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Gain (S, Humidity )
= 940 - (7/14).985 - (7/14).592
=.151

Which attribute is the best classifier?

FIGURE 3.3
Humidity provides greater information gain than Wind, relative to the target classification. Here, E
stands for entropy and § for the original collection of examples. Given an initial collection S of 9
positive and 5 negative examples, [9+, 5], sorting these by their Humidity produces collections of
[3+,4—] (Humidity = High) and [6+, 1—] (Humidity = Normal). The information gained by this
partitioning is .151, compared to a gain of only .048 for the attribute Wind.

S: [9+,5-]
E =0.940
Humidity
High Normal
[3+,4-] [6+,1-]
E=0.985 E=0.592

L
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it

S: [9+,5-]
E=0.940
Wind
Weak Strong
[6+,2-] [3+,3-]
E=0.811 E=1.00
Gain (S, Wind)

3.4.2 An Illustrative Example

=.940 - (8/14).811 - (6/14)1.0
=.048

To illustrate the operation of ID3, consider the learning task represented by the
training examples of Table 3.2. Here the target attribute PlayTennis, which can
have values yes or no for different Saturday mornings, is to be predicted based
on other attributes of the morning in question. Consider the first step through

Day  Outlook  Temperature —Humidity ~ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
DS Rain Cool Normal  Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild + = High Strong No
TABLE 3.2

oo, ) = U
A - 12,
ols,mp) = OO

{IOLISSELD 353 Y S1 ANQLINIE YOIYA
Training examples for the target concept PlayTennis.
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60 MACHINE LEARNING

the algorithm, in which the topmost node of the decision tree is created. Which
attribute should be tested first in the tree? ID3 determines the information gain for
each candidate attribute (i.e., Qutlook, Temperature, Humidity, and Wind), then
selects the one with highest information gain. The computation of information
gain for two of these attributes is shown in Figure 3.3. The information gain
values for all four attributes are

Gain(S, Outlook) = 0.246
Gain(S, Humidity) = 0.151
Gain(S, Wind) = 0.048
Gain(S, Temperature) = 0.029

where S denotes the collection of training examples from Table 3.2.

According to the information gain measure, the Outlook attribute provides
the best prediction of the target attribute, PlayTennis, over the training exam-
ples. Therefore, Qutlook is selected as the decision attribute for the root node,
and branches are created below the root for each of its possible values (ie.,
Sunny, Overcast, and Rain). The resulting partial decision tree is shown in Fig-
ure 3.4, along with the training examples sorted to each new descendant node.
Note that every example for which Qutlook = Overcast is also a positive ex-
ample of PlayTennis. Therefore, this node of the tree becomes a leaf node with
the classification PlayTennis = Yes. In contrast, the descendants corresponding to
Outlook = Sunny and Outlook = Rain still have nonzero entropy, and the decision
tree will be further elaborated below these nodes.

The process of selecting a new attribute and partitioning the training exam-
ples is now repeated for each nonterminal descendant node, this time using only
the training examples associated with that node. Attributes that have been incor-
porated higher in the tree arg excluded] so that any given attribute can appear at

most once along any path through the tree. This process continues for each new
Teaf node until either of two conditions is met: (1) every attribute has already been
included along this path through the tree, or (2) the training examples associated
with this leaf node all have the same target attribute value (i.e., their entropy
is zero). Figure 3.4 illustrates the computations of information gain for the next
step in growing the decision tree. The final decision tree learned by ID3 from the
14 training examples of Table 3.2 is shown in Figure 3.1.

3.5 HYPOTHESIS SPACE SEARCH IN DECISION TREE
LEARNING

As with other inductive learning methods, ID3 can be characterized as searching a
space of hypotheses for one that fits the training examples. The hypothesis space
searched by ID3 is the set of possible decision trees. ID3 performs a simple-to-
complex, hill-climbing search through this hypothesis space, beginning with the
empty tree, then considering progressively more elaborate hypotheses in search of
a decision tree that correctly classifies the training data. The evaluation function

\\\\\
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{D1, D2, .., D14}

[9+.5-]
Outlook
/Sunny Overlcast Rain\
{D1,D2,D8,D9,D11} {D3,Db7,D12,D13} {D4,D5,D6,D10,D14}
[2+,3-] (4+,0-1 (3+2-]

? ?

Which attribute should be tested here?

Ssunny ={D1.D2,D8,D9,D11}
Gain (Ssurmy , Humidity) = 970 - (3/5) 0.0 - (2/5)0.0 = 970

Gain (Ssynny » Temperature) = 970 - (2/5)0.0 - (2/5) 1.0 - (1/5)0.0 = 570
Gain (Ssypny, Wind) = 970 - 2/5)1.0 - (3/5) 918 = 019

FIGURE 34

The partially learned decision tree resulting from the first step of ID3. The training examples are
sorted to the corresponding descendant nodes. The Overcast descendant has only positive examples
and therefore becomes a leaf node with classification Yes. The other two nodes will be further
expanded, by selecting the attribute with highest information gain relative to the new subsets of
examples.

that guides this hill-climbing search is the information gain measure. This search
is depicted in Figure 3.5.

By viewing ID3in terms of its search space and search strategy, we can get
some insight into its capabilities and limitations.

1D3’s hypothesis space of all decision trees is a complete space of finite
discrete-valued functions, relative to the available attributes. Because every
finite discrete-valued function can be represented by some decision tree, TD3
avoids one of the major risks of methods that search incomplete hypothesis
spaces (such as methods that consider only conjunctive hypotheses): that the
hypothesis space might not contain the target function.

ID3 maintains only a single current hypothesis as it searches through the
space of decision trees. This contrasts, for example, with the earlier ver-
sion space Candidate-Eliminat imethod, which maintains the set of all
hypotheses consistent with the available training examples. By determin-
ing only a single hypothesis, D3 loses the capabilities that follow from

[ =

®
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{D1, D2, ..., D14}
[9+.5-]

Outlook

Sunny Overcast Rain

e | N

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[2+,3-] [4+,0-1 (3+,2-1

? ?

Which attribute should be tested here?

Ssunny ={D1,D2,D8,D9,DI11}
Gain (Ssynny » Humidity) = 970 - (3/5)0.0 - (2/5)0.0 = 970
Gain (Ssunny: Temperature) = .97(‘) - (2/5)00 - (2/5) 1.0 - (1/5)0.0 = .S70
Gain (Ssynny, Wind) = 970 - (25)1.0 - (3/5) 918 = 019

FIGURE 34

The partially learned decision tree resulting from the first step of ID3. The training examples are
sorted to the corresponding descendant nodes. The Overcast descendant has only positive examples
and therefore becomes a leaf node with classification Yes. The other two nodes will be further
expanded, by selecting the attribute with highest information gain relative to the new subsets of

examples.

that guides this hill-climbing search is the information gain measure. This search

is depicted in Figure 3.5.

By viewing ID3 in terms of its search space and search strategy, we can get

some insight into its capabilities and limitations.

1D3’s hypothesis space of all decision trees is a complete space of finite
discrete-valued functions, relative to the available attributes. Because every
finite discrete-valued function can be represented by some decision tree, 1D3
avoids one of the major risks of methods that search incomplete hypothesis
spaces (such as methods that consider only conjunctive hypotheses): that the
hypothesis space might not contain the target function.

ID3 maintains only a single current hypothesis as it searches through the
space of decision trees. This contrasts, for example, with the earlier ver-
sion space Candidate-Eliminat imethod, which maintains the set of all
hypotheses consistent with the available training examples. By determin-
ing only a single hypothesis, ID3 loses the capabilities that follow from



Decision Tree Learning

[read Chapter 3]
[recommended exercises 3.1. 3.4]

o Decision tree representation
¢ ID3 learning algorithm
o Entropy, Information gain

o Overfitting

I jocture slide for textlanh Machisie Learming, ¢ Ton M, Mitelell, Metra [Tl 1997

Decision Trees

Decision tree representation:
e Each internal node tests an attribute
o Eacl branch corresponds to attribute value

o Each leaf node assigns a classification

How would we represent:
e AV, XOR
¢ (AADB)V(CA-DAEL)
o\ of N

Decision Tree for PlayTennis

Sunny Overcast Rain

yles

Strong Weak

No Yes No Yes

Jeetue sloles tor testhook Mackine Loavnsng. @& Jom Mo Mitehelt Motiraw 1ill 1007

When to Consider Decision Trees

o Instances describable by attribute—value pairs
o Target function is discrete valued
o Disjunctive Lypothesis may be required

e Possibly noisy training data

Examples:
o Equipment or medical diagnosis
o Credit risk analysis

o Modeling calendar scheduling preferences

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women
Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
Previous_Csection = 0: [767+,81-] .90+ .10-
| Primiparous = 0: [399+,13-] .97+ .03-

| Primiparous = 1: [368+,68-] .84+ .16-

| | Fetal_Distress = 0: [334+,47-] .88+ .12-

| | | Birth_Weight < 3349: [201+,10.6-] .95+ .0
| | | Birth_Weight >= 3349: [133+,36.4-] .78+ .
| | Fetal_Distress = 1: [34+,21-] .62+ .38-
Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-

I~ Yectuge slides or texthook Maekine Learneng. & Tom M Mivelioll, MeGras Hill, 1907

Top-Down Induction of Decision Trees

AMain loop:

1. A « the “best” decision attribute for next node

W

Assign A as decision attribute for node

w

. For cach value of A, create new descendant of
node

N

. Sort training examples to leaf nodes

If training examples perfectly classified. Then
STOD. Else iterate over new leaf nodes

TWhich attribute is hest”
[29+,35-] A1=? [29+,35-] A2="7

[ f f

[21+,5-] [8+,30-] [18+,33-]  [11+,2-)



Entropy

00 0.5 1.0
fo
e S is a sample of training examples
e p is the proportion of positive examples in S
e s the proportion of negative examples in S
o Entropy measures the impurity of S

Entropy(S) = —=p log,p —p log,p

Training Examples

Day Outlook Temperature Humidity Wind PlayTenni

D1 Sunny Hot High  Weak No
D2 Sunny Hot High  Strong No
D3 Overcast Hort High  Weak Yes
D4  Rain Mild High  Weak Yes
D53  Rain Cool Normal  Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal Strong Yos
D& Sunny Mild High  Weak No
D9  Sunny Cool Normal  Weak Yes
D10 Rain Alild Normal  Weak Yos
D1l Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yos
D13 Overcast Hot Normal  Weak Yes
D14 TRain Mild High  Strong No

Entropy

Entropy(S) = expected number of bits needed to
encode class (7 or ) of randomly drawn
member of S (under the optimal, shortest-length
code)

Why?

Information theory: optimal length code assigns
— log, p bits to message having probability p.

So, expected number of bits to encode 1 or © of
random member of S:

p (=log,p )+p (=logyp )

Entropy(S) = —=p logsp —p logsp

3 Jovtire slikes tor texthook Maekine Leacnsug, £ Tom Mo Mitehell, M€ 1l 1997

Selecting the Next Attribute

Which attribute is the best classifier?

S 945 S: (94,5
E=0.940 E=0.940
Humidity Wind
Weak Strong
B4 [6+,1-] [6+.2-] [3+.3]
F=0085 E=0592 E=0811 E=1.00
Gain (S, Humidity ) Gain (S, Wind)
= 1940 (7/14).985 - (7/14).592 =.940- (8/14)811 - (&/14)1.0
=151 =048

130

Information Gain

Gain(S, A) = expected reduction in entropy due to
sorting on .1

" ) Se
Gain(S. A) = Entropy(S) — b u1-.‘11!1'017;/(5,.)
vV alucs(4) |S] )
[29+,35-] Al1=? [29+,35-] A2=7
t f f

[21%,5-] [8+,30-] [18+,33-] [114,2-]

ol ectiige shisles for textlwok Mechine Learniego & Tom Mo Mitehedl, MeGraw Hill, (997
{D1,D2,... D14}
[9+.5-]

Sunny Overcast Rain

~

{D1,.D2,D8,D9.D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[4+,0-] [B+.2-]1

[ ]

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}
Gain (Ssuppy - Humidity) = 970 - (3/5)0.0 - (25)0.0 = .970
Gain (Ssunny  Temperature) = 970 ~ (215)0.0 - (2/5)1.0 - (15)0.0 = .570
Gain (Ssynpy . Wind) = 970 - (2/5) 1.0 - (3/5) 918 = 019



Hypothesis Space Search by ID3

s,

-4

SN
N

leture sliddes tor vexthook Yachine Leaening. & Tom Mo Mitelell MeGraw 1L 1997

Occam’s Razor

Why prefer short hypotheses?
Argument in favor:
o Fewer short hyps. than long hyps.

— a short hyp that fits data unlikely to be
coincidence

— a long hyp that fits data might be coincidence

Argument opposced:

o There are many ways to define small sets of hyps

e c.g.. all trees with a prime number of nodes that
use attributes heginning with ~Z"

o What's so special about small sets based on size
of hypothesis??

Hypothesis Space Search by ID3

o Hypothesis space is complete!
— Target function surely in there...
o Outputs a single hypothesis (which one?)
— Can't play 20 questions...
o No back tracking
— Local minima...
o Statisically-based search choices
— Robust to noisy data...

o Inductive bias: approx “prefer shortest tree”

W Jetre sfiles for texthonk Yaekine Leavuong. & Tom N Mitchell, MeGraw Hill, 1907

Overfitting in Decision Trees

Consider adding noisy training example #15:
Sunny, Hot, Normal. Strong, PlayTennis = No

What cffect on carlier tree?

Sunny  Overcast Rain

/Hl‘gh Normal Strong Weak
No Yes No Yes

Inductive Bias in ID3

Note H is the power set of instances X
—Unbiased?
Not really...

o Preference for short trees, and for those with
high information gain attributes near the root
e Bias is a preference for some hypotheses, rather

than a restriction of hypothesis space H

e Occam’s razor: prefer the shortest hypothesis
that fits the data

Overfitting

Consider error of hypothesis i over
o training data: ¢rrory.i,(h)
e entire distribution D of data: errorp(h)
Hypothesis h € H overfits training data if there is
an alternative hivpothesis ' € H such that
rroryain(h) < ’—""'()"/urm(h/)
and
crrorp(h) > rz'rm‘p(h’)

a4



Overtfitting in Decision Tree Learning

06 On training data —
On test data ----
055
05 - e =
0 10 20 30 40 S0 6 70 8 % 100
Size of tree (number of nodes)
6l lecture slides Lo testiuook, Maeline Learuing, AL Mirckell, Metapaw Hidl, 1997

Effect of Reduced-Error Pruning

9% On training data —

On test data ----

055 On test data (during pruning) -+
05

0 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

Avoiding Overfitting

How can we avoid overfitting?

o stop growing when data split not statistically
significant

o grow full tree, then post-prune

How to select “best” tree:
o Measure performance over training data

o Measure performance over separate validation
data set

o MDL: minimize
size(tree) + size(misclassifications(tree))

Metgaw Wl 1007

Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune cach rule independently of others

3. Sort final rules into desived sequence for use

Perhaps most frequently used method (e.g.. C4.5)

Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
cach possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

o What if data is limited?

lectue slicdem Far toxt ook Mo hing

o b M. Miteliell, MeGraw Hill, (97

Converting A Tree to Rules

Outlook
Sunny  Overcast Rain
Yes Wind
High Normal Strong Weak
No Yes No Yes

4%
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FHAPTER 2 DECISION TREE [ FARNING

IF (Outlook = Sunny) A (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) A (Humidity = Normal)

THEN PlayTennis = Yes

g @ Tom M. Mitedell, Metraw [ill. 1997

Attributes with Costs

Clonsider
o medical diagnosis, BloodTest has cost $150
e robotics, Width_from_1ft has cost 23 sec.
How to learn a consistent tree with low expected
cost?
One approach: replace gain by
o Tan and Schlimmer (1990)
Gain*(5. 1)
Cost(A)
o Nunez (1988)
Z(W/M\'._{\ =1
(Cost(A)+1)"

where w € [0. 1] determines importance of cost

Continuous Valued Attributes

Create a discrete attribute to test continuous
o Temperature = 82.3

o (Temperature > 72.3) =t. f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

Jexctre afiddes Lotttk Macdine Learnsng @ lom Mo Mitchell, MeGras Uil 1907

Unknown Attribute Values

What if some examples missing values of A7
TUse training example anyway. sort through tree

o If node n tests A, assign most common value of
A among other examples sorted to node n

o assign most common value of A among other
examples with same target value

o assign probability p; to each possible value v; of

A

— assign fraction p, of example to cach
descendant in trec

Classify new examples in same fashion

Attributes with Many Values

Problem:
o If attribute has many values, Gain will sclect it

o Imagine using Date = Jun_3.1996 as attribute

One approach: use GainRatio instead

; e Gain(S, A)
GainRat A=
atziatie d:6) SplitInformation(S, )

: : o L S ]
SplitIn formation(S,A) = - ¥ !—10 22 T
S8 S

where S; is subset of S for which A has value v;

Tovctre e for textu
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