
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Avaliação de LLMs na
Conversão de Fluxogramas

para Código
M. G. Lozano A. Santanchè P. D. P. Costa

Relatório Técnico - IC-PFG-25-56

Projeto Final de Graduação

2025 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Avaliação de LLMs na Conversão de Fluxogramas para Código

Matheus Gasparotto Lozano André Santanchè∗

Paula Dornhofer Paro Costa†

Resumo

A placa educacional BitDogLab visa democratizar o ensino de conceitos STEAM
(Science, Technology, Engineering, Arts, and Mathematics) utilizando fluxogramas para
mitigar barreiras sintáticas em programação. Este trabalho propõe o desenvolvimento
e a validação de um assistente inteligente capaz de interpretar esses diagramas visuais e
convertê-los automaticamente em código funcional (MicroPython), atuando como tutor
virtual. O objetivo central consistiu na realização de um estudo comparativo (bench-
marking) para identificar os Grandes Modelos de Linguagem (LLMs) e Multimodais
(LMMs) mais aptos a operar nesta ferramenta, considerando restrições de hardware
local (GPUs de consumo com 24 GiB de VRAM). Para a avaliação, foi desenvolvido
integralmente um dataset proprietário “padrão-ouro” composto por 20 triplas alinhadas
(fluxograma, pseudocódigo e código), cobrindo exaustivamente os periféricos da placa.
A metodologia adotou métricas qualitativas de quatro ńıveis para analisar tanto a fi-
delidade da interpretação visual quanto a corretude funcional do código gerado. Os
experimentos demonstraram que, para a etapa de visão, o modelo Qwen3-VL-Instruct
(8B) apresentou desempenho superior na compreensão de topologia e OCR. Na etapa
de codificação, o modelo NextCoder-14B destacou-se como a escolha ótima, oferecendo
um equiĺıbrio cŕıtico entre precisão sintática e eficiência de memória, em contraste com
modelos maiores como o GPT-OSS-20B. Conclui-se que a orquestração h́ıbrida entre
Qwen3-VL e NextCoder viabiliza a execução simultânea dos agentes em ambiente local,
proporcionando uma solução robusta para o ensino de lógica de programação.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP
†Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852

Campinas, SP

1

2 Lozano, Santanchè e Costa

Sumário

1 Introdução 3

2 Cenário de Aplicação 4
2.1 Hardware Alvo . 4
2.2 Arquitetura Multiagentes do Assistente Virtual 4

3 Metodologia 6
3.1 Conjunto de Dados . 6
3.2 Seleção de Modelos . 9

3.2.1 Critérios de Seleção dos Modelos de Interpretação Visual 10
3.2.2 Critérios de Seleção dos Modelos de Geração de Código 11
3.2.3 Modelos Selecionados . 12

3.3 Ambiente de Inferência Local . 12
3.4 Framework DSPy . 12
3.5 Métricas de Avaliação . 16

4 Resultados e Discussão 17
4.1 Desempenho na Interpretação de Fluxogramas 19
4.2 Desempenho na Geração de Código MicroPython 20
4.3 Eficiência Computacional . 21

5 Conclusão e Trabalhos Futuros 21

6 Disponibilidade de Código e Reprodutibilidade 22

Avaliação de LLMs na Conversão de Fluxogramas para Código 3

1 Introdução

O cenário educacional brasileiro enfrenta desafios significativos no ensino de STEAM (Sci-
ence, Technology, Engineering, Arts, and Mathematics). Barreiras como disparidades soci-
oeconômicas, infraestrutura escolar inadequada e metodologias de ensino baseadas na me-
morização acabam por desestimular estudantes, tornando tais disciplinas pouco atrativas
[1]. Como resposta a esse contexto, foi desenvolvida a BitDogLab, uma placa de hardware
aberta e de baixo custo projetada para democratizar o acesso à tecnologia e ensinar conceitos
de engenharia de forma prática e interativa [2]. A eficácia pedagógica da plataforma reside
na tangibilidade do aprendizado: ao interagir fisicamente com atuadores (como matrizes
de LED e buzzers) e sensores (botões, microfones), o estudante recebe feedback sensorial
imediato sobre a execução de seus algoritmos, tornando o processo cognitivo mais concreto
e engajante. Outro pilar pedagógico fundamental da BitDogLab é a mitigação da barreira
sintática das linguagens de programação tradicionais. Para isso, incentiva-se o uso de flu-
xogramas como ferramenta introdutória, permitindo que o aluno desenvolva o racioćınio
lógico e algoŕıtmico visualmente antes de se preocupar com a codificação textual [3, 4].

Paralelamente aos avanços no hardware educacional, a inteligência artificial vive uma
mudança de paradigma com a popularização dos Grandes Modelos de Linguagem (Large
Language Models - LLMs). Baseados na arquitetura Transformer [5] e pré-treinados em
vastos corpora textuais, esses modelos demonstram capacidades avançadas em tarefas de
Processamento de Linguagem Natural (PLN) [6]. Uma aplicação de destaque é a geração
automática de código, exemplificada por ferramentas como GitHub Copilot [7] e Cursor
[8], que prometem elevar a produtividade no desenvolvimento de software. Entretanto, a
adoção dessas ferramentas altera o papel do programador, que passa a atuar mais como um
revisor do que como um escritor de código, o que levanta preocupações sobre a qualidade e
a segurança das soluções geradas, especialmente quando utilizadas por aprendizes [9].

A interseção entre a metodologia visual da BitDogLab e a capacidade generativa dos
LLMs oferece uma oportunidade para o ensino de programação: a criação de um assistente
inteligente capaz de converter automaticamente os fluxogramas desenhados pelos alunos em
código funcional para a placa BitDogLab. Dessa forma, o objetivo central deste trabalho não
é apenas o desenvolvimento da ferramenta em si, mas a identificação e validação dos modelos
de inteligência artificial mais adequados para compô-la. O estudo propõe uma avaliação
comparativa (benchmarking) de diversos Modelos de Linguagem e Modelos Multimodais
(LMMs), analisando seu desempenho na interpretação de diagramas visuais e na geração de
código espećıfico para sistemas embarcados. Busca-se, assim, determinar qual arquitetura de
modelo oferece o melhor equiĺıbrio entre corretude lógica, adesão às restrições de hardware
da BitDogLab e capacidade de instrução, viabilizando uma experiência de aprendizado
confiável.

Como resultado principal, os experimentos evidenciaram que a orquestração de modelos
especializados de médio porte supera as limitações de arquiteturas monoĺıticas em ambientes
locais. Especificamente, a combinação entre o modelo visual Qwen3-VL e o gerador de
código NextCoder-14B revelou-se a configuração ótima, garantindo a precisão na conversão
dos artefatos sem exceder o orçamento de memória dispońıvel, validando a viabilidade
técnica da solução proposta.

4 Lozano, Santanchè e Costa

O restante deste relatório está organizado da seguinte forma: a Seção 2 apresenta a fun-
damentação técnica, descrevendo as especificidades do hardware da BitDogLab e a arquite-
tura multiagentes da ferramenta. A Seção 3 detalha a metodologia experimental, incluindo
a construção do dataset proprietário, os critérios de seleção e avaliação dos modelos e o
ambiente de execução (Ollama e DSPy). A Seção 4 expõe os resultados quantitativos de
desempenho e consumo de recursos computacionais e discute qualitativamente os padrões
de erro e acerto observados, analisando as falhas de percepção visual e alucinações de hard-
ware. Por fim, a Seção 5 sintetiza as conclusões e aponta direções para trabalhos futuros
na expansão do dataset e refinamento do pipeline de inferência e a Seção 6 indica onde o
código desenvolvido ao longo do projeto pode ser encontrado.

2 Cenário de Aplicação

O objetivo central deste estudo é identificar os modelos mais adequados para compor um
assistente virtual capaz de gerar código a partir de fluxogramas fornecidos pelo usuário.
A escolha desse modelo depende diretamente das caracteŕısticas do hardware alvo e da
estrutura do sistema proposto. Assim, a Seção 2.1 descreve o hardware BitDogLab e a
Seção 2.2 detalha a arquitetura multiagentes proposta para a ferramenta, estabelecendo os
requisitos técnicos que guiarão os testes realizados a seguir.

2.1 Hardware Alvo

A BitDogLab [10] é uma placa educacional baseada no microcontrolador Raspberry Pi Pico
(nas versões H ou W), projetada para facilitar o aprendizado de programação e eletrônica. A
placa possui diversos componentes essenciais para desenvolvimento de projetos interativos,
sendo que os principais são 1 LED RGB, um dislay OLED com dimensões de 128x64 pixels,
uma matriz 5x5 de LEDs, 1 microfone, 1 joystick analógico, dois buzzers e dois botões.

Para sua programação, a BitDogLab utiliza o MicroPython [11], uma implementação
da linguagem de programação Python otimizada para execução em microcontroladores e
sistemas embarcados, o que permite uma programação fácil e eficiente. A Figura 1 mostra
o lado da frente da BitDogLab, onde os componentes relevantes para este projeto estão
localizados.

2.2 Arquitetura Multiagentes do Assistente Virtual

Sistemas multiagentes (SMA) são um paradigma proposto por El Fallah Seghrouchni, Florea
e Olaru [12] no qual diversos agentes com propósitos especializados colaboram para atingir
um objetivo comum. Em SMAs, agentes podem ser programados para executar tarefas
espećıficas e interagir entre si, de forma que tais sistema se destacam em ambientes em
que as tarefas podem ser distribúıdas entre agentes com especialidades variadas [13]. No
contexto do projeto, o uso de tais sistemas é relevante à medida que o objetivo proposto
pode ser facilmente decomposto nas tarefas de interpretação do fluxograma e geração do
código, possibilitando a atuação coordenada de agentes especializados durante a interação
com o usuário.

Avaliação de LLMs na Conversão de Fluxogramas para Código 5

Figura 1: Frente da placa de hardware BitDogLab, versão 5.3

Ao realizar a implementação dos agentes, uma preocupação central foi garantir que o sis-
tema fosse agnóstico a LLM. Conforme descrito por O’Neill [14], uma abordagem agnóstica
a LLM significa construir um sistema de inteligência artificial sem depender de um modelo
ou provedor espećıfico, de forma que seja posśıvel trocar ou adicionar diferentes mode-
los sem a necessidade de reescrever toda a infraestrutura. Considerando a alta frequência
com que novos modelos, muitas vezes superiores aos existentes, são lançados por diferentes
empresas e grupos de pesquisa, tal abordagem permite maior flexibilidade e proteção ao
futuro, uma vez que é posśıvel adotar novos modelos conforme surgem sem grande impacto
na arquitetura existente.

O sistema é composto por dois agentes principais: um denominado “Leitor de Flu-
xograma”, que recebe como entrada um arquivo de imagem contendo um fluxograma e
retorna o pseudocódigo correspondente, e outro denominado “Gerador de Código”, que
recebe o pseudocódigo gerado e fornece como sáıda sua implementação em MicroPython.
Além disso, também foi definido um agente “Coordenador”, responsável por instanciar os
outros agentes e definir, a partir da entrada recebida, qual deve ser invocado para processar
tal entrada, controlando o fluxo de execução. Ao adicionar esta camada de abstração, a
arquitetura escolhida permite uma abordagem agnóstica a LLM à medida que, para alte-
rar o modelo utilizado, basta substituir a configuração do agente leitor de fluxograma pelo
coordenador. O esquema geral da arquitetura do sistema é mostrado na Figura 2.

A ferramenta possui dois casos de uso principais: além da interpretação do fluxograma e
geração do código, o usuário tem a opção de fornecer diretamente o pseudocódigo, ou mesmo
um prompt em linguagem natural. Caso o usuário opte por enviar um arquivo de imagem, o
agente leitor de fluxograma é chamado para interpretar a imagem e o pseudocódigo gerado é
retornado para o usuário para validação. Se houver algum trecho incorreto, o usuário pode
realizar alterações nesse pseudocódigo e, quando validar as alterações, o agente gerador de
código é acionado para implementar o pseudocódigo em MicroPython. Por outro lado, caso
o usuário escolha digitar o pseudocódigo ou envie um prompt em linguagem natural, apenas
o agente gerador de código é executado e o código correspondente é gerado diretamente. A

6 Lozano, Santanchè e Costa

Figura 2: Arquitetura do sistema multiagentes desenvolvido.

Figura 3 exibe o fluxograma que representa a lógica de interação entre os agentes de acordo
com o formato de entrada.

3 Metodologia

Esta seção detalha os procedimentos metodológicos e a infraestrutura experimental ado-
tada para validar a eficácia da ferramenta de geração automática de código. A estratégia de
avaliação foi estruturada para analisar, de forma isolada, as duas competências cŕıticas do
sistema: a interpretação visual de fluxogramas e a śıntese de código funcional para sistemas
embarcados. Inicialmente, a Seção 3.1 descreve o processo de construção do dataset de
avaliação, desenvolvido especificamente para cobrir as especificidades da placa BitDogLab.
Na Seção 3.2, são apresentados os critérios de seleção dos modelos de linguagem, funda-
mentados em benchmarks do estado da arte. As Seções 3.3 e 3.4 descrevem o ambiente de
execução utilizado para execução dos modelos, detalhando a configuração do Ollama como
servidor de inferência e do DSPy para gerenciamento programático dos prompts passados
aos modelos, respectivamente. Por fim, detalham-se as métricas de pontuação definidas
para a análise quantitativa dos resultados obtidos na Seção 3.5.

3.1 Conjunto de Dados

Para validar a eficácia dos modelos nas tarefas propostas, foi desenvolvido integralmente
um conjunto de dados de avaliação composto por 20 instâncias de teste criadas para este

Avaliação de LLMs na Conversão de Fluxogramas para Código 7

Figura 3: Fluxograma da interação entre agentes no sistema.

projeto. A decisão pela confecção manual dos dados visou garantir o controle absoluto sobre
a complexidade lógica e a correção funcional dos exemplos. Este conjunto foi desenhado
para atuar como um “padrão-ouro”, garantindo que tanto a etapa de interpretação visual
quanto a de geração de código fossem submetidas a cenários controlados e verificáveis.

O processo de elaboração dos artefatos seguiu uma abordagem reversa e sequencial,
estruturada em três etapas para assegurar a consistência entre a imagem e o código. Inici-
almente, os códigos-fonte em MicroPython foram implementados e testados diretamente na
placa BitDogLab. Apenas após a confirmação de que o código executava a tarefa desejada
sem erros (validação funcional), o exemplo era aprovado para compor o dataset. Baseando-
se na lógica validada, os fluxogramas foram então desenhados manualmente utilizando lápis
e papel. Essa escolha metodológica introduz um desafio adicional e realista aos modelos de
visão: a necessidade de interpretar traços imperfeitos, variações de caligrafia e rascunhos,
simulando o cenário de uso real previsto para os modelos. Por fim, foram redigidos os pseu-
docódigos correspondentes, servindo como o elo intermediário ideal entre a representação
visual e o código estruturado.

Cada instância do dataset é, portanto, composta por uma tripla de artefatos alinhados,
que representam o fluxo completo de transformação esperado pela ferramenta: fluxograma
(entrada), pseudocódigo (referência intermediária) e o código MicroPython (referência final).
A Figura 4 mostra um exemplo de entrada do dataset.

Um aspecto metodológico central na elaboração dos fluxogramas e pseudocódigos foi
a omissão deliberada de detalhes de implementação de baixo ńıvel, tais como diretivas de
importação de bibliotecas e rotinas de configuração inicial dos pinos GPIO dos componentes.
Essa decisão visa avaliar a capacidade inferencial do modelo gerador de código, forçando-
o a deduzir a infraestrutura necessária a partir da documentação técnica fornecida via

8 Lozano, Santanchè e Costa

(a) Lógica em fluxograma (b) Código em MicroPython

(c) Descrição textual (pseudocódigo)

Figura 4: Exemplo de entrada do dataset.

Avaliação de LLMs na Conversão de Fluxogramas para Código 9

contexto, em vez de apenas replicar instruções expĺıcitas. Adicionalmente, adotou-se um
ńıvel de abstração elevado nas descrições lógicas: operações de manipulação de hardware
complexas foram representadas em linguagem natural (por exemplo, “para cada led na
sequência, acenda na cor vermelha e aguarde”) em detrimento da sintaxe de programação,
transferindo ao modelo a responsabilidade de mapear essas intenções semânticas para a
estrutura de código correta.

A criação dos 20 casos de teste foi orientada pela necessidade de cobertura dos compo-
nentes principais presentes no hardware da BitDogLab. Os exemplos variam desde lógicas
simples de acionamento único de LEDs até aplicações integradas que coordenam o uso de
diversos componentes. A Tabela 1 apresenta a distribuição dos casos de teste em relação
aos componentes acionados. Observa-se uma predominância de testes envolvendo Matrizes
de LED e LEDs RGB, enquanto o joystick e o microfone foram os componentes menos
representados.

Componente de Hardware N.º de Exemplos Frequência Relativa1

Matriz de LEDs (5x5) 8 40%
LED RGB 8 40%
Botões (A/B) 7 35%
Buzzer (Passivo) 7 35%
Display OLED (SSD1306) 4 20%
Joystick 2 10%
Microfone 2 10%

Tabela 1: Distribuição dos casos de teste por componente de hardware da BitDogLab.

3.2 Seleção de Modelos

Dada a vasta disponibilidade de LLMs no estado da arte, foi necessário estabelecer um
critério de filtragem rigoroso para selecionar os candidatos mais aptos às tarefas de trans-
crição de fluxogramas em pseudocódigo e implementação em código. A seleção dos modelos
avaliados neste trabalho baseou-se, primariamente, na análise de desempenho em bench-
marks públicos que avaliam as competências necessárias para a realização de tais tarefas.

Concomitantemente, estabeleceu-se um limite superior de 20 bilhões de parâmetros aos
candidatos. Esta decisão foi calculada para viabilizar a arquitetura multiagentes proposta:
a GPU utilizada para hospedar o assistente virtual deve ser capaz de alocar, simultane-
amente na VRAM, tanto o modelo de visão (leitor de fluxograma) quanto o modelo de
código (gerador), permitindo a interação fluida entre os agentes sem a latência proibitiva de
descarregamento e recarregamento de pesos (model swapping). Tal recorte alinha-se, ainda,
à recente tendência da literatura onde modelos compactos otimizados têm demonstrado de-
sempenho competitivo em domı́nios espećıficos, dispensando a onerosidade computacional
de modelos massivos para a aplicação proposta [15].

1Nota: A soma das frequências supera 100% devido à natureza integradora dos testes, onde um único
exemplo pode exigir a interação entre múltiplos componentes.

10 Lozano, Santanchè e Costa

3.2.1 Critérios de Seleção dos Modelos de Interpretação Visual

A seleção dos modelos baseou-se na premissa de que a interpretação correta de um fluxo-
grama exige a orquestração de múltiplas competências cognitivas. Para validar essas com-
petências, foram selecionados benchmarks espećıficos que cobrem as seguintes dimensões:

Compreensão de Diagramas e Racioćınio Algoŕıtmico Nesta categoria, buscou-se
avaliar a capacidade dos modelos de compreender a estrutura topológica (nós e arestas) e
a lógica sequencial impĺıcita em representações visuais.

• AI2D [16]: Este é o benchmark de maior correlação direta com o objeto deste estudo.
O AI2D avalia especificamente a compreensão de diagramas cient́ıficos e esquemáticos,
exigindo que o modelo identifique constituintes visuais e suas relações semânticas. Sua
inclusão justifica-se pela necessidade de o modelo distinguir corretamente entre blocos
de processamento e setas de fluxo de dados.

• MathVista [17]: Embora focado em matemática, este benchmark é crucial por avaliar
o racioćınio visual complexo e a resolução de problemas passo a passo (chain-of-
thought). A habilidade de seguir uma sequência lógica em um problema matemático
visual transfere-se diretamente para a capacidade de interpretar estruturas de controle
(como laços e condicionais) em um algoritmo visual.

• ChartQA [18]: Focado na interpretação de dados em gráficos (barras, linhas), este
benchmark avalia a precisão na extração de valores associados a elementos visuais.
Sua relevância reside na verificação da capacidade do modelo de alinhar corretamente
o texto (rótulos) com sua representação gráfica correspondente, essencial para não
dissociar o conteúdo de uma caixa de fluxograma de sua posição no fluxo.

Reconhecimento Óptico de Caracteres (OCR) Dado que a lógica do código (nomes
de variáveis, interação com componentes) reside no texto inscrito nas formas geométricas,
a robustez do OCR é outro pré-requisito funcional. Um alto desempenho nestas métricas
minimiza a perda de informações semânticas contidas nos nós do diagrama.

• OCRBench [19]: Por ser um agregador abrangente de diversas tarefas de reconheci-
mento de texto, o OCRBench serve como o indicador primário de legibilidade. Um
baixo desempenho aqui inviabilizaria a transcrição correta da sintaxe contida nos
blocos do fluxograma.

• TextVQA [20]: Este dataset de Visual Question Answering exige que o modelo não
apenas leia o texto, mas o utilize para responder a perguntas sobre a imagem. Essa
competência é fundamental para garantir que o modelo compreenda o texto em con-
texto (por exemplo, entender que o texto X < 10 está dentro de um losango de decisão
e não em um retângulo de processo).

Avaliação de LLMs na Conversão de Fluxogramas para Código 11

Integridade Visual e Mitigação de Alucinações A geração de código funcional exige
fidelidade absoluta à estrutura desenhada. A confiabilidade na identificação de conexões e
fluxos de decisão é cŕıtica, visto que a invenção de arestas ou nós inexistentes compromete
a funcionalidade do código gerado.

• HallusionBench [21]: Diferentemente de métricas de alucinação focadas em objetos
naturais, o HallusionBench avalia a consistência do racioćınio visual e a resistência a
ilusões perceptivas. Sua inclusão é estratégica para filtrar modelos propensos a “in-
ventar” conexões ou inverter a direção de setas em diagramas complexos, assegurando
que a topologia do grafo gerado no código corresponda fielmente à imagem de entrada.

Modelos focados primariamente em imagens naturais ou descrição de cenas cotidianas
foram preteridos em favor daqueles com especialização demonstrada nos domı́nios de docu-
mentos, diagramas e OCR denso, conforme os critérios supracitados.

3.2.2 Critérios de Seleção dos Modelos de Geração de Código

Analogamente à etapa visual, a seleção dos modelos para a fase de implementação não se
baseou apenas na popularidade dos modelos, mas em métricas quantitativas de desempenho
em tarefas de engenharia de software. Além disso, a geração de código para a BitDogLab
impõe desafios que extrapolam a simples sintaxe correta: o modelo deve ser capaz de operar
com o subconjunto de bibliotecas do MicroPython, respeitar restrições de idioma (variáveis
em português) e aderir a diretrizes de formatação (comentários explicativos). Para validar
essas capacidades, os modelos foram filtrados com base nos seguintes critérios de avaliação:

• HumanEval [22]: Considerado o padrão-ouro na avaliação de LLMs para codificação,
este benchmark consiste em problemas de programação que exigem a implementação
de corpos de funções a partir de assinaturas e docstrings. Dado que o MicroPython
é uma implementação otimizada do Python 3, o desempenho no HumanEval serve
como o indicador primário de que o modelo domina as estruturas de controle de fluxo,
manipulação de dados e sintaxe da linguagem.

• MBPP (Mostly Basic Python Problems) [23]: Enquanto o HumanEval pode conter
desafios algoŕıtmicos complexos, o MBPP foca em conceitos fundamentais de pro-
gramação e tarefas procedurais. Sua inclusão é estratégica para este trabalho, pois os
scripts de controle para sistemas embarcados iniciantes (como acender LEDs ou ler
botões) assemelham-se mais à lógica procedural direta avaliada no MBPP do que a
algoritmos de competição avançados.

• IFEval (Instruction Following Evaluation) [24]: Este benchmark não avalia apenas a
corretude do código, mas a fidelidade do modelo em seguir restrições verificáveis im-
postas pelo usuário (por exemplo, “não use bibliotecas externas” ou “gere comentários
explicativos”). No contexto deste trabalho, um alto desempenho no IFEval é crucial
para garantir que o modelo respeite as diretrizes de localização (uso de português
em variáveis e comentários) e as especificidades da API do MicroPython, evitando a
geração de código genérico que falharia na execução ou na compreensão pedagógica
pelo usuário final.

12 Lozano, Santanchè e Costa

3.2.3 Modelos Selecionados

A Tabela 2 consolida o conjunto final de arquiteturas selecionadas após a aplicação dos
filtros de desempenho em benchmarks e eficiência computacional supracitados. Os mo-
delos estão organizados conforme a tarefa atribúıda no fluxo de processamento da ferra-
menta (interpretação visual ou geração de código), sendo caracterizados pela organização
desenvolvedora, escala de parâmetros e respectiva referência técnica, visando assegurar a
reprodutibilidade dos experimentos.

Modelo Desenvolvedor Parâmetros Tarefa Fonte

Qwen3-VL-Instruct Alibaba Cloud 8 bilhões Leitura de Fluxograma [25]
InternVL3.5 OpenGVLab 8 bilhões Leitura de Fluxograma [26]
MiniCPM-V 4.5 OpenBMB 8 bilhões Leitura de Fluxograma [27]
Gemma 3-12b-it Google DeepMind 12 bilhões Leitura de Fluxograma [28]
Kimi-VL-A3B Moonshot AI 12 bilhões Leitura de Fluxograma [29]

Qwen2.5-Coder Alibaba Cloud 14 bilhões Codificação [30]
MiniCPM4.1 OpenBMB 8 bilhões Codificação [31]
Phi-4 Microsoft 14 bilhões Codificação [32]
NextCoder-14B Microsoft 14 bilhões Codificação [33]
GPT-OSS-20B OpenAI 20 bilhões Codificação [34]

Tabela 2: Especificações técnicas e fontes dos modelos selecionados para avaliação.

3.3 Ambiente de Inferência Local

Para a execução local dos Grandes Modelos de Linguagem (LLMs) e Multimodais (LMMs),
adotou-se a plataforma Ollama [35]. Esta ferramenta atua como um ambiente de execução
de alto desempenho, projetado para simplificar a implantação de modelos de código aberto
em infraestruturas locais, abstraindo as complexidades de configuração de bibliotecas de
baixo ńıvel (como PyTorch ou TensorFlow) e drivers de GPU.

A escolha do Ollama fundamenta-se, primariamente, na sua arquitetura otimizada ba-
seada no backend llama.cpp. Essa base tecnológica permite a execução eficiente de modelos
quantizados, reduzindo drasticamente os requisitos de memória VRAM, quando comparado
a alternativas como HuggingFace Transformers [36] e vLLM [37], sem perdas significativas
de precisão. Além disso, a plataforma oferece uma interface unificada via API REST, o que
elimina a necessidade de escrever scripts de carregamento espećıficos para cada arquitetura
de modelo, garantindo interoperabilidade e facilitando a troca rápida de modelos.

3.4 Framework DSPy

A construção de aplicações robustas baseadas em Modelos de Linguagem Grande (LLMs)
enfrenta desafios significativos relacionados à estabilidade e reprodutibilidade dos prompts.
A abordagem tradicional, frequentemente denominada “engenharia de prompts”, depende

Avaliação de LLMs na Conversão de Fluxogramas para Código 13

de ajustes manuais e emṕıricos em strings de texto para guiar o comportamento do mo-
delo. Essa metodologia apresenta limitações cŕıticas: é frágil a pequenas variações léxicas,
dificilmente escalável e acopla rigidamente a lógica do programa à representação textual
espećıfica que um determinado modelo compreende melhor.

Para mitigar esses problemas, este projeto adotou o framework DSPy (Declarative Self-
improving Language Programs in Python) [38]. Diferentemente de bibliotecas que ape-
nas gerenciam templates de texto, o DSPy propõe uma mudança de paradigma ao tratar
prompts não como cadeias estáticas, mas como parâmetros otimizáveis de um programa.
O framework abstrai a interação com o LLM, separando o fluxo lógico da aplicação (o
que o sistema deve fazer) da representação textual enviada ao modelo (como a instrução
é formulada). A implementação do DSPy baseia-se em dois conceitos fundamentais que
foram empregados na arquitetura deste trabalho: Assinaturas (Signatures) [39] e Módulos
(Modules) [40].

As Assinaturas definem a especificação declarativa do comportamento de entrada e sáıda
de uma transformação, abstraindo as instruções textuais de baixo ńıvel. Analogamente às
assinaturas de função em linguagens tipadas, uma Signature no DSPy declara o que o modelo
deve realizar, especificando os campos de entrada e os campos de sáıda esperados, sem ditar
o texto exato que deve ser passado ao modelo para atingir esse objetivo. No contexto deste
trabalho, as assinaturas foram definidas para estruturar a conversão do fluxograma e a
geração do código final, conforme mostrado na Listing 1.

Listing 1: Código Python definindo as Signatures

1 class FlowchartToPseudocode(dspy.Signature):

2 """

3 Read a flowchart image and extract the logic in a pseudocode in

Portuguese (Pt -BR).

4 Keep the exact logic structure (conditionals , loops , start/end).

5 """

6

7 image: str = dspy.InputField(desc="Image of the flowchart encoded as

base64")

8 pseudocode: str = dspy.OutputField(

9 desc="Pseudocode in Portuguese describing the logic extracted from

the flowchart"

10)

11

12

13 class PseudocodeToMicroPython(dspy.Signature):

14 """

15 Convert a pseudocode in Portuguese to a valid MicroPython code.

16

17 CRITICAL INSTRUCTIONS:

18 1. Read the ’hardware_context ’ carefully.

19 2. You MUST use the exact GPIO pins , libraries , and instantiation

methods described in the ’hardware_context ’.

20 3. Do not invent pins or libraries not supported by the hardware

documentation provided.

21 """

22

14 Lozano, Santanchè e Costa

23 hardware_context: str = dspy.InputField(

24 desc="Technical documentation containing GPIO mappings , required

libraries , and how to instantiate components."

25)

26 pseudocode: str = dspy.InputField(

27 desc="The pseudocode in Portuguese describing the logic."

28)

29 micropython_code: dspy.Code["python"] = dspy.OutputField(

30 desc="The generated MicroPython code implementing the logic."

31)

A classe FlowchartToPseudocode encapsula a tarefa de percepção multimodal, rece-
bendo a representação codificada da imagem e instruindo o modelo a preservar a fidelidade
estrutural (condicionais e laços) na transcrição para pseudocódigo. Subsequentemente, a as-
sinatura PseudocodeToMicroPython modela a etapa de śıntese de código, incorporando ex-
plicitamente um mecanismo de ancoragem através do campo de entrada hardware_context,
acompanhado de instruções cŕıticas que restringem o espaço de geração às bibliotecas e pi-
nagens válidas documentadas, visando mitigar alucinações de hardware.

Enquanto as Assinaturas definem a interface, os Módulos são as abstrações arquiteturais
que implementam a estratégia de execução dessas assinaturas. Um módulo no DSPy pode
encapsular técnicas complexas de prompting, como Chain-of-Thought [41] ou ReAct [42],
de maneira transparente ao desenvolvedor. Ao instanciar um módulo parametrizado com
uma assinatura espećıfica, o framework gerencia automaticamente a construção do prompt,
a inclusão de exemplos (se houver) e a formatação da sáıda.

Para a execução de ambas as tarefas, os módulos foram instanciados utilizando a es-
tratégia dspy.ChainOfThought, induzindo o modelo a gerar passos intermediários de ra-
cioćınio antes da produção da resposta final, o que favorece a robustez na interpretação de
diagramas complexos e na implementação de lógicas dependentes de contexto. A Listing 2
mostra a mensagem de sistema gerada automaticamente a partir da Assinatura definida
para o modelo de geração de código, enquanto a Listing 3 mostra como a entrada fornecida
pelo usuário é formatada e passada para o modelo no formato especificado.

Listing 2: System message gerada pelo DSPy para o módulo de geração de código

1 Your input fields are:

2 1. ‘hardware_context ‘ (str): Technical documentation containing GPIO

mappings , required libraries , and how to instantiate components.

3 2. ‘pseudocode ‘ (str): The pseudocode in Portuguese describing the logic.

4 Your output fields are:

5 1. ‘reasoning ‘ (str):

6 2. ‘micropython_code ‘ (Code_python): The generated MicroPython code

implementing the logic.

7 Type description of Code_python: Code represented in a string ,

specified in the ‘code ‘ field. If this is an output field , the code

field should follow the markdown code block format , e.g.

8 ‘‘‘python

9 {code}

10 ‘‘‘ or

11 ‘‘‘cpp

12 {code}

Avaliação de LLMs na Conversão de Fluxogramas para Código 15

13 ‘‘‘

14 Programming language: python

15 All interactions will be structured in the following way , with the

appropriate values filled in.

16

17 [[## hardware_context ##]]

18 {hardware_context}

19

20 [[## pseudocode ##]]

21 {pseudocode}

22

23 [[## reasoning ##]]

24 {reasoning}

25

26 [[## micropython_code ##]]

27 {micropython_code} # note: the value you produce must adhere to the

JSON schema: {"type": "object", "properties ": {"code": {"type":

"string", "title ": "Code"}}, "required ": ["code"], "title":

"Code_python "}

28

29 [[## completed ##]]

30 In adhering to this structure , your objective is:

31 Convert a pseudocode in Portuguese to a valid MicroPython code.

32

33 CRITICAL INSTRUCTIONS:

34 1. Read the ’hardware_context ’ carefully.

35 2. You MUST use the exact GPIO pins , libraries , and instantiation

methods described in the ’hardware_context ’.

36 3. Do not invent pins or libraries not supported by the hardware

documentation provided.

Listing 3: Formatação gerada pelo DSPy para a mensagem de usuário no módulo de geração
de código

1 [[## hardware_context ##]]

2 ...

3

4 [[## pseudocode ##]]

5 ...

6

7 Respond with the corresponding output fields , starting with the field ‘[[

reasoning ##]]‘, then ‘[[## micropython_code ##]]‘ (must be

formatted as a valid Python Code_python), and then ending with the

marker for ‘[[## completed ##]]‘.

Durante a fase de integração experimental, identificaram-se obstáculos técnicos de inte-
roperabilidade entre o framework DSPy e o servidor de inferência Ollama, especificamente
no processamento de entradas multimodais. Observou-se uma incompatibilidade cŕıtica nos
protocolos de serialização de imagens: o formato de codificação utilizado pelo DSPy di-
verge do formato suportado pela API do Ollama, ocasionando falhas de execução. Embora
correções preliminares tenham sido aplicadas para contornar esse obstáculo, persistiram
inconsistências no pipeline de resposta, uma vez que a sáıda bruta gerada pelos modelos

16 Lozano, Santanchè e Costa

no Ollama não aderia estritamente ao formato estruturado exigido pelos parsers de sáıda
do DSPy. Diante dessas restrições e visando assegurar a estabilidade do sistema, optou-se
por uma arquitetura de orquestração h́ıbrida: o módulo de interpretação de fluxogramas foi
desacoplado do DSPy e implementado via chamadas diretas à API do Ollama, reservando
o uso do framework DSPy exclusivamente para a etapa de geração de código.

3.5 Métricas de Avaliação

Em sua revisão cŕıtica sobre o tema, Paul, Zhu e Bayley [43] descrevem que as formas
mais comuns para se avaliar a qualidade de um LLM no contexto de geração de código são
a corretude funcional do código gerado (mensurada via execução de testes, verificando em
quantos casos de teste o programa gerado produz a sáıda correta) e a proximidade sintática,
utilizando métricas de similaridade derivadas da linguagem natural (por exemplo, BLEU
[44], ROUGE [45], METEOR [46] e ChrF [47]) ou propostas especificamente para código
(como RUBY [48] e CodeBLEU [49]), sendo que a maioria das avaliações de performance
em geração de código emprega correção em testes.

Contudo, em cenários de geração de código voltados para sistemas embarcados, como
é o caso da BitDogLab, a inexistência de simuladores ou ambiente de teste de software
robustos impõe desafios significativos à validação da corretude funcional. A impossibilidade
de emular interações com componentes f́ısicos, como o acionamento de botões ou a resposta
sonora de um buzzer, torna inviável a execução de testes automatizados. Diante dessa
limitação, a alternativa convencional seria recorrer à análise de similaridade sintática em
comparação a códigos de referência produzidos manualmente.

Entretanto, a literatura recente aponta severas restrições quanto à eficácia dessa abor-
dagem. Um estudo conduzido por Evtikhiev et al. [50] demonstrou que mesmo as métricas
desenvolvidas especificamente para esse propósito, como RUBY e CodeBLEU, não apresen-
tam desempenho superior a métricas genéricas de tradução automática; dentre as avaliadas,
a métrica ChrF foi a que mais se aproximou da avaliação humana, embora ainda distante
de ser considerada ideal. Corroborando essa análise, Naik [51] investigou a capacidade de
métricas baseadas em embeddings, como a CodeBERTScore [52], para mensurar corretude
funcional, observando uma baixa correlação nos resultados. Consequentemente, Paul, Zhu
e Bayley [43] concluem que, a despeito dos esforços de pesquisa, a avaliação automática de
código via análise estática permanece um problema em aberto.

Considerando a inviabilidade técnica de testes automáticos, seja funcionais ou de simi-
laridade sintática, este trabalho não empregou métricas automatizadas para a seleção dos
modelos. Em vez disso, optou-se por realizar uma avaliação manual tanto dos pseudocódigos
gerados pelo agente leitor de fluxograma quanto dos códigos produzidos pelo agente codifi-
cador. Para sistematizar a análise qualitativa e garantir a consistência da avaliação manual,
foram estabelecidos critérios objetivos de pontuação para as duas etapas principais do fluxo
de trabalho.

Na primeira etapa, referente à conversão de fluxogramas em pseudocódigo, foi elaborada
uma escala de avaliação de quatro ńıveis (0 a 3), desenvolvida para capturar as nuances
da interpretação visual de algoritmos e permitindo distinguir desde alucinações severas até
inconsistências leves na lógica recuperada. Os critérios adotados são definidos a seguir:

Avaliação de LLMs na Conversão de Fluxogramas para Código 17

• Pontuação 0 (Dissociação Semântica): O modelo apresenta alucinação severa
ou fuga total do tema, gerando um texto que não possui nenhuma correlação com os
elementos visuais ou lógicos presentes no fluxograma de entrada;

• Pontuação 1 (Tangência): O modelo identifica elementos isolados (como textos in-
ternos ou nós espećıficos), mas falha na reconstrução da topologia do grafo, resultando
em uma estrutura lógica incoerente ou fragmentada;

• Pontuação 2 (Consistência Parcial): A estrutura global e o fluxo lógico principal
foram compreendidos corretamente) e não houve alucinações, porém o pseudocódigo
apresenta erros na lógica ou omissões;

• Pontuação 3 (Correspondência Plena): O pseudocódigo gerado reproduz fiel-
mente a lógica, a estrutura e o conteúdo textual do fluxograma original, sem alu-
cinações ou omissões.

Para a segunda etapa, que consiste na geração do código executável para a BitDogLab,
foi desenvolvida uma rubrica espećıfica de quatro ńıveis (0 a 3). Essa escala foi desenhada
para distinguir erros de sintaxe de erros semânticos e, crucialmente, para isolar alucinações
relacionadas às especificidades do hardware (como pinagem e bibliotecas):

• Pontuação 0 (Erro de Sintaxe): O código gerado é sintaticamente inválido, resul-
tando em erro de execução;

• Pontuação 1 (Erro de Configuração de Hardware): O código é sintaticamente
válido, mas apresenta erros na instanciação dos componentes f́ısicos (como definição
incorreta de pinos GPIO ou importação de bibliotecas incorretas);

• Pontuação 2 (Erro de Lógica): O código é sintaticamente válido e inicializa o hard-
ware corretamente, mas a execução não produz o comportamento funcional esperado
(erro semântico);

• Pontuação 3 (Funcional): O código está correto e executa a tarefa desejada na
placa BitDogLab sem necessidade de correções.

4 Resultados e Discussão

Esta seção apresenta os resultados obtidos a partir da avaliação dos modelos selecionados
no dataset de teste. Para cada um dos 20 casos de uso, foram coletadas métricas de
pontuação (conforme as escalas de 0 a 3 definidas), tempo de execução da inferência e
consumo máximo de memória de v́ıdeo (VRAM). Todos os experimentos de benchmarking,
bem como a execução da ferramenta final, foram conduzidos em uma estação de trabalho
que utiliza como sistema operacional a distribuição Linux Ubuntu 24.04 equipada com uma
unidade de processamento gráfico (GPU) modelo NVIDIA GeForce RTX 4090 dedicada,
dispondo de 24 GiB de memória de v́ıdeo (VRAM) e versão do CUDA 12.2.

18 Lozano, Santanchè e Costa

Figura 5: Comparativos entre os tempos médios de execução (à esquerda) e o uso máximo
de VRAM (à direita) para os modelos visuais

A Tabela 3 sumariza o desempenho geral dos modelos, detalhando a distribuição percen-
tual das notas atribúıdas e a pontuação média final. Os modelos estão agrupados conforme
a tarefa desempenhada: interpretação visual de fluxogramas e geração de código em Mi-
croPython. Além disso, as Figuras 5 e 6 comparam os tempos médios de execução e o uso
de VRAM de cada modelo.

Modelo
Distribuição de Pontuação (%)

Média
0 1 2 3

Tarefa: Leitura de Fluxograma
Qwen3-VL-Instruct 0% 0% 50% 50% 2,50
Gemma 3-12b-it 0% 40% 45% 15% 1,75
MiniCPM-V 4.5 20% 25% 40% 15% 1,50
InternVL3.5 65% 10% 10% 15% 0,75
Kimi-VL-A3B 0% 0% 0% 0% 0,00*

Tarefa: Codificação
GPT-OSS-20B 5% 5% 0% 90% 2,75
NextCoder-14B 10% 10% 10% 70% 2,40
Phi-4 15% 15% 20% 50% 2,05
Qwen2.5-Coder-14B 35% 5% 10% 50% 1,75
MiniCPM4.1 50% 35% 5% 10% 0,75

*O modelo Kimi-VL-A3B não produziu sáıdas válidas em nenhuma iteração.

Tabela 3: Distribuição de pontuações e média final dos modelos avaliados.

Avaliação de LLMs na Conversão de Fluxogramas para Código 19

Figura 6: Comparativos entre os tempos médios de execução (à esquerda) e o uso máximo
de VRAM (à direita) para os modelos de geração de código

4.1 Desempenho na Interpretação de Fluxogramas

No que tange à tarefa de extração de lógica visual, os resultados consolidados na Tabela 3
indicam uma disparidade significativa entre os candidatos. O modelo Qwen3-VL-Instruct
obteve o melhor desempenho do grupo, com média de 2,50, sendo o único a não registrar
pontuações 0 (fuga total) ou 1 (tangência), concentrando 100% de suas respostas nos estratos
de alta fidelidade (notas 2 e 3). A análise manual revelou que a maioria de suas penalidades
(nota 2) deveu-se a erros pontuais de OCR (leitura incorreta de valores numéricos), enquanto
a estrutura lógica (condicionais e laços) manteve-se correta. Houve apenas um caso de erro
lógico grave, o que reforça sua robustez para a tarefa de racioćınio espacial.

O Gemma 3-12b-it apresentou o segundo melhor desempenho (média 1,75), caracteri-
zado por uma consistência na pontuação mediana (9 casos com nota 2), embora com menor
capacidade de atingir a pontuação máxima (apenas 3 exemplos). Este modelo mostrou-se
competente na captura da topologia do fluxograma, acertando a lógica do fluxo principal
na maioria dos casos. Entretanto, apresentou dificuldades em dois pontos, que ocasionaram
uma diminuição significativa de sua nota: erros frequentes de OCR, especialmente em listas
de valores, e a omissão de procedimentos auxiliares definidos fora do fluxo principal, sendo
este o mais cŕıtico e, portanto, o principal causador da significativa redução de pontos.

Já os modelos MiniCPM-V 4.5 e InternVL3.5 demonstraram instabilidade, com médias
de 1,50 e 0,75 respectivamente. O InternVL3.5, em particular, apresentou falha severa na
maioria dos casos, recebendo pontuação 0 em 13 dos 20 casos testados devido a um compor-
tamento caracteŕıstico de “colapso de alucinação”: além de inventar lógicas inexistentes sem
relação nenhuma com o conteúdo do fluxograma, o modelo frequentemente gerava respostas
contendo caracteres em chinês, indicando uma falha grave na generalização para o domı́nio
espećıfico do dataset e possivelmente uma contaminação pelos dados de pré-treino.

O modelo MiniCPM-V 4.5, por outro lado, foi o que demonstrou a maior robustez
em OCR, transcrevendo corretamente listas numéricas longas e densas. Contudo, falhou

20 Lozano, Santanchè e Costa

criticamente no quesito “instruction following”: em diversos casos, gerou código Python
diretamente em vez do pseudocódigo solicitado. Essa violação do formato de sáıda foi
penalizada com nota 0, mascarando sua excelente capacidade de percepção visual e causando
a baixa pontuação geral reportada.

Por fim, o modelo Kimi-VL-A3B, apesar de sua arquitetura promissora, apresentou uma
falha sistêmica na ingestão dos dados visuais. Em todas as iterações, o modelo reportou
incapacidade de ler a imagem ou alegou que nenhum arquivo havia sido fornecido, resultando
em nulidade funcional.

4.2 Desempenho na Geração de Código MicroPython

Para a etapa de implementação, a Tabela 3 evidencia a liderança do modelo GPT-OSS-20B,
que alcançou a maior média global do experimento (2,75). Este modelo atingiu a pontuação
máxima (código correto e funcional) em 90% dos casos de teste. O NextCoder-14B também
apresentou performance destacada, com média de 2,40 e 70% de acertos totais.

Os modelos Phi-4 e Qwen2.5-Coder-14B apresentaram desempenho intermediário, com
médias de 2,05 e 1,75. Observa-se uma polarização no desempenho do Qwen2.5-Coder:
embora tenha atingido a nota máxima em 50% dos casos, falhou completamente (nota 0)
em 35% das tentativas. O MiniCPM4.1 obteve o menor desempenho do grupo (média 0,75),
com metade das gerações resultando em código sintaticamente inválido e mais um terço,
aproximadamente, apresentando erro na configuração do hardware, ou seja, 17 dos 20 casos
testados resultaram em erro de execução.

A análise manual dos códigos gerados por cada modelo possibilitou identificar as di-
ficuldades mais frequentes dos LLMs. A seguir, são apresentados os erros mais comuns
observados em cada ńıvel da hierarquia de pontuação:

• Erros de Sintaxe e Dependências (Pontuação 0): A falha mais recorrente nessa
categoria foi a omissão de importações necessárias. Mesmo com o contexto fornecido,
modelos menores como o MiniCPM4.1 frequentemente tentavam utilizar classes sem
importá-las, gerando erros de execução imediatos.

• Alucinação de Hardware e Configuração (Pontuação 1): Erros classificados
como falha de configuração revelaram a dificuldade dos modelos em respeitar restrições
f́ısicas. Um exemplo cŕıtico foi a definição da frequência do buzzer como 0 Hz, o que
levanta uma exceção ValueError: freq too small na biblioteca do MicroPython.
Outro erro comum, embora silencioso (sem travar o código), foi a inversão dos pinos
referentes à leitura das posições nos eixos X e Y do joystick ao instanciar o componente.
Tais erros indicam que, embora o modelo gere código sintaticamente válido, ele falha
em ancorar a lógica na documentação de hardware fornecida.

• Erros Semânticos de Estado (Pontuação 2): Nos casos onde o código executava
e a configuração estava correta, o erro predominante foi a ausência do comando de
atualização de estado, especificamente np.write() para a matriz de LEDs. Esse é
um erro clássico em bibliotecas do tipo NeoPixel, onde o modelo altera o buffer de

Avaliação de LLMs na Conversão de Fluxogramas para Código 21

memória mas “esquece” de enviar o sinal para o hardware, resultando em um programa
que roda mas não produz resposta visual.

Em suma, o GPT-OSS-20B e o NextCoder-14B destacaram-se por evitar esses erros
comuns, demonstrando uma capacidade superior de gerenciar tanto as dependências de
biblioteca quanto as especificidades da BitDogLab.

4.3 Eficiência Computacional

A análise dos custos computacionais, apresentada nas Figuras 5 e 6, revela o trade-off entre
tamanho do modelo, eficiência computacional e desempenho na tarefa.

Entre os modelos visuais, o Qwen3-VL, que obteve o melhor desempenho qualitativo,
também registrou o maior tempo médio de execução (38,26 segundos) e o maior pico de
tempo absoluto (cerca de 83 segundos). Além disso, consumiu aproximadamente 11,5 GiB
de VRAM. Embora tenha se destacado no desempenho, sendo o melhor por uma grande
margem, também foi o modelo mais lento, o que pode ser um ponto negativo em cenários
onde a latência é cŕıtica. No entanto, em casos onde o tempo de espera não seja um
problema, o desempenho superior pode justificar a escolha.

Na tarefa de codificação, o GPT-OSS-20B, devido à sua grande escala paramétrica (20
bilhões de parâmetros), demandou o maior volume de memória (cerca de 13 GiB) e apresen-
tou um tempo médio de inferência de 11,21 segundos. Esse número elevado de parâmetros,
quando comparado aos demais modelos, pode ser uma posśıvel justificativa para seu desem-
penho qualitativo superior. Por outro lado, o MiniCPM4.1, embora seja um modelo menor
(o único desta categoria com apenas 8 bilhões de parâmetros), consistentemente apresen-
tou uma anomalia no tempo de execução, com um pico de 309 segundos em um dos casos
de teste. Somado ao fato dele ter sido o modelo com pior pontuação geral, isso sugere
dificuldades de convergência ou laços de geração excessivos.

Os modelos Gemma 3-12B (na tarefa visual) e NextCoder-14B (na tarefa de codificação)
apresentaram uma relação equilibrada de custo-benef́ıcio, operando na faixa de 10 GiB de
VRAM e com tempos de resposta abaixo de 7 segundos. Ambos se destacaram como os se-
gundos melhores em termos de pontuação média em suas respectivas categorias, oferecendo
um bom equiĺıbrio entre desempenho e eficiência.

5 Conclusão e Trabalhos Futuros

O presente trabalho dedicou-se à validação experimental de uma arquitetura de inteligência
artificial generativa aplicada ao ensino de lógica de programação através de um sistema
embarcado. Diante do desafio de converter diagramas visuais em código funcional para a
placa de hardware BitDogLab, o estudo buscou identificar, através de benchmarking, quais
Modelos de Linguagem (LLMs) e Multimodais (LMMs) oferecem o equiĺıbrio ideal entre
precisão cognitiva e viabilidade computacional em hardware local.

Os resultados obtidos demonstram a viabilidade técnica de utilizar modelos de médio
porte (até 20 bilhões de parâmetros) para tarefas complexas de engenharia, refutando a pre-
missa de que apenas modelos proprietários massivos seriam aptos a tais funções. Na etapa

22 Lozano, Santanchè e Costa

de interpretação visual, o modelo Qwen3-VL-Instruct (versão com 8 bilhões de parâmetros)
consolidou-se como a referência de desempenho, apresentando a maior robustez na compre-
ensão de estruturas lógicas e topologias de fluxo, superando concorrentes em consistência
estrutural. A análise qualitativa revelou que, para a tarefa de transcrição de algoritmos, a
capacidade de racioćınio espacial e seguimento de instruções prevalece sobre a capacidade
de OCR bruto.

No tocante à geração de código, o GPT-OSS-20B apresentou a maior taxa de acerto fun-
cional. Contudo, considerando a restrição arquitetural imposta pelo ambiente de execução
(uma GPU com 24 GiB de VRAM destinada a alocar ambos os agentes simultaneamente), a
escolha ótima recai sobre o NextCoder-14B. Este modelo apresentou desempenho estatisti-
camente próximo ao ĺıder, mas com uma eficiência de memória que permite sua coexistência
com o agente visual no mesmo dispositivo, garantindo a latência operacional necessária para
um assistente interativo. Portanto, a configuração final recomendada para a ferramenta as-
sistiva da BitDogLab é a orquestração h́ıbrida entre Qwen3-VL (Visão) e NextCoder-14B
(Código).

Para a evolução do projeto, vislumbram-se oportunidades cruciais de aprimoramento
tanto na base de dados quanto na engenharia de software. Primeiramente, recomenda-se
a expansão do dataset de avaliação, atualmente restrito a uma única caligrafia e condições
controladas; a inclusão de uma maior variedade de estilos de escrita e imagens com rúıdos
reais (baixa iluminação, desfoque) é fundamental para garantir a generalização da ferra-
menta em sala de aula. No âmbito da implementação, trabalhos futuros devem priorizar
a correção da interoperabilidade entre o framework DSPy e os modelos visuais. A plena
integração permitirá a utilização de otimizadores automáticos (compilação de prompts) e
estratégias de aprendizado few-shot, além de viabilizar a construção de (Chain-of-Thought)
de múltiplas etapas, refinando o racioćınio intermediário do agente.

Por fim, apesar do êxito na abordagem zero-shot, a persistência de erros de “alucinação
de hardware” sugere que o fornecimento de contexto via prompt possui um limite de eficácia.
Sugere-se, portanto, a combinação das melhorias de pipeline citadas acima com técnicas
de ajuste fino supervisionado, especializando os pesos das redes na sintaxe espećıfica da
BitDogLab para atingir ńıveis de confiabilidade de produção.

6 Disponibilidade de Código e Reprodutibilidade

Visando fomentar a transparência cient́ıfica e permitir a replicação dos experimentos deta-
lhados neste trabalho, todos os artefatos de software desenvolvidos e instruções para seu
uso foram disponibilizados em repositórios públicos.

O código-fonte completo da ferramenta assistiva, incluindo a implementação da ar-
quitetura multiagentes e a interface de interação, encontra-se hospedado em https://

github.com/AI-Unicamp/BitDogLab-Chatbot.

Paralelamente, os scripts de automação utilizados para o benchmarking, bem como
o dataset proprietário e os resultados das avaliações dos modelos, estão dispońıveis em:
https://github.com/Lozavival/BitDogLab-Benchmarking.

https://github.com/AI-Unicamp/BitDogLab-Chatbot
https://github.com/AI-Unicamp/BitDogLab-Chatbot
https://github.com/Lozavival/BitDogLab-Benchmarking

Avaliação de LLMs na Conversão de Fluxogramas para Código 23

Agradecimentos

A realização deste trabalho não seria posśıvel sem a presença e o apoio daqueles que cami-
nharam ao meu lado durante esta jornada.

Aos meus pais, Wiliam e Marcia Lozano, a minha eterna gratidão. Vocês são os pilares
da minha vida e os principais responsáveis por eu ter chegado até aqui. Obrigado pelo amor
incondicional, pelos sacrif́ıcios feitos em prol da minha educação e por sempre acreditarem
no meu potencial, mesmo quando eu hesitava. Esta conquista também é de vocês.

À minha famı́lia, pelo incentivo constante e pela compreensão nos momentos de ausência
necessários para a dedicação aos estudos.

Aos meus orientadores, Prof. André Santanchè e Profª. Paula Dornhofer Paro Costa,
agradeço imensamente pela orientação segura, pela paciência e pela generosidade em com-
partilhar seus conhecimentos. Suas correções e sugestões foram essenciais para o meu ama-
durecimento acadêmico e profissional.

Aos meus amigos e colegas de curso, agradeço pelo companheirismo, pelas trocas de
experiência e pelos momentos de descontração que tornaram a caminhada mais leve.

Por fim, à minha namorada, Vitoria, meu carinho especial. Obrigado por estar ao meu
lado em todos os momentos, pela paciência incansável durante as longas horas de estudo e
por ser meu refúgio e incentivo diário. Sua presença tornou esta etapa muito mais feliz.

Referências

[1] Hugo Horta. “Education in Brazil: Access, quality and STEM”. Em: B. Freeman
(Ed.), Consultant Report Securing Australia’s Future STEM: Country comparison
(2013), pp. 28–29.

[2] Fabiano Fruett et al. “Empowering STEAM Activities With Artificial Intelligence and
Open Hardware: The BitDogLab”. Em: IEEE Transactions on Education (2024).

[3] Aryaman Darda e Reetu Jain. “Code Generation from Flowchart using Optical Cha-
racter Recognition & Large Language Model”. Em: Authorea Preprints (2024).

[4] Pratul Trivedi et al. “System model for syntax free coding”. Em: 2019 Global Confe-
rence for Advancement in Technology (GCAT). IEEE. 2019, pp. 1–5.

[5] Ashish Vaswani et al. “Attention is all you need”. Em: Advances in neural information
processing systems 30 (2017).

[6] COLE STRYKER. What are large language models (LLMs)? Dispońıvel em: https:
//www.ibm.com/think/topics/large-language-models. Acesso em: 13 out. 2025.

[7] GitHub. GitHub Copilot. Dispońıvel em: https://github.com/features/copilot.
Acesso em: 13 out. 2025.

[8] Anysphere. Cursor - The AI Code Editor. Dispońıvel em: https://cursor.com/.
Acesso em: 13 out. 2025.

[9] Christian Bird et al. “Taking Flight with Copilot: Early insights and opportunities of
AI-powered pair-programming tools”. Em: Queue 20.6 (2022), pp. 35–57.

https://www.ibm.com/think/topics/large-language-models
https://www.ibm.com/think/topics/large-language-models
https://github.com/features/copilot
https://cursor.com/

24 Lozano, Santanchè e Costa

[10] BitDogLab. BitDogLab. Acesso em: 12 dez. 2025. url: https://bitdoglab.webcontent.
website/.

[11] MicroPython. MicroPython. Acesso em: 12 dez. 2025. url: https://micropython.
org/.

[12] Amal El Fallah Seghrouchni, Adina Magda Florea e Andrei Olaru. “Multi-agent sys-
tems: a paradigm to design ambient intelligent applications”. Em: Intelligent Distri-
buted Computing IV: Proceedings of the 4th International Symposium on Intelligent
Distributed Computing-IDC 2010, Tangier, Morocco, September 2010. Springer. 2010,
pp. 3–9.

[13] Zia Babar. LLM-Based Multi-Agent Systems. 2024. url: https://medium.com/
@zbabar/llm-based-multi-agent-systems-62fd8c47f678.

[14] Bill O’Neill. What is an LLM Agnostic Approach to AI Implementation? https:

//quiq.com/blog/llm-agnostic-ai/. [Acesso em: 29 jul. 2025]. 2025.

[15] Fali Wang et al. “A comprehensive survey of small language models in the era of large
language models: Techniques, enhancements, applications, collaboration with llms,
and trustworthiness”. Em: ACM Transactions on Intelligent Systems and Technology
(2024).

[16] Aniruddha Kembhavi et al. “A diagram is worth a dozen images”. Em: European
conference on computer vision. Springer. 2016, pp. 235–251.

[17] Pan Lu et al. “Mathvista: Evaluating mathematical reasoning of foundation models
in visual contexts”. Em: arXiv preprint arXiv:2310.02255 (2023).

[18] Ahmed Masry et al. “Chartqa: A benchmark for question answering about charts
with visual and logical reasoning”. Em: Findings of the association for computational
linguistics: ACL 2022. 2022, pp. 2263–2279.

[19] Yuliang Liu et al. “Ocrbench: on the hidden mystery of ocr in large multimodal
models”. Em: Science China Information Sciences 67.12 (2024), p. 220102.

[20] Amanpreet Singh et al. “Towards vqa models that can read”. Em: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 8317–
8326.

[21] Tianrui Guan et al. “Hallusionbench: an advanced diagnostic suite for entangled lan-
guage hallucination and visual illusion in large vision-language models”. Em: Proce-
edings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2024, pp. 14375–14385.

[22] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv:
2107.03374 [cs.LG]. url: https://arxiv.org/abs/2107.03374.

[23] Jacob Austin et al. “Program synthesis with large language models”. Em: arXiv pre-
print arXiv:2108.07732 (2021).

[24] Jeffrey Zhou et al. “Instruction-following evaluation for large language models”. Em:
arXiv preprint arXiv:2311.07911 (2023).

https://bitdoglab.webcontent.website/
https://bitdoglab.webcontent.website/
https://micropython.org/
https://micropython.org/
https://medium.com/@zbabar/llm-based-multi-agent-systems-62fd8c47f678
https://medium.com/@zbabar/llm-based-multi-agent-systems-62fd8c47f678
https://quiq.com/blog/llm-agnostic-ai/
https://quiq.com/blog/llm-agnostic-ai/
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Avaliação de LLMs na Conversão de Fluxogramas para Código 25

[25] Shuai Bai et al. Qwen3-VL Technical Report. 2025. arXiv: 2511.21631 [cs.CV]. url:
https://arxiv.org/abs/2511.21631.

[26] Weiyun Wang et al. InternVL3.5: Advancing Open-Source Multimodal Models in Ver-
satility, Reasoning, and Efficiency. 2025. arXiv: 2508.18265 [cs.CV]. url: https:
//arxiv.org/abs/2508.18265.

[27] Tianyu Yu et al. MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data,
and Training Recipe. 2025. arXiv: 2509.18154 [cs.LG]. url: https://arxiv.org/
abs/2509.18154.

[28] Gemma Team et al. Gemma 3 Technical Report. 2025. arXiv: 2503.19786 [cs.CL].
url: https://arxiv.org/abs/2503.19786.

[29] Kimi Team et al. Kimi-VL Technical Report. 2025. arXiv: 2504.07491 [cs.CV]. url:
https://arxiv.org/abs/2504.07491.

[30] Binyuan Hui et al.Qwen2.5-Coder Technical Report. 2024. arXiv: 2409.12186 [cs.CL].
url: https://arxiv.org/abs/2409.12186.

[31] MiniCPM Team et al. MiniCPM4: Ultra-Efficient LLMs on End Devices. 2025. arXiv:
2506.07900 [cs.CL]. url: https://arxiv.org/abs/2506.07900.

[32] Marah Abdin et al. Phi-4 Technical Report. 2024. arXiv: 2412.08905 [cs.CL]. url:
https://arxiv.org/abs/2412.08905.

[33] Tushar Aggarwal et al. “NextCoder: Robust Adaptation of Code LMs to Diverse Code
Edits”. Em: Forty-second International Conference on Machine Learning. 2025.

[34] OpenAI et al. gpt-oss-120b gpt-oss-20b Model Card. 2025. arXiv: 2508.10925 [cs.CL].
url: https://arxiv.org/abs/2508.10925.

[35] Ollama. Ollama: A Tool for Building AI Apps. Accessed: 08 nov. 2025. url: https:
//ollama.com/.

[36] Hugging Face. Transformers Documentation (em Português). Accessed: 12 dez. 2025.
url: https://huggingface.co/docs/transformers/pt/index.

[37] vLLM. vLLM Documentation. Accessed: 12 dez. 2025. url: https://docs.vllm.ai/
en/latest/.

[38] Omar Khattab et al. “Dspy: Compiling declarative language model calls into self-
improving pipelines”. Em: arXiv preprint arXiv:2310.03714 (2023).

[39] DSpy.ai. Signatures. Accessed: 12 dez. 2025. url: https://dspy.ai/learn/programming/
signatures/.

[40] DSpy.ai.Module. Accessed: 12 dez. 2025. url: https://dspy.ai/learn/programming/
modules/.

[41] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language mo-
dels”. Em: Advances in neural information processing systems 35 (2022), pp. 24824–
24837.

[42] Shunyu Yao et al. “React: Synergizing reasoning and acting in language models”. Em:
The eleventh international conference on learning representations. 2022.

https://arxiv.org/abs/2511.21631
https://arxiv.org/abs/2511.21631
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2509.18154
https://arxiv.org/abs/2509.18154
https://arxiv.org/abs/2509.18154
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2506.07900
https://arxiv.org/abs/2506.07900
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://ollama.com/
https://ollama.com/
https://huggingface.co/docs/transformers/pt/index
https://docs.vllm.ai/en/latest/
https://docs.vllm.ai/en/latest/
https://dspy.ai/learn/programming/signatures/
https://dspy.ai/learn/programming/signatures/
https://dspy.ai/learn/programming/modules/
https://dspy.ai/learn/programming/modules/

26 Lozano, Santanchè e Costa

[43] Debalina Ghosh Paul, Hong Zhu e Ian Bayley. “Benchmarks and Metrics for Evalu-
ations of Code Generation: A Critical Review”. Em: 2024 IEEE International Con-
ference on Artificial Intelligence Testing (AITest). 2024, pp. 87–94. doi: 10.1109/
AITest62860.2024.00019.

[44] Kishore Papineni et al. “Bleu: a method for automatic evaluation of machine trans-
lation”. Em: Proceedings of the 40th annual meeting of the Association for Computa-
tional Linguistics. 2002, pp. 311–318.

[45] Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries”. Em: Text
summarization branches out. 2004, pp. 74–81.

[46] Satanjeev Banerjee e Alon Lavie. “METEOR: An automatic metric for MT eva-
luation with improved correlation with human judgments”. Em: Proceedings of the
acl workshop on intrinsic and extrinsic evaluation measures for machine translation
and/or summarization. 2005, pp. 65–72.

[47] Maja Popović. “chrF: character n-gram F-score for automatic MT evaluation”. Em:
Proceedings of the tenth workshop on statistical machine translation. 2015, pp. 392–
395.

[48] Ngoc Tran et al. “Does BLEU score work for code migration?” Em: 2019 IEE-
E/ACM 27th International Conference on Program Comprehension (ICPC). IEEE.
2019, pp. 165–176.

[49] Shuo Ren et al. “Codebleu: a method for automatic evaluation of code synthesis”.
Em: arXiv preprint arXiv:2009.10297 (2020).

[50] Mikhail Evtikhiev et al. “Out of the BLEU: How should we assess quality of the Code
Generation models?” Em: Journal of Systems and Software 203 (2023), p. 111741.
issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2023.111741. url:
https://www.sciencedirect.com/science/article/pii/S016412122300136X.

[51] Atharva Naik. “On the limitations of embedding based methods for measuring func-
tional correctness for code generation”. Em: arXiv preprint arXiv:2405.01580 (2024).

[52] Shuyan Zhou et al. “Codebertscore: Evaluating code generation with pretrained mo-
dels of code”. Em: arXiv preprint arXiv:2302.05527 (2023).

https://doi.org/10.1109/AITest62860.2024.00019
https://doi.org/10.1109/AITest62860.2024.00019
https://doi.org/https://doi.org/10.1016/j.jss.2023.111741
https://www.sciencedirect.com/science/article/pii/S016412122300136X

	Introdução
	Cenário de Aplicação
	Hardware Alvo
	Arquitetura Multiagentes do Assistente Virtual

	Metodologia
	Conjunto de Dados
	Seleção de Modelos
	Critérios de Seleção dos Modelos de Interpretação Visual
	Critérios de Seleção dos Modelos de Geração de Código
	Modelos Selecionados

	Ambiente de Inferência Local
	Framework DSPy
	Métricas de Avaliação

	Resultados e Discussão
	Desempenho na Interpretação de Fluxogramas
	Desempenho na Geração de Código MicroPython
	Eficiência Computacional

	Conclusão e Trabalhos Futuros
	Disponibilidade de Código e Reprodutibilidade

