Lecture 2: The SVM classifier

C4B Machine Learning Hilary 2011 A. Zisserman

* Review of linear classifiers
» Linear separability
» Perceptron

» Support Vector Machine (SVM) classifier
* Wide margin
» Cost function
» Slack variables
* Loss functions revisited

Binary Classification

Given training data (x;,y;) fori=1... N, with
x; € R% and y; € {—1,1}, learn a classifier f(x)
such that

—1

N
o

NS

|

f(xi){ZO vi = +1

i.e. y;f(x;) > 0 for a correct classification.
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Linear separability
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Linear classifiers
A linear classifier has the form
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e in 2D the discriminant is a line

* W is the normal to the plane, and b the bias

« W is known as the weight vector




Linear classifiers

A linear classifier has the form .
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 in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to "carry’ the training data
For a linear classifier, the training data is used to learn w and then discarded

Only w is needed for classifying new data

Reminder: The Perceptron Classifier

Given linearly separable data x; labelled into two categories y; = {-1,1} ,
find a weight vector w such that the discriminant function

f(x) =w'x;+b
separates the categoriesfori=1, .., N
* how can we find this separating hyperplane ?
The Perceptron Algorithm

Write classifieras f(x;) =W ' %; +wg = w ' x;

where w = (v”v,wo),xi = (iz, 1)
e Initialize w =0

« Cycle though the data points { x;, y; }
« if X, is misclassified then W < w + asign(f(x;)) x;

 Until all the data is correctly classified




For example in 2D

* Initialize w =0
« Cycle though the data points { x;, y; }
« if x; is misclassified then w < w + asign(f(x;)) x;

 Until all the data is correctly classified

before update after update
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NB after convergence w = SN a;x;

Perceptron
example ar

o
6 5 ©
$ B
o o
8 © 50 o o
o © o
O
o O o
101 o 8 o o ¢} o
o o o o

I I I = I I
-15 -10 -5 0 5 10

« if the data is linearly separable, then the algorithm will converge
» convergence can be slow ...
* separating line close to training data

» we would prefer a larger margin for generalization




What is the best w?
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* maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine
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SVM — sketch derivation

e Since w'x+b =0 and ¢(w'x 4+ b) = 0 define the
same plane, we have the freedom to choose the nor-
malization of w

e Choose normalization such that w'x; +b= +1 and
w'!x_+b= —1 for the positive and negative support
vectors respectively

e T hen the margin is given by

o : 2
Margin= _=_
|[w]
([
([ [
o .
N oS S _____________________________
Support Vector(gy” °
® Support Vector
o o |
@ o
P ®
wix+b=1 *
wix+b=0 ¢
. ®
wix+b=-1 H




SVM — Optimization

e Learning the SVM can be formulated as an optimization:
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max —— subject to w ! x;4b =1 Ty =+1

. fori=1...N
v |lwl| <-1 ify=-1

e Or equivalently

min ||w||? subject to y; (w'x;+b) >1fori=1...N

e T his is a quadratic optimization problem subject to linear
constraints and there is a uniqgue minimum

SVM — Geometric Algorithm

« Compute the convex hull of the positive points, and the
convex hull of the negative points

» For each pair of points, one on positive hull and the other
on the negative hull, compute the margin

» Choose the largest margin




Geometric SVM Ex |

Support Vectorg

* only need to consider points on tluﬂ
(internal points irrelevant) for separation

 hyperplane defined by support vectors

Geometric SVM Ex II
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Suppo’?t ector

* only need to consider points on hull
(internal points irrelevant) for separation

 hyperplane defined by support vectors




Linear separability again: What is the best w?

* the points can be linearly separated but
there is a very narrow margin
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In general there is a trade off between the margin and the number of
mistakes on the training data

Introduce “slack” variables for misclassified points
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“Soft” margin solution

The optimization problem becomes

N
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subject to
i (Wix;+b) >1-¢ fori=1...N
e Every constraint can be satisfied if &; is sufficiently large
e (' is a regularization parameter:
— small C allows constraints to be easily ignored — large margin

— large C' makes constraints hard to ignore — narrow margin

— C = oo enforces all constraints: hard margin

e This is still a quadratic optimization problem and there is a
uniqgue minimum. Note, there is only one parameter, C.
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* datais linearly separable

*  but only with a narrow margin




C = Infinity hard margin

feature y
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SV L) by Sequential Minimal Optimizer -~
Kernel: linear (-1, C: Inf

Kernel evalustions: 571
Mumber of Support Vectors: 3
Margin: 0.0966

Training error: 0.00%
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SV L) by Sequential Minimal Optimizer -~
Kernel: lingar (-1, C: 10.0000
Kernel evalustions: 2645
Mumber of Support Yectors: 4
Margin: 0.2265

Training ervar: 3.70%
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Application: Pedestrian detection in Computer Vision

Objective: detect (localize) standing humans in an image
» cf face detection with a sliding window classifier

- reduces object detection to

binary classification

* does an image window
contain a person or not?

Method: the HOG detector

Training data and features

» Positive data — 1208 positive window examples




Feature: histogram of oriented gradients (HOG)

_ dominant
Image direction HOG

* tile window into 8 x 8 pixel cells

 each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024
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Averaged examples

Algorithm

Training (Learning)

* Represent each example window by a HOG feature vector

—) x; € RY, with d = 1024

» Train a SVM classifier

Testing (Detection)

« Sliding window classifier
flz)=w'x+b




Dalal and Triggs, CVPR 2005

Learned model

4

X%
L -
o —--:-.n-n‘f,-!",{’—-—-l

(Y
|

I e S e :
. '-F#-—H'bq'ﬂ-—“\,_‘!;‘-.- W

(]

positive negative
weights weights

Slide from Deva Ramanan




What do negative weights mean!?

wx >0
(W+-w)x >0
W+ > W.X

edestrian
ackground
model

pedestrianfli 7=~ 17
model

Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

Optimization

Learning an SVM has been formulated as a constrained optimization prob-
lem over w and &

N
min _[[w]|? 4+ C Y ¢ subject to y; (w'x;+b) >1—¢ fori=1...N
weRd g, cRt+ P

The constraint y; <WTXi + b) >1-—¢&;, can be written more concisely as

yif(x) >1-¢
which is equivalent to
& = max (0,1 —y; f(x4))

Hence the learning problem is equivalent to the unconstrained optimiza-
tion problem
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Loss function
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Points are in three categories:

L.oyif(z) > 1 @
Point is outside margin. ® °
No contribution to loss

2. yif(z;) =1 °
Point is on margin.
No contribution to loss.
As in hard margin case.

3. yif(z) <1
Point violates margin constraint. .
Contributes to loss o

Support Vector.~

Loss functions
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« SVM uses “hinge” loss max (0,1 — y; f(x;))

* an approximation to the 0-1 loss

Y uif(xi)




Background reading and more ...

* Next lecture — see that the SVM can be expressed as a sum over the
support vectors:

f(z) = Z aiyi(x; ' x) + b

support vectors

* On web page:
http://www.robots.ox.ac.uk/~az/lectures/ml

¢ links to SVM tutorials and video lectures

* MATLAB SVM demo




