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Resumo

A arquitetura extensivel do Kubernetes, consolidada como uma das principais pla-
taformas para orquestragao de contéineres, viabiliza a integracao de multiplos sistemas
de armazenamento persistente. Essa integracdo é padronizada pela especificacao CSI
(Container Storage Interface), que define um conjunto de chamadas RPC para o desen-
volvimento de plugins (drivers) por terceiros. Nesse contexto, o LVM (Logical Volume
Manager) destaca-se como uma ferramenta madura e onipresente para o gerenciamento
de discos em ambientes Linux. Apesar de sua simplicidade para o gerenciamento de
volumes locais, a aplicagao do LVM em clusters com armazenamento compartilhado
tradicionalmente depende da configuracao e instalacao de softwares adicionais para for-
magao de cluster e locking distribuido, o que introduz uma complexidade elevada ao
processo de implantagao. Este trabalho apresenta o desenvolvimento do csi-shared-lum,
um driver CSI que utiliza a biblioteca de leader election do Kubernetes para coordenar
a manipulacao dos metadados do LVM e prevenir a corrupcao de dados nos volumes
provisionados, dispensando a necessidade de ferramentas externas. O resultado ¢ uma
solugao de armazenamento robusta, de cédigo aberto, implantagao simples e que oti-
miza significativamente os processos de gerenciamento e instalagao de armazenamento
persistente em ambientes de infraestrutura compartilhada.

Palavras-chave: Kubernetes, Armazenamento Persistente, Armazenamento Compar-
tilhado, CSI, LVM, Sistemas Distribuidos.
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1 Introducao

A revolugdo dos contéineres, impulsionada pelo surgimento do Docker, transformou fun-
damentalmente a maneira como softwares sao desenvolvidos, empacotados e operados. O
paradigma de Infraestrutura como Coédigo (IaC) e a imutabilidade dos contéineres per-
mitiram que aplicagoes fossem escaladas horizontalmente com facilidade sem precedentes.
Inicialmente, esse ecossistema focou-se primariamente em aplicagoes stateless (sem estado),
como servidores web e microsservigos de processamento, onde a perda de uma instancia nao
acarretava perda de dados criticos.

Neste contexto, o Kubernetes se estabeleceu como um padrao de facto para a orquestra-
¢ao de contéineres, transformando a maneira como aplicagoes sao implantadas em nuvens
publicas, infraestruturas privadas (on-premises) e em ambientes de desenvolvimento e expe-
rimentacao, como os populares homelabs. No entanto, a medida que a adocao de tecnologias
cloud-native amadureceu, surgiu a demanda crescente de migrar cargas de trabalho stateful
(com estado) — como bancos de dados, sistemas de mensageria e sessoes em servidores web
— para dentro de clusters. Diferentemente das aplicagoes stateless, essas cargas de trabalho
exigem garantias estritas de persisténcia, durabilidade e consisténcia de dados.

O desafio do armazenamento em ambientes orquestrados reside na natureza dindmica
dos contéineres. Um Pod (a menor unidade de execugao do Kubernetes) é efémero, podendo
ser encerrado em um noé e reiniciado em outro a qualquer momento. O armazenamento,
portanto, deve ser desacoplado do ciclo de vida do contéiner e do noé fisico, sendo capaz de
“seguir” a aplicacao onde quer que ela seja agendada.

Para enderecar essa demanda de forma padronizada e extensivel, a comunidade de desen-
volvimento do Kubernetes, em colaboragao com outros projetos de orquestracao, liderou a
elaboracao da especificagao CSI (Container Storage Interface). O objetivo primario da CSI é
desacoplar completamente a logica de armazenamento do ntcleo do orquestrador, definindo
uma interface padrao baseada em chamadas RPC. Isso permite que qualquer provedor de
armazenamento desenvolva um plugin (driver) compativel com o ecossistema.

Em infraestruturas Linux tradicionais, o Logical Volume Manager (LVM) é uma ferra-
menta consolidada e flexivel para o gerenciamento de armazenamento em bloco. Contudo,
a utilizagao de volumes LVM em um ambiente de armazenamento compartilhado, acessado
por miltiplos nés de um cluster, apresenta desafios criticos de controle de acesso concor-
rente. Operagoes de escrita nos metadados dos volumes (como criagao, exclusao ou expan-
sa0), se executadas de forma nao coordenada, podem corromper informagoes vitais, como
a localizacao fisica dos dados (eztents), resultando em perda total de dados. As solugoes
existentes para mitigar esses riscos, como o Clustered LVM (CLVM), dependem de uma
pilha de software complexa e anterior & era dos contéineres, envolvendo gerenciadores de
locking distribuido (como dlm e sanlock) e camadas de comunicagao de cluster (corosync,
pacemaker). Implantar e manter essa pilha dentro ou paralelamente a um cluster Kuber-
netes adiciona uma sobrecarga operacional significativa e cria uma redundéancia funcional,
visto que o proprio Kubernetes ja é um gerenciador de cluster altamente sofisticado.

E relevante notar que, embora existam implementacoes de drivers CSI para LVM desen-
volvidas pela comunidade, a maioria absoluta delas foca exclusivamente no provisionamento
de volumes locais ou depende das ja citadas solugoes complexas como o CLVM. Essa abor-
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dagem tem limitagoes significativas: ao criar o volume no disco de um noé especifico, gera-se
uma forte afinidade entre a carga de trabalho (pod) e aquela maquina, impedindo o seu
reagendamento em outros nés do cluster. Essa restricio compromete uma das principais
vantagens da orquestracao: a resiliéncia e a distribuicao flexivel de aplicagoes. Dessa forma,
permanece uma lacuna clara no que tange a solugoes integradas para o uso de LVM em
cenarios de armazenamento compartilhado.

Este trabalho partiu da premissa de que o proprio Kubernetes ja fornece os mecanismos
necessarios para gerenciar o acesso concorrente de forma integrada e elegante. O driver
csi-shared-1lvm utiliza a biblioteca de leader election do Kubernetes, que por sua vez faz
uso da API de Leases, para garantir que apenas uma instancia de seu componente de controle
(controller plugin) esteja ativa por vez. Essa instancia eleita se torna a tnica autoridade
para executar operacoes de modificagdo no LVM, coordenando o acesso aos metadados e
eliminando o risco de corrup¢ao. A implementagao resultante demonstra que é possivel
construir uma solucao mais simples e robusta, que elimina a necessidade de softwares de
cluster externos e alinha o gerenciamento do armazenamento ao ecossistema cloud-native.
Este projeto foi desenvolvido como software de coédigo aberto, visando facilitar sua adogao,
manutencao e a contribui¢ao da comunidade.

2 Revisao Teoérica

Nesta segao, sao apresentados os conceitos fundamentais que servem como base para o
desenvolvimento deste projeto.

2.1 Contéineres

Contéineres sao uma tecnologia de virtualizagdo em nivel de sistema operacional que per-
mite empacotar e isolar aplicagoes com suas dependéncias completas — bibliotecas, binarios
e arquivos de configuragao — em um ambiente de execugao autocontido. Diferentemente
das maquinas virtuais (VMs), que virtualizam o hardware e executam um sistema operaci-
onal completo para cada instancia, os contéineres compartilham o mesmo kernel do sistema
operacional do hospedeiro (host). Essa caracteristica os torna extremamente leves, porta-
teis e eficientes, permitindo que sejam iniciados em segundos e consumam significativamente
menos recursos de CPU, memoria e armazenamento.

A viabilidade técnica dos contéineres no Linux baseia-se em uma combinacao de recursos
fundamentais do kernel que proporcionam isolamento e controle granular de recursos:

e Namespaces (Espagos de Nomes): Isolam os recursos globais do sistema, cri-
ando a ilusao de que cada contéiner possui sua propria instancia exclusiva do sistema
operacional. Os principais namespaces utilizados sao:

— PID (Process ID): Isola a arvore de processos, impedindo a visualiza¢ao ou
interagao com processos externos.

— NET (Network): Fornece uma pilha de rede propria, com interfaces, tabelas
de roteamento e regras de firewall independentes.
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— MNT (Mount): Isola os pontos de montagem do sistema de arquivos, garan-
tindo uma hierarquia de diretérios exclusiva.

— UTS (UNIX Time-sharing System): Permite a configuracao independente
de hostname e nome de dominio.

— IPC (Inter-Process Communication): Isola recursos de comunicagao entre
processos, como filas de mensagens e seméaforos.

— USER: Mapeia IDs de usuério e grupo, permitindo privilégios de root dentro do
contéiner sem conceder acesso administrativo ao host.

e Control Groups (cgroups): Gerenciam e limitam o consumo de recursos (CPU,
memoria, I/O de disco e rede) por grupos de processos, garantindo que um tnico
contéiner nao possa monopolizar os recursos do sistema hospedeiro.

e Union Filesystems (OverlayFS): Permitem a sobreposi¢ao de sistemas de arquivos,
viabilizando a construgao eficiente de imagens em camadas imutéaveis.

Historicamente, projetos como o LXC (Linux Containers) foram pioneiros ao fornecer
ferramentas para interagir com esses recursos. No entanto, foi o Docker que democratizou a
tecnologia ao introduzir um fluxo de trabalho simplificado e o conceito de imagens baseadas
em camadas (layered filesystem). Isso facilitou a distribui¢@o e o versionamento de software,
resolvendo o classico problema do “na minha mdquina funciona” e garantindo que a aplica-
¢ao se comporte da mesma forma independentemente do ambiente. Posteriormente, a Open
Container Initiative (OCI) padronizou o formato das imagens e o tempo de execugao (run-
time), garantindo a interoperabilidade entre diferentes ferramentas. Essa combinagao de
isolamento, eficiéncia e padronizacao consolidou os contéineres como a base da arquitetura
de microsservigos e das praticas modernas de DevOps.

2.2 Kubernetes

Com a popularizacao dos contéineres, surgiu a necessidade de orquestrar essas cargas de
trabalho em larga escala. O Kubernetes (frequentemente abreviado como K8s) consolidou-
se como a plataforma padrao para essa tarefa. Originalmente desenvolvido pelo Google
e atualmente mantido pela Cloud Native Computing Foundation (CNCF), o Kubernetes
abstrai a complexidade da infraestrutura subjacente, permitindo automatizar a implantagao,
o escalonamento e o gerenciamento de aplicagdes em contéineres.

O funcionamento da plataforma baseia-se em um modelo declarativo: o operador
define o estado desejado do sistema (por exemplo, o nimero de réplicas de uma aplicac¢ao)
através de manifestos YAML, e o Kubernetes trabalha continuamente para reconciliar o
estado atual do cluster com o desejado, oferecendo recursos nativos de autorrecuperagao
(self-healing) e balanceamento de carga.

Arquiteturalmente, um cluster Kubernetes é dividido em dois planos principais:

1. Control Plane (Plano de Controle): Atua como o cérebro do cluster, tomando
decisoes globais e detectando eventos. Seus principais componentes sao:
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e kube-apiserver: O componente central que expde a API do Kubernetes. E o
dnico ponto de entrada para operagoes de gerenciamento.

e etcd: Um banco de dados chave-valor distribuido, consistente e de alta disponi-
bilidade, utilizado como a fonte tinica de verdade para todos os dados e estados
do cluster.

e kube-scheduler: Responsével por observar a criagao de novos Pods e atribui-los
aos nos de trabalho mais adequados, baseando-se em disponibilidade de recursos
e politicas de afinidade.

e kube-controller-manager: Executa os processos de controle que monitoram o
estado do cluster (como detectar nos inativos ou garantir o nimero correto de
réplicas de uma aplicacio).

2. Worker Nodes (No6s de Trabalho): Sao as méaquinas (fisicas ou virtuais) onde as
aplicagoes sao efetivamente executadas. Cada n6é contém:

e kubelet: O agente principal que se comunica com o Control Plane e garante que
os contéineres descritos nos Pods estejam ativos e saudaveis.

e kube-proxy: Mantém as regras de rede no host, permitindo a comunicacao entre
os servigos dentro e fora do cluster.

e Container Runtime: O software responsével pela execugao dos contéineres (ex:

containerd, CRI-O).

No Kubernetes, a menor unidade de implantacao é o Pod, que pode conter um ou mais
contéineres compartilhando armazenamento e rede. Contudo, devido & natureza efémera
dos Pods (que podem ser destruidos e recriados em nos diferentes a qualquer momento), o
gerenciamento de dados persistentes exige abstragoes especificas, como os Persistent Volumes
(PVs) e Persistent VolumeClaims (PVCs).

2.3 gRPC

O gRPC (gRPC Remote Procedure Calls) é um framework de codigo aberto de alto desem-
penho, desenvolvido pelo Google, que permite a uma aplicacao cliente executar métodos em
uma aplicacao servidora localizada em outra méaquina com a mesma simplicidade de uma
chamada de fungao local. Essa abstragao facilita enormemente a construgao de sistemas
distribuidos complexos.

Diferentemente das APIs tradicionais baseadas no estilo arquitetural REST — que geral-
mente utilizam o protocolo HTTP /1.1 e formatos de texto verbosos como JSON — o gRPC
foi projetado para baixa laténcia e alta eficiéncia, baseando-se em dois pilares fundamentais:

e Protocol Buffers (Protobuf): Em vez de JSON ou XML, o gRPC utiliza o Proto-
buf como sua Linguagem de Defini¢ao de Interface (IDL) e mecanismo de serializagao.
O Protobuf serializa dados estruturados em um formato binario compacto, o que re-
duz drasticamente o tamanho dos pacotes de rede (payloads) e o consumo de CPU
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necessario para processa-los. Além disso, o Protobuf impoe uma abordagem Contract-
First: a interface do servigo é definida estritamente em arquivos .proto, a partir dos
quais o codigo do cliente (stub) e do servidor é gerado automaticamente em diversas
linguagens, garantindo tipagem forte e consisténcia entre as partes.

e HTTP/2: O gRPC utiliza o HTTP/2 como camada de transporte, herdando bene-
ficios como a multiplexagao (multiplas requisi¢oes paralelas sobre uma tnica conexao
TCP), compressao de cabegalhos e suporte nativo a streaming bidirecional.

2.4 Container Storage Interface (CSI)

A Container Storage Interface (CSI) é uma especificacao padrao da induastria que visa expor
sistemas de armazenamento de bloco e de arquivos (Storage Providers - SPs) a cargas
de trabalho em orquestradores de contéineres (Container Orchestrators - COs), como o
Kubernetes.

Historicamente, a logica para interagir com volumes de armazenamento (como AWS EBS,
GCP PD, servidores NFS, etc.) era integrada diretamente ao codigo-fonte do Kubernetes,
um modelo conhecido como in-tree. Essa abordagem apresentava desafios significativos: a
adicao de novos drivers ou a correcao de bugs dependia inteiramente do ciclo de lancamento
do proprio Kubernetes, além de introduzir riscos de estabilidade e seguranga ao nucleo do
orquestrador. A CSI resolveu esse problema ao desacoplar a camada de armazenamento,
permitindo que plugins (drivers) sejam desenvolvidos e atualizados por terceiros de forma
independente (out-of-tree).

A arquitetura da CSI define um conjunto de servigos gRPC que um driver deve imple-
mentar para gerenciar o ciclo de vida completo de um volume. Esses servigos sao divididos
em trés categorias principais:

1. Identity Service: Responsavel por expor informagoes sobre o plugin, como nome,
versao e capacidades suportadas, além de permitir verificagoes de satde (health checks)
por parte do orquestrador.

2. Controller Service: Gerencia as operacoes de alto nivel e globais do cluster, que nao
estao atreladas a um no especifico. Suas principais fungoes incluem o provisionamento
de volumes (CreateVolume, DeleteVolume) e anexacao (ControllerPublishVolume,
que conecta um volume a um nd). No contexto do Kubernetes, este componente
geralmente é implantado como um Deployment ou StatefulSet.

3. Node Service: Executa operagoes locais no n6 onde a carga de trabalho serd execu-
tada. O orquestrador invoca este servigo para preparar o dispositivo
(NodeStageVolume, que realiza formatagao e montagem global) e para disponibiliza-lo
ao Pod (NodePublishVolume, que realiza o bind mount no diretoério do contéiner).
Este componente é tipicamente implantado como um DaemonSet, garantindo uma
instancia em cada né do cluster.

Essa separacao de responsabilidades é crucial para a arquitetura proposta neste trabalho:
enquanto o Node Service deve rodar em todos os nés para montar os volumes LVM, o
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Controller Service — responsével por alterar os metadados do LVM — exige um controle
rigoroso de concorréncia, justificando o uso de mecanismos de eleicao de lider.

2.5 Logical Volume Manager (LVM)

O Logical Volume Manager (LVM) é um framework de mapeamento de dispositivos para
o kernel Linux que introduz uma camada de abstracdo entre o armazenamento fisico e o
sistema de arquivos. Diferentemente do particionamento tradicional, que é estatico e rigido,
o LVM permite um gerenciamento dindmico, possibilitando o redimensionamento de volumes
e a agregacao de multiplos discos em um tnico pool de armazenamento sem interrupc¢ao de
servigo.

A arquitetura do LVM organiza-se em trés niveis hierarquicos, fundamentados no con-
ceito de Fatents:

1. Physical Volumes (PVs): Representam a camada fisica bruta, que pode ser um
disco rigido local, uma parti¢ao ou uma LUN (Logical Unit Number) oriunda de uma
SAN. O LVM divide cada PV em pequenos blocos de tamanho fixo chamados Physical
Extents (PEs).

2. Volume Groups (VGs): Atuam como um repositério de armazenamento unificado,
agrupando um ou mais PVs. O espago total de um VG é a soma de todos os PEs
disponiveis nos discos fisicos subjacentes.

3. Logical Volumes (LVs): Sao os dispositivos de bloco virtuais consumidos pelo sis-
tema operacional (equivalentes a partigoes). O LVM cria esses volumes mapeando
Logical Extents (LEs) para os Physical Extents (PEs) do grupo.

E esse mapeamento entre LEs e PEs que confere ao LVM sua flexibilidade: os dados de
um volume légico ndo precisam estar contiguos no disco fisico, podendo estar espalhados por
varios discos (spanning) ou distribuidos para performance (striping). Além disso, essa abs-
tragao permite funcionalidades avangadas como Thin Provisioning (alocagao sob demanda)
e Snapshots (copias de leitura/escrita em um ponto no tempo), essenciais para ambientes
de contéineres.

A caracteristica critica para a compreensao deste trabalho reside na manipulagao dos
metadados do LVM. As informagoes que descrevem o mapeamento entre os extents (qual LE
aponta para qual PE) s@o gravadas em uma area reservada no inicio de cada Physical Volume.
Em uma instalagao padrao, o LVM assume que o sistema operacional tem acesso exclusivo
aos discos. Consequentemente, nao existe um mecanismo nativo de bloqueio (locking) para
ambientes onde miltiplos hosts acessam o mesmo disco compartilhado simultaneamente. Se
dois nos tentarem modificar a estrutura de um VG ao mesmo tempo (por exemplo, criando
volumes), ambos lerdo os metadados, farao alteragoes na memoria e tentarao gravar de
volta. Isso resulta em uma condigao de corrida (race condition) que corrompe os metadados,
levando & perda irreversivel do mapeamento dos dados. E este problema especifico que as
solugoes de orquestragao de armazenamento compartilhado precisam resolver.
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3 Cenario e Problematizacao

O gerenciamento de armazenamento em ambientes distribuidos, como clusters Kubernetes,
impoe desafios de coordenagao que inexistem em servidores isolados (standalone). O cenério
tipico abordado neste trabalho envolve uma infraestrutura — seja on-premises ou em nuvem
— onde ¢é disponibilizado um tnico dispositivo de bloco compartilhado de grande capacidade
(por exemplo, um LUN via iSCSI ou Fibre Channel), visivel simultaneamente por todos os
no6s do cluster.

O problema central reside em como particionar e distribuir esse recurso monolitico entre
miltiplas aplicacoes de forma segura, dindmica e isolada.

3.1 Limitacgoes dos Sistemas de Arquivos Tradicionais

Uma abordagem inicial e ingénua seria formatar esse dispositivo compartilhado com um
sistema de arquivos padrao (como ext4 ou XFS) e monta-lo simultaneamente em todos
os noés. Essa estratégia, contudo, é inviavel. Sistemas de arquivos tradicionais nao sao
cluster-aware: eles operam sob a premissa de que o sistema operacional local detém controle
exclusivo sobre o dispositivo.

Se multiplos n6s montarem o mesmo volume em modo de leitura e escrita, cada kernel
tentara gerenciar o journal, alocar inodes e atualizar blocos de forma independente, desco-
nhecendo as operagoes dos vizinhos. Isso resulta em um estado de inconsisténcia conhecido
como Split- Brain, levando inevitavelmente & corrupgao severa do sistema de arquivos e perda
de dados. Embora existam sistemas de arquivos projetados para esse fim (como GFS2 ou
OCFS2), sua complexidade de gerenciamento e overhead de performance muitas vezes nao
justificam o uso para cargas de trabalho que requerem apenas isolamento de volume, e nao
compartilhamento de arquivos simultaneo.

3.2 O LVM e o Desafio da Concorréncia de Metadados

O LVM apresenta-se como a ferramenta ideal para resolver o problema do particionamento.
Ao tratar o grande LUN compartilhado como um Physical Volume (PV), é possivel criar vo-
lumes logicos (LVs) dinamicamente para atender as demandas de Persistent Volume Claims
(PVCs) do Kubernetes.

No entanto, o uso de LVM em midia compartilhada desloca o problema de concorréncia
da camada de dados para a camada de gerenciamento. As operagoes que alteram a estrutura
do Volume Group — como lvcreate, lvremove ou lvextend — modificam os metadados
gravados no inicio do disco.

Sem um mecanismo de coordenagao, ocorre uma condicao de corrida: se o N6 A e
o N6 B tentarem criar volumes simultaneamente, ambos lerao o mesmo estado inicial dos
metadados, calcularao novas alocagoes de extents que podem conflitar e tentarao gravar as
alteragoes. O ultimo a escrever sobrescrevera as modificagbes do primeiro, corrompendo o
mapa de alocagao do LVM e potencialmente inutilizando todo o Volume Group.
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Figura 1: Ilustragao da condigao de corrida (Race Condition) ao manipular metadados
LVM em armazenamento compartilhado sem coordenagao. A escrita do N6 B sobrescreve a
do N6 A, resultando em corrupcao dos dados.

E crucial distinguir aqui os dois planos de operacéo:

1. Plano de Controle (Critico): Operagoes que alteram metadados (criar/deletar
volumes). Exigem exclusividade absoluta.

2. Plano de Dados (Seguro): Operagoes de leitura/escrita dentro do sistema de ar-
quivos do volume légico. Como o Kubernetes garante, através do modo de acesso
ReadWriteOnce (RWO), que um volume s6 sera montado em um nd por vez, nao ha
risco de concorréncia nesta camada.

3.3 A Complexidade do Clustered LVM (CLVM)

A solugao tradicional da industria para o problema dos metadados é o Clustered LVM
(CLVM). Esta arquitetura utiliza um gerenciador de locking distribuido (como dlm ou
sanlock) para serializar o acesso aos metadados. Para funcionar, essas ferramentas exi-
gem uma infraestrutura de cluster subjacente, tipicamente composta por daemons como
Corosync e Pacemaker, responséaveis por gerenciar a associa¢ao dos nos (membership) e o
quorum.

No contexto do Kubernetes, adotar o CLVM implica em criar um “cluster dentro do
cluster”. Isso gera uma redundéncia conceitual e uma elevada sobrecarga operacional: o
administrador precisa gerenciar e depurar uma pilha de software de alta disponibilidade
complexa e legada apenas para provisionar discos.
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Figura 2: Comparativo da pilha de software. A esquerda, a complexidade da abordagem
tradicional baseada em CLVM. A direita, a abordagem simplificada proposta neste trabalho,
eliminando a dependéncia de gerenciadores de cluster externos.

3.4 Abordagem Proposta: Coordenagao Nativa via Kubernetes

A proposta deste trabalho é eliminar a dependéncia de clusters externos, delegando a res-
ponsabilidade de coordenacgao ao proprio Kubernetes.

A arquitetura proposta utiliza o pacote k8s.io/client-go/tools/leaderelection
para implementar um padrao de Eleicao de Lider. Neste modelo, multiplas réplicas do
controlador de armazenamento podem existir, mas apenas a instancia que detém o lease
(o Lider) tem permissao para executar comandos que modificam os metadados do LVM.
As demais instancias permanecem em modo de espera (standby), respeitando esse bloqueio
logico. Essa abordagem alinha o gerenciamento do armazenamento as primitivas nativas do
orquestrador, resultando em uma solucao robusta, de implantacao simplificada e livre de
dependéncias de sistemas legados.

4 Arquitetura de CSI no Kubernetes

A arquitetura de integragao de drivers CSI no Kubernetes é um exemplo de extensibilidade
e design descentralizado. O Kubernetes nao interage diretamente com o cédigo do driver
de armazenamento. Em vez disso, ele utiliza um conjunto de contéineres auxiliares, co-
nhecidos como sidecars, que fazem a ponte entre os objetos da API do Kubernetes (como
PersistentVolume, PersistentVolumeClaim, StorageClass) e as chamadas gRPC defini-
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das pela especificagdo CSI. Essa arquitetura de sidecars permite que os drivers CSI sejam
desenvolvidos e mantidos de forma independente do ciclo de lancamento do Kubernetes.

4.1 Componentes Auxiliares (sidecars)

A implementagao do driver csi-shared-1lvm utiliza os seguintes componentes oficiais man-
tidos pelo Kubernetes:

e external-provisioner: Monitora a criagdo de novos PersistentVolumeClaims
(PVCs). Ao identificar uma solicitacao que referencia a StorageClass do driver, ele
invoca a chamada gRPC CreateVolume. Apds o sucesso da operagdo, o sidecar é
responséavel por criar o objeto PersistentVolume (PV) correspondente na API do
Kubernetes.

e external-resizer: Observa alteragoes no campo de capacidade dos PVCs existentes.
Caso o wusuario solicite mais espago, este componente aciona a chamada
ControllerExpandVolume no driver, permitindo o redimensionamento dindmico dos
volumes légicos.

e node-driver-registrar: Um componente essencial que roda em cada n6é do cluster.
Ele registra o driver junto ao kubelet local, informando o caminho do socket UNIX
onde o driver esta escutando. Isso permite que o kubelet saiba como comunicar-se com
o driver para realizar operacoes de montagem.

4.2 Topologia de Implantagao

Para atender aos requisitos de consisténcia de metadados discutidos na secao anterior, o
driver é dividido em dois m6dulos de implantacao distintos:

1. Controller Plugin (Deployment): Responsavel pelas operagoes globais que modi-
ficam os metadados do LVM (Provisioning, Resizing). Este componente é implantado
como um Deployment. E aqui que reside a logica de Leader Election: embora mul-
tiplas réplicas possam estar em execucao para alta disponibilidade, apenas o lider
ativo processa as chamadas do external-provisioner, garantindo a serializagao das
escritas no Volume Group.

2. Node Plugin (DaemonSet): Responsavel pelas operagoes locais de montagem e
formatagao. Este componente é implantado como um DaemonSet, garantindo que
uma instancia do driver esteja em execucao em cada nd do cluster. Ele recebe co-
mandos diretamente do kubelet para executar NodeStageVolume (ativacao do LV) e
NodePublishVolume (montagem no Pod).
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Figura 3: Arquitetura de microsservigos do driver. Os componentes auxiliares (sidecars)
do Kubernetes comunicam-se com o driver desenvolvido via gRPC usando sockets UNIX.

5 Implementacao do Driver

A implementagao do driver materializa os conceitos teodricos discutidos anteriormente em
uma solugao de software desenvolvida na linguagem Go. O projeto segue a estrutura padrao
de drivers CSI, segregando as responsabilidades em dois componentes distintos: o Controller
Plugin, focado no gerenciamento e seguranca dos metadados, e o Node Plugin, focado na
disponibilizacao do armazenamento.

5.1 Controller Plugin

O Controller Plugin é o componente critico do sistema. Implantado como um Deployment,
ele centraliza todas as operagoes que modificam a estrutura do Volume Group (VG) com-
partilhado.

Diferentemente de aplicagoes stateless tradicionais, onde multiplas réplicas processam
requisi¢oes simultaneamente, o nosso controlador opera em um modelo de Alta Disponi-
bilidade Ativo-Passivo (HA-A/P). O desafio técnico primordial é garantir que apenas um
processo, em todo o cluster, tenha permissao para executar comandos de escrita no LVM
(lvcreate, lvremove, 1vextend) a qualquer momento.

Para solucionar isso de forma nativa, utilizamos o pacote k8s.io/client-go/tools/
leaderelection. Ao iniciar, cada réplica do controlador compete para adquirir um Lease
(uma trava logica baseada na API de Leases do Kubernetes).

O ciclo de vida da aplicacgao é regido pelos callbacks deste mecanismo:

1. OnStartedLeading: Executado somente quando a instancia adquire o lease. Neste
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momento, o servidor gRPC ¢ iniciado e o driver comega a aceitar chamadas
CreateVolume.

2. OnStoppedLeading: Executado se a insténcia perder a lideranca. A aplicacao é
encerrada imediatamente para evitar qualquer risco de split-brain.

Pod A (Lider) Pod B Pod C

X Addquirid

N

LVM Metadata

(escrita permitida)

Figura 4: Mecanismo de Alta Disponibilidade com Eleicao de Lider. Apenas a instéancia
que detém o Lease na API do Kubernetes tem permissao para enviar comandos de escrita
ao LVM.

Essa abordagem garante a atomicidade das transagoes no LVM sem a necessidade de
ferramental externo.

5.2 Node Plugin

O Node Plugin é o agente distribuido, implantado como um DaemonSet em modo privilegi-
ado para ter acesso aos dispositivos /dev do host. Suas operagoes sao locais e seguras para
execucao paralela.

A implementagao do servigo gRPC Node foca em trés etapas criticas:

1. Ativagao (NodeStageVolume): Em armazenamento compartilhado, a criagdo de um
volume légico em um né nao o torna automaticamente visivel em outros. O driver
executa lvchange -ay <vg>/<1lv> para forgar o kernel a escanear e ativar o dispositivo
de bloco localmente.
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2. Formatacao Segura: Utilizamos a biblioteca k8s.io/mount-utils, padrdo do
ecossistema Kubernetes. Ela oferece fungoes robustas como SafeFormatAndMount, que
verifica se o dispositivo ja possui um sistema de arquivos antes de tentar formata-lo,
garantindo a idempoténcia da operagao.

3. Montagem (NodePublishVolume): Realiza o bind mount do volume preparado para
o diretoério alvo dentro do contéiner do usuario.

Para garantir a manutenibilidade e a testabilidade do c6digo, evitamos chamadas de
sistema dispersas (exec. Command) ao longo do projeto. Em vez disso, desenvolvemos uma
camada de abstragao dedicada no pacote pkg/lvm.

Esta biblioteca interna utiliza o padrao de projeto builder/parser:

e Builder: Constréi os argumentos de linha de comando a serem executados, possibili-
tando validagao posterior.

e Parser: Analisa a saida dos comandos LVM para montar as estruturas de dados
usadas pela aplicagao.

Essa arquitetura permitiu a criagcdo de uma suite de testes unitarios
(pkg/lvm/*_test.go) que valida a logica do driver sem a necessidade de um ambiente LVM
real, acelerando o ciclo de desenvolvimento.

5.3 Exemplo de fluxo de execucao: criar e usar um volume

A interacdo entre os componentes durante o provisionamento de um volume segue o seguinte
fluxo logico:

1. O usuério cria um PersistentVolumeClaim (PVC) e um Pod consumindo esse PVC.
2. O sidecar external-provisioner detecta o novo PVC e aciona o driver.

3. O Controller Plugin (Lider) recebe a chamada CreateVolume.

4. O driver executa lvcreate no armazenamento compartilhado.

5. O sidecar external-provisioner recebe a confirmagao e cria um PersistentVolume
(PV) correspondente.

O Pod é agendado em um N6.

O kubelet invoca NodeStageVolume no Node Plugin desse no.

O driver executa lvchange -ay, tornando o dispositivo /dev/<vg>/<1lv> acessivel.

© % N>

O driver formata (se necessario) e monta o volume em staging.
10. O kubelet invoca NodePublishVolume no Node Plugin desse no.
11. O driver monta o volume dentro do Pod.

12. O Pod esta pronto para iniciar.
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Figura 5: Diagrama de sequéncia detalhando o fluxo de provisionamento de um volume,
desde a solicitagdo do PVC até a montagem no Pod.

6 Resultados e Aprendizados

O desenvolvimento do driver csi-shared-lvm cumpriu seu objetivo priméario: validar a
hipétese de que as primitivas de coordenacao nativas do Kubernetes sao suficientes para
gerenciar o armazenamento compartilhado, eliminando a necessidade de complexas camadas
de cluster externas.

O resultado final é um driver funcional, robusto e aderente & especificacao CSI, capaz de
operar em produgao para cargas de trabalho que exigem persisténcia em midias comparti-
lhadas.

Um dos aprendizados mais significativos foi verificar na pratica o nivel de maturidade do
ecossistema de desenvolvimento do Kubernetes. A complexidade de implementar o controle
de concorréncia foi praticamente zerada pelo uso da biblioteca k8s.io/client-go/tool
s/leaderelection, ji amplamente testada e utilizada por diversos componentes core do
proprio Kubernetes e de terceiros.
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Da mesma forma, a utilizacao de k8s.io/mount-utils para as operagoes do Node Plugin
garantiu que a formatacao e montagem dos volumes tivessem acesso s mesmas ferramentas
que o proprio orquestrador.

Outro desafio técnico superado foi a interagao segura com o LVM. A decisdo arquitetu-
ral de nao espalhar chamadas de sistema (exec.Command) pelo codigo, centralizando-as no
pacote pkg/lvm, provou-se acertada, promovendo a reutilizacao de coédigo e facilitando na
testagem dos modulos. A implementacao do padrao builder/parser nesta camada de abstra-
¢ao trouxe beneficios diretos: a construcao programética de comandos evita erros de sintaxe
em tempo de execucao, ao passo que a separagao possibilitou criar uma sufte abrangente de
testes unitarios, tanto para formacao dos comandos, quanto para validacao e processamento
das saidas, sem a necessidade de um ambiente LVM real para execugao.

Durante os testes, observou-se que a arquitetura nao introduz degradacao de perfor-
mance no caminho de dados (data path). Como o driver atua apenas no plano de controle
(setup/teardown), uma vez que o volume estd montado, o Pod acessa o dispositivo de bloco
diretamente através do Kernel, com desempenho nativo do LVM.

No plano de controle, adotou-se conscientemente um design Fuail-Closed. Se o controla-
dor lider perder a conexao com a API do Kubernetes e nao conseguir renovar seu Lease, ele
encerra o processo imediatamente (crash), em vez de tentar operar com informagoes obso-
letas ou redefinir o seu estado interno manualmente enquanto aguarda obter novamente a
lideranca. Em sistemas de armazenamento distribuido, a integridade dos dados deve sempre
prevalecer sobre a disponibilidade do plano de gerenciamento.

Por fim, a condugao do projeto sob a filosofia de c6digo aberto influenciou positivamente
a qualidade final da entrega. A necessidade de facilitar a adog@ao por terceiros impulsionou
a criagao de documentagao detalhada, a padronizacao do cédigo e o desenvolvimento de
facilitadores de instalagao, como os Helm Charts. O projeto nao apenas resolve um problema
técnico, mas serve como referéncia para desenvolvedores que desejam entender a criacao de
extensoes complexas para o Kubernetes.

7 Trabalhos Futuros

Embora o csi-shared-lvm tenha atingido seus principais objetivos, o caminho para
transforma-lo em uma solugao de armazenamento de classe empresarial envolve aprimo-
ramentos em trés eixos principais: garantia de qualidade, expansdo de funcionalidades e
resiliéncia avancada.

7.1 Evolugao da Estratégia de Testes

A atual suite de testes unitarios garante a correcao da logica de parsing e construcao de
comandos, mas opera sobre cenérios simulados (mocks). Para elevar a confiabilidade do
driver, propoe-se uma estratégia de testes em camadas:

1. Testes de Integragao LVM: Implementagdo de um pipeline que provisione ambi-
entes efémeros (utilizando QEMU ou Vagrant) com dispositivos de bloco reais. Isso
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permitiria que o wrapper pkg/lvm executasse comandos de fato no kernel, validando
o comportamento do driver contra diferentes versoes do LVM2 e do Linux.

2. Conformidade CSI: Integracao com o pacote csi-sanity. Esta suite executa uma
bateria exaustiva de testes contra o endpoint gRPC do driver, verificando o nivel de
aderéncia a especificagao CSI.

3. Validagao End-to-End (E2E): Utilizacao do framework de testes do Kubernetes
para validar o ciclo de vida completo: provisionamento, montagem, escrita de dados,
redimensionamento e exclusao, garantindo a estabilidade do driver em um cluster real
sob carga.

7.2 Topology-Awareness

Em clusters heterogéneos ou multi-zona, nem todos os nés possuem acesso ao MmMesmo ar-
mazenamento compartilhado. A implementacdo do suporte & topologia permitiria que o
Scheduler do Kubernetes tomasse decisoes inteligentes, agendando Pods apenas nos nos que
efetivamente tem acesso ao Volume Group solicitado.
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9 Conclusoes

Este trabalho demonstrou a viabilidade técnica e pratica de desenvolver um driver CSI
para armazenamento compartilhado LVM utilizando exclusivamente as primitivas nativas
do Kubernetes para o controle de concorréncia. Com a implementacao do csi-shared-lvm,
o objetivo central foi plenamente alcangado, entregando uma solucao robusta que suporta
o ciclo de vida completo dos volumes — incluindo provisionamento dindmico, expansao e
operagao em modos Filesystem e Block. O resultado é uma redugao drastica na barreira de
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entrada e na sobrecarga operacional, dispensando o uso de softwares de cluster complexos
em favor de uma arquitetura limpa e integrada.

Além da eficicia funcional, o desenvolvimento do projeto evidenciou a importancia de
boas praticas de engenharia de software. A estruturacdo do codigo com énfase na testabili-
dade, aliada ao reaproveitamento de bibliotecas comunitarias maduras, garantiu que o foco
permanecesse na logica de negocio. Essa abordagem resultou em um software estével e de
facil manutencao, pronto para evoluir com a colaboragao da comunidade open source.

Conclui-se, também, que o Kubernetes nao é apenas um orquestrador de contéineres, mas
também uma plataforma poderosa para a construcao de sistemas distribuidos complexos. Ao
alavancar suas APIs e padroes de design nativos, foi possivel resolver um problema cléssico
de infraestrutura de armazenamento de maneira mais simples, elegante e eficiente do que as
abordagens tradicionais.

O codigo-fonte completo, a documentacao e os artefatos de instalagao estao disponiveis
publicamente sob a licenga MIT no repositério github.com/cienijr/csi-shared-lvm.
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