Resampling for Classifier Design

* Reusing or selecting data in order to improve classification
* Two most popular

* Bagging (Breiman, 1994)

* AdaBoost (Freund and Schapire, 1996)

The idea is to combine the results of multiple “weak” classifiers into a single “strong” classifier.
The general idea:

Repeat T times:
1. Derive rough rule-of-thumb: weak classifier (performs slightly above chance)
2. Select new sample, derive 2nd rule-of-thumb (weak classifier)

end

Questions

1. How to choose samples?
a. Select multiple random samples?
b. Concentrate only on the errors?

2. How to combine rules-of-thumb into a single accurate rule?

More formally:
Given: training data (z1,¥1), ... s (Tm;Um), Where z; € &,
e Fort=1,....T:
1. Train Weak Learner on the training set.
Let hy : X — {—1,+1} represent the classifier obtained after
training.
2. Modify the training set somchow
e The final hypothesis H(x) is some combination of all the weak
hypotheses:

H(zx) = f(h(z)) (1)

The question is how to modify the training set. and how to

combine the weak classifiers.



Bagging

The simplest algorithm is called Bagging, used by Breiman 1994
Algorithm:
Given m training examples, repeat fort =1... 7"

e Sclect, at random with replacement, m training examples.

e Train learning algorithm on selected examples to generate

hypothesis h;

Final hypothesis is simple vote: H(z) = MAJ(hy(x),... . hr(z)).

Bagging Pros and Cons:

1. Bagging reduces variance
a. Helps improve unstable classifiers: i.e., “small” changes in training data lead to
significantly different classifiers and “large” changes in accuracy.
b. no proof for this, however
2. Does not reduce bias
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Boosting:

Two modifications

1. instead of a random sample of the training data, use a weighted sample to focus learning
on most difficult examples.

2. instead of combining classifiers with equal vote, use a weighted vote.

Several previous methods (Schapire, 1990; Freund, 1995) were effective, but had limitations.
In the class, we consider the one proposed by Freund and Schapire 1996 called Adaboost.

AdaBoost (Freund and Schapire, 1996)
e Initialize distribution over the training set D (i) = 1/m
8 Fofl b= lsu0x 31
1. Train Weak Learner using distribution D;.
2. Choose a weight (or confidence value) o, € R,
3. Update the distribution over the training set:

. D (1)e ay he(x;)
e . Z, (2)

Where Z, is a normalization factor chosen so that D, . ; will
be a distribution

e Final vote H(z) is a weighted sum:
i

H(z) = sign(f(z)) = sign (Z aﬂz,,(;c)) (3)
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How to select alpha?

To decide how to pick the alphas, we have to understand what the relationship is between the
distribution, the alpha_t, and the training error.



Toy Example

D‘+ .

Round 1

hy

€1=0.30

D,

s




Round 2 and 3, respectively

€r=0.21

(12:0 65

Final Classification:

H
final

/

B s:gnkq




Generalisation (Schapire & Singer 1999)

Maximising margins in AdaBoost

& = =
Poaeslif @ <0 <P [\ 20—t where f(2) = Se®)
t=1

Choosing hs(z) with minimal €; in each step one minimises the margin

Margin in SVM use the Lo norm instead: (& - h(z))/|1&|l2

Upper bounds based on margin

With probability 1 — § over the random choice of the training set S

> - 1/2
Plogyluf(@) <01 < Pragpnslof (@) <61+0 | 2 (‘“g—;’”@ + 1og<1/5>> )

where D is a distribution over X x {+1,—1}, and d is pseudodimension of H.

Problem: The upper bound is very loose. In practice AdaBoost works much better.

The Algorithm Recapitulation

AdaBoost Variants

Freund & Schapire 1995
Discrete (h: X — {0,1})
Multiclass AdaBoost.M1 (h: X — {0,1,...,k})
Multiclass AdaBoost.M2 (h : X — [0,1]%)
Real valued AdaBoost.R (Y =[0,1], h: X — [0,1])

Schapire & Singer 1999
Confidence rated prediction (h: X — R, two-class)
Multilabel AdaBoost.MR, AdaBoost.MH (different formulation of minimised loss)

Oza 2001
Online AdaBoost

Many other modifications since then: cascaded AB, WaldBoost, probabilistic boosting
tree, ...

Online AdaBoost

Given: (331,.7,/1),- ~-9($maym);zi € Xayl € {_17+1}
Initialise weights D;(z) = 1/m
Fort=1,..,T:

m
Find h; = arg min €; = > Dy(3)[ys # hj(z4)]
hj€H i=1
If e, > 1/2 then stop

Set oy = %log(-l—;ﬁ)

Offline
Given:

Set of labeled training samples
X = {(11,y1), veey (a:maym)'y = :':1}

Weight distribution over X
D() = l/m

Eorti=1;:.s; T

Train a weak classifier using samples

Update / S
) and weight distribution
Disa(i) = Dy (i)exp(—agyshi(z:)) osf 1 ; )
R z, . | he(z) = L(X, Dy_1)
8 m:» ] Calculate error ¢;
Output the final classifier: o ‘
YipuE e e st 2 ch | Calculate coeficient a; from e
T =P | e
& Update weight distribution D
H(z) = sign <Z Otht(-T)> 1 \ p g ¢
=1 ‘ Output: . .
F(z) = sign(}_;—; athe(z))
% g, B R e

Online
Given:

One labeled training sample
(@,y)ly = %1

Strong classifier to update
Initial importance A =1
Fort=1,...,T

Update the weak classifier using the
sample and the importance

hi(z) = L(he, (2, ), A)
Update error estimation ¢,
Update weight a; based on ¢

Update importance weight A

Output: B
F(z) = Sig‘n(Z{:l azhi(T))

W



Online AdaBoost

Converges to offline results given the same training
set and the number of iterations N — o0

N. Oza and S. Russell. Online Bagging and Boosting.
Artificial Inteligence and Statistics, 2001.

Pros and Cons of AdaBoost

Advantages

Very simple to implement

General learning scheme - can be used for various learning tasks
Feature selection on very large sets of features

Good generalisation

Seems not to overfit in practice (probably due to margin maximisation)

Disadvantages

Suboptimal solution (greedy learning)
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Presentation

Motivation

AdaBoost with trees is the best off-the-shelf classifier in the world. (Breiman 1998)
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AdaBoost algorithm

e How it works?
e Why it works?

Online AdaBoost and other variants

What is AdaBoost?

AdaBoost is an algorithm for constructing a “strong” classifier as linear combination

T
f@) = ahu(@) " < mpl + wisk

‘/;_ S‘hw}
of “simple” “weak" classifiers hy(z): X — {—1,+1}. WM*'
dpe
Terminology
he(x) ... “weak” or basis classifier, hypothesis, “feature”

H(z) = sign(f(x)) ... "strong” or final classifier/hypothesis

Interesting properties N

AB is capable reducing botK; bias (e.g. stumps) and! variance (e g. trees) of the weak
classifiers Ly P i

AB has good generalisation properties (maximises margin)
AB output converges to the logarithm of likelihood ratio

AB can be seen as a feature selector with a principled strategy (minimisation of upper

bound on empirical error
AB is close to sequential decision making (it produces a sequence of gradually more
complex classifiers)

The AdaBoost Algorithm

Given: (z1,91),-- - (TmsYm); Ti € X, y; € {-1,+1}
Initialise weights D1 (i) = 1/m
For't =1, 1%

Find h; = arg mln 5] Z Dy(i)[y: # hj (-731)]]
If €, > 1/2 then stop

Set a; = §log(15%)

Update

Dy(i)exp(—awyihy(z:)) w

Dt+1(i) = 7

]

where Z; is normalisation factor

Output the final classifier:

training error

T
H(z) = sign <Z atht(w)>

t=1
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Reweighting

Effect on the training set
Dy (i)exp(—asyihe(z:))
Zy
<1, ; = he(z;
exp(—aeyihi(z:)) { >1 Zﬁ o h:gmg

Increase (decrease) weight of wrongly (correctly) classified examples

Dyy1(d) =

The weight is the upper bound on the error of a given example

All information about previously selected “features” is captured in D;
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Upper Bound Theorem

Theorem: The following upper bound holds on the training error of H
1 T
—i: H(z:)) #yi}l < I12
t=1

Proof: By unravelling the update rule

Dy (i)exp(—azyihi(z:))

Drii(i) = Z,
_ eap(= Y awitu(@:) _ exp(—yif (2i)
m Ht Zt m ].—It Zt

If H(z;) # i then y; f(z;) <0 implying that ezp(—y:f(x:)) > 1, thus

A

[H(zi) #y] < exp(—yif(z:)) 2,?
% ZEH(zi) # uil %Z exp(—yif(z;)) Big

Z(H Zy)Drya (i) = H Z O NI R
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Consequences of the Theorem

Instead of minimising the training error, its upper bound can be minimised

This can be done by minimising Z; in each training round by:

e Choosing optimal h¢, and
e Finding optimal oy
AdaBoost can be proved to maximise margin

AdaBoost iteratively fits an additive logistic regression model

Choosing o

We attempt to minimise Z; = ), Dy(i)exp(—azyshe(z:)):

az = iD(i)y.h(I.)e—yiaih(zi) =0

da o e
- > D@e*+ Y, D()e* = 0

iyi=h(z;) iy #h(z;)
—e %(1l—€)+e% = 0
1
a = Elog
The minimisator of the upper bound is

L6t
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Choosing h;

Weak classifier examples
Decision tree (or stump), Perceptron — H infinite

Selecting the best one from given finite set H

Justification of the weighted error minimisation

Having oy = 4 log =%
2 €t

7 = ZDt(Z’)e_yzaiht(Iz)

i=1

= Y D(e™+ Y. Dii)e*

iy =he(2;) iy F#he(2)
= (1—e)e* 4 ee™
= 2vVe&(l—€)

Z; is minimised by selecting h; with minimal weighted error ¢,
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