
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Armazenamento Persistente
no Kubernetes Usando LVM
com Discos Compartilhados

José Carlos Cieni Júnior Islene Calciolari Garcia

Relatório Técnico - IC-PFG-25-59

Projeto Final de Graduação

2025 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Armazenamento Persistente no Kubernetes Usando LVM
com Discos Compartilhados

José Carlos Cieni Júnior∗ Islene Calciolari Garcia∗

Resumo

A arquitetura extensível do Kubernetes, consolidada como uma das principais pla-
taformas para orquestração de contêineres, viabiliza a integração de múltiplos sistemas
de armazenamento persistente. Essa integração é padronizada pela especificação CSI
(Container Storage Interface), que define um conjunto de chamadas RPC para o desen-
volvimento de plugins (drivers) por terceiros. Nesse contexto, o LVM (Logical Volume
Manager) destaca-se como uma ferramenta madura e onipresente para o gerenciamento
de discos em ambientes Linux. Apesar de sua simplicidade para o gerenciamento de
volumes locais, a aplicação do LVM em clusters com armazenamento compartilhado
tradicionalmente depende da configuração e instalação de softwares adicionais para for-
mação de cluster e locking distribuído, o que introduz uma complexidade elevada ao
processo de implantação. Este trabalho apresenta o desenvolvimento do csi-shared-lvm,
um driver CSI que utiliza a biblioteca de leader election do Kubernetes para coordenar
a manipulação dos metadados do LVM e prevenir a corrupção de dados nos volumes
provisionados, dispensando a necessidade de ferramentas externas. O resultado é uma
solução de armazenamento robusta, de código aberto, implantação simples e que oti-
miza significativamente os processos de gerenciamento e instalação de armazenamento
persistente em ambientes de infraestrutura compartilhada.

Palavras-chave: Kubernetes, Armazenamento Persistente, Armazenamento Compar-
tilhado, CSI, LVM, Sistemas Distribuídos.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

Sumário

1 Introdução . 3

2 Revisão Teórica . 4
2.1 Contêineres . 4
2.2 Kubernetes . 5
2.3 gRPC . 6
2.4 Container Storage Interface (CSI) . 7
2.5 Logical Volume Manager (LVM) . 8

3 Cenário e Problematização . 9
3.1 Limitações dos Sistemas de Arquivos Tradicionais 9
3.2 O LVM e o Desafio da Concorrência de Metadados 9
3.3 A Complexidade do Clustered LVM (CLVM) 10
3.4 Abordagem Proposta: Coordenação Nativa via Kubernetes 11

4 Arquitetura de CSI no Kubernetes . 11
4.1 Componentes Auxiliares (sidecars) . 12
4.2 Topologia de Implantação . 12

5 Implementação do Driver . 13
5.1 Controller Plugin . 13
5.2 Node Plugin . 14
5.3 Exemplo de fluxo de execução: criar e usar um volume 15

6 Resultados e Aprendizados . 16

7 Trabalhos Futuros . 17
7.1 Evolução da Estratégia de Testes . 17
7.2 Topology-Awareness . 18

8 Agradecimentos . 18

9 Conclusões . 18

10 Referências Bibliográficas . 19

2

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 3

1 Introdução

A revolução dos contêineres, impulsionada pelo surgimento do Docker, transformou fun-
damentalmente a maneira como softwares são desenvolvidos, empacotados e operados. O
paradigma de Infraestrutura como Código (IaC) e a imutabilidade dos contêineres per-
mitiram que aplicações fossem escaladas horizontalmente com facilidade sem precedentes.
Inicialmente, esse ecossistema focou-se primariamente em aplicações stateless (sem estado),
como servidores web e microsserviços de processamento, onde a perda de uma instância não
acarretava perda de dados críticos.

Neste contexto, o Kubernetes se estabeleceu como um padrão de facto para a orquestra-
ção de contêineres, transformando a maneira como aplicações são implantadas em nuvens
públicas, infraestruturas privadas (on-premises) e em ambientes de desenvolvimento e expe-
rimentação, como os populares homelabs. No entanto, à medida que a adoção de tecnologias
cloud-native amadureceu, surgiu a demanda crescente de migrar cargas de trabalho stateful
(com estado) — como bancos de dados, sistemas de mensageria e sessões em servidores web
— para dentro de clusters. Diferentemente das aplicações stateless, essas cargas de trabalho
exigem garantias estritas de persistência, durabilidade e consistência de dados.

O desafio do armazenamento em ambientes orquestrados reside na natureza dinâmica
dos contêineres. Um Pod (a menor unidade de execução do Kubernetes) é efêmero, podendo
ser encerrado em um nó e reiniciado em outro a qualquer momento. O armazenamento,
portanto, deve ser desacoplado do ciclo de vida do contêiner e do nó físico, sendo capaz de
“seguir” a aplicação onde quer que ela seja agendada.

Para endereçar essa demanda de forma padronizada e extensível, a comunidade de desen-
volvimento do Kubernetes, em colaboração com outros projetos de orquestração, liderou a
elaboração da especificação CSI (Container Storage Interface). O objetivo primário da CSI é
desacoplar completamente a lógica de armazenamento do núcleo do orquestrador, definindo
uma interface padrão baseada em chamadas RPC. Isso permite que qualquer provedor de
armazenamento desenvolva um plugin (driver) compatível com o ecossistema.

Em infraestruturas Linux tradicionais, o Logical Volume Manager (LVM) é uma ferra-
menta consolidada e flexível para o gerenciamento de armazenamento em bloco. Contudo,
a utilização de volumes LVM em um ambiente de armazenamento compartilhado, acessado
por múltiplos nós de um cluster, apresenta desafios críticos de controle de acesso concor-
rente. Operações de escrita nos metadados dos volumes (como criação, exclusão ou expan-
são), se executadas de forma não coordenada, podem corromper informações vitais, como
a localização física dos dados (extents), resultando em perda total de dados. As soluções
existentes para mitigar esses riscos, como o Clustered LVM (CLVM), dependem de uma
pilha de software complexa e anterior à era dos contêineres, envolvendo gerenciadores de
locking distribuído (como dlm e sanlock) e camadas de comunicação de cluster (corosync,
pacemaker). Implantar e manter essa pilha dentro ou paralelamente a um cluster Kuber-
netes adiciona uma sobrecarga operacional significativa e cria uma redundância funcional,
visto que o próprio Kubernetes já é um gerenciador de cluster altamente sofisticado.

É relevante notar que, embora existam implementações de drivers CSI para LVM desen-
volvidas pela comunidade, a maioria absoluta delas foca exclusivamente no provisionamento
de volumes locais ou depende das já citadas soluções complexas como o CLVM. Essa abor-

4 J. C. Cieni Júnior; I. C. Garcia

dagem tem limitações significativas: ao criar o volume no disco de um nó específico, gera-se
uma forte afinidade entre a carga de trabalho (pod) e aquela máquina, impedindo o seu
reagendamento em outros nós do cluster. Essa restrição compromete uma das principais
vantagens da orquestração: a resiliência e a distribuição flexível de aplicações. Dessa forma,
permanece uma lacuna clara no que tange a soluções integradas para o uso de LVM em
cenários de armazenamento compartilhado.

Este trabalho partiu da premissa de que o próprio Kubernetes já fornece os mecanismos
necessários para gerenciar o acesso concorrente de forma integrada e elegante. O driver
csi-shared-lvm utiliza a biblioteca de leader election do Kubernetes, que por sua vez faz
uso da API de Leases, para garantir que apenas uma instância de seu componente de controle
(controller plugin) esteja ativa por vez. Essa instância eleita se torna a única autoridade
para executar operações de modificação no LVM, coordenando o acesso aos metadados e
eliminando o risco de corrupção. A implementação resultante demonstra que é possível
construir uma solução mais simples e robusta, que elimina a necessidade de softwares de
cluster externos e alinha o gerenciamento do armazenamento ao ecossistema cloud-native.
Este projeto foi desenvolvido como software de código aberto, visando facilitar sua adoção,
manutenção e a contribuição da comunidade.

2 Revisão Teórica

Nesta seção, são apresentados os conceitos fundamentais que servem como base para o
desenvolvimento deste projeto.

2.1 Contêineres

Contêineres são uma tecnologia de virtualização em nível de sistema operacional que per-
mite empacotar e isolar aplicações com suas dependências completas — bibliotecas, binários
e arquivos de configuração — em um ambiente de execução autocontido. Diferentemente
das máquinas virtuais (VMs), que virtualizam o hardware e executam um sistema operaci-
onal completo para cada instância, os contêineres compartilham o mesmo kernel do sistema
operacional do hospedeiro (host). Essa característica os torna extremamente leves, portá-
teis e eficientes, permitindo que sejam iniciados em segundos e consumam significativamente
menos recursos de CPU, memória e armazenamento.

A viabilidade técnica dos contêineres no Linux baseia-se em uma combinação de recursos
fundamentais do kernel que proporcionam isolamento e controle granular de recursos:

• Namespaces (Espaços de Nomes): Isolam os recursos globais do sistema, cri-
ando a ilusão de que cada contêiner possui sua própria instância exclusiva do sistema
operacional. Os principais namespaces utilizados são:

– PID (Process ID): Isola a árvore de processos, impedindo a visualização ou
interação com processos externos.

– NET (Network): Fornece uma pilha de rede própria, com interfaces, tabelas
de roteamento e regras de firewall independentes.

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 5

– MNT (Mount): Isola os pontos de montagem do sistema de arquivos, garan-
tindo uma hierarquia de diretórios exclusiva.

– UTS (UNIX Time-sharing System): Permite a configuração independente
de hostname e nome de domínio.

– IPC (Inter-Process Communication): Isola recursos de comunicação entre
processos, como filas de mensagens e semáforos.

– USER: Mapeia IDs de usuário e grupo, permitindo privilégios de root dentro do
contêiner sem conceder acesso administrativo ao host.

• Control Groups (cgroups): Gerenciam e limitam o consumo de recursos (CPU,
memória, I/O de disco e rede) por grupos de processos, garantindo que um único
contêiner não possa monopolizar os recursos do sistema hospedeiro.

• Union Filesystems (OverlayFS): Permitem a sobreposição de sistemas de arquivos,
viabilizando a construção eficiente de imagens em camadas imutáveis.

Historicamente, projetos como o LXC (Linux Containers) foram pioneiros ao fornecer
ferramentas para interagir com esses recursos. No entanto, foi o Docker que democratizou a
tecnologia ao introduzir um fluxo de trabalho simplificado e o conceito de imagens baseadas
em camadas (layered filesystem). Isso facilitou a distribuição e o versionamento de software,
resolvendo o clássico problema do “na minha máquina funciona” e garantindo que a aplica-
ção se comporte da mesma forma independentemente do ambiente. Posteriormente, a Open
Container Initiative (OCI) padronizou o formato das imagens e o tempo de execução (run-
time), garantindo a interoperabilidade entre diferentes ferramentas. Essa combinação de
isolamento, eficiência e padronização consolidou os contêineres como a base da arquitetura
de microsserviços e das práticas modernas de DevOps.

2.2 Kubernetes

Com a popularização dos contêineres, surgiu a necessidade de orquestrar essas cargas de
trabalho em larga escala. O Kubernetes (frequentemente abreviado como K8s) consolidou-
se como a plataforma padrão para essa tarefa. Originalmente desenvolvido pelo Google
e atualmente mantido pela Cloud Native Computing Foundation (CNCF), o Kubernetes
abstrai a complexidade da infraestrutura subjacente, permitindo automatizar a implantação,
o escalonamento e o gerenciamento de aplicações em contêineres.

O funcionamento da plataforma baseia-se em um modelo declarativo: o operador
define o estado desejado do sistema (por exemplo, o número de réplicas de uma aplicação)
através de manifestos YAML, e o Kubernetes trabalha continuamente para reconciliar o
estado atual do cluster com o desejado, oferecendo recursos nativos de autorrecuperação
(self-healing) e balanceamento de carga.

Arquiteturalmente, um cluster Kubernetes é dividido em dois planos principais:

1. Control Plane (Plano de Controle): Atua como o cérebro do cluster, tomando
decisões globais e detectando eventos. Seus principais componentes são:

6 J. C. Cieni Júnior; I. C. Garcia

• kube-apiserver: O componente central que expõe a API do Kubernetes. É o
único ponto de entrada para operações de gerenciamento.

• etcd: Um banco de dados chave-valor distribuído, consistente e de alta disponi-
bilidade, utilizado como a fonte única de verdade para todos os dados e estados
do cluster.

• kube-scheduler: Responsável por observar a criação de novos Pods e atribuí-los
aos nós de trabalho mais adequados, baseando-se em disponibilidade de recursos
e políticas de afinidade.

• kube-controller-manager: Executa os processos de controle que monitoram o
estado do cluster (como detectar nós inativos ou garantir o número correto de
réplicas de uma aplicação).

2. Worker Nodes (Nós de Trabalho): São as máquinas (físicas ou virtuais) onde as
aplicações são efetivamente executadas. Cada nó contém:

• kubelet: O agente principal que se comunica com o Control Plane e garante que
os contêineres descritos nos Pods estejam ativos e saudáveis.

• kube-proxy: Mantém as regras de rede no host, permitindo a comunicação entre
os serviços dentro e fora do cluster.

• Container Runtime: O software responsável pela execução dos contêineres (ex:
containerd, CRI-O).

No Kubernetes, a menor unidade de implantação é o Pod, que pode conter um ou mais
contêineres compartilhando armazenamento e rede. Contudo, devido à natureza efêmera
dos Pods (que podem ser destruídos e recriados em nós diferentes a qualquer momento), o
gerenciamento de dados persistentes exige abstrações específicas, como os PersistentVolumes
(PVs) e PersistentVolumeClaims (PVCs).

2.3 gRPC

O gRPC (gRPC Remote Procedure Calls) é um framework de código aberto de alto desem-
penho, desenvolvido pelo Google, que permite a uma aplicação cliente executar métodos em
uma aplicação servidora localizada em outra máquina com a mesma simplicidade de uma
chamada de função local. Essa abstração facilita enormemente a construção de sistemas
distribuídos complexos.

Diferentemente das APIs tradicionais baseadas no estilo arquitetural REST — que geral-
mente utilizam o protocolo HTTP/1.1 e formatos de texto verbosos como JSON — o gRPC
foi projetado para baixa latência e alta eficiência, baseando-se em dois pilares fundamentais:

• Protocol Buffers (Protobuf): Em vez de JSON ou XML, o gRPC utiliza o Proto-
buf como sua Linguagem de Definição de Interface (IDL) e mecanismo de serialização.
O Protobuf serializa dados estruturados em um formato binário compacto, o que re-
duz drasticamente o tamanho dos pacotes de rede (payloads) e o consumo de CPU

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 7

necessário para processá-los. Além disso, o Protobuf impõe uma abordagem Contract-
First : a interface do serviço é definida estritamente em arquivos .proto, a partir dos
quais o código do cliente (stub) e do servidor é gerado automaticamente em diversas
linguagens, garantindo tipagem forte e consistência entre as partes.

• HTTP/2: O gRPC utiliza o HTTP/2 como camada de transporte, herdando bene-
fícios como a multiplexação (múltiplas requisições paralelas sobre uma única conexão
TCP), compressão de cabeçalhos e suporte nativo a streaming bidirecional.

2.4 Container Storage Interface (CSI)

A Container Storage Interface (CSI) é uma especificação padrão da indústria que visa expor
sistemas de armazenamento de bloco e de arquivos (Storage Providers - SPs) a cargas
de trabalho em orquestradores de contêineres (Container Orchestrators - COs), como o
Kubernetes.

Historicamente, a lógica para interagir com volumes de armazenamento (como AWS EBS,
GCP PD, servidores NFS, etc.) era integrada diretamente ao código-fonte do Kubernetes,
um modelo conhecido como in-tree. Essa abordagem apresentava desafios significativos: a
adição de novos drivers ou a correção de bugs dependia inteiramente do ciclo de lançamento
do próprio Kubernetes, além de introduzir riscos de estabilidade e segurança ao núcleo do
orquestrador. A CSI resolveu esse problema ao desacoplar a camada de armazenamento,
permitindo que plugins (drivers) sejam desenvolvidos e atualizados por terceiros de forma
independente (out-of-tree).

A arquitetura da CSI define um conjunto de serviços gRPC que um driver deve imple-
mentar para gerenciar o ciclo de vida completo de um volume. Esses serviços são divididos
em três categorias principais:

1. Identity Service: Responsável por expor informações sobre o plugin, como nome,
versão e capacidades suportadas, além de permitir verificações de saúde (health checks)
por parte do orquestrador.

2. Controller Service: Gerencia as operações de alto nível e globais do cluster, que não
estão atreladas a um nó específico. Suas principais funções incluem o provisionamento
de volumes (CreateVolume, DeleteVolume) e anexação (ControllerPublishVolume,
que conecta um volume a um nó). No contexto do Kubernetes, este componente
geralmente é implantado como um Deployment ou StatefulSet.

3. Node Service: Executa operações locais no nó onde a carga de trabalho será execu-
tada. O orquestrador invoca este serviço para preparar o dispositivo
(NodeStageVolume, que realiza formatação e montagem global) e para disponibilizá-lo
ao Pod (NodePublishVolume, que realiza o bind mount no diretório do contêiner).
Este componente é tipicamente implantado como um DaemonSet, garantindo uma
instância em cada nó do cluster.

Essa separação de responsabilidades é crucial para a arquitetura proposta neste trabalho:
enquanto o Node Service deve rodar em todos os nós para montar os volumes LVM, o

8 J. C. Cieni Júnior; I. C. Garcia

Controller Service — responsável por alterar os metadados do LVM — exige um controle
rigoroso de concorrência, justificando o uso de mecanismos de eleição de líder.

2.5 Logical Volume Manager (LVM)

O Logical Volume Manager (LVM) é um framework de mapeamento de dispositivos para
o kernel Linux que introduz uma camada de abstração entre o armazenamento físico e o
sistema de arquivos. Diferentemente do particionamento tradicional, que é estático e rígido,
o LVM permite um gerenciamento dinâmico, possibilitando o redimensionamento de volumes
e a agregação de múltiplos discos em um único pool de armazenamento sem interrupção de
serviço.

A arquitetura do LVM organiza-se em três níveis hierárquicos, fundamentados no con-
ceito de Extents:

1. Physical Volumes (PVs): Representam a camada física bruta, que pode ser um
disco rígido local, uma partição ou uma LUN (Logical Unit Number) oriunda de uma
SAN. O LVM divide cada PV em pequenos blocos de tamanho fixo chamados Physical
Extents (PEs).

2. Volume Groups (VGs): Atuam como um repositório de armazenamento unificado,
agrupando um ou mais PVs. O espaço total de um VG é a soma de todos os PEs
disponíveis nos discos físicos subjacentes.

3. Logical Volumes (LVs): São os dispositivos de bloco virtuais consumidos pelo sis-
tema operacional (equivalentes a partições). O LVM cria esses volumes mapeando
Logical Extents (LEs) para os Physical Extents (PEs) do grupo.

É esse mapeamento entre LEs e PEs que confere ao LVM sua flexibilidade: os dados de
um volume lógico não precisam estar contíguos no disco físico, podendo estar espalhados por
vários discos (spanning) ou distribuídos para performance (striping). Além disso, essa abs-
tração permite funcionalidades avançadas como Thin Provisioning (alocação sob demanda)
e Snapshots (cópias de leitura/escrita em um ponto no tempo), essenciais para ambientes
de contêineres.

A característica crítica para a compreensão deste trabalho reside na manipulação dos
metadados do LVM. As informações que descrevem o mapeamento entre os extents (qual LE
aponta para qual PE) são gravadas em uma área reservada no início de cada Physical Volume.
Em uma instalação padrão, o LVM assume que o sistema operacional tem acesso exclusivo
aos discos. Consequentemente, não existe um mecanismo nativo de bloqueio (locking) para
ambientes onde múltiplos hosts acessam o mesmo disco compartilhado simultaneamente. Se
dois nós tentarem modificar a estrutura de um VG ao mesmo tempo (por exemplo, criando
volumes), ambos lerão os metadados, farão alterações na memória e tentarão gravar de
volta. Isso resulta em uma condição de corrida (race condition) que corrompe os metadados,
levando à perda irreversível do mapeamento dos dados. É este problema específico que as
soluções de orquestração de armazenamento compartilhado precisam resolver.

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 9

3 Cenário e Problematização

O gerenciamento de armazenamento em ambientes distribuídos, como clusters Kubernetes,
impõe desafios de coordenação que inexistem em servidores isolados (standalone). O cenário
típico abordado neste trabalho envolve uma infraestrutura — seja on-premises ou em nuvem
— onde é disponibilizado um único dispositivo de bloco compartilhado de grande capacidade
(por exemplo, um LUN via iSCSI ou Fibre Channel), visível simultaneamente por todos os
nós do cluster.

O problema central reside em como particionar e distribuir esse recurso monolítico entre
múltiplas aplicações de forma segura, dinâmica e isolada.

3.1 Limitações dos Sistemas de Arquivos Tradicionais

Uma abordagem inicial e ingênua seria formatar esse dispositivo compartilhado com um
sistema de arquivos padrão (como ext4 ou XFS) e montá-lo simultaneamente em todos
os nós. Essa estratégia, contudo, é inviável. Sistemas de arquivos tradicionais não são
cluster-aware: eles operam sob a premissa de que o sistema operacional local detém controle
exclusivo sobre o dispositivo.

Se múltiplos nós montarem o mesmo volume em modo de leitura e escrita, cada kernel
tentará gerenciar o journal, alocar inodes e atualizar blocos de forma independente, desco-
nhecendo as operações dos vizinhos. Isso resulta em um estado de inconsistência conhecido
como Split-Brain, levando inevitavelmente à corrupção severa do sistema de arquivos e perda
de dados. Embora existam sistemas de arquivos projetados para esse fim (como GFS2 ou
OCFS2), sua complexidade de gerenciamento e overhead de performance muitas vezes não
justificam o uso para cargas de trabalho que requerem apenas isolamento de volume, e não
compartilhamento de arquivos simultâneo.

3.2 O LVM e o Desafio da Concorrência de Metadados

O LVM apresenta-se como a ferramenta ideal para resolver o problema do particionamento.
Ao tratar o grande LUN compartilhado como um Physical Volume (PV), é possível criar vo-
lumes lógicos (LVs) dinamicamente para atender às demandas de Persistent Volume Claims
(PVCs) do Kubernetes.

No entanto, o uso de LVM em mídia compartilhada desloca o problema de concorrência
da camada de dados para a camada de gerenciamento. As operações que alteram a estrutura
do Volume Group — como lvcreate, lvremove ou lvextend — modificam os metadados
gravados no início do disco.

Sem um mecanismo de coordenação, ocorre uma condição de corrida: se o Nó A e
o Nó B tentarem criar volumes simultaneamente, ambos lerão o mesmo estado inicial dos
metadados, calcularão novas alocações de extents que podem conflitar e tentarão gravar as
alterações. O último a escrever sobrescreverá as modificações do primeiro, corrompendo o
mapa de alocação do LVM e potencialmente inutilizando todo o Volume Group.

10 J. C. Cieni Júnior; I. C. Garcia

Figura 1: Ilustração da condição de corrida (Race Condition) ao manipular metadados
LVM em armazenamento compartilhado sem coordenação. A escrita do Nó B sobrescreve a
do Nó A, resultando em corrupção dos dados.

É crucial distinguir aqui os dois planos de operação:

1. Plano de Controle (Crítico): Operações que alteram metadados (criar/deletar
volumes). Exigem exclusividade absoluta.

2. Plano de Dados (Seguro): Operações de leitura/escrita dentro do sistema de ar-
quivos do volume lógico. Como o Kubernetes garante, através do modo de acesso
ReadWriteOnce (RWO), que um volume só será montado em um nó por vez, não há
risco de concorrência nesta camada.

3.3 A Complexidade do Clustered LVM (CLVM)

A solução tradicional da indústria para o problema dos metadados é o Clustered LVM
(CLVM). Esta arquitetura utiliza um gerenciador de locking distribuído (como dlm ou
sanlock) para serializar o acesso aos metadados. Para funcionar, essas ferramentas exi-
gem uma infraestrutura de cluster subjacente, tipicamente composta por daemons como
Corosync e Pacemaker, responsáveis por gerenciar a associação dos nós (membership) e o
quorum.

No contexto do Kubernetes, adotar o CLVM implica em criar um “cluster dentro do
cluster”. Isso gera uma redundância conceitual e uma elevada sobrecarga operacional: o
administrador precisa gerenciar e depurar uma pilha de software de alta disponibilidade
complexa e legada apenas para provisionar discos.

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 11

Figura 2: Comparativo da pilha de software. À esquerda, a complexidade da abordagem
tradicional baseada em CLVM. À direita, a abordagem simplificada proposta neste trabalho,
eliminando a dependência de gerenciadores de cluster externos.

3.4 Abordagem Proposta: Coordenação Nativa via Kubernetes

A proposta deste trabalho é eliminar a dependência de clusters externos, delegando a res-
ponsabilidade de coordenação ao próprio Kubernetes.

A arquitetura proposta utiliza o pacote k8s.io/client-go/tools/leaderelection
para implementar um padrão de Eleição de Líder. Neste modelo, múltiplas réplicas do
controlador de armazenamento podem existir, mas apenas a instância que detém o lease
(o Líder) tem permissão para executar comandos que modificam os metadados do LVM.
As demais instâncias permanecem em modo de espera (standby), respeitando esse bloqueio
lógico. Essa abordagem alinha o gerenciamento do armazenamento às primitivas nativas do
orquestrador, resultando em uma solução robusta, de implantação simplificada e livre de
dependências de sistemas legados.

4 Arquitetura de CSI no Kubernetes

A arquitetura de integração de drivers CSI no Kubernetes é um exemplo de extensibilidade
e design descentralizado. O Kubernetes não interage diretamente com o código do driver
de armazenamento. Em vez disso, ele utiliza um conjunto de contêineres auxiliares, co-
nhecidos como sidecars, que fazem a ponte entre os objetos da API do Kubernetes (como
PersistentVolume, PersistentVolumeClaim, StorageClass) e as chamadas gRPC defini-

12 J. C. Cieni Júnior; I. C. Garcia

das pela especificação CSI. Essa arquitetura de sidecars permite que os drivers CSI sejam
desenvolvidos e mantidos de forma independente do ciclo de lançamento do Kubernetes.

4.1 Componentes Auxiliares (sidecars)

A implementação do driver csi-shared-lvm utiliza os seguintes componentes oficiais man-
tidos pelo Kubernetes:

• external-provisioner: Monitora a criação de novos PersistentVolumeClaims
(PVCs). Ao identificar uma solicitação que referencia a StorageClass do driver, ele
invoca a chamada gRPC CreateVolume. Após o sucesso da operação, o sidecar é
responsável por criar o objeto PersistentVolume (PV) correspondente na API do
Kubernetes.

• external-resizer: Observa alterações no campo de capacidade dos PVCs existentes.
Caso o usuário solicite mais espaço, este componente aciona a chamada
ControllerExpandVolume no driver, permitindo o redimensionamento dinâmico dos
volumes lógicos.

• node-driver-registrar: Um componente essencial que roda em cada nó do cluster.
Ele registra o driver junto ao kubelet local, informando o caminho do socket UNIX
onde o driver está escutando. Isso permite que o kubelet saiba como comunicar-se com
o driver para realizar operações de montagem.

4.2 Topologia de Implantação

Para atender aos requisitos de consistência de metadados discutidos na seção anterior, o
driver é dividido em dois módulos de implantação distintos:

1. Controller Plugin (Deployment): Responsável pelas operações globais que modi-
ficam os metadados do LVM (Provisioning, Resizing). Este componente é implantado
como um Deployment. É aqui que reside a lógica de Leader Election: embora múl-
tiplas réplicas possam estar em execução para alta disponibilidade, apenas o líder
ativo processa as chamadas do external-provisioner, garantindo a serialização das
escritas no Volume Group.

2. Node Plugin (DaemonSet): Responsável pelas operações locais de montagem e
formatação. Este componente é implantado como um DaemonSet, garantindo que
uma instância do driver esteja em execução em cada nó do cluster. Ele recebe co-
mandos diretamente do kubelet para executar NodeStageVolume (ativação do LV) e
NodePublishVolume (montagem no Pod).

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 13

Figura 3: Arquitetura de microsserviços do driver. Os componentes auxiliares (sidecars)
do Kubernetes comunicam-se com o driver desenvolvido via gRPC usando sockets UNIX.

5 Implementação do Driver

A implementação do driver materializa os conceitos teóricos discutidos anteriormente em
uma solução de software desenvolvida na linguagem Go. O projeto segue a estrutura padrão
de drivers CSI, segregando as responsabilidades em dois componentes distintos: o Controller
Plugin, focado no gerenciamento e segurança dos metadados, e o Node Plugin, focado na
disponibilização do armazenamento.

5.1 Controller Plugin

O Controller Plugin é o componente crítico do sistema. Implantado como um Deployment,
ele centraliza todas as operações que modificam a estrutura do Volume Group (VG) com-
partilhado.

Diferentemente de aplicações stateless tradicionais, onde múltiplas réplicas processam
requisições simultaneamente, o nosso controlador opera em um modelo de Alta Disponi-
bilidade Ativo-Passivo (HA-A/P). O desafio técnico primordial é garantir que apenas um
processo, em todo o cluster, tenha permissão para executar comandos de escrita no LVM
(lvcreate, lvremove, lvextend) a qualquer momento.

Para solucionar isso de forma nativa, utilizamos o pacote k8s.io/client-go/tools/
leaderelection. Ao iniciar, cada réplica do controlador compete para adquirir um Lease
(uma trava lógica baseada na API de Leases do Kubernetes).

O ciclo de vida da aplicação é regido pelos callbacks deste mecanismo:

1. OnStartedLeading: Executado somente quando a instância adquire o lease. Neste

14 J. C. Cieni Júnior; I. C. Garcia

momento, o servidor gRPC é iniciado e o driver começa a aceitar chamadas
CreateVolume.

2. OnStoppedLeading: Executado se a instância perder a liderança. A aplicação é
encerrada imediatamente para evitar qualquer risco de split-brain.

Figura 4: Mecanismo de Alta Disponibilidade com Eleição de Líder. Apenas a instância
que detém o Lease na API do Kubernetes tem permissão para enviar comandos de escrita
ao LVM.

Essa abordagem garante a atomicidade das transações no LVM sem a necessidade de
ferramental externo.

5.2 Node Plugin

O Node Plugin é o agente distribuído, implantado como um DaemonSet em modo privilegi-
ado para ter acesso aos dispositivos /dev do host. Suas operações são locais e seguras para
execução paralela.

A implementação do serviço gRPC Node foca em três etapas críticas:

1. Ativação (NodeStageVolume): Em armazenamento compartilhado, a criação de um
volume lógico em um nó não o torna automaticamente visível em outros. O driver
executa lvchange -ay <vg>/<lv> para forçar o kernel a escanear e ativar o dispositivo
de bloco localmente.

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 15

2. Formatação Segura: Utilizamos a biblioteca k8s.io/mount-utils, padrão do
ecossistema Kubernetes. Ela oferece funções robustas como SafeFormatAndMount, que
verifica se o dispositivo já possui um sistema de arquivos antes de tentar formatá-lo,
garantindo a idempotência da operação.

3. Montagem (NodePublishVolume): Realiza o bind mount do volume preparado para
o diretório alvo dentro do contêiner do usuário.

Para garantir a manutenibilidade e a testabilidade do código, evitamos chamadas de
sistema dispersas (exec.Command) ao longo do projeto. Em vez disso, desenvolvemos uma
camada de abstração dedicada no pacote pkg/lvm.

Esta biblioteca interna utiliza o padrão de projeto builder/parser :

• Builder: Constrói os argumentos de linha de comando a serem executados, possibili-
tando validação posterior.

• Parser: Analisa a saída dos comandos LVM para montar as estruturas de dados
usadas pela aplicação.

Essa arquitetura permitiu a criação de uma suíte de testes unitários
(pkg/lvm/*_test.go) que valida a lógica do driver sem a necessidade de um ambiente LVM
real, acelerando o ciclo de desenvolvimento.

5.3 Exemplo de fluxo de execução: criar e usar um volume

A interação entre os componentes durante o provisionamento de um volume segue o seguinte
fluxo lógico:

1. O usuário cria um PersistentVolumeClaim (PVC) e um Pod consumindo esse PVC.

2. O sidecar external-provisioner detecta o novo PVC e aciona o driver.

3. O Controller Plugin (Líder) recebe a chamada CreateVolume.

4. O driver executa lvcreate no armazenamento compartilhado.

5. O sidecar external-provisioner recebe a confirmação e cria um PersistentVolume
(PV) correspondente.

6. O Pod é agendado em um Nó.

7. O kubelet invoca NodeStageVolume no Node Plugin desse nó.

8. O driver executa lvchange -ay, tornando o dispositivo /dev/<vg>/<lv> acessível.

9. O driver formata (se necessário) e monta o volume em staging.

10. O kubelet invoca NodePublishVolume no Node Plugin desse nó.

11. O driver monta o volume dentro do Pod.

12. O Pod está pronto para iniciar.

16 J. C. Cieni Júnior; I. C. Garcia

Figura 5: Diagrama de sequência detalhando o fluxo de provisionamento de um volume,
desde a solicitação do PVC até a montagem no Pod.

6 Resultados e Aprendizados

O desenvolvimento do driver csi-shared-lvm cumpriu seu objetivo primário: validar a
hipótese de que as primitivas de coordenação nativas do Kubernetes são suficientes para
gerenciar o armazenamento compartilhado, eliminando a necessidade de complexas camadas
de cluster externas.

O resultado final é um driver funcional, robusto e aderente à especificação CSI, capaz de
operar em produção para cargas de trabalho que exigem persistência em mídias comparti-
lhadas.

Um dos aprendizados mais significativos foi verificar na prática o nível de maturidade do
ecossistema de desenvolvimento do Kubernetes. A complexidade de implementar o controle
de concorrência foi praticamente zerada pelo uso da biblioteca k8s.io/client-go/tool
s/leaderelection, já amplamente testada e utilizada por diversos componentes core do
próprio Kubernetes e de terceiros.

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 17

Da mesma forma, a utilização de k8s.io/mount-utils para as operações do Node Plugin
garantiu que a formatação e montagem dos volumes tivessem acesso às mesmas ferramentas
que o próprio orquestrador.

Outro desafio técnico superado foi a interação segura com o LVM. A decisão arquitetu-
ral de não espalhar chamadas de sistema (exec.Command) pelo código, centralizando-as no
pacote pkg/lvm, provou-se acertada, promovendo a reutilização de código e facilitando na
testagem dos módulos. A implementação do padrão builder/parser nesta camada de abstra-
ção trouxe benefícios diretos: a construção programática de comandos evita erros de sintaxe
em tempo de execução, ao passo que a separação possibilitou criar uma suíte abrangente de
testes unitários, tanto para formação dos comandos, quanto para validação e processamento
das saídas, sem a necessidade de um ambiente LVM real para execução.

Durante os testes, observou-se que a arquitetura não introduz degradação de perfor-
mance no caminho de dados (data path). Como o driver atua apenas no plano de controle
(setup/teardown), uma vez que o volume está montado, o Pod acessa o dispositivo de bloco
diretamente através do Kernel, com desempenho nativo do LVM.

No plano de controle, adotou-se conscientemente um design Fail-Closed. Se o controla-
dor líder perder a conexão com a API do Kubernetes e não conseguir renovar seu Lease, ele
encerra o processo imediatamente (crash), em vez de tentar operar com informações obso-
letas ou redefinir o seu estado interno manualmente enquanto aguarda obter novamente a
liderança. Em sistemas de armazenamento distribuído, a integridade dos dados deve sempre
prevalecer sobre a disponibilidade do plano de gerenciamento.

Por fim, a condução do projeto sob a filosofia de código aberto influenciou positivamente
a qualidade final da entrega. A necessidade de facilitar a adoção por terceiros impulsionou
a criação de documentação detalhada, a padronização do código e o desenvolvimento de
facilitadores de instalação, como os Helm Charts. O projeto não apenas resolve um problema
técnico, mas serve como referência para desenvolvedores que desejam entender a criação de
extensões complexas para o Kubernetes.

7 Trabalhos Futuros

Embora o csi-shared-lvm tenha atingido seus principais objetivos, o caminho para
transformá-lo em uma solução de armazenamento de classe empresarial envolve aprimo-
ramentos em três eixos principais: garantia de qualidade, expansão de funcionalidades e
resiliência avançada.

7.1 Evolução da Estratégia de Testes

A atual suíte de testes unitários garante a correção da lógica de parsing e construção de
comandos, mas opera sobre cenários simulados (mocks). Para elevar a confiabilidade do
driver, propõe-se uma estratégia de testes em camadas:

1. Testes de Integração LVM: Implementação de um pipeline que provisione ambi-
entes efêmeros (utilizando QEMU ou Vagrant) com dispositivos de bloco reais. Isso

18 J. C. Cieni Júnior; I. C. Garcia

permitiria que o wrapper pkg/lvm executasse comandos de fato no kernel, validando
o comportamento do driver contra diferentes versões do LVM2 e do Linux.

2. Conformidade CSI: Integração com o pacote csi-sanity. Esta suíte executa uma
bateria exaustiva de testes contra o endpoint gRPC do driver, verificando o nível de
aderência à especificação CSI.

3. Validação End-to-End (E2E): Utilização do framework de testes do Kubernetes
para validar o ciclo de vida completo: provisionamento, montagem, escrita de dados,
redimensionamento e exclusão, garantindo a estabilidade do driver em um cluster real
sob carga.

7.2 Topology-Awareness

Em clusters heterogêneos ou multi-zona, nem todos os nós possuem acesso ao mesmo ar-
mazenamento compartilhado. A implementação do suporte à topologia permitiria que o
Scheduler do Kubernetes tomasse decisões inteligentes, agendando Pods apenas nos nós que
efetivamente tem acesso ao Volume Group solicitado.

8 Agradecimentos

Agradeço primeiramente a Deus, por me conceder força, saúde e sabedoria para concluir
esta etapa.

À minha família e, em especial, à minha esposa Júlia e à minha filha Maria Clara, pelo
amor, pela paciência e pelo apoio incondicional durante os momentos mais desafiadores desta
jornada. A compreensão e o carinho de vocês durante as horas dedicadas ao desenvolvimento
deste projeto foi fundamental.

Aos meus amigos, que não me deixaram desistir nos momentos mais difíceis da minha
graduação.

À Prof.a Dr.a Islene Calciolari Garcia, pela orientação e confiança depositada em aceitar
esta proposta de projeto.

Ao Instituto de Computação (IC) e à Universidade Estadual de Campinas (UNICAMP),
pela excelência na formação acadêmica e por proporcionarem o ambiente e os recursos ne-
cessários para o meu desenvolvimento acadêmico e profissional.

9 Conclusões

Este trabalho demonstrou a viabilidade técnica e prática de desenvolver um driver CSI
para armazenamento compartilhado LVM utilizando exclusivamente as primitivas nativas
do Kubernetes para o controle de concorrência. Com a implementação do csi-shared-lvm,
o objetivo central foi plenamente alcançado, entregando uma solução robusta que suporta
o ciclo de vida completo dos volumes — incluindo provisionamento dinâmico, expansão e
operação em modos Filesystem e Block. O resultado é uma redução drástica na barreira de

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 19

entrada e na sobrecarga operacional, dispensando o uso de softwares de cluster complexos
em favor de uma arquitetura limpa e integrada.

Além da eficácia funcional, o desenvolvimento do projeto evidenciou a importância de
boas práticas de engenharia de software. A estruturação do código com ênfase na testabili-
dade, aliada ao reaproveitamento de bibliotecas comunitárias maduras, garantiu que o foco
permanecesse na lógica de negócio. Essa abordagem resultou em um software estável e de
fácil manutenção, pronto para evoluir com a colaboração da comunidade open source.

Conclui-se, também, que o Kubernetes não é apenas um orquestrador de contêineres, mas
também uma plataforma poderosa para a construção de sistemas distribuídos complexos. Ao
alavancar suas APIs e padrões de design nativos, foi possível resolver um problema clássico
de infraestrutura de armazenamento de maneira mais simples, elegante e eficiente do que as
abordagens tradicionais.

O código-fonte completo, a documentação e os artefatos de instalação estão disponíveis
publicamente sob a licença MIT no repositório github.com/cienijr/csi-shared-lvm.

10 Referências Bibliográficas

AMAZON WEB SERVICES. What is Containerization? Disponível em:
https://aws.amazon.com/what-is/containerization/. Acesso em: 12 dez. 2025.

BOTH, David. Logical Volume Management (LVM). In: USING and Administering
Linux: Volume 2: Zero to SysAdmin: Advanced Topics. Berkeley, CA: Apress, 2023.
p. 1–16. ISBN 978-1-4842-9615-8. DOI: 10.1007/978-1-4842-9615-8_20. Disponível
em: https://doi.org/10.1007/978-1-4842-9615-8_20.

CSI PROJECT MAINTAINERS. Container Storage Interface (CSI)
Specification. Disponível em:
https://github.com/container-storage-interface/spec. Acesso em: 12 dez. 2025.

ELLINGWOOD, Justin. An Introduction to LVM Concepts, Terminology, and
Operations. DigitalOcean. Disponível em:
https://www.digitalocean.com/community/tutorials/an-introduction-to-lvm-
concepts-terminology-and-operations. Acesso em: 12 dez. 2025.

GOOGLE LLC. Overview. Disponível em: https://protobuf.dev/overview/. Acesso
em: 12 dez. 2025.

GRPC AUTHORS. gRPC on HTTP/2 Engineering a Robust,
High-performance Protocol. Disponível em:
https://grpc.io/blog/grpc-on-http2/. Acesso em: 12 dez. 2025.

GRPC AUTHORS. Introduction to gRPC. Disponível em:
https://grpc.io/docs/what-is-grpc/introduction/. Acesso em: 12 dez. 2025.

https://github.com/cienijr/csi-shared-lvm
https://aws.amazon.com/what-is/containerization/
https://doi.org/10.1007/978-1-4842-9615-8_20
https://doi.org/10.1007/978-1-4842-9615-8_20
https://github.com/container-storage-interface/spec
https://www.digitalocean.com/community/tutorials/an-introduction-to-lvm-concepts-terminology-and-operations
https://www.digitalocean.com/community/tutorials/an-introduction-to-lvm-concepts-terminology-and-operations
https://protobuf.dev/overview/
https://grpc.io/blog/grpc-on-http2/
https://grpc.io/docs/what-is-grpc/introduction/

20 J. C. Cieni Júnior; I. C. Garcia

KOUTOUPIS, Petros. High-availability storage with HA-LVM. Linux Journal,
Belltown Media, Houston, TX, v. 2014, n. 247, nov. 2014. ISSN 1075-3583.

MOREAU, Julien; FONTAINE, Chloé. Architecting Scalable Persistent Storage for
Kubernetes with CSI And Container-Native Storage Solutions. International Journal
of Informatics and Data Science Research, v. 1, n. 2, p. 8–21, mar. 2024.
Disponível em: http://eprints.umsida.ac.id/16180/1/8-
21%2BArchitecting%2BScalable%2BPersistent%2BStorage%2Bfor%2BKubernetes.pdf.

RED HAT. Configuring and managing logical volumes. Disponível em:
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/
configuring_and_managing_logical_volumes/index. Acesso em: 12 dez. 2025.

RED HAT. Introduction to Kubernetes Architecture. Disponível em:
https://www.redhat.com/en/topics/containers/kubernetes-architecture. Acesso
em: 12 dez. 2025.

RED HAT. What is Kubernetes? Disponível em:
https://www.redhat.com/en/topics/containers/what-is-kubernetes. Acesso em:
12 dez. 2025.

SEIDMAN, Gerry. Understanding Kubernetes Storage: Getting in Deep by
Writing a CSI Driver. Santa Clara, CA: USENIX Association, fev. 2020. Disponível
em: https://www.usenix.org/conference/vault20/presentation/seidman. Acesso
em: 12 dez. 2025.

SHEMYAKINSKAYA, Anastasia; NIKIFOROV, Igor. Disk Space Management
Automation with CSI and Kubernetes. In: YANG, Xin-She et al. (ed.). Proceedings
of Seventh International Congress on Information and Communication
Technology. Singapore: Springer Nature Singapore, 2023. p. 171–179. ISBN
978-981-19-1607-6.

THE KUBERNETES AUTHORS. Cluster Architecture. Disponível em:
https://kubernetes.io/docs/concepts/architecture/. Acesso em: 12 dez. 2025.

THE KUBERNETES AUTHORS. Container Storage Interface (CSI) for
Kubernetes GA. Disponível em:
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/.
Acesso em: 12 dez. 2025.

THE KUBERNETES AUTHORS. Kubernetes CSI Developer Documentation.
Disponível em: https://kubernetes-csi.github.io/docs/. Acesso em: 12 dez. 2025.

http://eprints.umsida.ac.id/16180/1/8-21%2BArchitecting%2BScalable%2BPersistent%2BStorage%2Bfor%2BKubernetes.pdf
http://eprints.umsida.ac.id/16180/1/8-21%2BArchitecting%2BScalable%2BPersistent%2BStorage%2Bfor%2BKubernetes.pdf
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/index
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/index
https://www.redhat.com/en/topics/containers/kubernetes-architecture
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://www.usenix.org/conference/vault20/presentation/seidman
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://kubernetes-csi.github.io/docs/

Armazenamento Persistente no Kubernetes Usando LVM com Discos Compartilhados 21

THE KUBERNETES AUTHORS. Overview. Disponível em:
https://kubernetes.io/docs/concepts/overview/. Acesso em: 12 dez. 2025.

WIKIPEDIA CONTRIBUTORS. Logical Volume Manager (Linux). Disponível em:
https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux). Acesso em: 12
dez. 2025.

https://kubernetes.io/docs/concepts/overview/
https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

	Introdução
	Revisão Teórica
	Contêineres
	Kubernetes
	gRPC
	Container Storage Interface (CSI)
	Logical Volume Manager (LVM)

	Cenário e Problematização
	Limitações dos Sistemas de Arquivos Tradicionais
	O LVM e o Desafio da Concorrência de Metadados
	A Complexidade do Clustered LVM (CLVM)
	Abordagem Proposta: Coordenação Nativa via Kubernetes

	Arquitetura de CSI no Kubernetes
	Componentes Auxiliares (sidecars)
	Topologia de Implantação

	Implementação do Driver
	Controller Plugin
	Node Plugin
	Exemplo de fluxo de execução: criar e usar um volume

	Resultados e Aprendizados
	Trabalhos Futuros
	Evolução da Estratégia de Testes
	Topology-Awareness

	Agradecimentos
	Conclusões
	Referências Bibliográficas

