COSC 6114

Prof. Andy Mirzaian

Voronoi Diagrams

Delaunay Triangulations

Introduction

 $P = \{ p_1, p_2, \dots, p_n \}$ a set of n points in the plane.

Voronoi(P): # regions = n, # edges \leq 3n-6, # vertices \leq 2n-5.

Delaunay Triangulation = Dual of the Voronoi Diagram.

 $\overline{DT(P)}$: # vertices = n, # edges \leq 3n-6, # triangles \leq 2n-5.

Delaunay triangles have the "empty circle" property.

Voronoi Diagram

 $P = \{ p_1, p_2, ..., p_n \}$ a set of n points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.

Voronoi Diagram of P:
$$VD(P) = \bigcup_{i=1}^{n} \{V(p_i)\}$$

Voronoi Diagram Properties

□ Each Voronoi region V(p_i) is a convex polygon (possibly unbounded).
 □ V(p_i) is unbounded ⇔ p_i is on the boundary of CH(P).
 □ Consider a Voronoi vertex v = V(p_i) ∩ V(p_j) ∩ V(p_k).
 Let C(v) = the circle centered at v passing through p_i, p_j, p_k.

 □ C(v) is circumcircle of Delaunay Triangle (p_i, p_j, p_k).
 □ C(v) is an empty circle, i.e., its interior contains no other sites of P.
 □ p_j = a nearest neighbor of p_i ⇒ V(p_i) ∩ V(p_j) is a Voronoi edge ⇒ (p_i, p_j) is a Delaunay edge.
 □ more later ...

Delaunay Triangulation Properties

References:

- [M. de Berge et al '00] chapters 7, 9, 13
- [Preparata-Shamos'85] chapters 5, 6
- [O'Rourke'98] chapter 5
- [Edelsbrunner'87] chapter 13
- AAW
- Lecture Notes 16, 17, 18, 19

ALGORITHMS

A brute-force VD Algorithm

 $P = \{ p_1, p_2, ..., p_n \}$ a set of n points in the plane.

Assume: no 3 points collinear, no 4 points cocircular.

Voronoi Region of
$$p_i$$
: $V(p_i) = \bigcap_{\substack{j=1 \ j \neq i}}^n H(p_i, p_j)$

intersection of n-1 half-planes

Voronoi Diagram of P: $VD(P) = \bigcup_{i=1}^{n} \{V(p_i)\}$

- Voronoi region of each site can be computed in O(n log n) time.
- There are n such Voronoi regions to compute.
- Total time O(n² log n).

Divide-&-Conquer Algorithm

- M. I. Shamos, D. Hoey [1975], "Closest Point Problems," FOCS, 208-215.
- D.T. Lee [1978], "Proximity and reachability in the plane,"

 Tech Report No. 831, Coordinated Sci. Lab., Univ. of Illinois at Urbana.
- D.T. Lee [1980], "Two dimensional Voronoi Diagram in the L_p metric," *JACM* 27, 604-618.

The first O(n log n) time algorithm to construct the Voronoi Diagram of n point sites in the plane.

ALGORITHM Construct Voronoi Diagram (P)

INPUT: $P = \{ p_1, p_2, ..., p_n \}$ sorted on x-axis.

OUTPUT: CH(P) and DCEL of VD(P).

- O(1) 1. [BASIS]: if n≤1 then return the obvious answer.
 - 2. [DIVIDE]: Let $m \leftarrow \lfloor n/2 \rfloor$

Split P on the median x-coordinate into

$$L = \{ p_1, ..., p_m \} \& R = \{ p_{m+1}, ..., p_n \}.$$

- 3. [RECUR]:
 - (a) Recursively compute CH(L) and VD(L).
 - (b) Recursively compute CH(R) and VD(R).
- 4. [MERGE]:
 - (a) Compute Upper & Lower Bridges of CH(L) and CH(R) & obtain CH(P).
 - (b) Compute the y-monotone dividing chain C between VD(L) & VD(R).
 - (c) $VD(P) \leftarrow [C] \cup [VD(L)$ to the left of C] $\cup [VD(R)$ to the right of C].
 - (d) return CH(P) & VD(P).

END.

T(n/2)

O(n)

T(n/2)

O(n)

 $P = \{ p_1, p_2, \dots, p_n \}$ a set of n points in the plane.

 $VD(P) = [C] \cup [VD(L) \text{ to the left of } C] \cup [VD(R) \text{ to the right of } C]$.

VD(L) and CH(L)

VD(R) and CH(R)

Upper & Lower bridges between CH(L) and CH(R) & two end-rays of chain C.

Fortune's Algorithm

- Steve Fortune [1987], "A Sweepline algorithm for Voronoi Diagrams," Algorithmica, 153-174.
- Guibas, Stolfi [1987],

"Ruler, Compass and computer: The design and analysis of geometric algorithms," *Proc. of the NATO Advanced Science Institute, series F, vol. 40:*Theoretical Foundations of Computer Graphics and CAD, 111-165.

- O(n log n) time algorithm by plane-sweep.
- See AAW animation.
- Generalization: VD of line-segments and circles.

The Waive Propagation View

• Simultaneously drop pebbles on calm lake at n sites.

• Watch the intersection of expanding waves.

Time as 3rd dimension

All sites have identical opaque cones.

Time as 3rd dimension

- All sites have identical opaque cones.
- $cone(p) \cap cone(q) = vertical hyperbola h(p,q)$.
- Vertical projection of h(p,q) on the xy base plane is PB(p,q).

Time as 3rd dimension

Visible intersection of the cones viewed upward from $z = -\infty$ is VD(P).

Conic Sections: Focus-Directrix

Eccentricity constant:

$$e = \frac{\overline{fw}}{\overline{hw}}$$

$$0 = e$$
 point (focus)
 $0 < e < 1$ ellipse
 $e = 1$ parabola
 $e > 1$ hyperbola

Sweep Plane & Sweep Line

Sweep Plane & Cone Intersection

Vertical projection of intersection of cone(p) & the sweep plane on the base plane is a **parabola** with focus p and directrix *l*.

Parabolic Evolution

Parabolic Evolution

Time snapshots of moving parabola associated with site p

The parabolic front

- Sweep plane opaque. So we don't see future events.
- Any part of a parabola inside another one is **invisible**, since a point (x,y) is inside a parabola iff at that point the cone of the parabola is below the sweep plane.
- Parabolic Front = visible portions of parabola; those that are on the boundary of the union of the cones past the sweep.
- Parabolic Front is a y-monotone piecewise-parabolic chain.
 (Any horizontal line intersects the Front in exactly one point.)
- Each parabolic arc of the Front is in some Voronoi region.

Each "break" between 2 consecutive parabolic arcs lies on a Voronoi edge.

Evolution of the parabolic front

The breakpoints of the parabolic front trace out every Voronoi edge as the sweep

line moves from $x = -\infty$ to $x = +\infty$.

 Every point of every Voronoi edge is a breakpoint of the parabolic front at some time during the sweep.

Proof:

- (a) Fig 1: Event w: C_u is an empty circle.
- (b) Fig 2: At event w point u must be a breakpoint of the par. front. Otherwise:

Some parabola Z covers u at v

 \Rightarrow

Focus of Z is on C_v and C_v is inside C_u

 \Rightarrow

Focus of Z is inside C_u

 \Rightarrow

 \mathbf{C}_{u} is not an empty circle

 \Rightarrow

a contradiction.

The Discrete Events

• SITE EVENT: Insert into the Parabolic Front.

■ CIRCLE EVENT: Delete from the Parabolic Front.

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

SITE EVENT

A new parabolic arc is inserted into the front when sweep line hits a new site.

A parabola cannot appear on the front by breaking through from behind. **The following are impossible:**

CIRCLE EVENT

- Circle event w causes parabolic arc β to disappear.
- α and γ cannot belong to the same parabola.

DATA STRUCTURES (T & Q)

T: [SWEEP STATUS: a balanced search tree] maintains a description of the current parabolic front.

Leaves: arcs of the parabolic front in y-monotone order.

Internal nodes: the break points.

Operations:

- (a) insert/delete an arc.
- (b) locate an arc intersecting a given horizontal line (for site event).
- (c) locate the arcs immediately above/below a given arc (for circle event).

We also hang from this the part of the Voronoi Diagram swept so far.

- Each leaf points to the corresponding site.
- Each internal node points to the corresponding Voronoi edge.

DATA STRUCTURES (T & Q)

Q: [SWEEP SCHEDULE: a priority queue] schedule of future events:

- > all future site-events &
- > some circle-events, i.e.,
 - those corresponding to 3 consecutive arcs of the current parabolic front as represented by T.
 - The others will be discovered & added to the sweep schedule before the sweep lines advances past them.
 - Conversely, not every 3 consecutive arcs of the current front specify a circle-event. Some arcs may drop out too early.

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

 $death(\alpha)$: pointing to a circle-event in Q as the meeting point of the Voronoi edges. (If the edges are diverging, then $death(\alpha) = nil$.)

Remove circle-event death(α) if:

- (a) α is split in two by a site-event, or
- (b) whenever one of the two arcs adjacent to α is deleted by a circle-event.

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

A circle-event update:

each parabolic arc β (leaf of T) points to the earliest circle-event, death(β), in Q that would cause deletion of β at the corresponding Voronoi vertex.

Event-driven simulation loop:

At each iteration remove the next event (with min x-coordinate) from Q & simulate the effect of the sweep-line advancing past that event point.

 (α,γ,δ) do not define a circle-event: (a,c,d) is not a circle-event now, it is past the current sweep position.

ANALYSIS

|T| = O(n): the front always has O(n) parabolic arcs, since splits occur at most n times by site events.Also by Davenport-Schinzel:

 $\dots \alpha \dots \beta \dots \alpha \dots \beta \dots$ is impossible.

[At most 2n-1 parabolic arcs in T.]

|Q| = O(n): there are at most n site-events and O(n) triples of consecutive arcs on the parabolic front to define circle-events.

Total # events = O(n), Time per event processing = $O(\log n)$.

THEOREM: Fortune's algorithm computes Voronoi Diagram of n sites in the plane using optimal O(n log n) time and O(n) space.

Delaunay Triangulation

Terrain Height Interpolation

A perspective view of a terrain.

A topographical map of a terrain.

Terrain Height Interpolation

A perspective view of a terrain.

A topographical map of a terrain.

Terrain: A 2D surface in 3D such that each vertical line intersects it in at most one point. $f: A \subseteq \Re^2 \longrightarrow \Re$. f(p) = height of point p in the domain A of the terrain.

Method: Take a finite sample set $P \subseteq A$. Compute f(P), and interpolate on A.

Triangulations of Planar Point Sets

 $P = \{p_1, p_2, \dots, p_n\} \subseteq \Re^2.$

A triangulation of P is a maximal planar straight-line subdivision with vertex set P.

THEOREM: Let P be a set of n points, not all collinear, in the plane.

Suppose h points of P are on its convex-hull boundary.

Then any triangulation of P has 3n-h-3 edges and 2n-h-2 triangles.

Proof: m = # triangles

3m + h = 2E (each triangle has 3 edges; each edge incident to 2 faces)

Euler: n - E + (m+1) = 2

 \therefore m = 2n - h - 2, E = 3n - h - 3.

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as dual of Voronoi Diagram VD(P).

Delaunay Graph: Dual of Voronoi Diagram

Delaunay Graph DG(P) as strainght-line dual of Voronoi Diagram VD(P).

Alternative Definition of Delaunay Graph:

- A triangle $\Delta(p_i, p_j, p_k)$ is a Delaunay triangle iff the circumscribing circle $C(p_i, p_i, p_k)$ is empty.
- Line segment (p_i, p_j) is a Delaunay edge iff there is an empty circle passing through p_i and p_j, and no other point in P.

THEOREM: Delaunay Graph of P is

- a straight-line plane graph, &
- a triangulation of P.

Proof: Follows from the following Lemmas.

LEMMA 1: Every edge of CH(P) is a Delaunay edge.

Proof: Consider a sufficiently large circle that passes through the 2 ends of CH edge e, and whose center is separated from CH(P) by the line aff(e).

LEMMA 2: No two Delaunay triangles overlap.

Proof: Consider circumscribing circles of two such triangles.

Line L separates the two triangles.

LEMMA 3: p_i & p_j are Voronoi neighbors \Rightarrow (p_i, p_j) is a Delaunay edge.

Proof: Consider the circle that passes through p_i & p_j and whose center is in the relative interior of the common Voronoi edge between $V(p_i)$ & $V(p_i)$.

LEMMA 4: If p_j and p_k are two (rotationally) successive Voronoi neighbors of p_i & $\angle p_i p_i p_k < 180^\circ$, then $\Delta(p_i, p_i, p_k)$ is a Delaunay triangle.

Proof: p_j & p_k must also be Voronoi neighbors. Now apply Lemma 3 to (p_i, p_j) , (p_i, p_k) , (p_j, p_k) .

LEMMA 4: If p_j and p_k are two (rotationally) successive Voronoi neighbors of p_i & $\angle p_i p_i p_k < 180^\circ$, then $\Delta(p_i, p_i, p_k)$ is a Delaunay triangle.

Proof: p_j & p_k must also be Voronoi neighbors. Now apply Lemma 3 to (p_i, p_j) , (p_i, p_k) , (p_j, p_k) .

COROLLARY 5: For each $p_i \in P$, the Delaunay triangles incident to p_i completely cover a small open neighborhood of p_i inside CH(P).

LEMMA 6: Every point inside CH(P) is covered by some Delaunay triangle in DG(P).

Proof: Let q be an arbitrary point in CH(P). Let (p_i, p_j) be the Delaunay edge immediately below q. $((p_i, p_j)$ exists because all convex-hull edges are Delaunay by Lemma 1.) From Corollary 5 let $\Delta(p_i, p_j, p_k)$ be the next Delaunay triangle incident to p_i as in the Figure below. Then, either $q \in \Delta(p_i, p_i, p_k)$, or the choice of (p_i, p_i) is contradicted.

The THEOREM follows from Lemmas 2-6. We now use DT(P) to denote the Delaunay triangulation of P.

Angles in Delaunay Triangulation

DEFINITION:

 \mathcal{T} = an arbitrary triangulation (with m triangles) of point set P. $\alpha_1, \alpha_2, ..., \alpha_{3m}$ = the angles of triangles in \mathcal{T} , sorted in increasing order. $A(\mathcal{T}) = (\alpha_1, \alpha_2, ..., \alpha_{3m})$ is called the angle-vector of \mathcal{T} .

THEOREM: DT(P) is the **unique** triangulation of P that lexicographically maximizes $A(\mathcal{T})$.

Proof: Later.

COROLLARY: DT(P) maximizes the smallest angle.

Useful for terrain approximation by triangulation & linear interpolation. Small angles (long skinny triangles) cause large approximation errors.

DT & VD via CH

- K.Q. Brown [1979], "Voronoi diagrams from convex hulls," IPL 223-228.
- K.Q. Brown [1980], "Geometric transforms for fast geometric algorithms," PhD. Thesis, CMU-CS-80-101.
- Guibas, Stolfi [1987],
 "Ruler, Compass and computer: The design and analysis of geometric algorithms,"
 Proc. of the NATO Advanced Science Institute, series F, vol. 40:
 Theoretical Foundations of Computer Graphics and CAD, 111-165.
- Guibas, Stolfi [1985], "Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams," ACM Trans. Graphics 4(2), 74-123.
- [Edelsbrunner'87] pp: 302-306.
- Aurenhammer [1987], "Power diagrams: properties, algorithms, and applications," SIAM J. Computing 16, 78-96.

DT in $\Re^d \propto CH$ in \Re^{d+1}

Lifting Transform λ : point $(x_1, x_2, ..., x_d) \mapsto \text{point } (x_1, x_2, ..., x_d, x_{d+1})$ where $x_{d+1} = x_1^2 + x_2^2 + ... + x_d^2$

DT in $\Re^2 \propto CH$ in \Re^3

SUMMARY:

Consider a plane Π in \Re^3 and the paraboloid of revolution Λ .

- (1) Projection of $\Pi \cap \Lambda$ down to \Re^2 is a circle C.
- (2) Every point of Λ below Π projects down to interior of C.
- (3) Every point of Λ above Π projects down to exterior of C.

2D ("Nearest-Point" and "Farthest-Point")
Delaunay Triangulation algorithm via 3D-convex-hull in O(n log n) time.

DT in $\Re^d \propto CH$ in \Re^{d+1}

Generalizations & Applications

The Post Office Problem

PROBLEM: Preprocess a given set P of n points in the plane for:

Nearest Neighbor Query: Given a query point q, determine which point in P is nearest to q.

Shamos [1976]: Slab Method:

Query Time: O(log n)Preprocessing Time: $O(n^2)$

Space: O(n²)

Kirkpatrick [1983]: Triangulation refinement method for planar point location:

Query Time: O(log n)
Preprocessing Time: O(n log n)

Space: O(n)

Construct Voronoi Diagram. Each Voronoi region is convex, hence monotone. Triangulate the Voronoi regions in O(n) time. Then apply Kirkpatrick's method.

Andoni, Indyk [2006] "Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions," FOCS'06.

Largest Empty Circle Problem

PROBLEM: Determine the largest empty circle with center in CH(P).

O(n) Candidate centers. All can be found in O(n) time (after VD(P) is given):

- (1) Voronoi vertex inside CH(P),
- (2) Intersection of a Voronoi edge and an edge of CH(P).

Subgraphs of Delaunay Triangulation

- ☐ Gabriel Graph
- ☐ Relative Neighborhood Graph
- ☐ Euclidean Minimum Spanning Tree
- □ Nearest Neighbor Graph

$NNG \subseteq EMST \subseteq RNG \subseteq GG \subseteq DT$

Delaunay Triangulation:

(p,q) is a DT edge $\Leftrightarrow \exists$ empty circle through p and q.

∃ empty circle with <u>diameter</u> (p,q), (i.e., (p,q) intersects its dual Voronoi edge).

Relative Neighborhood Graph: (p,q) is an RNG edge \Leftrightarrow $\forall r \in P-\{p,q\}: (p,q) \text{ is NOT the longest edge of triangle } (p,q,r) (i.e., d(p,q) <math>\leq \max\{d(p,r), d(q,r)\}$) (i.e., lune(p,q) is empty).

Nearest Neighbor Graph: (p,q) is a directed edge in NNG \Leftrightarrow $\forall r \in P-\{p,q\}: d(p,q) \leq d(p,r).$

$NNG \subseteq EMST \subseteq RNG \subseteq GG \subseteq DT$

Delaunay Triangulation

Gabriel Graph:

Relative Neighborhood Graph:

Euclidean Minimum Spanning Tree:

Nearest Neighbor Graph:

Euclidean Minimum Spanning Tree

General (m edge, n vertex graph) MST algorithms (See also AAW):

Kruskal or Prim $O(m \log n)$ or $O(m + n \log n)$ time.

Yao or Cheriton-Tarjan: O(m log log n) time

Chazelle: O(m α (m,n)) time.

• EMST requires $\Omega(n \log n)$ time in the worst-case.

[Linear time reduction from the Closest Pair Problem.]

- EMST in O(n log n) time:
 - (1) Compute DT in O(n log n) time (# edges in DT \leq 3n -6).
 - (2) Apply Prim or Kruskal MST algorithm to DT.
- Next we will show EMST can be obtained from DT in only O(n) time.

Euclidean Minimum Spanning Tree

- D. Cheriton, R.E. Tarjan [1976] *"Finding minimum spanning trees,"* SIAM J. Comp. 5(4), 724-742.
- Also appears in §6.1 of [Preparata-Shamos'85].
- Cheriton-Tarjan's MST algorithm works on general graphs.
 When applied to a planar graph with n vertices and arbitrary edge-weights, it takes only O(n) time.
- The following graph operations preserve planarity:
 - (a) vertex or edge removal,
 - (b) edge contraction (shrink the edge & identify its two ends):

Cheriton-Tarjan: MST algorithm (overview)

```
Input: edge-weighted graph G=(V,E)
     Q \leftarrow \emptyset (* queue of sub-trees *)
1.
     for v \in V do enqueue (v, Q) (* n single-node trees in Q *)
     while |Q| \ge 2 do
2.
      - let T<sub>1</sub> be the tree at the front of Q

    find edge (u,v) ∈ E with minimum weight s.t. u ∈ T₁ and v ∉T₁

      - let T<sub>2</sub> be the tree (in Q) that contains v
      - T \leftarrow MERGE(T_1, T_2) by adding edge (u,v)
      - remove T<sub>1</sub> and T<sub>2</sub> from Q
      - add T to the end of Q
      - CLEAN-UP after each stage (see next slide)
end
```

Cheriton-Tarjan

$$stage(T) = \begin{cases} 0 & \text{if } |T| = 1\\ 1 + \min\{stage(T_1), stage(T_2)\} & \text{if } T = MERGE(T_1, T_2) \end{cases}$$

Invariants:

- (a) stage numbers of trees in Q form a non-decreasing sequence.
- (b) stage(T)=j implies T has at least 2^{j} nodes. So, stage(T) \leq log |T|.
- (c) after completion of stage j (i.e., the first time stage(T) > j, $\forall T \in Q$) there are $\leq n/(2^{j})$ trees in Q.

CLEAN-UP:

After the completion of each stage do "clean-up", i.e., shrink G to G^* , where G^* is G with each edge in the same tree contracted, i.e., each tree in Q is contracted to a single node, with only those edges $(u,v) \in G^*$, $u \in T$, $v \in T$, That are shortest incident edges between disjoint trees T, T'.

Cheriton-Tarjan: Algorithm

```
PROCEDURE MST of a Graph G=(V,E)
1. Q \leftarrow \emptyset (* initialize queue *)
      for v \in V do stage(v) \leftarrow 0; enqueue (v, Q)
      j ← 1
      while |Q| \ge 2 do
       - let T<sub>1</sub> be the tree at the front of Q
       - if stage(T_1) = j then CLEAN-UP; j \leftarrow j+1
       - (u,v) \leftarrow shortest edge, s.t. u \in T_1 and v \notin T_1
       - let T<sub>2</sub> be the tree (in Q) that contains v
       - T \leftarrow MERGE(T_1, T_2) by adding edge (u,v)
       - stage(T) \leftarrow 1 + min{ stage(T<sub>1</sub>), stage(T<sub>2</sub>)}
       - remove T<sub>1</sub> and T<sub>2</sub> from Q
       - add T to the end of Q
end
```

Cheriton-Tarjan: Analysis

FACTS:

- (a) A planar graph with m vertices has O(m) edges.
- (b) Shrunken version of a planar graph is also planar
- (c) CLEAN-UP of stage j takes O(n/2^j) time.
- (d) # stages \leq [log n]
- (e) During stage j each of the < 3n/ 2^j edges of G* are checked at most twice (once from each end). So, stage j takes O(n/ 2^j) time.
- (f) Cheriton-Tarjan's algorithm on planar graphs takes:

Total Time =
$$O\left(\sum_{j=1}^{\lceil \log n \rceil} \frac{6n}{2^j}\right) = O(n)$$

THEOREM: The MST of any weighted connected planar graph with n vertices can be computed in optimal O(n) time.

COROLLARY: Given DT(P) of a set P of n points in the plane, the following can be constructed in O(n) time:

- (a) GG(P),
- (b) RNG(P),
- (c) EMST(P),
- (d) NNG(P).

Proof: (a) & (d): obvious. (c): use Cheriton-Tarjan on DT(P). (b): see Exercise.

Extensions of Voronoi Diagrams

- ☐ Voronoi Diagram of line-segments, circles, ...
- ☐ Medial Axis
- ☐ Order k Voronoi Diagram
- ☐ Farthest Point Voronoi Diagram (order n-1 VD)
- ☐ Weighted Voronoi Diagram & Power Diagrams
- ☐ Generalized metric (e.g., L_o metric)

VD of line-segments & circles

Higher Order VD

- [PrS85] § 6.3
- [Ede87] § 13.3-13.5
- [ORo98] § 6.6.
- Aurenhammer [1987], "Power diagrams: properties, algorithms, and applications," SIAM J. Computing 16, 78-96.
- D.T. Lee [1982], "On k-Nearest Neighbors Voronoi Diagram in the Plane," IEEE Trans. Computers, C-31, 478-487.

Order k Voronoi Diagram

Given a set of n sites in space, partition the space into regions where any two points belong to the same region iff they have the same set of k nearest sites.

Some Voronoi regions of order 2 are empty, e.g. (5,7).

Order k Voronoi Diagram

$$T \subseteq P = \{p_1, p_2, \dots, p_n\}, |T| = k$$

$$V_k(T) = \bigcap_{\substack{p_i \in T \\ p_j \in P-T}} H(p_i, p_j)$$

Voronoi region of T (a convex polyhedron, possibly empty)

Order k Voronoi Diagram of P:
$$VD_k(P) = \bigcup_{\substack{T \subseteq P \\ |T|=k}} \{V_k(T)\}$$

 $\binom{n}{k}$ possible subsets of size k. Most have empty Voronoi regions.

In 2D only O(k(n-k)) of them are non-empty [D.T. Lee'82].

ALGORITHM Order-k VD of P $\subseteq \Re^2$

- 1. For each point $p \subseteq P$ do
 - lift p onto Λ : $z = x^2 + y^2$, call it $\lambda(p)$
 - $\Pi(p)$ ← plane tangent to Λ at $\lambda(p)$
- 2. Construct k-belt of the arrangement of the planes $\Pi(p)$, $p \subseteq P$, in \Re^3 .
- 3. Project down this k-belt onto the base plane \Re^2 . This is the k-th order Voronoi Diagram of P.

FACT 1: In O(n³) time we can compute all k-levels of the arrangement and find the k-th order VD.

Improvement by [D.T. Lee 1982]:

FACT 2: [Preparata-Shamos'85]:

k-th order VD of n points in the plane can be obtained in time $O(\min \{ k^2, (n-k)^2 \} n \log n)$.

COROLLARY 3: Complexity of the **k nearest neighbors** query problem is:

O(k + log n) Query Time

O(k² n log n) Preprocessing Time

O(kn) Space.