ≤ 0,  

λ ≥ 0. 

(10) 

𝐷𝐼
𝑡 (

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
, 𝑍𝑡+∆𝑡) =  minϕ,λϕ,  

s.t. – 𝑍𝑖𝑡+∆𝑡 + 𝑍𝑡λ ≥ 0,  

– ϕ(
𝐸𝑖𝑡+∆𝑡

𝑌𝑖𝑡+∆𝑡
⁄ ) +

𝐸𝑡
𝑌⁄

𝑡
λ ≤ 0,  

λ ≥ 0. 

(11) 

𝐷𝐼
𝑡+∆𝑡 (𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
) =  minϕ,λϕ,  

s.t. – 𝑍𝑖𝑡 + 𝑍𝑡+∆𝑡λ ≥ 0,  

– ϕ(
𝐸𝑖𝑡

𝑌𝑖𝑡
⁄ ) +

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
λ ≤ 0,  

λ ≥ 0. 

(12) 

LP (Linear Program) (9) is used to calculate the efficiency of the 𝑡-th time period relative to 𝑡-th 

time period technology, while LP (10) is used to calculate the efficiency of (𝑡 + ∆𝑡)-th time period 

relative to (𝑡 + ∆𝑡)-th time period technology. Similarly, LP (11) is used to calculate the efficiency of 

the (𝑡 + ∆𝑡)-th time period relative to 𝑡-th time period technology, while LP (12) is used to calculate 

the efficiency of the𝑡-th time period relative to (𝑡 + ∆𝑡)-th time period technology. 

Once 𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
), 𝐷𝐼

𝑡+∆𝑡(𝑍𝑡 ,
𝐸𝑡

𝑌⁄
𝑡
), 𝐷𝐼

𝑡(𝑍𝑡+∆𝑡 ,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

), and 𝐷𝐼
𝑡+∆𝑡(𝑍𝑡+∆𝑡,

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
) are 

obtained, the Malmquist TFP index can be calculated and then rearranged such that it is equivalent to 

the product of a technical efficiency change index and an index of technical change. 
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 𝑚𝐼 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

, 𝑍𝑡 ,
𝐸𝑡

𝑌⁄
𝑡
)

= [
𝐷𝐼

𝑡 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

)

𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
)

×
𝐷𝐼

𝑡+∆𝑡 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

)

𝐷𝐼
𝑡+∆𝑡 (𝑍𝑡,

𝐸𝑡
𝑌⁄

𝑡
)

]

1 2⁄

 

=
𝐷𝐼

𝑡+∆𝑡 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

)

𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
)

[
𝐷𝐼

𝑡 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

)

𝐷𝐼
𝑡+∆𝑡 (𝑍𝑡+∆𝑡,

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
)

 ×
𝐷𝐼

𝑡(𝑍𝑡 ,
𝐸𝑡

𝑌⁄
𝑡
)

𝐷𝐼
𝑡+∆𝑡 (𝑍𝑡,

𝐸𝑡
𝑌⁄

𝑡
)

]

1 2⁄

 

(13) 

The first and second term of Equation (13) correspond to an efficiency change and a structural 

technical change, respectively, as follows: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝐷𝐼

𝑡+∆𝑡 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

)

𝐷𝐼
𝑡(𝑍𝑡 ,

𝐸𝑡
𝑌⁄

𝑡
)

 (14) 

Meanwhile, 

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 =  [
𝐷𝐼

𝑡 (𝑍𝑡+∆𝑡,
𝐸𝑡+∆𝑡

𝑌⁄
𝑡+∆𝑡

)

𝐷𝐼
𝑡+∆𝑡 (𝑍𝑡+∆𝑡,

𝐸𝑡+∆𝑡
𝑌⁄

𝑡+∆𝑡
)

 ×
𝐷𝐼

𝑡(𝑍𝑡 ,
𝐸𝑡

𝑌⁄
𝑡
)

𝐷𝐼
𝑡+∆𝑡 (𝑍𝑡,

𝐸𝑡
𝑌⁄

𝑡
)

]

1 2⁄

 (15) 

Note that the ϕ and λ are likely to assume different values in the four DEA models in Table 3. 

Furthermore, these four models must be calculated for each plant in the sample. Thus, if there are  

10 plants and two time periods, then 40 linear programing problems must be solved. To streamline this 

multiple calculation procedure, this study developed an Excel spreadsheet tool as does for the SFA 

models. The developed tool uses VBA in Excel and automates iterations for solving multiple linear 

programing models. Section 4 will show what the tool looks like. 

4. Illustrative Study 

This paper uses artificial data sets for illustrative studies because of intellectual property issues. The 

data sets were generated to resemble real-world data as close as possible. Although SFA and DEA are 

generally conducted with real industry data to suggest new insights or interesting finds, the authors 

believe that the use of artificial data sets will not be detrimental to the overall purpose of this study that 

is to demonstrate the benchmarking process from building frontier models to identifying any structural 

technical improvement. The generated artificial data sets are listed in Table 4 in which two different 

years’ data (years t and t + ∆t) for 10 vehicle assembly plants are considered. Regarding the scope of 

assembly plant, the authors are only considering body shop, paint shop and GA. In fact, these areas 

vary widely in terms of work volume, labor hours or energy usage depending on their level of in-house 

versus outsourced tasks. The data are generated with an in-house case assumed. In addition, the authors 

assumed that the major energy-consuming operations are similar among plants. For example, plants are 

assumed to use electricity-powered chiller, solvent-borne paint system, gas-fired direct heating system, 

and air conditioning in place. 
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Table 4. Plant data used in the illustrative studies. 

Plant 

t-th Year t + ∆t-th Year 

Wheel 

Base (inch) 

HDD 

(1000) 

CDD 

(1000) 
Util 

Electricity 

Intensity 

(kWh/Unit) 

Fuel Intensity 

(106 BTU/Unit) 

Wheel 

Base (inch) 

HDD 

(1000) 

CDD 

(1000) 
Util 

Electricity 

Intensity 

(kWh/Unit) 

Fuel Intensity 

(106 BTU/Unit) 

1 133.50 6.69 1.22 1.19 914.64 2.18 133.50 5.83 1.96 0.73 1272.92 3.04 

2 105.75 6.20 1.48 1.27 1242.57 2.97 105.75 5.87 1.84 2.09 784.46 1.87 

3 155.32 5.17 2.91 1.07 2098.37 5.01 155.32 3.86 2.82 1.13 1950 4.66 

4 112.01 5.40 1.71 1.60 1212.36 2.90 112.01 4.53 2.52 2.00 921.72 2.20 

5 130.63 3.22 3.03 1.78 1589.27 3.80 130.63 2.51 3.99 0.50 1384.39 3.31 

6 133.50 6.47 1.41 1.94 1336.01 3.19 133.50 5.87 1.46 1.77 1008.52 2.41 

7 105.87 6.12 1.43 1.58 1553.32 3.71 105.87 6.17 1.11 0.51 789.69 1.89 

8 155.51 5.33 3.09 0.77 1714.51 4.10 155.51 4.32 3.23 0.77 1898.7 4.54 

9 112.24 5.85 2.35 0.80 1548.68 3.70 112.24 4.72 2.03 2.22 1100.04 2.63 

10 130.63 3.03 3.43 1.13 1718.41 4.10 130.63 2.72 3.75 2.29 995.48 2.38 
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This study uses a commercially available spreadsheet package, Excel, to build the SFA and DEA 

models. Excel provides an add-on tool called Solver with different solving method options such as 

Simplex or GRG (Generalized Reduced Gradient). Using the GRG solver method facilitates the maximum 

likelihood estimation of subset parameters of the proposed SFA models. The example in Figure 7 

illustrates a case in which the tool accommodates plant-level input panel data on electricity and builds 

a model corresponding to Equation (1), thus, estimating parameters for the half-normal inefficiency 

distribution and the normal measurement error distribution. 

Figure 7. SFA model estimation using MS-Excel Solver with “GRG Nonlinear” selected. 

 

The estimated parameters for the electricity and fuel SFA models are shown in Table 5 where β6 

and β7 are the coefficient representing YEAR in the fuel SFA model and in the electricity SFA model, 

respectively. The one-sided likelihood-ratio test values (LR) for both models reveal that the models  

are adequate at the 99.5% significance level and that the models have very little error attributable to 

random noise, with most departures attributable to inefficiency. Therefore, the null-hypothesis,  

𝐻0: 𝛾 =
σ𝑢

2

(σv
2+σ𝑢

2 )
= 0, is rejected, and the alternative hypothesis 𝐻1: γ > 0 with technical inefficiency 

effect is accepted for both the electricity and fuel SFA models. This statistical results show that a 

structural technical improvement in electricity (β7 of the electricity SFA model) and fuel (β6 of the 

fuel SFA model) occurred during the period. Furthermore, β7 and β6 are statistically significant at the 

90% level (−1.91 < 𝑡0.95 (12) = −1.782) and the 85% level (𝑡0.95(13) = −1.771 < −1.6 < 𝑡0.9(13) =

−1.350) in a two-tailed test, respectively. These results indicate that, all other factors being equal, an 

average reduction of 330.77 (kWh) and 253.55 (kWh) in the electricity and fuel per vehicle has 

occurred, leading to efficiency gains of $41.73/vehicle (note: the calculation assumes $0.1/kWh for 

The goal is to find β0, β1 … β7 and λ in such a way to 

maximize l(β,λ,σ) using “GRG Nonlinear” solver
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electricity and $0.03413/kWh (=0.03413 therm/kWh × $1/therm) for natural gas). This magnitude of 

efficiency gains may seem small in the unit cost of production but may offer considerable energy cost 

savings and significantly reduce the environmental impact when the total production is considered. For 

example, let us assume that a car manufacturing company produces nine million cars per year and must 

solely purchase CO2 credits from a market to emit CO2. Given these condition, if the company 

achieved the aforementioned magnitude of efficiency gains, then the total cost savings from energy 

reduction and a reduced environment impact would be $428 M (note: $428 M ≈ 9,000,000  

× [$41.73 + (330.77 kWh + 253.55 kWh)/1000 × $10]; the CO2 credit price in the market is assumed 

to be $10 per CO2 ton). ENERGY STAR® plant energy performance indicator (EPI) values are also 

calculated, and the results are summarized in Table A1. 

Table 5. Parameter estimates for the SFA models (Notations for significance level in a 

two-tailed test: *** (99%); ** (90%); * (85%)). 

Variables 
Estimates for the Electricity SFA Model 

(Standard Error; t-Ratio) 

Estimates for the Fuel SFA Model 

(Standard Error; t-Ratio) 

𝛃𝟎 650.49 0.67 

𝛃𝟏 8.22 (6.05; 1.36) 0.02 (0.00; 10.15) *** 

𝛃𝟐 394.87 (1159.16, 0.34) 1.53 (1.38; 1.11) 

𝛃𝟑 −68.34 (123.01; −0.56) −0.21 (0.15; −1.40) 

𝛃𝟒 410.22 (1297.51; 0.32) −0.21 (2.83; −0.07) 

𝛃𝟓 −107.80 (268.42; −0.4) −0.16 (1.03; −0.16) 

𝛃𝟔 −331.85 (173.66; −1.91) ** −0.86 (0.53; −1.60) * 

𝛃𝟕 −361.87 (191.46; −1.89) ** NA 

𝛔𝒖 279.79 0.68 

𝛔𝒗 0.55 0.00 

𝛌 = √
𝛔𝒖

𝛔𝒗
 505.96 614.92 

L(OLS) −131.28 −10.29 

L(SFA) −127.21 −6.81 

LR 8.17 > 𝜒1−2×0.005
2 (1) = 6.635 6.97 > 𝜒1−2×0.005

2 (1) = 6.635 

Using the Simplex solver, this study developed a spreadsheet tool for DEA, too. The developed tool 

uses VBA in Excel and automates iterations for solving multiple linear programing models. Briefly, 

with respect to automation logic, the tool uses “For” loop to automate iterations of solving multiple 

linear programing models in which the Solver with the “Simplex” optimization option calculates  

the efficiency for each DMU and the results are recorded in a table using the copy/paste function  

(note: the three major functions used in the loop statement of the VBA programing are as follows:  

(1) “SolverOk”—defines the objective function and the decision variables; (2) “SolverAdd”—defines 

model constraints; and (3) “SolverSolv”—runs Solver). Figure 8 illustrates an example in which the 

tool accommodates plant-level input panel data on fuel corresponding to LP (7). Tables 6 and 7 present 

the Malmquist indices obtained by solving the DEA models for electricity and fuel, respectively. Three 

indices are presented for each firm, such as efficiency change (relative to a CRS technology), technical 

change, and total factor productivity change. It should be noted that the technical change of each model 
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from 𝑡  to 𝑡 + ∆𝑡  increases (greater than 100%), indicating that there has been a structural technical 

improvement in energy performance over the years. The DEA efficiency at each year is also calculated 

and summarized in Tables A2 and A3. 

Figure 8. DEA model implementation using MS-Excel Solver with “Simplex LP”. 

 

Table 6. Malmquist index summary (Electricity). 

DMU Efficiency Change Technical Change Total Factor Productivity Change 

1 78% 106% 82% 

2 123% 155% 190% 

3 77% 138% 106% 

4 92% 166% 152% 

5 76% 175% 133% 

6 98% 131% 128% 

7 135% 124% 166% 

8 62% 147% 91% 

9 85% 172% 147% 

10 100% 187% 187% 

Mean 92% 149% 139% 

  

The goal is to find λ in such a way to minimize Ф
using “Simplex LP” solver
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Table 7. Malmquist index summary (Natural Gas). 

DMU Efficiency Change Technical Change Total Factor Productivity Change 

1 78% 92% 72% 

2 132% 146% 192% 

3 117% 92% 108% 

4 99% 148% 146% 

5 90% 109% 98% 

6 98% 129% 127% 

7 139% 122% 169% 

8 98% 92% 90% 

9 147% 132% 194% 

10 187% 122% 229% 

Mean 113% 121% 143% 

It makes sense to compare the estimated parameters to those of existing estimated models in terms 

of value and sign as part of cross-validation if there have been similar estimation works. The 2000 and 

2005 models elicited by Gale Boyd [28] have the identical model configuration with this study. 

Therefore, a comparison on the estimated parameters was conducted between those models and the 

results are summarized in Tables B1 and B2 in Appendix B. One challenge against the comparison was 

that the datasets of two models are significantly different. The 2000 and 2005 models were based on 

real data composed by collecting some sample plant data from major car making companies in U.S. 

while this study generated an artificial dataset by simulating a population that resembles GM plants 

located in a specific region. Due to the large difference between datasets, the differences in magnitude 

between parameter values exist. However, the orders of magnitude between parameter values are in the 

same range and the directions of relationships between systematic external factors and energy intensity 

(i.e., signs of estimated parameters) turned out consistent. The authors again want to clarify that the 

datasets used in this study are simulated and should not be taken to be applicable to the industry, but 

are only illustrative of the proposed models. 

In order to measure the consistency between the SFA and the DEA approaches on the efficiency 

ranking results for firms, a Spearman’s rank correlation coefficient test was conducted. Spearman’s 

rank correlation coefficient values are 0.9 and 0.25 for 𝑡 and 𝑡 + ∆𝑡, respectively, in electricity, and 0.3 

and 0.38 for t and 𝑡 + ∆𝑡, respectively, in natural gas. All of the rank correlation coefficient values are 

positive, indicating that the ranks of the SFA and DEA results have moderate (in 𝑡 ) and small  

(in 𝑡 + ∆𝑡) positive linear relationships. 

It seems that it would be more useful to compare best practices with inefficient practices to identify 

energy reduction opportunities after computing numerical efficiencies and locating the best and inefficient 

performance plants. Finding energy reduction opportunities must be preceded by understanding high 

energy cost drivers for inefficient plants. For this purpose, Oh and Hildreth [12], Jurek et al. [29], and 

Oh et al. [30] proposed activity-based decision steps including a step of comparing hourly average 

energy use of each activity between best practice plants and less efficient plants followed by figuring 

out which activity are problematic cost drivers for less efficient plants. 
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5. Conclusions 

This paper proposes a benchmarking process using stochastic and deterministic frontier analysis 

models, specifically, SFA and DEA, to identify industry-wide or company-wide structural technical 

improvement in energy efficiency with a focus on the car manufacturing industry. The quantitative 

identification of technical improvement in energy efficiency is important to help car manufacturing 

companies evaluate the effectiveness of the various energy efficiency programs that they may have 

implemented, in many cases supported by government R&D or financial programs. This paper proposed 

SFA models that incorporate the Hicksian neutral technological change concept and DEA models 

implemented to calculate Malmquist Productivity Change indices. Illustrative examples of the proposed 

models are presented to demonstrate the overall benchmarking process to find frontier lines and to 

measure the shifts of the frontier line that were used to proxy the structural technical improvement in 

energy efficiency. A log likelihood ratio test and a Spearman rank-order correlation coefficient test 

were conducted to test the significance of the SFA model and its consistency with the DEA model, 

respectively. ENERGY STAR® plant energy performance indicator values were also calculated. The 

results of the analysis based on the SFA models calculated total efficiency gains of $41.73/vehicle 

during the tested period. The tools developed for illustrative examples are available upon request  

at authors. 

Regarding future work, one priority is to enhance the proposed SFA and DEA models to enable them 

to account for structural technological change by including the time-varying behavior of the inefficiency 

effects, thereby identifying more extensive factors affecting the technical change. Additionally, the 

authors are interested to extend this research to implement a directional distance function in calculating 

the Malmquist TFP indices. Since the paper just covered automotive manufacturing energy 

consumption in the context of other industries, the authors want to further study the energy 

consumption in an automotive life cycle. Recently, an automotive life cycle analysis (e.g., GM’s 

carbon footprint) reveals that the supply chain for automotive parts is ten times more energy intensive 

than OEM’s operations. This demonstrates that extending energy efficiency methods into the 

automotive part supply chain can contribute a major reduction in car making industry carbon footprint. 

Therefore, there is an opportunity to extend the proposed SFA and DEA models to automotive part 

supply chain as a possible future work. 

Author Contributions 

The presented work is a product of the intellectual environment of the whole team. All members 

have contributed in various degrees to the analytical methods used, to the tool development, and to the 

illustrative example design and implementation. 
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Appendix A. SFA and DEA Results 

Table A1. SFA results in terms of EPI. 

DMU 
𝒕-th Year (𝒕 + ∆𝒕)-th Year 

Electricity NG Electricity NG 

1 100% 100% 66% 42% 

2 26% 31% 24% 28% 

3 16% 16% 26% 14% 

4 98% 100% 100% 100% 

5 99% 86% 81% 100% 

6 6% 6% 40% 40% 

7 1% 2% 99% 92% 

8 99% 100% 26% 24% 

9 35% 30% 37% 31% 

10 93% 96% 56% 83% 

Mean 57% 57% 56% 55% 

Note that DMUs 6 and 7 show the lower efficiency in Table B1 in t-th Year. These low efficiencies 

are caused by the large difference between their average practices and best practices. These results, 

however, also indicate that DMUs 6 and 7 have higher potentials to further improvement in energy savings. 

Table A2. DEA results (Electricity). 

DMU 𝒅𝟎
𝒕 (𝒙𝒕, 𝒚𝒕) 𝒅𝟎

𝒕+∆𝒕(𝒙𝒕, 𝒚𝒕) 𝒅𝟎
𝒕 (𝒙𝒕+∆𝒕, 𝒚𝒕+∆𝒕) 𝒅𝟎

𝒕+∆𝒕(𝒙𝒕+∆𝒕, 𝒚𝒕+∆𝒕) 

1 100% 108% 94% 78% 

2 82% 65% 192% 100% 

3 77% 55% 81% 59% 

4 100% 69% 173% 92% 

5 100% 62% 144% 76% 

6 100% 74% 125% 98% 

7 74% 52% 107% 100% 

8 99% 68% 91% 61% 

9 89% 58% 146% 76% 

10 100% 58% 202% 100% 

Mean 92% 67% 135% 84% 

Table A3. DEA results (Natural Gas). 

DMU 𝒅𝟎
𝒕 (𝒙𝒕, 𝒚𝒕) 𝒅𝟎

𝒕+∆𝒕(𝒙𝒕, 𝒚𝒕) 𝒅𝟎
𝒕 (𝒙𝒕+∆𝒕, 𝒚𝒕+∆𝒕) 𝒅𝟎

𝒕+∆𝒕(𝒙𝒕+∆𝒕, 𝒚𝒕+∆𝒕) 

1 100% 109% 72% 78% 

2 76% 65% 183% 100% 

3 51% 55% 55% 59% 

4 91% 69% 149% 90% 

5 78% 61% 65% 70% 

6 100% 75% 123% 98% 

7 72% 52% 107% 100% 

8 62% 67% 56% 61% 

9 52% 54% 138% 76% 

10 52% 56% 158% 97% 

Mean 73% 66% 111% 83% 
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Appendix B. Comparison of Estimated SFA Parameters 

Table B1. Comparison of electricity SFA model parameters. 

Parameter 
This Study (Based on 

Simulated Data) 

2000 Model 

[28] 

2005 Model 

[28] 

Direction of the 

Relationship 

Constant 650.49 369.39 −91.84 N/A 

Wbase 8.22 2.77 2.03 ↗ 

HDD 394.87 −48.41 163.06 
↗ 

HDD2 −68.34 4.79 −15.17 

Util −331.85 −138.61 −112.54 ↘ 

CDD 410.22 −59.32 −223.89 
↗ 

CDD2 −107.80 41.91 86.61 

Table B2. Comparison of fuel SFA model parameters. 

Parameter 
This Study (Based on 

Simulated Data) 

2000 Model 

[28] 

2005 Model 

[28] 

Direction of the 

Relationship 

Constant 0.67 3.827 −0.526 N/A 

Wbase 0.02 0.00322 0.019 ↗ 

HDD 1.53 −0.545 0.439 
↗ 

HDD2 −0.21 0.11  

Util −0.21 −6.788 −0.072 
↘ 

Util2 −0.16 2.399  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Annual Energy Review 2011. Available online: http://www.eia.gov/totalenergy/data/annual/ 

pdf/aer.pdf (accessed on 22 September 2014). 

2. 2011 Annual Survey of Manufacturers (ASM). Available online: https://www.census.gov/ 

manufacturing/asm (accessed on 22 September 2014). 

3. 2012 GM Sustainability Report. Available online: http://www.gmsustainability.com (accessed on  

22 September 2014). 

4. 2012 Volkswagen Sustainability Report. Available online: http://nachhaltigkeitsbericht2012. 

volkswagenag.com/en.html (accessed on 22 September 2014). 

5. 2012 Ford Sustainability Report. Available online: http://corporate.ford.com/microsites/ 

sustainability-report-2012-13/default (accessed on 22 September 2014). 

6. 2012 BMW Sustainability Report. Available online: http://www.bmwgroup.com/e/0_0_www_ 

bmwgroup_com/verantwortung/svr_2012/index.html (accessed on 22 September 2014). 

7. 2012 Toyota North American Environmental Report. Available online: http://www.toyota.com/ 

about/environmentreport2012/eco-efficient.html (accessed on 22 September 2014). 

http://www.gmsustainability.com/


Energies 2014, 7 6221 

 

 

8. Lin, L.-C.; Tseng, L.-A. Application of DEA and SFA on the measurement of operating 

efficiencies for 27 international container ports. In Proceedings of the Eastern Asia Society for 

Transportation Studies, Bangkok, Thailand, 21–24 September 2005; Volume 5, pp. 592–607. 

9. Galitsky, C.; Worrell, E. Energy Efficiency Improvement and Cost Saving Opportunities for  

the Vehicle Assembly Industry; Lawrence Berkley National Laboratory (LBNL): Orlando, FL, 

USA, 2008. 

10. Boyd, G.A. Development of a Performance-Based Industrial Energy Efficiency Indicator for 

Automobile Assembly Plants; Technical Report ANL/DIS-05-3; Argonne National Laboratory: 

DuPage County, IL, USA, 2005. 

11. Sullivan, J.L.; Burnham, A.; Wang, M.Q. Energy and Carbon Emissions Analysis of Vehicle 

Manufacturing and Assembly; Technical Report ANL/ESD 10–6; Argonne National Laboratory: 

DuPage County, IL, USA, 2010. 

12. Oh, S.-C.; Hidreth, A.J. Decisions on energy demand response option contracts in smart grids 

based on activity-based costing and stochastic programming. Energies 2013, 6, 425–443. 

13. Aigner, D.J.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier 

production function models. J. Econ. 1977, 6, 21–37. 

14. Meeusen, W.; van den Breoek, J. Efficiency estimation from Cobb-Douglas production functions 

with composed error. Int. Econ. Rev. 1977, 18, 435–444. 

15. Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier 

production function for panel data. Empir. Econ. 1995, 20, 325–332. 

16. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making unit.  

Eur. J. Oper. Res. 1978, 2, 429–444. 

17. Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale 

inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. 

18. Färe, R.; Grosskopt, S.; Margaritis, D. Malmquist productivity indexes and DEA. In Handbook of 

Data Envelopment Analysis, 2nd ed.; Cooper, W.W., Seiford, L.M., Zhe, J., Eds.; Springer: 

Berlin, Germany, 2011; Volume 164, pp. 127–149. 

19. Productivity Commission. Electricity Network Regulatory Frameworks; Inquiry Report, 1(62); 

Australian Government, Productivity Commission: Melbourne, Australia, 2013. 

20. The Nonparametric Approach in Efficiency Analysis: Recent Developments and Applications. 

Available online: http://www.siepi.univpm.it/sites/www.siepi.univpm.it/files/siepi/SIEPI%202012/ 

papers/Daraio.pdf (accessed on 22 September 2014). 

21. US Department of Energy. Technology Roadmap for Energy Reduction in Automotive 

Manufacturing; Office of Energy Efficiency & Renewable Energy, Industrial Technologies 

Program and U.S. Council for Automotive Research: Washington, DC, USA, 2008. 

22. Battese, G.E.; Corra, G.S. Estimation of a production frontier model: With application to the 

pastoral zone of eastern Australia. Aust. J. Agric. Econ. 1977, 21, 169–179. 

23. Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA, and R; Springer: Berlin, Germany, 2011. 

24. Coelli, T.S.; Prasada Rao, D.S.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and 

Productivity Analysis, 2nd ed.; Springer: Berlin, Germany, 2005. 

25. Yee, J.T.; Oh, S.-C. Technology Integration to Business; Springer: Berlin, Germany, 2012. 



Energies 2014, 7 6222 

 

 

26. Nin, A.; Arndt, C.; Hertel, T.W.; Preckel, P.V. Bridging the gap between partial and total factor 

productivity measures using directional distance functions. Am. J. Agric. Econ. 2003, 85, 928–942. 

27. Boyd, G.A. Estimating plant level energy efficiency with a stochastic frontier. Energy J. 2008, 29, 

23–43. 

28. Boyd, G.A. Estimating the changes in the distribution of energy efficiency in the U.S. automobile 

assembly industry. Energy Econ. 2014, 42, 81–87. 

29. Jurek, P.; Bras, B.; Guldberg, T.; D’Arcy, J.B.; Oh, S.-C.; Biller, S.R. ABC applied to automotive 

manufacturing. In Proceedings of the IEEE Power & Energy Society General Meeting, San Diego, 

CA, USA, 22–26 July 2012. 

30. Oh, S.-C.; D’Arcy, J.B.; Arinez, J.F.; Biller, S.R.; Hidreth, A.J. Assessment of energy demand 

response options in smart grid utilizing the stochastic programming approach. In Proceedings of 

the IEEE Power & Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


