
Issue	Stage	

MO801	



Overview	
•  In-order	
–  The	oldest	non-issued	instruc;ons	are	issued	when	
their	operands	and	required	resources	are	available	

•  Out-of-order	
– Used	by	most	of	the	latest	processors	
–  Instruc;ons	are	issued	as	their	operands	and	required	
resources	are	available	

–  Can	be	based	on	
•  Reserva;on	sta;ons	
•  Distributed	issue	queues	
•  Unified	issue	queues	



In-order	

•  Instruc;ons	are	issued	as	soon	as	their	
operands	and	required	resources	are	available	

•  The	issue	logic	usually	contains	a	simple	
scoreboard	with	two	tables	
– One	for	data	dependencies	
– One	for	hardware	constraints	



Issue	Logic	

Data	Dependence	Table	

Source	
Register	

•  Non-available	
•  Register	File	
•  Bypass	network	

Resource	Table	



Out-of-Order	

•  Represents	a	cri;cal	aspect	of	the	processor	
– Limits	the	number	of	instruc;ons	executed	
simultaneously	

•  Three	key	scenarios	
– Unified	issue	queues	
– Distributed	issue	queues	
– Reserva;on	sta;ons	



Issue	Process	
(operands	are	read	before	issue)	

SrcId	
1	

CAM	
Dests	 R1	 V1	 Src1	

data	
Control	
info	

Src2	
data	
or	
imm	

V2	 R2	 CAM	
Dests	

SrcId	
2	

Select	Logic	

To	Func;onal	Units	

Produced	value	

Des;na;on	Id	of	produced	value	



Pipeline	stages	w/issue	logic	



Issue	Queue	Alloca;on	

•  Renaming	(alloca;on)	stage	places	new	
instruc;ons	in	the	issue	queue	

•  Whenever	there	are	no	space	available	à	stall	
renaming	stage	

•  Avoid	processing	instruc;ons	while	queue	is	
full	

•  Read	registers	and	set	available	bit	



Instruc;on	Wakeup	

•  No;fies	that	one	operand	has	been	produced	
•  Iden;fies	the	renaming	ID	and	a	valid	bit	
•  As	soon	as	the	ready	bits	for	both	sources	are	
set	à	instruc;on	becomes	ready	(woken	up)	

•  When	the	value	is	produced	but	not	
consumed	(instruc;on	not	in	queue),	it	should	
be	stored	elsewhere	and	valid	bit	should	be	
set	there	too	



Early	wakeup	



Early	wakeup	

•  Can	be	issued	when	we	know	how	long	one	
instruc;on	will	take	

•  Issue	3	cycles	before	instruc;on	finish,	as	in	
previous	slide	

•  For	load	instruc;ons,	it	is	not	possible	to	pre-
calculate	the	latency	
– Wait	un;l	the	end	of	load	to	wakeup	consumer	
– Specula;vely	wakeup	load	consumer	



Instruc;on	Selec;on	

•  Selects	the	next	instruc;on	to	be	executed	
– Requires	all	source	registers	to	be	available	
– Requires	enough	hardware	resources	

•  Usually	split	into	arbiters	or	schedulers	
–  Instead	of	issuing	4	instruc;ons,	use	two	arbiters	
to	issue	2	instruc;ons	each	

–  Instruc;ons	are	assigned	to	different	arbiters	
– Each	arbiter	is	responsible	to	a	subset	of	the	
instruc;ons	and	func;onal	unit	



Selec;on	Logic	



Entry	reclama;on	

•  Frees	the	instruc;on	queue	a[er	instruc;on	
issue	

•  Can	be	delayed	if	the	processor	specula;vely	
wakeup	instruc;ons	



Issue	Process	
(operands	are	read	a[er	issue)	

SrcId	
1	

CAM	
Dests	 R1	 V1	 Src1	

data	
Control	
info	

Src2	
data	
or	

V2	 R2	 CAM	
Dests	

SrcId	
2	

Select	Logic	

To	Func;onal	Units	

Produced	value	

Des;na;on	Id	of	produced	value	

imm	



Pipeline	



Read	Port	Reduc;on	
•  Reads	a[er	issue	may	require	more	read	ports	

–  Machine	width	vs	issue	width	
•  Some	processors	(Alpha)	split	the	register	file	and	the	

number	of	ports	
•  Most	of	the	source	data	are	read	from	the	bypass	network	

instead	of	from	the	register	file	
•  Ac;ve	port	reduc;on	

–  Synchronizes	arbiters	to	use	less	read	ports	
•  Reac;ve	port	reduc;on	

–  Cancel	instruc;ons	if	the	number	of	ports	are	bigger	than	the	
available	

•  Both	require	a	fair	policy	to	perform	cancella;on	



Exercise	
•  Count	the	dynamic	distance	among	data	through	
instruc;ons	in	a	program.	Create	a	histogram	of	
the	distances	

add r1, r2, r3
sub r4, r5, r6
add r7, r1, r4

•  Distances	
–  r1	à	2	
–  r4	à	1	



Distributed	Issue	Queue	

•  Processors	distribute	func;onal	units	in	
execu;on	clusters	

•  Each	cluster	implements	its	own	issue	queue	
•  Pen;um	4	has	two	execu;on	clusters	
– Memory	opera;ons	
– Nonmemory	opera;ons	



Reserva;on	Sta;ons	

•  Buffers	per	func;onal	unit	
•  Store	instruc;ons	with	their	inputs	
•  Receive	instruc;ons	right	a[er	renaming	
•  Instruc;ons	broadcast	their	produced	values	
to	all	reserva;on	sta;ons	

•  Whenever	a	instruc;on	has	all	its	sources,	it	
can	be	executed	



Memory	opera;ons	
•  Dependencies	through	memory	are	not	solved	by	
renaming	

•  Memory	disambigua;on	à	handles	memory	
dependencies	

•  Nonspecula;ve	disambigua;on	
– Waits	to	be	sure	there	is	no	memory	dependency	with	
previous	opera;on	

•  Specula;ve	disambigua;on	
–  Tries	to	predict	whether	memory	opera;on	have	
dependence	

•  30%	of	instruc;ons	are	memory	opera;ons	



Memory	disambigua;on	

Name	 Specula2ve	 Descrip2on	

Total	ordering	 ✗	 All	memory	accesses	are	processed	in	order	

Par;al	ordering	 ✗	
All	stores	are	processed	in	order,	but	loads	
execute	out	of	order	as	long	as	all	previous	
stores	have	computed	their	address	

Load	ordering	
Store	ordering	 ✗	

Execu;on	between	loads	and	stores	is	out	of	
order,	but	all	loads	execute	in	order	among	
them,	and	all	stores	execute	in	order	among	
them	

Store	ordering	 ✔	 Stores	execute	in	order,	but	loads	execute	
completely	out	of	order	



AMD	K6	
Load	ordering	and	store	ordering	



AMD	K6	
•  Load	queue	
–  Keeps	loads	in	program	order.	Loads	stay	in	queue	un;l	
they	are	the	oldest	on	queue	and	their	operands	are	ready	

•  Address	genera;on	
–  Calculates	address	of	memory	opera;ons	

•  Store	queue	
–  Keeps	the	store	opera;ons	in	program	order.	Stores	stay	
in	queue	un;l	they	are	the	oldest	on	queue	and	their	
operands	are	ready	

•  Store	buffer	
–  Keeps	the	store	opera;ons	un;l	they	are	the	oldest	in-
flight	instruc;on	in	the	processor	



MIPS	R10000	
Par;al	ordering	



MIPS	R10000	
•  Load/store	queue	
–  16-entry.	Instruc;ons	wait	un;l	operands	are	ready	

•  Indetermina;on	matrix	
–  Used	to	mark	whether	instruc;on	addresses	are	computed	

•  Dependency	matrix	
–  Store	dependencies	among	memory	opera;ons	

•  Address	genera;on	
–  Compute	memory	address	

•  Address	queue	
–  Keeps	memory	addresses	of	loads	and	stores	that	want	to	
access	the	cache		



Specula;ve	Memory	Disambigua;on	



Alpha	21264	
•  Load/Store	Queue	
–  Holds	memory	opera;on	un;l	operands	are	ready	

•  Load	Queue	
–  Stores	physical	addresses	of	the	loads	in	program	order	

•  Store	Queue	
–  Stores	the	physical	addresses	of	the	stores	and	its	data	in	
program	order	

•  Wait	Table	
–  Keeps	track	of	loads	to	detect	whenever	it	violates	
dependencies	

–  Also	tracks	previous	loads	that	caused	dependencies	so	
that	they	are	not	scheduled	before	the	store	it	depends	on	



Specula;ve	wakeup	of	load	consumers	

•  Loads	will	take	cycles	to	wakeup	the	next	
instruc;on	

•  Most	of	the	;me,	Loads	face	a	cache	hit	
•  We	can	specula;vely	wakeup	the	next	
instruc;ons	and	roll-back	if	there	is	a	cache	miss	
–  Cancel	the	next	instruc;on	
–  Reissue	it	again	

•  Alterna;ves	
–  Keep	instruc;on	in	issue	queue	
–  Create	addi;onal	structures	to	handle	these	
instruc;ons	



Example	


