The Chain Method

• Definition:
A chain C = (u₁, ..., u_p) is a planar straight-line graph with vertex set { u₁, ..., u_p } and edge set { (u_i, u_{i+1}) : i = 1, ..., p-1 }

The Monotone Chain

Definition:
 A chain C = (u₁, ..., u_p) is said to be monotone with respect to a straight line L if a line orthogonal to L

intersects C in

exactly one point.

Where does the query point lie?

A query point lies?

The projection of P on L can be located with a binary search in a unique interval (L(u_i), L(u_{i+1}))

 Determine on which side of the line containing u_iu_{i+1} the query point lies.

The Chain Method

Suppose there is a set of chains C = { C₁, ..., C_r } of a PSLG. We can apply bisection to find in which region a query point lies.

The Chain Method (cont)

 If there are r chains in C and the longest chain has p vertices, then the search worst-case time is O(log p * log r)

Steps to Construct the Chains ...

- First, regularize the PSLG
- Second, assign weights on the graph using weight-balancing algorithm
- Third, construct chains by traversing the graph

Definitions

(for chains monotone w.r.t. y)

- 1. A vertex v_j is said to be *regular* if there are vertices $y(v_i) < y(v_j) < y(v_k)$ such that (v_i, v_j) and (v_i, v_k) are edges of G.
- 2. Graph G is said to be regular if each v_j is regular for 1 < j < N

Example: non regular

Regularize Nonregular Vertices (remove cusps)

- Definition: cusp
- 2-pass sweepline to remove cusps
 - Connect to the vertex closest to (above) ℓ.

Weight Assignment of Edges

- All edges satisfy :
- 1. Each edge has positive weight
- 2. For each $V_j(j \neq 1, N)$, $W_{in}(V_i) = W_{out}(V_j)$

PS. Win(Vi) =
$$\sum_{e \in IN(v)} W(e)$$

$$Wout(Vi) = \sum_{e \in OUT(v)} W(e)$$

$$Vin(Vi) = |IN(v)|$$

WEIGHT-BALANCING REGULAR PSLG

1. Initialization for each edge e do W(e) = 12. First pass for ($i = 2; i \le N-1; i++$) { d_1 = leftmost outgoing edge of V_i $\overline{W(d_1)} = \overline{W_{in}}(V_i) - \overline{V_{out}(V_i)} + 1$

WEIGHT-BALANCING REGULAR PSLG (cont)

```
3. Second pass
For (i = N-1; i >= 2; i--) \{
```

Example: Initialization

Example: 1st pass

Example: 2nd pass

if
$$(W_{\text{out}}(V_i) > W_{\text{in}}(V_i))$$
 {
$$d_2 = \text{leftmost incoming edge}$$

$$(V_i)$$

$$W(d_2) = W_{\text{out}}(V_i) - W_{\text{in}}(V_i) + W$$

$$(d_0)$$

Example: final result

Ex: construct chains

Ex: Polygon and Monotone Chains

Theorem

- Time complexity : O(log² N)
- Space complexity : O(N)
- Preprocessing time: O(N log N)
 - 1. Sorting N vertex of PSLG in O(NlogN)
 - 2. Construct status structure, each node need O(logN)

Exercise

 Apply the chain method to determine which region the point P lies.

