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Introduction 



Voronoi Diagram & Delaunay Triangulation 
P = { p1, p2, … , pn} a set of n points in the plane. 



Voronoi Diagram & Delaunay Triangulation 

Voronoi(P):   # regions = n,  # edges ! 3n-6,  # vertices ! 2n-5. 

Nearest site proximity    partitioning of the plane 



Delaunay Triangulation = Dual of the Voronoi Diagram. 

Voronoi Diagram & Delaunay Triangulation 

DT(P):   # vertices = n,  # edges ! 3n-6,  # triangles ! 2n-5. 



Delaunay triangles have the “empty circle” property. 

Voronoi Diagram & Delaunay Triangulation 



Voronoi Diagram & Delaunay Triangulation 



Voronoi Diagram 
P = { p1, p2, … , pn} a set of n points in the plane. 
Assume: no 3 points collinear, no 4 points cocircular. 

PB(pi, pj) perpendicular bisector of  pipj.  
pi 

pj 

Voronoi Region of pi: 
pi 

Voronoi Diagram of P:  



Voronoi Diagram Properties 
!  Each Voronoi region V(pi) is a convex polygon (possibly unbounded). 

!  V(pi) is unbounded    "    pi is on the boundary of CH(P). 

!  Consider a Voronoi vertex v = V(pi) # V(pj) # V(pk). 
    Let C(v) = the circle centered at v passing through pi, pj, pk. 

!  C(v) is circumcircle of Delaunay Triangle (pi, pj, pk). 

!  C(v) is an empty circle, i.e., its interior contains no other sites of P. 

!   pj = a nearest neighbor of pi   $  V(pi) # V(pj) is a Voronoi edge   
            $   (pi, pj) is a Delaunay edge. 

!   more later … 



Delaunay Triangulation Properties 
!  DT(P) is straight-line dual of VD(P). 

!  DT(P) is a triangulation of P, i.e., each bounded face is a triangle 
     (if P is in general position). 

!   (pi, pj) is a Delaunay edge " % an empty circle passing through pi and pj. 

!  Each triangular face of DT(P) is dual of a Voronoi vertex of VD(P). 

!  Each edge of DT(P) corresponds to an edge of VD(P). 

!  Each node of DT(P), a site, corresponds to a Voronoi region of VD(P). 

!  Boundary of DT(P) is CH(P). 

!  Interior of each triangle in DT(P) is empty, i.e., contains no point of P. 

!  more later … 



References: 
•  [M. de Berge et al ’00] chapters 7, 9, 13 

•   [Preparata-Shamos’85] chapters 5, 6 

•   [O’Rourke’98] chapter 5 

•   [Edelsbrunner’87] chapter 13 

•   AAW 

•   Lecture Notes 16, 17, 18, 19 



ALGORITHMS 



A brute-force VD Algorithm 
P = { p1, p2, … , pn} a set of n points in the plane. 
Assume: no 3 points collinear, no 4 points cocircular. 

Voronoi Region of pi: 

Voronoi Diagram of P:  

intersection of 
n-1 half-planes 

•  Voronoi region of each site can be computed in O(n log n) time. 
•  There are n such Voronoi regions to compute. 
•  Total time O(n2 log n). 



Divide-&-Conquer Algorithm 

•  M. I. Shamos, D. Hoey [1975],   
 “Closest Point Problems,”  FOCS, 208-215. 

•  D.T. Lee [1978],  “Proximity and reachability in the plane,”  
  Tech Report No, 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana. 

•  D.T. Lee [1980], “Two dimensional Voronoi Diagram in the Lp metric,”  
 JACM 27, 604-618.  

The first O(n log n) time algorithm to construct  
the Voronoi Diagram of n point sites in the plane. 



ALGORITHM Construct Voronoi Diagram (P) 
INPUT:      P = { p1, p2, … , pn} sorted on x-axis. 

OUTPUT:  CH(P) and DCEL of VD(P). 

1.   [BASIS]:    if  n!1  then return the obvious answer. 

2.   [DIVIDE]:  Let m & 'n/2(  

    Split P on the median x-coordinate into  

    L = { p1, … , pm} & R = { pm+1, … , pn}. 

3.   [RECUR]: 
    (a) Recursively compute CH(L) and VD(L). 

    (b) Recursively compute CH(R) and VD(R). 

4.   [MERGE]: 

    (a) Compute Upper & Lower Bridges of CH(L) and CH(R) & obtain CH(P). 

    (b) Compute the y-monotone dividing chain C between VD(L) & VD(R). 

    (c) VD(P) & [C]  )  [VD(L) to the left of C]  )  [VD(R) to the right of C]. 

    (d) return   CH(P) & VD(P). 

END. 

O(1) 

O(n) 

T(n/2) 

T(n/2) 

O(n) 

T(n) = 2 T(n/2) + O(n) = O( n log n). 



P = { p1, p2, … , pn} a set of n points in the plane. 



VD(P) = [C]  )  [VD(L) to the left of C]  )  [VD(R) to the right of C] . 



VD(L) and CH(L) 



VD(R) and CH(R) 



Upper & Lower bridges between CH(L) and CH(R) & two end-rays of chain C. 
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Construct chain C. 
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Construct chain C. 
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Crop VD(L) & VD(R) at C. 
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Fortune’s Algorithm 
•  Steve Fortune [1987], “A Sweepline algorithm for Voronoi Diagrams,” 

 Algorithmica, 153-174. 

•  Guibas, Stolfi [1987],  
“Ruler, Compass and computer: The design and analysis of geometric algorithms,”  
Proc. of the NATO Advanced Science Institute, series F, vol. 40:  
Theoretical Foundations of Computer Graphics and CAD, 111-165. 

"    O(n log n) time algorithm by plane-sweep. 
"    See AAW animation. 
"    Generalization: VD of line-segments and circles. 



The Waive Propagation View 
•  Simultaneously drop pebbles on calm lake at n sites. 

•  Watch the intersection of expanding waves. 



Time as 3rd dimension 
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 All sites have identical opaque cones. 



Time as 3rd dimension 

x 
z 

y 

•  All sites have identical opaque cones. 
•  cone(p) # cone(q) = vertical hyperbola h(p,q). 
•  Vertical projection of h(p,q) on the xy base plane is PB(p,q). 

p q 

base plane 



Time as 3rd dimension 
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Visible intersection of the cones viewed upward from z = - , is VD(P). 

base plane 



Conic Sections: Focus-Directrix 

focus 
f 

directrix  l 

w 

h 

Eccentricity constant: 

0 = e   point (focus) 
0 < e < 1  ellipse 
      e = 1  parabola 
      e > 1  hyperbola 
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Sweep Plane & Sweep Line 
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Sweep Plane & Cone Intersection 

Vertical projection of intersection of cone(p) & the sweep plane  
on the base plane is a parabola with focus p and directrix l.  

x 
y 
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Parabolic Evolution 
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Parabolic Evolution 
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Time snapshots of moving parabola associated with site p 
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"  Each parabolic arc of the Front is in some 
   Voronoi region. 

"  Each “break” between 2 consecutive parabolic 
   arcs lies on a Voronoi edge. 

The parabolic front 
"  Sweep plane opaque. So we don’t see future events. 
"  Any part of a parabola inside another one is invisible, since a point (x,y) is inside a 
   parabola iff at that point the cone of the parabola is below the sweep plane. 
"  Parabolic Front = visible portions of parabola; those that are on the boundary of  
   the union of the cones past the sweep. 
"  Parabolic Front is a y-monotone piecewise-parabolic chain.  
   (Any horizontal line intersects the Front in exactly one point.) 
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"  The breakpoints of the parabolic front trace out every Voronoi edge as the sweep 
   line moves from x = - , to x = + , . 

"  Every point of every Voronoi edge is  
   a breakpoint of the parabolic front at  
   some time during the sweep. 

   Proof:  
   (a)  Fig 1:    Event w:  
         Cu is an empty circle. 

   (b)  Fig 2: At event w point u must  
         be a breakpoint of the par. front. 
         Otherwise: 
         Some parabola Z covers u at v  
         $ 
         Focus of Z is on Cv and Cv  
         is inside Cu  
         $  
         Focus of Z is inside Cu 

              $  
         Cu is not an empty circle  
         $  
         a contradiction. 

Evolution of the parabolic front 
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"  SITE EVENT:       Insert into the Parabolic Front. 

"  CIRCLE EVENT:  Delete from the Parabolic Front. 

The Discrete Events 



SITE EVENT 
A new parabolic arc is inserted into the front when sweep line hits a new site. 

p 

q 

s 

p 

q 

s 

p 

q 

s 

1 2 3 



SITE EVENT 
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A parabola cannot appear on the front by breaking through from behind. 
The following are impossible: 
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A new parabolic arc is inserted into the front when sweep line hits a new site. 



"  Circle event w causes parabolic arc - to disappear. 
"  * and / cannot belong to the same parabola. 

CIRCLE EVENT 
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T:   [SWEEP STATUS: a balanced search tree]   
      maintains a description of the current parabolic front. 

 Leaves:  arcs of the parabolic front in y-monotone order. 
 Internal nodes:  the break points. 

DATA STRUCTURES (T & Q) 

Operations: 
   (a) insert/delete an arc. 
   (b) locate an arc intersecting a given horizontal line (for site event). 
   (c) locate the arcs immediately above/below a given arc (for circle event). 

We also hang from this the part of the Voronoi Diagram swept so far. 
- Each leaf points to the corresponding site. 
- Each internal node points to the corresponding Voronoi edge.  

x 

y 

sweep 
direc. 

Par(A) Par(B) 
Par(C) Par(D) 

A B C D 

T: 



Q: [SWEEP SCHEDULE: a priority queue] schedule of future events: 

#  all future site-events &  
#  some circle-events, i.e., 

"  those corresponding to 3 consecutive arcs of the current 
   parabolic front as represented by T.  
"  The others will be discovered & added to the sweep schedule before 
   the sweep lines advances past them. 
"  Conversely, not every 3 consecutive arcs of the current front specify 
   a circle-event. Some arcs may drop out too early. 

DATA STRUCTURES (T & Q) 



Event-driven simulation loop: 
At each iteration remove the next event (with min x-coordinate) from Q & 
simulate the effect of the sweep-line advancing past that event point. 

Event Processing & Scheduling 



Event-driven simulation loop: 
At each iteration remove the next event (with min x-coordinate) from Q & 
simulate the effect of the sweep-line advancing past that event point. 

Event Processing & Scheduling 

death(*) :  pointing to a circle-event in Q as the meeting point of the 
    Voronoi edges. (If the edges are diverging, then death(*) = nil.) 

Remove circle-event death(*) if: 
 (a) * is split in two by a site-event, or 
 (b) whenever one of the two arcs adjacent to * is deleted 
       by a circle-event.  

*+



Event-driven simulation loop: 
At each iteration remove the next event (with min x-coordinate) from Q & 
simulate the effect of the sweep-line advancing past that event point. 

Event Processing & Scheduling 

A circle-event update:  
each parabolic arc - (leaf of T) points to the earliest circle-event, death(-), 
in Q that would cause deletion of - at the corresponding Voronoi vertex.  

death(-) 
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Event-driven simulation loop: 
At each iteration remove the next event (with min x-coordinate) from Q & 
simulate the effect of the sweep-line advancing past that event point. 

Event Processing & Scheduling 

(*,/,0) do not define a circle-event:  
(a,c,d) is not a circle-event now, it is past the current sweep position.  
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|T| = O(n) :  the front always has O(n) parabolic arcs, since splits occur at 
      most n times by site events. 
      Also by Davenport-Schinzel:    
       … * … - … * … - … is impossible. 
       [At most 2n-1 parabolic arcs in T.] 

ANALYSIS 

|Q| = O(n) :  there are at most n site-events and O(n) triples of consecutive 
       arcs on the parabolic front to define circle-events. 

Total # events = O(n),     Time per event processing = O(log n). 

THEOREM:  Fortune’s algorithm computes Voronoi Diagram of n sites 
        in the plane using optimal O(n log n) time and O(n) space. 



Delaunay Triangulation 



Terrain Height Interpolation 

A perspective view of a terrain. A topographical map of a terrain. 



Terrain Height Interpolation 

A perspective view of a terrain. A topographical map of a terrain. 

Terrain:  A 2D surface in 3D such that each vertical line intersects it in at most one point. 
 f : 1 2 32 45 3.           f(p) = height of point p in the domain A of the terrain. 

Method:  Take a finite sample set P 2 A. Compute f(P), and interpolate on A. 

P 2 A 

f 



Triangulations of Planar Point Sets 

P = {p1, p2, … , pn } 2 32. 
A triangulation of P is a maximal planar  
straight-line subdivision with vertex set P. 

THEOREM: Let P be a set of n points, not all collinear, in the plane.  
     Suppose h points of P are on its convex-hull boundary. 
     Then any triangulation of P has 3n-h-3 edges  and 2n-h-2 triangles. 

Proof:      m = # triangles 

 3m + h = 2E    (each triangle has 3 edges; each edge incident to 2 faces) 

 Euler:  n – E + (m+1) = 2 

 6 m = 2n - h - 2,    E = 3n – h – 3. 



Delaunay Graph: Dual of Voronoi Diagram 

Delaunay Graph DG(P)   as   dual of Voronoi Diagram VD(P). 



Delaunay Graph: Dual of Voronoi Diagram 

Delaunay Graph DG(P)  as  strainght-line dual of Voronoi Diagram VD(P). 



Delaunay Graph is a Triangulation 

THEOREM:  Delaunay Graph of P is 
"  a straight-line plane graph, & 
"  a triangulation of P.  

Proof:  Follows from the following Lemmas. 

Alternative Definition of Delaunay Graph:   
•  A triangle .(pi , pj , pk) is a Delaunay triangle iff the circumscribing circle  
     C(pi , pj , pk)  is empty.  
•  Line segment (pi, pj) is a Delaunay edge iff there is an empty circle   
     passing through pi and pj, and no other point in P. 



Delaunay Graph is a Triangulation 
LEMMA 1: Every edge of CH(P) is a Delaunay edge.  

Proof:  Consider a sufficiently large circle that passes through the 2 ends of 
CH edge e, and whose center is separated from CH(P) by the line aff(e).  

e 



Delaunay Graph is a Triangulation 
LEMMA 2: No two Delaunay triangles overlap. 

Proof:  Consider circumscribing circles of two such triangles.  
 Line L separates the two triangles. 

L 

empty area 



Delaunay Graph is a Triangulation 
LEMMA 3: pi & pj are Voronoi neighbors   $   (pi , pj) is a Delaunay edge. 

Proof:  Consider the circle that passes through pi & pj  and whose center is 
in the relative interior of the common Voronoi edge between V(pi) & V(pj). 

V(pi) 

V(pj) 

pi 

pj 



Delaunay Graph is a Triangulation 
LEMMA 4:  If pj and pk are two (rotationally) successive Voronoi neighbors  

      of pi & 7pjpipk < 180°, then .(pi , pj , pk) is a Delaunay triangle. 

Proof:  pj & pk  must also be Voronoi neighbors.  
           Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk). 



Delaunay Graph is a Triangulation 
LEMMA 4:  If pj and pk are two (rotationally) successive Voronoi neighbors  

      of pi & 7pjpipk < 180°, then .(pi , pj , pk) is a Delaunay triangle. 

Proof:  pj & pk  must also be Voronoi neighbors.  
           Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk). 

COROLLARY 5:  For each pi 8P, the Delaunay triangles incident to pi   

       completely cover a small open neighborhood of pi inside CH(P). 

pi 

pi 

CH(P) 



Delaunay Graph is a Triangulation 
LEMMA 6:  Every point inside CH(P) is covered by some Delaunay      

      triangle in DG(P). 

Proof:  Let q be an arbitrary point in CH(P). Let (pi , pj) be the Delaunay 
 edge immediately below q. ((pi , pj) exists because all convex-hull 
 edges are Delaunay by Lemma 1.) From Corollary 5 let .(pi,pj,pk) 
 be the next Delaunay triangle incident to pi as in the Figure below.  
 Then, either q 8 .(pi,pj,pk), or the choice of (pi , pj) is contradicted. 

pi pj 

pk 

q 

pi pj 

pk q 

pi pj 

pk q 

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote 
the Delaunay triangulation of P. 



Angles in Delaunay Triangulation 

THEOREM:  DT(P) is the unique triangulation of P that lexicographically 
        maximizes A(T ). 

Proof:  Later. 

DEFINITION: 
T  = an arbitrary triangulation (with m triangles) of point set P. 
*1, *2, …, *3m = the angles of triangles in T, sorted in increasing order. 
A(T ) = (*1 , *2 , … , *3m) is called the angle-vector of T.  

COROLLARY:  DT(P) maximizes the smallest angle. 

Useful for terrain approximation by triangulation & linear interpolation. 
Small angles (long skinny triangles) cause large approximation errors. 



DT & VD via CH 

•  K.Q. Brown [1979], “Voronoi diagrams from convex hulls,” IPL 223-228. 

•  K.Q. Brown [1980], “Geometric transforms for fast geometric algorithms,”  
  PhD. Thesis, CMU-CS-80-101. 

•  Guibas, Stolfi [1987],  
  “Ruler, Compass and computer: The design and analysis of geometric algorithms,”  
  Proc. of the NATO Advanced Science Institute, series F, vol. 40:  
  Theoretical Foundations of Computer Graphics and CAD, 111-165. 

•  Guibas, Stolfi [1985], “Primitives for the manipulation of general subdivisions and    
  the computation of Voronoi diagrams,” ACM Trans. Graphics 4(2), 74-123. 

•  [Edelsbrunner’87] pp: 302-306. 

•   Aurenhammer [1987], “Power diagrams: properties, algorithms, and applications,”   
   SIAM J. Computing 16, 78-96. 



DT in 3d    9   CH in 3d+1  

y 

x 

z=:(x,y) 

Paraboloid of 
Revolution ; 

 :: (x,y) 5 (x,y, x2+y2) 



SUMMARY:  

Consider a plane < in 33 and the paraboloid of revolution ;. 

(1)  Projection of <#; down to 32 is a circle C. 
(2)  Every point of ; below < projects down to interior of C. 
(3)  Every point of ; above < projects down to exterior of C. 

2D (“Nearest-Point” and “Farthest-Point”) 
Delaunay Triangulation algorithm via 3D-convex-hull in 
O(n log n) time. 

DT in 32    9   CH in 33 



DT in 3d    9   CH in 3d+1 

x 

y 
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; 

CH(:(P)) 

DT(P) 



Generalizations & Applications 



The Post Office Problem 
PROBLEM:    Preprocess a given set P of n points in the plane for: 
Nearest Neighbor Query: Given a query point q, determine which point in 

    P is nearest to q. 

Shamos [1976]: Slab Method: 
 Query Time:   O(log n) 
 Preprocessing Time:  O(n2) 
 Space:    O(n2) 

Kirkpatrick [1983]: Triangulation refinement method for planar point location: 
 Query Time:   O(log n) 
 Preprocessing Time:  O(n log n) 
 Space:    O(n) 

Construct Voronoi Diagram. Each Voronoi region is convex, hence monotone.  
Triangulate the Voronoi regions in O(n) time. Then apply Kirkpatrick’s method. 

Andoni, Indyk [2006] “Near-optimal hashing algorithms for approximate nearest 
neighbor in high dimensions,” FOCS’06. 



Largest Empty Circle Problem 
PROBLEM:    Determine the largest empty circle with center in CH(P). 

O(n) Candidate centers. All can be found in O(n) time (after VD(P) is given): 
 (1) Voronoi vertex inside CH(P), 
 (2) Intersection of a Voronoi edge and an edge of CH(P). 



!  Gabriel Graph 
!  Relative Neighborhood Graph  
!  Euclidean Minimum Spanning Tree  
!  Nearest Neighbor Graph 

Subgraphs of Delaunay Triangulation 



Nearest Neighbor Graph: (p,q) is a directed edge in NNG "  
>r8P-{p,q}: d(p,q) ! d(p,r). 

NNG 2 EMST 2 RNG 2 GG 2 DT 
p

q 

Delaunay Triangulation:     

(p,q) is a DT edge " % empty circle through p and q. 

p q 

Gabriel Graph:     (p,q) is a GG edge  "  

%  empty circle with diameter (p,q),  
(i.e., (p,q) intersects its dual Voronoi edge). 

p q 

Relative Neighborhood Graph: (p,q) is an RNG edge  " 
>r8P-{p,q}: (p,q) is NOT the longest edge of triangle (p,q,r)  
 (i.e., d(p,q) ! max{d(p,r), d(q,r)}) 

 (i.e., lune(p,q) is empty). 

Euclidean Minimum Spanning Tree: (p,q) is in EMST  " 
>cycles: (p,q) is NOT the longest edge of the cycle.  



NNG 2 EMST 2 RNG 2 GG 2 DT 
Delaunay Triangulation 



NNG 2 EMST 2 RNG 2 GG 2 DT 
Gabriel Graph: 



NNG 2 EMST 2 RNG 2 GG 2 DT 
Gabriel Graph: 



NNG 2 EMST 2 RNG 2 GG 2 DT 
Relative Neighborhood Graph: 



NNG 2 EMST 2 RNG 2 GG 2 DT 
Euclidean Minimum Spanning Tree: 



NNG 2 EMST 2 RNG 2 GG 2 DT 
Delaunay Triangulation Nearest Neighbor Graph: 



Euclidean Minimum Spanning Tree 
•  General (m edge, n vertex graph) MST algorithms  (See also AAW): 

 Kruskal or Prim   O(m log n)  or O(m + n log n) time. 

    Yao or Cheriton-Tarjan:  O(m log log n) time 

    Chazelle:    O(m *(m,n)) time. 

•  EMST requires ?(n log n) time in the worst-case.  

   [Linear time reduction from the Closest Pair Problem.] 

•   EMST in O(n log n) time:  

 (1) Compute DT in O(n log n) time  (# edges in DT ! 3n –6). 

 (2) Apply Prim or Kruskal MST algorithm to DT. 

•  Next we will show EMST can be obtained from DT in only O(n) time. 



Euclidean Minimum Spanning Tree 
•   D. Cheriton, R.E. Tarjan [1976] 

    “Finding minimum spanning trees,”  SIAM J. Comp. 5(4), 724-742. 

•   Also appears in §6.1 of [Preparata-Shamos’85]. 

•   Cheriton-Tarjan’s MST algorithm works on general graphs.  

    When applied to a planar graph with n vertices and arbitrary  

    edge-weights, it takes only O(n) time. 

•  The following graph operations preserve planarity: 

        (a) vertex or edge removal, 

        (b) edge contraction (shrink the edge & identify its two ends): 

e 



Cheriton-Tarjan: MST algorithm (overview) 

Input:  edge-weighted graph G=(V,E) 

1.   Q & @          (* queue of sub-trees *) 

  for  v 8 V  do  enqueue (v, Q)        (* n single-node trees in Q  *) 

2.   while   |Q|  A 2  do 
  -  let T1 be the tree at the front of Q 

  -  find edge (u,v) 8 E with minimum weight s.t. u 8 T1 and v BT1 

  -  let T2 be the tree (in Q) that contains v 

  -  T &  MERGE (T1 , T2)  by adding edge (u,v) 

  - remove T1 and T2 from Q 

  - add T to the end of Q 

  - CLEAN-UP after each stage  (see next slide) 

end 



Cheriton-Tarjan 

Invariants: 
    (a)  stage numbers of trees in Q form a non-decreasing sequence. 
    (b)  stage(T)=j implies T has at least 2j nodes. So, stage(T) ! log |T|. 
    (c)  after completion of stage j  (i.e., the first time stage(T) > j, >T8Q)  
          there are  !  n/(2j)  trees in Q. 

CLEAN-UP: 
 After the completion of each stage do “clean-up”, i.e., shrink G to 

G*, where G* is G with each edge in the same tree contracted, i.e., each 
tree in Q is contracted to a single node, with only those edges (u,v)8G* ,  
u8T, v8T’, That are shortest incident edges between disjoint trees T, T’. 



Cheriton-Tarjan: Algorithm 

PROCEDURE  MST of a Graph G=(V,E) 

1.   Q & @          (* initialize queue *) 

  for  v 8 V  do  stage(v) & 0 ; enqueue (v, Q) 

 j & 1  

2.   while   |Q|  A 2  do 
  -  let T1 be the tree at the front of Q 

  -  if   stage(T1) = j   then  CLEAN-UP;  j & j+1 

  - (u,v) & shortest edge, s.t. u 8 T1 and v BT1 

  -  let T2 be the tree (in Q) that contains v 

  -  T &  MERGE (T1 , T2)  by adding edge (u,v) 

  -  stage(T) &  1 + min{ stage(T1), stage(T2)}  

  -  remove T1 and T2 from Q 

  -  add T to the end of Q 

end 



Cheriton-Tarjan: Analysis 

FACTS:   
(a) A planar graph with m vertices has O(m) edges. 

(b) Shrunken version of a planar graph is also planar 

 (c) CLEAN-UP of stage j takes O(n/2j) time.  

 (d) # stages ! Clog nD 

 (e) During stage j each of the < 3n/ 2j edges of G* are checked  

      at most twice (once from each end). So, stage j takes O(n/ 2j) time. 

(f) Cheriton-Tarjan’s algorithm on planar graphs takes: 



THEOREM:  The MST of any weighted connected planar graph with n 

vertices can be computed in optimal O(n) time. 

COROLLARY:  Given DT(P) of a set P of n points in the plane,  

the following can be constructed in O(n) time: 

(a) GG(P), 

(b) RNG(P), 

(c) EMST(P), 

(d) NNG(P). 

Proof: (a) & (d): obvious.  (c): use Cheriton-Tarjan on DT(P).  (b): see Exercise. 



Extensions of Voronoi Diagrams 
!  Voronoi Diagram of line-segments, circles, … 

!  Medial Axis 

!  Order k Voronoi Diagram 

!  Farthest Point Voronoi Diagram (order n-1 VD) 

!  Weighted Voronoi Diagram & Power Diagrams 

!  Generalized metric (e.g., Lp metric) 



VD of line-segments & circles 

parabola 

pa
r 

lin
e 

par 

hyperbola 



Higher Order VD 
•  [PrS85]  § 6.3 

•  [Ede87]  § 13.3-13.5 

•  [ORo98] § 6.6. 

•  Aurenhammer [1987], “Power diagrams: properties, algorithms, and  
  applications,” SIAM J. Computing 16, 78-96. 

•  D.T. Lee [1982], “On k-Nearest Neighbors Voronoi Diagram in the Plane,” 
  IEEE Trans. Computers, C-31, 478-487. 
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Example: Order 2 Voronoi Diagram 

Some Voronoi regions of order 2 

are empty, e.g. (5,7). 

Order k Voronoi Diagram 
Given a set of n sites in space, partition the space into regions where any two points  
belong to the same region iff they have the same set of k nearest sites. 



Order k Voronoi Diagram of P: 

Order k Voronoi Diagram 

Voronoi region of T (a convex polyhedron, possibly empty) 

pi 

pj 

       possible subsets of size k. Most have empty Voronoi regions. 

In 2D only O(k(n-k)) of them are non-empty [D.T. Lee’82]. 



ALGORITHM  Order-k VD of P 2 32  
1.   For each point p 2 P do 

   - lift p onto ;: z = x2 + y2, call it :(p) 
   - <(p) & plane tangent to ; at :(p) 

2.   Construct k-belt of the arrangement of the planes <(p), p 2 P, in  33. 
3.   Project down this k-belt onto the base plane 32. 

 This is the k-th order Voronoi Diagram of P. 

FACT 1: In O(n3) time we can compute all k-levels of the arrangement and  
 find the k-th order VD. 

       Improvement by [D.T. Lee 1982]: 

FACT 2: [Preparata-Shamos’85]: 
 k-th order VD of n points in the plane can be obtained in time 
 O(min { k2 , (n-k)2 } n log n). 

COROLLARY 3: Complexity of the k nearest neighbors query problem is: 
 O(k + log n)  Query Time 
 O(k2 n log n)  Preprocessing Time 
 O(kn)   Space. 


