Performance Counters, Affinity,
File Formats, System Tools

gprof
Oprofile
perf
papil

Profile

gprof — static profiler

program with Exer?t;:n € to print out
option Prog the data

* The compiled program creates a file called
gmon.out

e gprof reads this file

* You are not supposed to execute
gprof myprogram
— To get the profile, this command is the third step

gprof example

Consider the telecom/gsm benchmark from
MiBench

To compile, edit Makefile and add —pg to
CFLAGS and LDFLAGS

Run accordingly (runme_large.sh)

Get the profile information
gprof bin/toast

Each sample counts as 0.01 seconds.
self
seconds

0.

2

time
46.15
15.38
15.38
15.38
7.69
0.00
0.00

o O O O o o

cumulative
seconds
0.
.08
.10
.12
.13
.13
.13

06

o O O O o o

Profile information

06
.02
.02
.02
.01
.00
.00

calls
28976
28976
7244
7244
7244
376688
72059

self

ms/call

0.
.00
.00
.00
.00
.00
.00

o O O O o o

00

total
ms/call

0.
.00
.00
.00
.00
.00
.00

OO O O O o o

00

name

Gsm _Long Term Predictor
Gsm_RPE_Encoding

Gsm LPC Analysis
Gsm_Short Term Analysis Filter
Gsm_Preprocess

gsm_asr

gsm_norm

Caption

T e

% time The percentage of the total running time of the program used by this
function.

Cumulative A running sum of the number of seconds accounted for by this
seconds function and those listed above it.

Self seconds The number of seconds accounted for by this function alone. This is
the major sort for this listing.

Calls The number of times this function was invoked, if this function is
profiled, else blank.

Self ms/call The average number of milliseconds spent in this function per call, if
this function is profiled, else blank.

Total ms/call The average number of milliseconds spent in this function and its
descendents per call, if this function is profiled, else blank.

Name The name of the function.

Per Function

index % time self children called name
0.00 0.13 7244/7244 gsm_encode [2]
[1] 100.0 0.00 0.13 7244 Gsm Coder [1]
0.06 0.00 28976/28976 Gsm _Long Term Predictor [5]
0.02 0.00 28976/28976 Gsm RPE Encoding [6]
0.02 0.00 7244/7244 Gsm LPC Analysis [7]
0.02 0.00 7244/7244 Gsm_Short Term Analysis Filter [8]
0.01 0.00 7244/7244 Gsm_Preprocess [9]

oprofile — dynamic profiler

e Statistical sampling

0.2 03 0.4
|

34.1% 34.1%

0.0 0.1

Output

operf bin/toast ...
opreport -| 2 show the profile
Annotate mixed source/assembly

opannotate —source —assembly bin/toast

Image summary for a single application

opreport bin/toast

Performance Counters

* Counters embedded inside the processor
* Counts events in several different granularity

* Events vs Counters
— Not always the same
— Processors can generate a lot of different events

— Processors have a few counters that can be
assigned to selected events

perf

Linux tool for performance counter

Not all events available for all processor and
OS

List of all events supported
perf list

Simplest execution line
perf stat /bin/ls

Record and view
perf record ..

Perf events (-e option)

cpu-cycles OR cycles
instructions
cache-references

cache-misses

branch-instructions OR branches cpu-migrations OR migrations

branch-misses

bus-cycles

stalled-cycles-frontend OR idle-
cycles-frontend

ref-cycles

cpu-clock
task-clock
page-faults OR faults

context-switches OR cs

minor-faults
major-faults
alignment-faults
emulation-faults

dummy

L1-dcache-load-misses
L1-dcache-store-misses
L1-dcache-prefetch-misses
L1-icache-load-misses
LLC-loads

LLC-stores
LLC-prefetches
dTLB-load-misses
dTLB-store-misses
iTLB-loads
iTLB-load-misses
branch-loads

branch-load-misses

branch-instructions OR cpu/
branch-instructions/

branch-misses OR cpu/branch-
misses/

bus-cycles OR cpu/bus-cycles/

cache-misses OR cpu/cache-
misses/

cache-references OR cpu/cache-
references/

cpu-cycles OR cpu/cpu-cycles/

instructions OR cpu/
instructions/

mem-loads OR cpu/mem-loads/

mem-stores OR cpu/mem-
stores/

stalled-cycles-frontend OR cpu/
stalled-cycles-frontend/

uncore_cbox_0/clockticks/
uncore_cbox_1/clockticks/
uncore_cbox_2/clockticks/

uncore_cbox_3/clockticks/

Example

 Run PARSEC blackscholes collecting statistics

parsecmgmt -a run -p blackscholes -1
native -s "perf stat”

 Run PARSEC blackscholes collecting cache
misses

parsecmgmt -a run -p blackscholes -1
native -s "perf stat -e cache-misses”

PAPI

Performance Application Programming
Interface

Allow standardized access to Performance
Counters

papi_avail = List of available events

papi_mem_info 2 Memory hierarchy
information

CPU Affinity

* You can control the cores used by your
programs

* Easy way to place each program thread/
process in each core
 Taskset command in Linux
taskset 03 /bin/ls
taskset —c 0,1 /bin/1ls
taskset —¢c 0 —p 1000

File Formats

* To store data tables

— CSV

* To store configurations or structured data

— yaml or yml

* Do not forget about naming conventions

System Tools

* Process files
— awk
—sed

e Control execution
— shell script

* Create graphics
— gnuplot

