
COSC 6114

Prof. Andy Mirzaian

Introduction

Voronoi Diagram & Delaunay Triangulation
P = { p1, p2, … , pn} a set of n points in the plane.

Voronoi Diagram & Delaunay Triangulation

Voronoi(P): # regions = n, # edges ! 3n-6, # vertices ! 2n-5.

Nearest site proximity partitioning of the plane

Delaunay Triangulation = Dual of the Voronoi Diagram.

Voronoi Diagram & Delaunay Triangulation

DT(P): # vertices = n, # edges ! 3n-6, # triangles ! 2n-5.

Delaunay triangles have the “empty circle” property.

Voronoi Diagram & Delaunay Triangulation

Voronoi Diagram & Delaunay Triangulation

Voronoi Diagram
P = { p1, p2, … , pn} a set of n points in the plane.
Assume: no 3 points collinear, no 4 points cocircular.

PB(pi, pj) perpendicular bisector of pipj.
pi

pj

Voronoi Region of pi:
pi

Voronoi Diagram of P:

Voronoi Diagram Properties
!  Each Voronoi region V(pi) is a convex polygon (possibly unbounded).

!  V(pi) is unbounded " pi is on the boundary of CH(P).

!  Consider a Voronoi vertex v = V(pi) # V(pj) # V(pk).
 Let C(v) = the circle centered at v passing through pi, pj, pk.

!  C(v) is circumcircle of Delaunay Triangle (pi, pj, pk).

!  C(v) is an empty circle, i.e., its interior contains no other sites of P.

!  pj = a nearest neighbor of pi $ V(pi) # V(pj) is a Voronoi edge
 $ (pi, pj) is a Delaunay edge.

!  more later …

Delaunay Triangulation Properties
!  DT(P) is straight-line dual of VD(P).

!  DT(P) is a triangulation of P, i.e., each bounded face is a triangle
 (if P is in general position).

!  (pi, pj) is a Delaunay edge " % an empty circle passing through pi and pj.

!  Each triangular face of DT(P) is dual of a Voronoi vertex of VD(P).

!  Each edge of DT(P) corresponds to an edge of VD(P).

!  Each node of DT(P), a site, corresponds to a Voronoi region of VD(P).

!  Boundary of DT(P) is CH(P).

!  Interior of each triangle in DT(P) is empty, i.e., contains no point of P.

!  more later …

References:
•  [M. de Berge et al ’00] chapters 7, 9, 13

•  [Preparata-Shamos’85] chapters 5, 6

•  [O’Rourke’98] chapter 5

•  [Edelsbrunner’87] chapter 13

•  AAW

•  Lecture Notes 16, 17, 18, 19

ALGORITHMS

A brute-force VD Algorithm
P = { p1, p2, … , pn} a set of n points in the plane.
Assume: no 3 points collinear, no 4 points cocircular.

Voronoi Region of pi:

Voronoi Diagram of P:

intersection of
n-1 half-planes

•  Voronoi region of each site can be computed in O(n log n) time.
•  There are n such Voronoi regions to compute.
•  Total time O(n2 log n).

Divide-&-Conquer Algorithm

•  M. I. Shamos, D. Hoey [1975],
 “Closest Point Problems,” FOCS, 208-215.

•  D.T. Lee [1978], “Proximity and reachability in the plane,”
 Tech Report No, 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana.

•  D.T. Lee [1980], “Two dimensional Voronoi Diagram in the Lp metric,”
 JACM 27, 604-618.

The first O(n log n) time algorithm to construct
the Voronoi Diagram of n point sites in the plane.

ALGORITHM Construct Voronoi Diagram (P)
INPUT: P = { p1, p2, … , pn} sorted on x-axis.

OUTPUT: CH(P) and DCEL of VD(P).

1.  [BASIS]: if n!1 then return the obvious answer.

2.  [DIVIDE]: Let m & 'n/2(

 Split P on the median x-coordinate into

 L = { p1, … , pm} & R = { pm+1, … , pn}.

3.  [RECUR]:
 (a) Recursively compute CH(L) and VD(L).

 (b) Recursively compute CH(R) and VD(R).

4.  [MERGE]:

 (a) Compute Upper & Lower Bridges of CH(L) and CH(R) & obtain CH(P).

 (b) Compute the y-monotone dividing chain C between VD(L) & VD(R).

 (c) VD(P) & [C]) [VD(L) to the left of C]) [VD(R) to the right of C].

 (d) return CH(P) & VD(P).

END.

O(1)

O(n)

T(n/2)

T(n/2)

O(n)

T(n) = 2 T(n/2) + O(n) = O(n log n).

P = { p1, p2, … , pn} a set of n points in the plane.

VD(P) = [C]) [VD(L) to the left of C]) [VD(R) to the right of C] .

VD(L) and CH(L)

VD(R) and CH(R)

Upper & Lower bridges between CH(L) and CH(R) & two end-rays of chain C.

1

2

3

4

5

6

7

8

9

(1,5)

(3,5)

(3,6)

(4,6)

(4,7)

(2,7)

Construct chain C.

1

2

3

4

5

6

7

8

9

Construct chain C.

1

2

3

4

5

6

7

8

9

Crop VD(L) & VD(R) at C.

1

2

3

4

5

6

7

8

9

VD(P) and CH(P)

Fortune’s Algorithm
•  Steve Fortune [1987], “A Sweepline algorithm for Voronoi Diagrams,”

 Algorithmica, 153-174.

•  Guibas, Stolfi [1987],
“Ruler, Compass and computer: The design and analysis of geometric algorithms,”
Proc. of the NATO Advanced Science Institute, series F, vol. 40:
Theoretical Foundations of Computer Graphics and CAD, 111-165.

"  O(n log n) time algorithm by plane-sweep.
"  See AAW animation.
"  Generalization: VD of line-segments and circles.

The Waive Propagation View
•  Simultaneously drop pebbles on calm lake at n sites.

•  Watch the intersection of expanding waves.

Time as 3rd dimension

x

y x

z=time

y

*+ *+

p

p
apex

of the cone

 All sites have identical opaque cones.

Time as 3rd dimension

x
z

y

•  All sites have identical opaque cones.
•  cone(p) # cone(q) = vertical hyperbola h(p,q).
•  Vertical projection of h(p,q) on the xy base plane is PB(p,q).

p q

base plane

Time as 3rd dimension

x
z

y

Visible intersection of the cones viewed upward from z = - , is VD(P).

base plane

Conic Sections: Focus-Directrix

focus
f

directrix l

w

h

Eccentricity constant:

0 = e point (focus)
0 < e < 1 ellipse
 e = 1 parabola
 e > 1 hyperbola

sweep
 plane

 sweep
line

*+
 base
plane

x

y

Sweep Plane & Sweep Line

z

sweep
 plane

*+
*+

 base
plane p

v

w u

Sweep Plane & Cone Intersection

Vertical projection of intersection of cone(p) & the sweep plane
on the base plane is a parabola with focus p and directrix l.

x
y

p

Parabolic Evolution

l

focus p

l

x
y

p

Parabolic Evolution

l

focus p

l

x
y

Time snapshots of moving parabola associated with site p

p

x
y

1 2 3

1

2

3

sw
ee

p
lin

e

"  Each parabolic arc of the Front is in some
 Voronoi region.

"  Each “break” between 2 consecutive parabolic
 arcs lies on a Voronoi edge.

The parabolic front
"  Sweep plane opaque. So we don’t see future events.
"  Any part of a parabola inside another one is invisible, since a point (x,y) is inside a
 parabola iff at that point the cone of the parabola is below the sweep plane.
"  Parabolic Front = visible portions of parabola; those that are on the boundary of
 the union of the cones past the sweep.
"  Parabolic Front is a y-monotone piecewise-parabolic chain.
 (Any horizontal line intersects the Front in exactly one point.)

sw
ee

p
lin

e

"  The breakpoints of the parabolic front trace out every Voronoi edge as the sweep
 line moves from x = - , to x = + , .

"  Every point of every Voronoi edge is
 a breakpoint of the parabolic front at
 some time during the sweep.

 Proof:
 (a) Fig 1: Event w:
 Cu is an empty circle.

 (b) Fig 2: At event w point u must
 be a breakpoint of the par. front.
 Otherwise:
 Some parabola Z covers u at v
 $
 Focus of Z is on Cv and Cv
 is inside Cu
 $
 Focus of Z is inside Cu

 $
 Cu is not an empty circle
 $
 a contradiction.

Evolution of the parabolic front

p

q

u
w

Cu

Fig 1.

Fig 2.
w u

v

Cu
Cv

p

q

Z

sweep
line

sweep
line

"  SITE EVENT: Insert into the Parabolic Front.

"  CIRCLE EVENT: Delete from the Parabolic Front.

The Discrete Events

SITE EVENT
A new parabolic arc is inserted into the front when sweep line hits a new site.

p

q

s

p

q

s

p

q

s

1 2 3

SITE EVENT

p

q

s

p

q

s

p

q

s

A parabola cannot appear on the front by breaking through from behind.
The following are impossible:

*+

-+
*+

-+

t t+.t

*+

-+

t
t+.t /+

*+

-+

/+

A new parabolic arc is inserted into the front when sweep line hits a new site.

"  Circle event w causes parabolic arc - to disappear.
"  * and / cannot belong to the same parabola.

CIRCLE EVENT

w

p

q

s

*+

/+

-+

u
w

p

q

s

*+

/+

-+ w

p

q

s

*+

/+

u

T: [SWEEP STATUS: a balanced search tree]
 maintains a description of the current parabolic front.

 Leaves: arcs of the parabolic front in y-monotone order.
 Internal nodes: the break points.

DATA STRUCTURES (T & Q)

Operations:
 (a) insert/delete an arc.
 (b) locate an arc intersecting a given horizontal line (for site event).
 (c) locate the arcs immediately above/below a given arc (for circle event).

We also hang from this the part of the Voronoi Diagram swept so far.
- Each leaf points to the corresponding site.
- Each internal node points to the corresponding Voronoi edge.

x

y

sweep
direc.

Par(A) Par(B)
Par(C) Par(D)

A B C D

T:

Q: [SWEEP SCHEDULE: a priority queue] schedule of future events:

#  all future site-events &
#  some circle-events, i.e.,

"  those corresponding to 3 consecutive arcs of the current
 parabolic front as represented by T.
"  The others will be discovered & added to the sweep schedule before
 the sweep lines advances past them.
"  Conversely, not every 3 consecutive arcs of the current front specify
 a circle-event. Some arcs may drop out too early.

DATA STRUCTURES (T & Q)

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from Q &
simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from Q &
simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

death(*) : pointing to a circle-event in Q as the meeting point of the
 Voronoi edges. (If the edges are diverging, then death(*) = nil.)

Remove circle-event death(*) if:
 (a) * is split in two by a site-event, or
 (b) whenever one of the two arcs adjacent to * is deleted
 by a circle-event.

*+

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from Q &
simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

A circle-event update:
each parabolic arc - (leaf of T) points to the earliest circle-event, death(-),
in Q that would cause deletion of - at the corresponding Voronoi vertex.

death(-)

v
s

*+

/+

-+

spurious circle-event

death(-’)

s

*+

/+

-’

-’’

death(-’’)

Event-driven simulation loop:
At each iteration remove the next event (with min x-coordinate) from Q &
simulate the effect of the sweep-line advancing past that event point.

Event Processing & Scheduling

(*,/,0) do not define a circle-event:
(a,c,d) is not a circle-event now, it is past the current sweep position.

a

b

*+

/+

-+

c d

0+

|T| = O(n) : the front always has O(n) parabolic arcs, since splits occur at
 most n times by site events.
 Also by Davenport-Schinzel:
 … * … - … * … - … is impossible.
 [At most 2n-1 parabolic arcs in T.]

ANALYSIS

|Q| = O(n) : there are at most n site-events and O(n) triples of consecutive
 arcs on the parabolic front to define circle-events.

Total # events = O(n), Time per event processing = O(log n).

THEOREM: Fortune’s algorithm computes Voronoi Diagram of n sites
 in the plane using optimal O(n log n) time and O(n) space.

Delaunay Triangulation

Terrain Height Interpolation

A perspective view of a terrain. A topographical map of a terrain.

Terrain Height Interpolation

A perspective view of a terrain. A topographical map of a terrain.

Terrain: A 2D surface in 3D such that each vertical line intersects it in at most one point.
 f : 1 2 32 45 3. f(p) = height of point p in the domain A of the terrain.

Method: Take a finite sample set P 2 A. Compute f(P), and interpolate on A.

P 2 A

f

Triangulations of Planar Point Sets

P = {p1, p2, … , pn } 2 32.
A triangulation of P is a maximal planar
straight-line subdivision with vertex set P.

THEOREM: Let P be a set of n points, not all collinear, in the plane.
 Suppose h points of P are on its convex-hull boundary.
 Then any triangulation of P has 3n-h-3 edges and 2n-h-2 triangles.

Proof: m = # triangles

 3m + h = 2E (each triangle has 3 edges; each edge incident to 2 faces)

 Euler: n – E + (m+1) = 2

 6 m = 2n - h - 2, E = 3n – h – 3.

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as dual of Voronoi Diagram VD(P).

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as strainght-line dual of Voronoi Diagram VD(P).

Delaunay Graph is a Triangulation

THEOREM: Delaunay Graph of P is
"  a straight-line plane graph, &
"  a triangulation of P.

Proof: Follows from the following Lemmas.

Alternative Definition of Delaunay Graph:
•  A triangle .(pi , pj , pk) is a Delaunay triangle iff the circumscribing circle
 C(pi , pj , pk) is empty.
•  Line segment (pi, pj) is a Delaunay edge iff there is an empty circle
 passing through pi and pj, and no other point in P.

Delaunay Graph is a Triangulation
LEMMA 1: Every edge of CH(P) is a Delaunay edge.

Proof: Consider a sufficiently large circle that passes through the 2 ends of
CH edge e, and whose center is separated from CH(P) by the line aff(e).

e

Delaunay Graph is a Triangulation
LEMMA 2: No two Delaunay triangles overlap.

Proof: Consider circumscribing circles of two such triangles.
 Line L separates the two triangles.

L

empty area

Delaunay Graph is a Triangulation
LEMMA 3: pi & pj are Voronoi neighbors $ (pi , pj) is a Delaunay edge.

Proof: Consider the circle that passes through pi & pj and whose center is
in the relative interior of the common Voronoi edge between V(pi) & V(pj).

V(pi)

V(pj)

pi

pj

Delaunay Graph is a Triangulation
LEMMA 4: If pj and pk are two (rotationally) successive Voronoi neighbors

 of pi & 7pjpipk < 180°, then .(pi , pj , pk) is a Delaunay triangle.

Proof: pj & pk must also be Voronoi neighbors.
 Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk).

Delaunay Graph is a Triangulation
LEMMA 4: If pj and pk are two (rotationally) successive Voronoi neighbors

 of pi & 7pjpipk < 180°, then .(pi , pj , pk) is a Delaunay triangle.

Proof: pj & pk must also be Voronoi neighbors.
 Now apply Lemma 3 to (pi , pj), (pi , pk), (pj , pk).

COROLLARY 5: For each pi 8P, the Delaunay triangles incident to pi

 completely cover a small open neighborhood of pi inside CH(P).

pi

pi

CH(P)

Delaunay Graph is a Triangulation
LEMMA 6: Every point inside CH(P) is covered by some Delaunay

 triangle in DG(P).

Proof: Let q be an arbitrary point in CH(P). Let (pi , pj) be the Delaunay
 edge immediately below q. ((pi , pj) exists because all convex-hull
 edges are Delaunay by Lemma 1.) From Corollary 5 let .(pi,pj,pk)
 be the next Delaunay triangle incident to pi as in the Figure below.
 Then, either q 8 .(pi,pj,pk), or the choice of (pi , pj) is contradicted.

pi pj

pk

q

pi pj

pk q

pi pj

pk q

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote
the Delaunay triangulation of P.

Angles in Delaunay Triangulation

THEOREM: DT(P) is the unique triangulation of P that lexicographically
 maximizes A(T).

Proof: Later.

DEFINITION:
T = an arbitrary triangulation (with m triangles) of point set P.
*1, *2, …, *3m = the angles of triangles in T, sorted in increasing order.
A(T) = (*1 , *2 , … , *3m) is called the angle-vector of T.

COROLLARY: DT(P) maximizes the smallest angle.

Useful for terrain approximation by triangulation & linear interpolation.
Small angles (long skinny triangles) cause large approximation errors.

DT & VD via CH

•  K.Q. Brown [1979], “Voronoi diagrams from convex hulls,” IPL 223-228.

•  K.Q. Brown [1980], “Geometric transforms for fast geometric algorithms,”
 PhD. Thesis, CMU-CS-80-101.

•  Guibas, Stolfi [1987],
 “Ruler, Compass and computer: The design and analysis of geometric algorithms,”
 Proc. of the NATO Advanced Science Institute, series F, vol. 40:
 Theoretical Foundations of Computer Graphics and CAD, 111-165.

•  Guibas, Stolfi [1985], “Primitives for the manipulation of general subdivisions and
 the computation of Voronoi diagrams,” ACM Trans. Graphics 4(2), 74-123.

•  [Edelsbrunner’87] pp: 302-306.

•  Aurenhammer [1987], “Power diagrams: properties, algorithms, and applications,”
 SIAM J. Computing 16, 78-96.

DT in 3d 9 CH in 3d+1

y

x

z=:(x,y)

Paraboloid of
Revolution ;

 :: (x,y) 5 (x,y, x2+y2)

SUMMARY:

Consider a plane < in 33 and the paraboloid of revolution ;.

(1)  Projection of <#; down to 32 is a circle C.
(2)  Every point of ; below < projects down to interior of C.
(3)  Every point of ; above < projects down to exterior of C.

2D (“Nearest-Point” and “Farthest-Point”)
Delaunay Triangulation algorithm via 3D-convex-hull in
O(n log n) time.

DT in 32 9 CH in 33

DT in 3d 9 CH in 3d+1

x

y

z

;

CH(:(P))

DT(P)

Generalizations & Applications

The Post Office Problem
PROBLEM: Preprocess a given set P of n points in the plane for:
Nearest Neighbor Query: Given a query point q, determine which point in

 P is nearest to q.

Shamos [1976]: Slab Method:
 Query Time: O(log n)
 Preprocessing Time: O(n2)
 Space: O(n2)

Kirkpatrick [1983]: Triangulation refinement method for planar point location:
 Query Time: O(log n)
 Preprocessing Time: O(n log n)
 Space: O(n)

Construct Voronoi Diagram. Each Voronoi region is convex, hence monotone.
Triangulate the Voronoi regions in O(n) time. Then apply Kirkpatrick’s method.

Andoni, Indyk [2006] “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions,” FOCS’06.

Largest Empty Circle Problem
PROBLEM: Determine the largest empty circle with center in CH(P).

O(n) Candidate centers. All can be found in O(n) time (after VD(P) is given):
 (1) Voronoi vertex inside CH(P),
 (2) Intersection of a Voronoi edge and an edge of CH(P).

!  Gabriel Graph
!  Relative Neighborhood Graph
!  Euclidean Minimum Spanning Tree
!  Nearest Neighbor Graph

Subgraphs of Delaunay Triangulation

Nearest Neighbor Graph: (p,q) is a directed edge in NNG "
>r8P-{p,q}: d(p,q) ! d(p,r).

NNG 2 EMST 2 RNG 2 GG 2 DT
p

q

Delaunay Triangulation:

(p,q) is a DT edge " % empty circle through p and q.

p q

Gabriel Graph: (p,q) is a GG edge "

%  empty circle with diameter (p,q),
(i.e., (p,q) intersects its dual Voronoi edge).

p q

Relative Neighborhood Graph: (p,q) is an RNG edge "
>r8P-{p,q}: (p,q) is NOT the longest edge of triangle (p,q,r)
 (i.e., d(p,q) ! max{d(p,r), d(q,r)})

 (i.e., lune(p,q) is empty).

Euclidean Minimum Spanning Tree: (p,q) is in EMST "
>cycles: (p,q) is NOT the longest edge of the cycle.

NNG 2 EMST 2 RNG 2 GG 2 DT
Delaunay Triangulation

NNG 2 EMST 2 RNG 2 GG 2 DT
Gabriel Graph:

NNG 2 EMST 2 RNG 2 GG 2 DT
Gabriel Graph:

NNG 2 EMST 2 RNG 2 GG 2 DT
Relative Neighborhood Graph:

NNG 2 EMST 2 RNG 2 GG 2 DT
Euclidean Minimum Spanning Tree:

NNG 2 EMST 2 RNG 2 GG 2 DT
Delaunay Triangulation Nearest Neighbor Graph:

Euclidean Minimum Spanning Tree
•  General (m edge, n vertex graph) MST algorithms (See also AAW):

 Kruskal or Prim O(m log n) or O(m + n log n) time.

 Yao or Cheriton-Tarjan: O(m log log n) time

 Chazelle: O(m *(m,n)) time.

•  EMST requires ?(n log n) time in the worst-case.

 [Linear time reduction from the Closest Pair Problem.]

•  EMST in O(n log n) time:

 (1) Compute DT in O(n log n) time (# edges in DT ! 3n –6).

 (2) Apply Prim or Kruskal MST algorithm to DT.

•  Next we will show EMST can be obtained from DT in only O(n) time.

Euclidean Minimum Spanning Tree
•  D. Cheriton, R.E. Tarjan [1976]

 “Finding minimum spanning trees,” SIAM J. Comp. 5(4), 724-742.

•  Also appears in §6.1 of [Preparata-Shamos’85].

•  Cheriton-Tarjan’s MST algorithm works on general graphs.

 When applied to a planar graph with n vertices and arbitrary

 edge-weights, it takes only O(n) time.

•  The following graph operations preserve planarity:

 (a) vertex or edge removal,

 (b) edge contraction (shrink the edge & identify its two ends):

e

Cheriton-Tarjan: MST algorithm (overview)

Input: edge-weighted graph G=(V,E)

1.  Q & @ (* queue of sub-trees *)

 for v 8 V do enqueue (v, Q) (* n single-node trees in Q *)

2.  while |Q| A 2 do
 - let T1 be the tree at the front of Q

 - find edge (u,v) 8 E with minimum weight s.t. u 8 T1 and v BT1

 - let T2 be the tree (in Q) that contains v

 - T & MERGE (T1 , T2) by adding edge (u,v)

 - remove T1 and T2 from Q

 - add T to the end of Q

 - CLEAN-UP after each stage (see next slide)

end

Cheriton-Tarjan

Invariants:
 (a) stage numbers of trees in Q form a non-decreasing sequence.
 (b) stage(T)=j implies T has at least 2j nodes. So, stage(T) ! log |T|.
 (c) after completion of stage j (i.e., the first time stage(T) > j, >T8Q)
 there are ! n/(2j) trees in Q.

CLEAN-UP:
 After the completion of each stage do “clean-up”, i.e., shrink G to

G*, where G* is G with each edge in the same tree contracted, i.e., each
tree in Q is contracted to a single node, with only those edges (u,v)8G* ,
u8T, v8T’, That are shortest incident edges between disjoint trees T, T’.

Cheriton-Tarjan: Algorithm

PROCEDURE MST of a Graph G=(V,E)

1.  Q & @ (* initialize queue *)

 for v 8 V do stage(v) & 0 ; enqueue (v, Q)

 j & 1

2.  while |Q| A 2 do
 - let T1 be the tree at the front of Q

 - if stage(T1) = j then CLEAN-UP; j & j+1

 - (u,v) & shortest edge, s.t. u 8 T1 and v BT1

 - let T2 be the tree (in Q) that contains v

 - T & MERGE (T1 , T2) by adding edge (u,v)

 - stage(T) & 1 + min{ stage(T1), stage(T2)}

 - remove T1 and T2 from Q

 - add T to the end of Q

end

Cheriton-Tarjan: Analysis

FACTS:
(a) A planar graph with m vertices has O(m) edges.

(b) Shrunken version of a planar graph is also planar

 (c) CLEAN-UP of stage j takes O(n/2j) time.

 (d) # stages ! Clog nD

 (e) During stage j each of the < 3n/ 2j edges of G* are checked

 at most twice (once from each end). So, stage j takes O(n/ 2j) time.

(f) Cheriton-Tarjan’s algorithm on planar graphs takes:

THEOREM: The MST of any weighted connected planar graph with n

vertices can be computed in optimal O(n) time.

COROLLARY: Given DT(P) of a set P of n points in the plane,

the following can be constructed in O(n) time:

(a) GG(P),

(b) RNG(P),

(c) EMST(P),

(d) NNG(P).

Proof: (a) & (d): obvious. (c): use Cheriton-Tarjan on DT(P). (b): see Exercise.

Extensions of Voronoi Diagrams
!  Voronoi Diagram of line-segments, circles, …

!  Medial Axis

!  Order k Voronoi Diagram

!  Farthest Point Voronoi Diagram (order n-1 VD)

!  Weighted Voronoi Diagram & Power Diagrams

!  Generalized metric (e.g., Lp metric)

VD of line-segments & circles

parabola

pa
r

lin
e

par

hyperbola

Higher Order VD
•  [PrS85] § 6.3

•  [Ede87] § 13.3-13.5

•  [ORo98] § 6.6.

•  Aurenhammer [1987], “Power diagrams: properties, algorithms, and
 applications,” SIAM J. Computing 16, 78-96.

•  D.T. Lee [1982], “On k-Nearest Neighbors Voronoi Diagram in the Plane,”
 IEEE Trans. Computers, C-31, 478-487.

1

2

3

5

4
1,2

7

6
8

1,3

3,7

7,8

6,8

5,8

5,6
2,5

2,4

4,5

1,4
4,6

3,4 4,7

6,7

Example: Order 2 Voronoi Diagram

Some Voronoi regions of order 2

are empty, e.g. (5,7).

Order k Voronoi Diagram
Given a set of n sites in space, partition the space into regions where any two points
belong to the same region iff they have the same set of k nearest sites.

Order k Voronoi Diagram of P:

Order k Voronoi Diagram

Voronoi region of T (a convex polyhedron, possibly empty)

pi

pj

 possible subsets of size k. Most have empty Voronoi regions.

In 2D only O(k(n-k)) of them are non-empty [D.T. Lee’82].

ALGORITHM Order-k VD of P 2 32
1.  For each point p 2 P do

 - lift p onto ;: z = x2 + y2, call it :(p)
 - <(p) & plane tangent to ; at :(p)

2.  Construct k-belt of the arrangement of the planes <(p), p 2 P, in 33.
3.  Project down this k-belt onto the base plane 32.

 This is the k-th order Voronoi Diagram of P.

FACT 1: In O(n3) time we can compute all k-levels of the arrangement and
 find the k-th order VD.

 Improvement by [D.T. Lee 1982]:

FACT 2: [Preparata-Shamos’85]:
 k-th order VD of n points in the plane can be obtained in time
 O(min { k2 , (n-k)2 } n log n).

COROLLARY 3: Complexity of the k nearest neighbors query problem is:
 O(k + log n) Query Time
 O(k2 n log n) Preprocessing Time
 O(kn) Space.

