The Chain Method • Definition: A chain C = (u₁, ..., u_p) is a planar straight-line graph with vertex set { u₁, ..., u_p } and edge set { (u_i, u_{i+1}) : i = 1, ..., p-1 } #### **The Monotone Chain** Definition: A chain C = (u₁, ..., u_p) is said to be monotone with respect to a straight line L if a line orthogonal to L intersects C in exactly one point. # Where does the query point lie? #### A query point lies? The projection of P on L can be located with a binary search in a unique interval (L(u_i), L(u_{i+1})) Determine on which side of the line containing u_iu_{i+1} the query point lies. #### **The Chain Method** Suppose there is a set of chains C = { C₁, ..., C_r } of a PSLG. We can apply bisection to find in which region a query point lies. #### The Chain Method (cont) If there are r chains in C and the longest chain has p vertices, then the search worst-case time is O(log p * log r) ## Steps to Construct the Chains ... - First, regularize the PSLG - Second, assign weights on the graph using weight-balancing algorithm - Third, construct chains by traversing the graph #### **Definitions** (for chains monotone w.r.t. y) - 1. A vertex v_j is said to be *regular* if there are vertices $y(v_i) < y(v_j) < y(v_k)$ such that (v_i, v_j) and (v_i, v_k) are edges of G. - 2. Graph G is said to be regular if each v_j is regular for 1 < j < N ## Example: non regular ## Regularize Nonregular Vertices (remove cusps) - Definition: cusp - 2-pass sweepline to remove cusps - Connect to the vertex closest to (above) ℓ. #### Weight Assignment of Edges - All edges satisfy : - 1. Each edge has positive weight - 2. For each $V_j(j \neq 1, N)$, $W_{in}(V_i) = W_{out}(V_j)$ **PS.** Win(Vi) = $$\sum_{e \in IN(v)} W(e)$$ $$Wout(Vi) = \sum_{e \in OUT(v)} W(e)$$ $$Vin(Vi) = |IN(v)|$$ #### **WEIGHT-BALANCING REGULAR PSLG** ## 1. Initialization for each edge e do W(e) = 12. First pass for ($i = 2; i \le N-1; i++$) { d_1 = leftmost outgoing edge of V_i $\overline{W(d_1)} = \overline{W_{in}}(V_i) - \overline{V_{out}(V_i)} + 1$ #### **WEIGHT-BALANCING REGULAR PSLG (cont)** ``` 3. Second pass For (i = N-1; i >= 2; i--) \{ ``` ### **Example: Initialization** #### Example: 1st pass #### Example: 2nd pass if $$(W_{\text{out}}(V_i) > W_{\text{in}}(V_i))$$ { $$d_2 = \text{leftmost incoming edge}$$ $$(V_i)$$ $$W(d_2) = W_{\text{out}}(V_i) - W_{\text{in}}(V_i) + W$$ $$(d_0)$$ ### **Example: final result** #### Ex: construct chains # **Ex: Polygon and Monotone Chains** #### **Theorem** - Time complexity : O(log² N) - Space complexity : O(N) - Preprocessing time: O(N log N) - 1. Sorting N vertex of PSLG in O(NlogN) - 2. Construct status structure, each node need O(logN) #### **Exercise** Apply the chain method to determine which region the point P lies.