
COMPUTER	 ORGANIZATION	 AND	 DESIGN	
The Hardware/Software Interface

5th
Edition

Chapter 6
Parallel Processors from
Client to Cloud

Introduction
!  Goal: connecting multiple computers

to get higher performance
!  Multiprocessors
!  Scalability, availability, power efficiency

!  Task-level (process-level) parallelism
!  High throughput for independent jobs

!  Parallel processing program
!  Single program run on multiple processors

!  Multicore microprocessors
!  Chips with multiple processors (cores)

§6.1 Introduction

Chapter 6 — Parallel Processors from Client to Cloud — 2

Hardware and Software
!  Hardware

!  Serial: e.g., Pentium 4
!  Parallel: e.g., quad-core Xeon e5345

!  Software
!  Sequential: e.g., matrix multiplication
!  Concurrent: e.g., operating system

!  Sequential/concurrent software can run on
serial/parallel hardware
!  Challenge: making effective use of parallel

hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3

What We’ve Already Covered
!  §2.11: Parallelism and Instructions

!  Synchronization
!  §3.6: Parallelism and Computer Arithmetic

!  Subword Parallelism
!  §4.10: Parallelism and Advanced

Instruction-Level Parallelism
!  §5.10: Parallelism and Memory

Hierarchies
!  Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 4

Parallel Programming
!  Parallel software is the problem
!  Need to get significant performance

improvement
!  Otherwise, just use a faster uniprocessor,

since it’s easier!
!  Difficulties

!  Partitioning
!  Coordination
!  Communications overhead

§6.2 The D
ifficulty of C

reating P
arallel P

rocessing P
rogram

s

Chapter 6 — Parallel Processors from Client to Cloud — 5

Amdahl’s Law
!  Sequential part can limit speedup
!  Example: 100 processors, 90× speedup?

!  Tnew = Tparallelizable/100 + Tsequential

! 

!  Solving: Fparallelizable = 0.999
!  Need sequential part to be 0.1% of original

time

Chapter 6 — Parallel Processors from Client to Cloud — 6

Scaling Example
!  Workload: sum of 10 scalars, and 10 × 10 matrix

sum
!  Speed up from 10 to 100 processors

!  Single processor: Time = (10 + 100) × tadd
!  10 processors

!  Time = 10 × tadd + 100/10 × tadd = 20 × tadd
!  Speedup = 110/20 = 5.5 (55% of potential)

!  100 processors
!  Time = 10 × tadd + 100/100 × tadd = 11 × tadd
!  Speedup = 110/11 = 10 (10% of potential)

!  Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 7

Scaling Example (cont)
!  What if matrix size is 100 × 100?
!  Single processor: Time = (10 + 10000) × tadd

!  10 processors
!  Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd
!  Speedup = 10010/1010 = 9.9 (99% of potential)

!  100 processors
!  Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

!  Speedup = 10010/110 = 91 (91% of potential)

!  Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 8

Strong vs Weak Scaling
!  Strong scaling: problem size fixed

!  As in example
!  Weak scaling: problem size proportional to

number of processors
!  10 processors, 10 × 10 matrix

!  Time = 20 × tadd
!  100 processors, 32 × 32 matrix

!  Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

!  Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Instruction and Data Streams
!  An alternate classification

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

!  SPMD: Single Program Multiple Data
!  A parallel program on a MIMD computer
!  Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

§6.3 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and Vector

Example: DAXPY (Y = a × X + Y)
!  Conventional MIPS code
 l.d $f0,a($sp) ;load scalar a
 addiu r4,$s0,#512 ;upper bound of what to load
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done

!  Vector MIPS code
 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result

Chapter 6 — Parallel Processors from Client to Cloud — 11

Vector Processors
!  Highly pipelined function units
!  Stream data from/to vector registers to units

!  Data collected from memory into registers
!  Results stored from registers to memory

!  Example: Vector extension to MIPS
!  32 × 64-element registers (64-bit elements)
!  Vector instructions

!  lv, sv: load/store vector
!  addv.d: add vectors of double
!  addvs.d: add scalar to each element of vector of double

!  Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 12

Vector vs. Scalar
!  Vector architectures and compilers

!  Simplify data-parallel programming
!  Explicit statement of absence of loop-carried

dependences
!  Reduced checking in hardware

!  Regular access patterns benefit from
interleaved and burst memory

!  Avoid control hazards by avoiding loops
!  More general than ad-hoc media

extensions (such as MMX, SSE)
!  Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 13

SIMD
!  Operate elementwise on vectors of data

!  E.g., MMX and SSE instructions in x86
!  Multiple data elements in 128-bit wide registers

!  All processors execute the same
instruction at the same time
!  Each with different data address, etc.

!  Simplifies synchronization
!  Reduced instruction control hardware
!  Works best for highly data-parallel

applications

Chapter 6 — Parallel Processors from Client to Cloud — 14

Vector vs. Multimedia Extensions
!  Vector instructions have a variable vector width,

multimedia extensions have a fixed width
!  Vector instructions support strided access,

multimedia extensions do not
!  Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 15

Multithreading
!  Performing multiple threads of execution in

parallel
!  Replicate registers, PC, etc.
!  Fast switching between threads

!  Fine-grain multithreading
!  Switch threads after each cycle
!  Interleave instruction execution
!  If one thread stalls, others are executed

!  Coarse-grain multithreading
!  Only switch on long stall (e.g., L2-cache miss)
!  Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading

Chapter 6 — Parallel Processors from Client to Cloud — 16

Simultaneous Multithreading
!  In multiple-issue dynamically scheduled

processor
!  Schedule instructions from multiple threads
!  Instructions from independent threads execute

when function units are available
!  Within threads, dependencies handled by

scheduling and register renaming
!  Example: Intel Pentium-4 HT

!  Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 17

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 18

Future of Multithreading
!  Will it survive? In what form?
!  Power considerations ⇒ simplified

microarchitectures
!  Simpler forms of multithreading

!  Tolerating cache-miss latency
!  Thread switch may be most effective

!  Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 19

Shared Memory
!  SMP: shared memory multiprocessor

!  Hardware provides single physical
address space for all processors

!  Synchronize shared variables using locks
!  Memory access time

!  UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 20

§6.5 M
ulticore and O

ther S
hared M

em
ory M

ultiprocessors

Example: Sum Reduction
!  Sum 100,000 numbers on 100 processor UMA

!  Each processor has ID: 0 ≤ Pn ≤ 99
!  Partition 1000 numbers per processor
!  Initial summation on each processor
 sum[Pn] = 0;
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

!  Now need to add these partial sums
!  Reduction: divide and conquer
!  Half the processors add pairs, then quarter, …
!  Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 21

Example: Sum Reduction

half = 100;

repeat

 synch();

 if (half%2 != 0 && Pn == 0)

 sum[0] = sum[0] + sum[half-1];

 /* Conditional sum needed when half is odd;

 Processor0 gets missing element */

 half = half/2; /* dividing line on who sums */

 if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 22

History of GPUs
!  Early video cards

!  Frame buffer memory with address generation for
video output

!  3D graphics processing
!  Originally high-end computers (e.g., SGI)
!  Moore’s Law ⇒ lower cost, higher density
!  3D graphics cards for PCs and game consoles

!  Graphics Processing Units
!  Processors oriented to 3D graphics tasks
!  Vertex/pixel processing, shading, texture mapping,

rasterization

§6.6 Introduction to G
raphics P

rocessing U
nits

Chapter 6 — Parallel Processors from Client to Cloud — 23

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 24

GPU Architectures
!  Processing is highly data-parallel

!  GPUs are highly multithreaded
!  Use thread switching to hide memory latency

!  Less reliance on multi-level caches
!  Graphics memory is wide and high-bandwidth

!  Trend toward general purpose GPUs
!  Heterogeneous CPU/GPU systems
!  CPU for sequential code, GPU for parallel code

!  Programming languages/APIs
!  DirectX, OpenGL
!  C for Graphics (Cg), High Level Shader Language

(HLSL)
!  Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 25

Example: NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Chapter 6 — Parallel Processors from Client to Cloud — 26

Example: NVIDIA Tesla
!  Streaming Processors

!  Single-precision FP and integer units
!  Each SP is fine-grained multithreaded

!  Warp: group of 32 threads
!  Executed in parallel,

SIMD style
!  8 SPs
× 4 clock cycles

!  Hardware contexts
for 24 warps

!  Registers, PCs, …

Chapter 6 — Parallel Processors from Client to Cloud — 27

Classifying GPUs
!  Don’t fit nicely into SIMD/MIMD model

!  Conditional execution in a thread allows an
illusion of MIMD

!  But with performance degredation
!  Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Instruction-Level
Parallelism

VLIW Superscalar

Data-Level
Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 28

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 29

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 30

Feature Multicore with SIMD GPU
SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for
SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to
double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD
processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 31

Message Passing
!  Each processor has private physical

address space
!  Hardware sends/receives messages

between processors

§6.7 C
lusters, W

S
C

, and O
ther M

essage-P
assing M

P
s

Chapter 6 — Parallel Processors from Client to Cloud — 32

Loosely Coupled Clusters
!  Network of independent computers

!  Each has private memory and OS
!  Connected using I/O system

!  E.g., Ethernet/switch, Internet

!  Suitable for applications with independent tasks
!  Web servers, databases, simulations, …

!  High availability, scalable, affordable
!  Problems

!  Administration cost (prefer virtual machines)
!  Low interconnect bandwidth

!  c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 33

Sum Reduction (Again)
!  Sum 100,000 on 100 processors
!  First distribute 100 numbers to each

!  The do partial sums
 sum = 0;
for (i = 0; i<1000; i = i + 1)
 sum = sum + AN[i];

!  Reduction
!  Half the processors send, other half receive

and add
!  The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 34

Sum Reduction (Again)
!  Given send() and receive() operations

 limit = 100; half = 100;/* 100 processors */
repeat
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum);
 if (Pn < (limit/2))
 sum = sum + receive();
 limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

!  Send/receive also provide synchronization
!  Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 35

Grid Computing
!  Separate computers interconnected by

long-haul networks
!  E.g., Internet connections
!  Work units farmed out, results sent back

!  Can make use of idle time on PCs
!  E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 36

Interconnection Networks
!  Network topologies

!  Arrangements of processors, switches, and links

§6.8 Introduction to M
ultiprocessor N

etw
ork Topologies

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 37

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 38

Network Characteristics
!  Performance

!  Latency per message (unloaded network)
!  Throughput

!  Link bandwidth
!  Total network bandwidth
!  Bisection bandwidth

!  Congestion delays (depending on traffic)
!  Cost
!  Power
!  Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 39

Parallel Benchmarks
!  Linpack: matrix linear algebra
!  SPECrate: parallel run of SPEC CPU programs

!  Job-level parallelism
!  SPLASH: Stanford Parallel Applications for

Shared Memory
!  Mix of kernels and applications, strong scaling

!  NAS (NASA Advanced Supercomputing) suite
!  computational fluid dynamics kernels

!  PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
!  Multithreaded applications using Pthreads and

OpenMP

§6.10 M
ultiprocessor B

enchm
arks and P

erform
ance M

odels

Chapter 6 — Parallel Processors from Client to Cloud — 40

Code or Applications?
!  Traditional benchmarks

!  Fixed code and data sets
!  Parallel programming is evolving

!  Should algorithms, programming languages,
and tools be part of the system?

!  Compare systems, provided they implement a
given application

!  E.g., Linpack, Berkeley Design Patterns
!  Would foster innovation in approaches to

parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 41

Modeling Performance
!  Assume performance metric of interest is

achievable GFLOPs/sec
!  Measured using computational kernels from

Berkeley Design Patterns
!  Arithmetic intensity of a kernel

!  FLOPs per byte of memory accessed
!  For a given computer, determine

!  Peak GFLOPS (from data sheet)
!  Peak memory bytes/sec (using Stream

benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 42

Roofline Diagram

Attainable GPLOPs/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 43

Comparing Systems
!  Example: Opteron X2 vs. Opteron X4

!  2-core vs. 4-core, 2× FP performance/core, 2.2GHz
vs. 2.3GHz

!  Same memory system

!  To get higher performance
on X4 than X2
!  Need high arithmetic intensity
!  Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 44

Optimizing Performance
!  Optimize FP performance

!  Balance adds & multiplies
!  Improve superscalar ILP

and use of SIMD
instructions

!  Optimize memory usage
!  Software prefetch

!  Avoid load stalls
!  Memory affinity

!  Avoid non-local data
accesses

Chapter 6 — Parallel Processors from Client to Cloud — 45

Optimizing Performance
!  Choice of optimization depends on

arithmetic intensity of code

!  Arithmetic intensity is
not always fixed
!  May scale with

problem size
!  Caching reduces

memory accesses
!  Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 46

i7-960 vs. NVIDIA Tesla 280/480
§6.11 R

eal S
tuff: B

enchm
arking and R

ooflines i7 vs. Tesla

Chapter 6 — Parallel Processors from Client to Cloud — 47

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 48

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 49

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 50

!  GPU (480) has 4.4 X the memory bandwidth
!  Benefits memory bound kernels

!  GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
!  Benefits FP compute bound kernels

!  CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

!  GPUs offer scatter-gather, which assists with kernels
with strided data

!  Lack of synchronization and memory consistency support
on GPU limits performance for some kernels

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 51

§6.12 G
oing Faster: M

ultiple P
rocessors and M

atrix M
ultiply

!  Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for

 for (int sj = 0; sj < n; sj += BLOCKSIZE)

 for (int si = 0; si < n; si += BLOCKSIZE)
 for (int sk = 0; sk < n; sk += BLOCKSIZE)

 do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 52

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 53

Fallacies
!  Amdahl’s Law doesn’t apply to parallel

computers
!  Since we can achieve linear speedup
!  But only on applications with weak scaling

!  Peak performance tracks observed
performance
!  Marketers like this approach!
!  But compare Xeon with others in example
!  Need to be aware of bottlenecks

§6.13 Fallacies and P
itfalls

Chapter 6 — Parallel Processors from Client to Cloud — 54

Pitfalls
!  Not developing the software to take

account of a multiprocessor architecture
!  Example: using a single lock for a shared

composite resource
!  Serializes accesses, even if they could be done in

parallel
!  Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 55

Concluding Remarks
!  Goal: higher performance by using multiple

processors
!  Difficulties

!  Developing parallel software
!  Devising appropriate architectures

!  SaaS importance is growing and clusters are a
good match

!  Performance per dollar and performance per
Joule drive both mobile and WSC

§6.14 C
oncluding R

em
arks

Chapter 6 — Parallel Processors from Client to Cloud — 56

Concluding Remarks (con’t)
!  SIMD and vector

operations match
multimedia applications
and are easy to
program

Chapter 6 — Parallel Processors from Client to Cloud — 57

