M< COMPUTER ORGANIZATION AND DE® st

The Hardware/Software Interface =dition

Chapter 6

Parallel Processors from
Client to Cloud

Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors
Scalability, availability, power efficiency

Task-level (process-level) parallelism
High throughput for independent jobs
Parallel processing program
Single program run on multiple processors

Multicore microprocessors
Chips with multiple processors (cores)

Chapter 6 — Parallel Processors from Client to Cloud — 2

Hardware and Software

Hardware

Serial: e.g., Pentium 4

Parallel: e.g., quad-core Xeon €5345
Software

Sequential: e.g., matrix multiplication

Concurrent: e.g., operating system
Sequential/concurrent software can run on
serial/parallel hardware

Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3

What We’ve Already Covered

§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Subword Parallelism

§4.10: Parallelism and Advanced
Instruction-Level Parallelism

§5.10: Parallelism and Memory
Hierarchies

Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 4

Parallel Programming

Parallel software is the problem
Need to get significant performance
Improvement

Otherwise, just use a faster uniprocessor,
since it's easier!

Difficulties
Partitioning
Coordination
Communications overhead

Chapter 6 — Parallel Processors from Client to Cloud — 5

Amdahl’s Law

Sequential part can limit speedup

Example: 100 processors, 90x speedup?
T . =T /100 + T

1
)+F

parallelizable

parallelizable sequential

Speedup =

- 90
(1-F /100

parallelizable

parallelizable =0.999

Need sequential part to be 0.1% of original
time

Solving: F

Chapter 6 — Parallel Processors from Client to Cloud — 6

Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum

Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_,
10 processors
Time =10 xt_,,+100/10 x t_4, =20 x t_4,
Speedup = 110/20 = 5.5 (55% of potential)
100 processors
Time=10xt,,+100/100 x t_,, = 11 x t_,
Speedup = 110/11 =10 (10% of potential)

Assumes load can be balanced across
pProcessors

Chapter 6 — Parallel Processors from Client to Cloud — 7

Scaling Example (cont)

What if matrix size is 100 x 1007
Single processor: Time = (10 + 10000) x t_ 4
10 processors

Time =10 x t_44 + 10000/10 x t_ 4 = 1010 x t_,4
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time = 10 x t_, + 10000/100 X t_4 = 110 x t_,
Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 8

Strong vs Weak Scaling

Strong scaling: problem size fixed
As In example

Weak scaling: problem size proportional to
number of processors

10 processors, 10 x 10 matrix

Time =20 x t_ 4
100 processors, 32 x 32 matrix

Time = 10 x t_, + 1000/100 x t_ =20 x t g,
Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Instruction and Data Streams

An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

Example: DAXPY (Y = a x X +Y)

Conventional MIPS code

1.d $f0,a($sp) *Toad scalar a
addiu r4 $sO #512 ;upper bound of what to load
lToop: 1.d ,O($sO) *Toad x(i)

nul.d($F208£2, 570 ta x x(3)

1.d XS ; load y(1)

add. ra x x(1) + y(i)

s.d sl ;store into y(i)
addiu $s0,$s0, #8 *increment index to X
addiu $s1,%$s1,#8 sincrement index to y
subu $t0,r4,$sO ;compute bound

bne $t0, $zero, loop ;check if done
Vector MIPS code

1.d $f0,a($sp) *Toad scalar a

Tv $v1,0($s0) *Toad vector x

mulvs.d $v2,%$vl,$f0 ;vector-scalar multiply
Tv $v3,0($s1) »load vector y

addv.d $v4,%$v2,$v3 ;add y to product

SV $v4,0($s1) -store the result

Chapter 6 — Parallel Processors from Client to Cloud — 11

Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to MIPS
32 x 64-element registers (64-bit elements)

Vector instructions
Tv, sv: load/store vector
addv.d: add vectors of double
addvs.d: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 12

Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
interleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology

‘ Chapter 6 — Parallel Processors from Client to Cloud — 13

SIMD

Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same
Instruction at the same time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications

Chapter 6 — Parallel Processors from Client to Cloud — 14

Vector vs. Multimedia Extensions

Vector instructions have a variable vector width,
multimedia extensions have a fixed width

Vector instructions support strided access,
multimedia extensions do not

Vector units can be combination of pipelined and
arrayed functional units: =% = = =

AS (B FP add FP add FP add
ﬁ ﬁ Tpipe 1T Tpipe 2T Tpipe 3Y
Al7]| |BI7]
Al6]| |B[6] Vector Vector Vector
Tarmal [resl registers: registers: registers:
ﬂ ﬂ elements elements lements
ﬂ ﬁ 1,59, ... 2,6, 10, ... 3,7,11, ...
CCRED) ottt
Al2 B[2
L L FP mul FP mul FP mul
A1l [BI1] pipe 1 pipe 2 pipe 3
+
Vector load store unit

Chapter 6 — Parallel Processors from Client to Cloud — 15

Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed

Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 6 — Parallel Processors from Client to Cloud — 16

Simultaneous Multithreading

In multiple-issue dynamically scheduled
processor

Schedule instructions from multiple threads
Instructions from independent threads execute

when

function units are available

Within threads, dependencies handled by
scheduling and register renaming

Examp
Two t

e: Intel Pentium-4 HT

nreads: duplicated registers, shared

function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 17

Multithreading Example

Time

Time

Issue slots ——
Thread A Thread B

|
|
HEEE B
HEEN
HE
|| |
HEN
Issue slots —
Coarse MT Fine MT
[1 HE
[| HEN
HEN 1] |
[] |
[| [|
HE
] -
[
] HEN
[[

Chapter 6 — Parallel Processors from Client to Cloud — 18

Thread C

<
3

H B EEE
[]
HEENEEER

Thread D

Future of Multithreading

Will it survive? In what form?

Power considerations = simplified
microarchitectures

Simpler forms of multithreading
Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 19

Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor .. Processor
A A A
Y Y Y
Cache Cache Cache
A A A
Y Y \
Interconnection Network
A A
Y \
Memory I/0

Chapter 6 — Parallel Processors from Client to Cloud — 20

Example: Sum Reduction

Sum 100,000 numbers on 100 processor UMA
Each processor has ID: 0 = Pn <99
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] =
for (1 = 1000 Pn;
1 < 1000% (Pn+1); 1 =1+ 1)
sum[Pn] = sum[Pn] + A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...

Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 21

Example: Sum Reduction

0
maﬁ=1)£?:
N\
(half = 2) [o][1][2][3
half = 100; =
repeat (half = 4) [0][1][2 éﬁiﬂﬁ]e 7

synch();
1f (half%2 !'= 0 && Pn == 0)
sum[0] = sum[0] + sum[half-1];
/* Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until Chalf == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 22

History of GPUs

Early video cards

Frame buffer memory with address generation for
video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law = lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units

Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization

Chapter 6 — Parallel Processors from Client to Cloud — 23

x16 PCI-Express Link

MORGAN KAUFMANN

Intel
CPU

A
v Front Side Bus

Graphics In the System

AMD
CPU
CPU
core
I b A 128-bit
internal bus n 667 MT/s
North | | DDR2
Bridge " | Memory

x16 PCI-Express Link y HyperTransport 1.03

North | DDR2
dlsplay Brldge g Memory
x4 PCI-Express Link 4 128-bit
derivative y 667 MT/s
MSrFr:gry South
CPU Bridge
A _
i Front Side Bus
North > Memo
Bridge Y
A
v PClBus
J
Y
South Framebuffer)
Bridge Memory display
VGA GPU

Chipset

Chapter 6 — Parallel Processors from Client to Cloud — 24

GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems

CPU for sequential code, GPU for parallel code
Programming languages/APls

DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 25

Example: NVIDIA Tesla

<
A

Bridge

|_|

System Memory

[Hosti

ost Interface

toriace |

GPU

Input Assembler

Viewport/Clip/
Setup/Raster/

ZCull
| |
Vertex Work Pixel Work Compute Work
Distribution Distribution Distribution
1 | I
|] |]]]
I TPC (| TPC (I TPC (I TPC Ml TPC il TPC TPC ¢ I
/
[1| | 1| | ||][l J||L I L /7
SM SM SM SM SM SM SM SM
il il il il I
| — | — | — | — | — | — | — | — | —
[Se1 (5 | (2] 2] 1571 2] | | 521 S 5] | 2 2] | E2l Ee] | (|52l 2 2]
(5115 | (2] 2] 71 2] | | (521 S 5] 2 | | 2 2] EPl e | (ISl 2l 2]
53 S 531 53 1 5] 5 53 5 s s 5[S5 8 R
(515 (52 2] 571 2] | | (521] e | 5 el e el e
0
e) |) | | o | |) s

Streaming
multiprocessor

AN
.. (2]

I-Cache
MT Issue
C-Cache

Shared
Memory

M<

MORGAN KAUFMANN

Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit
| Tex L1 I Tex L1 I | Tex L1 | Tex L1 I | Tex L1 I | Tex L1 I
C Interconnection Network 5\
[rop |{ 2 | [mop || 2| [ROP|| L2 | [mOP|| L2 | | Display Interface |
i i i i i i i — | —
DRAM DRAM DRAM DRAM | . Display
Loemmee ot

8 x Streaming
processors

Chapter 6 — Parallel Processors from Client to Cloud — 26

Example: NVIDIA Tesla

Streaming Processors
Single-precision FP and integer units
Each SP is fine-grained multithreaded

Warp: group of 32 threads
Executed in parallel,

Processors —

UltraSPARC T2 Tesla Multiprocessor
SIMD style B EEEEEEEE
Thread1
Warp0
[l Thread2
8 SPs Hoea: | EEEEEEEE
x 4 clock cycles I B T [[[[
y Threads [l Threads
[l Threads Warp1
Hardware contexts | mmes

for 24 warps
Registers, PCs, ...

Warp23

Chapter 6 — Parallel Processors from Client to Cloud — 27

Classifying GPUs

Don't fit nicely into SIMD/MIMD model

Conditional execution in a thread allows an
illusion of MIMD

But with performance degredation

Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 28

GPU Memory Structures

CUDA Thread

Per-CUDA Thread Private Memory |

Thread block
Per-Block
Local Memory
Grid0 Sequence
<L
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
>
35>
g S S5 TS
. w ? v

/Z\ M(Chapter 6 — Parallel Processors from Client to Cloud — 29

MORGAN KAUFMANN

Putting GPUs into Perspective

Multicore with SIMD |__ GPU___

SIMD processors 4108 8 to 16
SIMD lanes/processor 2to4 8to 16
Multithreading hardware support for 2to4 16 to 32
SIMD threads

Typical ratio of single precision to 2:1 2:1
double-precision performance

Largest cache size 8 MB 0.75 MB
Size of memory address 64-bit 64-bit
Size of main memory 8 GB to 256 GB 4 GBto 6 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD Yes No
processor

Cache coherent Yes No

Chapter 6 — Parallel Processors from Client to Cloud — 30

<
A

Guide to GPU Terms

M<

MORGAN KAUFMANN

e [S
name

old term
outside of GPUs

Vectorizable Vectorizable Loop Avectorizable loop, exscutad on the GPU, mads
® Loop up of one or more Thread Blocks (hodies of

s vectorized loop) that can execute in parallel.

E Body of Body ofa Thr=ad Block Avectorized loop exscutad on a multithreaded

2 Vectorized Loop | (Strip-Mined) SIMD Prec=ssor, made up of ons or mors threads

° Vectorized Loop of SIMD instructions. They can communicate via

g Local Memory.

N Sequance of One itaration of CUDA Thread Avertical cut of a thread of SIMD instructions
SIMD Lane a Scalar Loop corresponding to one element exscutad by one
Operations SIMD Lan=. Result is stored depending on mask

and predicats register.

- A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD

R SIMD Instructions instructions that are exscuted on a multithreaded

) Instructions SIMD Prec=ssor. Results stored depanding on a

é per<lement mask.

§ SIMD Vector Instruction | PTX Instruction A single SIMD instruction exscutad across SIMD
Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Procsssor exscutes
SIMD Vector Procsssor Multiprocessor threads of SIMD instructions, ndependent of
Proc=ssor other SIMD Processors.

Thread Block Scalar Procassor Giga Thread Assigns multipks Thread Blocks (bodies of

§ Scheduler Engine vectorized loop) to mutithr=aded SIMD

< Procassors.

2 SIMD Thread Thread scheduler | Warp Scheduler Harchware unit that schadules and issuss threads

» Scheduler in a Multithreaded of SIMD instructions when they ars ready to

2 CPU execute; includes a scorsboard to track SIMD

g Thread execution.

a SIMD Lane Vector lane Thread Procsssor A SIMD Lane executes the opsrations in a thread
of SIMD instructions on a singls elemant. Results
stored depending on mask.

GPU Memory Main Memory Global M=maory DRAM memory accassible by all multithreaded

@ SIMD Proc=ssors ina GPU.

:

2 Local Memory Local Memory Shared Memory Fast local SRAM for one multithrsaded SIMD

gv Procassor, unavailable to other SIMD Processors.

&

= SIMD Lane Vector Lane Thread Procsssor Ragisters in a single SIMD Lane allocated across
Registers Ragisters Ragisters a full thread block (bady of wectorized boop).

Chapter 6 — Parallel Processors from Client to Cloud — 31

Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Processor Processor .. Processor
A A A
Y Y Y
Cache Cache .. Cache
A A A
Y Y Y
Memory Memory ca Memory
A A A
Y \ Y
Interconnection Network

Chapter 6 — Parallel Processors from Client to Cloud — 32

Loosely Coupled Clusters

Network of independent computers

Each has private memory and OS

Connected using I/O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...

High availability, scalable, affordable

Problems
Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 33

Sum Reduction (Again)

Sum 100,000 on 100 processors

First distribute 100 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 =1 + 1)
sum = sum + AN[1];
Reduction

Half the processors send, other half receive
and add

The quarter send, quarter receive and add, ...

Chapter 6 — Parallel Processors from Client to Cloud — 34

Sum Reduction (Again)

Given send() and receive() operations

Timit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half & & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum sum + receive();
Timit = half; /* upper 1imit of senders */
until (half == 1); /* exit with final sum */

Send/receive also provide synchronization
Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 35

Grid Computing

Separate computers interconnected by
long-haul networks

E.g., Internet connections
Work units farmed out, results sent back

Can make use of idle time on PCs
E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 36

Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

R T T LT

Bus Ring

L’\ N N N

T (w1 Ta

T e Ta

Tt e a

d

Ow O Ow U N-cube (N = 3)

2D Mesh

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 37

Multistage Networks

P ——
N N
A A A A A A A _ _ — .
plalalalalalalala - i
hakakalalalakaka : —YN—
BN EEESEAESESESRans —’ -
——(Pg—_| || L >
Ahakakalalalakaka — X X
o iataisESEILSEIES -
S[kakakalalalakala r’— -]
=@rrrrrrrr
Nrakalakalalalalals
hitd
a. Crossbar b. Omega network
A
A
A ?‘?——‘ C
B 19 D

c. Omega network switch box

Chapter 6 — Parallel Processors from Client to Cloud — 38

Network Characteristics

Performance
Latency per message (unloaded network)

Throughput
Link bandwidth

Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost

Power
Routabillity in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 39

Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

Job-level parallelism
SPLASH: Stanford Parallel Applications for
Shared Memory
Mix of kernels and applications, strong scaling
NAS (NASA Advanced Supercomputing) suite
computational fluid dynamics kernels
PARSEC (Princeton Application Repository for
Shared Memory Computers) suite

Multithreaded applications using Pthreads and
OpenMP

‘l Chapter 6 — Parallel Processors from Client to Cloud — 40

Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages,
and tools be part of the system?

Compare systems, provided they implement a
given application

E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 41

Modeling Performance

Assume performance metric of interest is
achievable GFLOPs/sec

Measured using computational kernels from
Berkeley Design Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed
For a given computer, determine

Peak GFLOPS (from data sheet)

Peak memory bytes/sec (using Stream
benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 42

Roofline Diagram

64.0

32.0
© . .

eak floating-point performance

§ 16.0 P g-point p
3 :
Y
@ 8.0
g 8
—
G
P 4.0
0
]
£ H :
s 20 i Kernel 1 : Kernel 2
< i (Memory : (Computation

1.0 i Bandwidth limited)

¢ limited) :

o
[
\

A 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Attainable GPLOPs/sec
= Max (Peak Memory BW x Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 43

Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2% FP performance/core, 2.2GHz
vs. 2.3GHz

Same memory system

128.0 } Opteron X4 (Ba@(ina)

1o l To get higher performance
32.0 / on X4 than X2

% 16.0 Need high arithmetic intensity
E 8.0 \/ Or working set must fit in X4’s
% 4.0 Opteron X2 2MB L-3 cache
< 20

1.0

0.5

Yo Vg YV, 1 2 4 8 16
Actual FLOPbyte ratio

Chapter 6 — Parallel Processors from Client to Cloud — 44

Optimizing Performance

AMD Opteron

Optimize FP performance =

32.0

Balance adds & multiplies 1«| e

Improve superscalar ILP
and use of SIMD L

Instructions

2 1 2 4 8 16

Optimize memory usage " et s

AMD Opteron

Software prefetch

32.0

Avoid load stalls
Memory affinity s
Avoid non-local data

dCCESSEeS 10

> 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Chapter 6 — Parallel Processors from Client to Cloud — 45

Optimizing Performance

Choice of optimization depends on
arithmetic intensity of code

A

Arithmetic intensity is
not always fixed

May scale with
problem size

Caching reduces

Mmemory aCCesses

Increases arithmetic
Intensity

16.0
8.0
4.0

(%) 1

2.0

Attainable GFLOPs/second

1.0

Vg A 1 1 2 4 8 16

Chapter 6 — Parallel Processors from Client to Cloud — 46

17-960 vs. NVIDIA Tesla 280/480

<
A

Core i7- Ratio Ratio
GTX 480 280/i7| 480/i7

Number of processing elements (cores or SMs)

Clock frequency (GHz) 3.2 1.3 1.4 0.41 0.44
Die size 263 576 520 2.2 2.0
Technology Intel 45 nm TCMS 65 nm TCMS 40 nm 1.6 1.0
Power (chip, not module) 130 130 167 1.0 1.3
Transistors 700 M 1400 M 3100 M 2.0 4.4
Memory brandwith (GBytes/sec) 32 141 177 4.4 5.5
Single frecision SIMD width 4 8 32 2.0 8.0
Dobule precision SIMD with 2 1 16 0.5 8.0
Peak Single frecision scalar FLOPS (GFLOP/sec) 26 117 63 4.6 2.5
Peak Single frecision s SIMD FLOPS (GFLOP/Sec) 102 311 to 933 51510 1344 |3.0-9.1 |6.6-13.1
(SP 1 add or multiply) N.A. (311) (515) (3.0) (6.6)
(SP 1 instruction fused) N.A (622) (1344) (6.1) (13.1)
(face SP dual issue fused) N.A (933) N.A (9.1) -
Peal double frecision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1

M<

MORGAN KAUFMANN

Chapter 6 — Parallel Processors from Client to Cloud — 47

Rooflines

Intel Core i7-960 NVIDIA GTX280
128 28

peak = 78 GFlop/s

64

32

16

GFlop/s

GFlops/s

2

>

1 >

1 ; i ; ; ; ;
1/8 1/4 1/2 1 2 4 8 16 32 /8 1/4 1/2 1 2 4 8 16

Arithmetic Intensity (Flops/Byte) Arithmetic Intensity

512 In'FeI Cor.e |7—960 '

256). ..l

1681 102.4 GF/s Single Precision|

64 uble’ Precision

GFlops/s

32

16

/0 -
1/8 1/4 1/2 1 2 4 8 16 32
Arithmetic Intensity (Flops/Byte)

MORGAN KAUFMANN

% M< Chapter 6 — Parallel Processors from Client to Cloud — 48

Benchmarks

Lo | e ornrm [orom |
SGEMM GFLOP/sec 94 364 3.9
MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 2.8
FFT GFLOP/sec 71.4 213 3.0
SAXPY GBytes/sec 16.8 88.8 5.3
LBM Million lookups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 4.9 9.1 1.9
GJK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec 5 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 5.7

Chapter 6 — Parallel Processors from Client to Cloud — 49

Performance Summary

GPU (480) has 4.4 X the memory bandwidth

Benefits memory bound kernels

GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
Benefits FP compute bound kernels

CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

GPUs offer scatter-gather, which assists with kernels
with strided data

Lack of synchronization and memory consistency support
on GPU limits performance for some kernels

Chapter 6 — Parallel Processors from Client to Cloud — 50

Multi-threading DGEMM

Use OpenMP:

volid dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
for (int sj = 0; sj < n; sj += BLOCKSIZE)
for (int si = 0; si < n; si += BLOCKSIZE)
for (int sk = 0; sk < n; sk += BLOCKSIZE)
do block(n, si, sj, sk, A, B, C);

Chapter 6 — Parallel Processors from Client to Cloud — 51

Multithreaded DGEMM

14

- O S S S S S
2 L

1 LA
10 b oo

960 X 960
480 X 480
—u— 160 X 160

Speedup relative to 1 core

——32 X 32

Threads

/Z\ M< Chapter 6 — Parallel Processors from Client to Cloud — 52

MORGAN KAUFMANN

Multithreaded DGEMM

32x32 m 160x160 m 480x480m 960x960

200

150

100

GFLOPS

50

Chapter 6 — Parallel Processors from Client to Cloud — 53

Fallacies

Amdahl's Law doesn't apply to parallel
computers

Since we can achieve linear speedup

But only on applications with weak scaling
Peak performance tracks observed
performance

Marketers like this approach!

But compare Xeon with others in example

Need to be aware of bottlenecks

Chapter 6 — Parallel Processors from Client to Cloud — 54

Pitfalls

Not developing the software to take
account of a multiprocessor architecture
Example: using a single lock for a shared

composite resource

Serializes accesses, even if they could be done in
parallel

Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 55

Concluding Remarks

Goal: higher performance by using multiple
processors

Difficulties

Developing parallel software
Devising appropriate architectures

SaaS importance is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC

Chapter 6 — Parallel Processors from Client to Cloud — 56

Concluding Remarks (con’t)

SIMD and vector 1000
. =¥ MIMD*SIMD (32b)
operations match —¢ MIMD*SIMD (64b)
multimedia applications SIMD (825)
—— SIMD (64 b)
and are easy to = MIMD

100 frroeeorrsemoees e gl S

program

Potential parallel speedup

1 | | | |
2003 2007 2011 2015 2019 2023

Chapter 6 — Parallel Processors from Client to Cloud — 57

