Avaliacao de LLMs na
Conversao de Fluxogramas
para Codigo

M. G. Lozano A. Santanché P. D. P. Costa

Relatério Técnico - 1C-PFG-25-56
Projeto Final de Graduagdo
2025 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

Avaliacao de LLMs na Conversao de Fluxogramas para Codigo

Matheus Gasparotto Lozano André Santanche*

Paula Dornhofer Paro Costal

Resumo

A placa educacional BitDogLab visa democratizar o ensino de conceitos STEAM
(Science, Technology, Engineering, Arts, and Mathematics) utilizando fluxogramas para
mitigar barreiras sintaticas em programacao. Este trabalho propoe o desenvolvimento
e a validagao de um assistente inteligente capaz de interpretar esses diagramas visuais e
converté-los automaticamente em c6digo funcional (MicroPython), atuando como tutor
virtual. O objetivo central consistiu na realizagdo de um estudo comparativo (bench-
marking) para identificar os Grandes Modelos de Linguagem (LLMs) e Multimodais
(LMMSs) mais aptos a operar nesta ferramenta, considerando restrigdes de hardware
local (GPUs de consumo com 24 GiB de VRAM). Para a avaliac@o, foi desenvolvido
integralmente um dataset proprietario “padrao-ouro” composto por 20 triplas alinhadas
(fluxograma, pseudocédigo e cédigo), cobrindo exaustivamente os periféricos da placa.
A metodologia adotou métricas qualitativas de quatro niveis para analisar tanto a fi-
delidade da interpretacao visual quanto a corretude funcional do cédigo gerado. Os
experimentos demonstraram que, para a etapa de visao, o modelo Qwen3-VL-Instruct
(8B) apresentou desempenho superior na compreensiao de topologia e OCR. Na etapa
de codificagao, o modelo NextCoder-14B destacou-se como a escolha 6tima, oferecendo
um equilibrio critico entre precisao sintatica e eficiéncia de meméria, em contraste com
modelos maiores como o GPT-0OSS-20B. Conclui-se que a orquestracao hibrida entre
Qwen3-VL e NextCoder viabiliza a execugao simultanea dos agentes em ambiente local,
proporcionando uma solugao robusta para o ensino de logica de programacao.

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP
TFaculdade de Engenharia Elétrica e de Computacéo, Universidade Estadual de Campinas, 13083-852
Campinas, SP

2 Lozano, Santanché e Costa

Sumario

11 Introducao|

|2 Cenario de Aplicacao|

I3 Metodologial
3.1 Conjuntode Dados|
3.2 Selecao de Modelos|
[3.2.1 Critérios de Selecao dos Modelos de Interpretacao Visual|
13.2.2 Critérios de Selecao dos Modelos de Geracao de Codigol
3.2.3 Modelos Selecionadosl oo

3.4 Framework DSPy|.
3.5 Meétricas de Avaliacao|

4__Resultados e Discussaal
4.1 Desempenho na Interpretacao de Fluxogramas|
4.2 Desempenho na Geracao de Codigo MicroPython|
4.3 Eficiencia Computacionall 0oL

6 Conclusao e Trabalhos Futuros|

|6 Disponibilidade de Coadigo e Reprodutibilidade]

[IENETEN

NelNepie]

10

12
12
12
16

17
19
20
21

21

22

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 3

1 Introducao

O cendrio educacional brasileiro enfrenta desafios significativos no ensino de STEAM (Sci-
ence, Technology, Engineering, Arts, and Mathematics). Barreiras como disparidades soci-
oecondmicas, infraestrutura escolar inadequada e metodologias de ensino baseadas na me-
morizagao acabam por desestimular estudantes, tornando tais disciplinas pouco atrativas
[1]. Como resposta a esse contexto, foi desenvolvida a BitDogLab, uma placa de hardware
aberta e de baixo custo projetada para democratizar o acesso a tecnologia e ensinar conceitos
de engenharia de forma pratica e interativa [2]. A eficicia pedagdgica da plataforma reside
na tangibilidade do aprendizado: ao interagir fisicamente com atuadores (como matrizes
de LED e buzzers) e sensores (botdes, microfones), o estudante recebe feedback sensorial
imediato sobre a execucao de seus algoritmos, tornando o processo cognitivo mais concreto
e engajante. Outro pilar pedagdgico fundamental da BitDogLab é a mitigacao da barreira
sintatica das linguagens de programacao tradicionais. Para isso, incentiva-se o uso de flu-
xogramas como ferramenta introdutéria, permitindo que o aluno desenvolva o raciocinio
légico e algoritmico visualmente antes de se preocupar com a codificacao textual [3| |4].

Paralelamente aos avancos no hardware educacional, a inteligéncia artificial vive uma
mudanga de paradigma com a popularizagao dos Grandes Modelos de Linguagem (Large
Language Models - LLMs). Baseados na arquitetura Transformer |5] e pré-treinados em
vastos corpora textuais, esses modelos demonstram capacidades avancadas em tarefas de
Processamento de Linguagem Natural (PLN) [6]. Uma aplicacdo de destaque é a geracao
automatica de cédigo, exemplificada por ferramentas como GitHub Copilot [7] e Cursor
[8], que prometem elevar a produtividade no desenvolvimento de software. Entretanto, a
adogao dessas ferramentas altera o papel do programador, que passa a atuar mais como um
revisor do que como um escritor de cédigo, o que levanta preocupagoes sobre a qualidade e
a seguranga das solugoes geradas, especialmente quando utilizadas por aprendizes [9].

A intersecao entre a metodologia visual da BitDoglab e a capacidade generativa dos
LLMs oferece uma oportunidade para o ensino de programacao: a criacao de um assistente
inteligente capaz de converter automaticamente os fluxogramas desenhados pelos alunos em
c6digo funcional para a placa BitDogLab. Dessa forma, o objetivo central deste trabalho nao
é apenas o desenvolvimento da ferramenta em si, mas a identificacao e validagao dos modelos
de inteligéncia artificial mais adequados para compoé-la. O estudo propoe uma avaliagao
comparativa (benchmarking) de diversos Modelos de Linguagem e Modelos Multimodais
(LMMs), analisando seu desempenho na interpretacao de diagramas visuais e na geragao de
codigo especifico para sistemas embarcados. Busca-se, assim, determinar qual arquitetura de
modelo oferece o melhor equilibrio entre corretude logica, adesao as restrigoes de hardware
da BitDogLab e capacidade de instrucao, viabilizando uma experiéncia de aprendizado
confidvel.

Como resultado principal, os experimentos evidenciaram que a orquestracao de modelos
especializados de médio porte supera as limitacoes de arquiteturas monoliticas em ambientes
locais. Especificamente, a combinacao entre o modelo visual Qwen3-VL e o gerador de
c6digo NextCoder-14B revelou-se a configuracao étima, garantindo a precisao na conversao
dos artefatos sem exceder o orcamento de memoria disponivel, validando a viabilidade
técnica da solucao proposta.

4 Lozano, Santanché e Costa

O restante deste relatério esta organizado da seguinte forma: a Segao 2| apresenta a fun-
damentacao técnica, descrevendo as especificidades do hardware da BitDogLab e a arquite-
tura multiagentes da ferramenta. A Secao [3| detalha a metodologia experimental, incluindo
a construcao do dataset proprietario, os critérios de selecao e avaliacao dos modelos e o
ambiente de execugao (Ollama e DSPy). A Secédo 4| expde os resultados quantitativos de
desempenho e consumo de recursos computacionais e discute qualitativamente os padroes
de erro e acerto observados, analisando as falhas de percepcao visual e alucinacoes de hard-
ware. Por fim, a Sec¢ao [5] sintetiza as conclusoes e aponta diregoes para trabalhos futuros
na expansao do dataset e refinamento do pipeline de inferéncia e a Segao [0] indica onde o
codigo desenvolvido ao longo do projeto pode ser encontrado.

2 Cenario de Aplicacao

O objetivo central deste estudo é identificar os modelos mais adequados para compor um
assistente virtual capaz de gerar codigo a partir de fluxogramas fornecidos pelo usuario.
A escolha desse modelo depende diretamente das caracteristicas do hardware alvo e da
estrutura do sistema proposto. Assim, a Secao descreve o hardware BitDogLab e a
Secao detalha a arquitetura multiagentes proposta para a ferramenta, estabelecendo os
requisitos técnicos que guiarao os testes realizados a seguir.

2.1 Hardware Alvo

A BitDogLab [10] é uma placa educacional baseada no microcontrolador Raspberry Pi Pico
(nas versoes H ou W), projetada para facilitar o aprendizado de programagao e eletronica. A
placa possui diversos componentes essenciais para desenvolvimento de projetos interativos,
sendo que os principais sao 1 LED RGB, um dislay OLED com dimensoes de 128x64 pixels,
uma matriz 5x5 de LEDs, 1 microfone, 1 joystick analdgico, dois buzzers e dois botdes.

Para sua programacao, a BitDogLab utiliza o MicroPython [11], uma implementacao
da linguagem de programacao Python otimizada para execucao em microcontroladores e
sistemas embarcados, o que permite uma programacao facil e eficiente. A Figura [I] mostra
o lado da frente da BitDogLab, onde os componentes relevantes para este projeto estao
localizados.

2.2 Arquitetura Multiagentes do Assistente Virtual

Sistemas multiagentes (SMA) sao um paradigma proposto por El Fallah Seghrouchni, Florea
e Olaru [12] no qual diversos agentes com propésitos especializados colaboram para atingir
um objetivo comum. Em SMAs, agentes podem ser programados para executar tarefas
especificas e interagir entre si, de forma que tais sistema se destacam em ambientes em
que as tarefas podem ser distribuidas entre agentes com especialidades variadas [13]. No
contexto do projeto, o uso de tais sistemas é relevante a medida que o objetivo proposto
pode ser facilmente decomposto nas tarefas de interpretacao do fluxograma e geracao do
c6digo, possibilitando a atuacgao coordenada de agentes especializados durante a interagao
com o usuario.

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 5

CEEEE oy oo jREEE]
EEEE .
EoEEE
aEEm

0

ItiliDogLab =

Figura 1: Frente da placa de hardware BitDogLab, versao 5.3

Ao realizar a implementagao dos agentes, uma preocupagao central foi garantir que o sis-
tema fosse agndstico a LLM. Conforme descrito por O’Neill [14], uma abordagem agndstica
a LLM significa construir um sistema de inteligéncia artificial sem depender de um modelo
ou provedor especifico, de forma que seja possivel trocar ou adicionar diferentes mode-
los sem a necessidade de reescrever toda a infraestrutura. Considerando a alta frequéncia
com que novos modelos, muitas vezes superiores aos existentes, sao langados por diferentes
empresas e grupos de pesquisa, tal abordagem permite maior flexibilidade e protecao ao
futuro, uma vez que é possivel adotar novos modelos conforme surgem sem grande impacto
na arquitetura existente.

O sistema é composto por dois agentes principais: um denominado “Leitor de Flu-
xograma”, que recebe como entrada um arquivo de imagem contendo um fluxograma e
retorna o pseudocddigo correspondente, e outro denominado “Gerador de Cédigo”, que
recebe o pseudocddigo gerado e fornece como saida sua implementagao em MicroPython.
Além disso, também foi definido um agente “Coordenador”, responsavel por instanciar os
outros agentes e definir, a partir da entrada recebida, qual deve ser invocado para processar
tal entrada, controlando o fluxo de execucao. Ao adicionar esta camada de abstracdo, a
arquitetura escolhida permite uma abordagem agnostica a LLM a medida que, para alte-
rar o modelo utilizado, basta substituir a configuracao do agente leitor de fluxograma pelo
coordenador. O esquema geral da arquitetura do sistema é mostrado na Figura [2]

A ferramenta possui dois casos de uso principais: além da interpretacao do fluxograma e
geragao do cédigo, o usudrio tem a opcao de fornecer diretamente o pseudocddigo, ou mesmo
um prompt em linguagem natural. Caso o usudrio opte por enviar um arquivo de imagem, o
agente leitor de fluxograma é chamado para interpretar a imagem e o pseudocédigo gerado é
retornado para o usuario para validagao. Se houver algum trecho incorreto, o usudrio pode
realizar alteracoes nesse pseudocddigo e, quando validar as alteragoes, o agente gerador de
codigo é acionado para implementar o pseudocddigo em MicroPython. Por outro lado, caso
o usuario escolha digitar o pseudocddigo ou envie um prompt em linguagem natural, apenas
o agente gerador de cédigo é executado e o codigo correspondente é gerado diretamente. A

6 Lozano, Santanché e Costa

Processamento
/ - e Ea el S s s U R el n S e s (R s el S e | . ~
AY
Entrada / =
/ Arguivo de imagem Extral = '
| Agente Leitor de logica pgaudocadiao !
Fluxograma gerado |
| ~ |
| & «
= |
Agente Coordenador I
I = Detecta modalidade de entraca Solicit lidacao d oy |
Fluxngrama | = Roteia para agente apropriado RIGTE VANEISCH: L tsuarin |
i vy
ou | | . !
Descrigio textual T S |
[=)
& o (=] |
| Pseudocadigo |
| Agente Gerador de walidado Validagdo
| Cadigo L do Usuario | I
| Configuragio do |
5 hardware Implementa |
Pseudocédigo | | S |
| >
\ (PY]) !
$ Cédigo em 4
MicroPython rd

Figura 2: Arquitetura do sistema multiagentes desenvolvido.

Figura [3] exibe o fluxograma que representa a légica de interagao entre os agentes de acordo
com o formato de entrada.

3 Metodologia

Esta secao detalha os procedimentos metodoldgicos e a infraestrutura experimental ado-
tada para validar a eficdcia da ferramenta de geracao automatica de cédigo. A estratégia de
avaliagao foi estruturada para analisar, de forma isolada, as duas competéncias criticas do
sistema: a interpretacao visual de fluxogramas e a sintese de cédigo funcional para sistemas
embarcados. Inicialmente, a Se¢ao [3.1] descreve o processo de construgao do dataset de
avaliacao, desenvolvido especificamente para cobrir as especificidades da placa BitDoglLab.
Na Segao sao apresentados os critérios de selecao dos modelos de linguagem, funda-
mentados em benchmarks do estado da arte. As Secoes e descrevem o ambiente de
execugao utilizado para execugao dos modelos, detalhando a configuragdo do Ollama como
servidor de inferéncia e do DSPy para gerenciamento programaético dos prompts passados
aos modelos, respectivamente. Por fim, detalham-se as métricas de pontuacao definidas
para a andlise quantitativa dos resultados obtidos na Secao (3.5

3.1 Conjunto de Dados

Para validar a eficdcia dos modelos nas tarefas propostas, foi desenvolvido integralmente
um conjunto de dados de avaliacdo composto por 20 instancias de teste criadas para este

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 7

Input do usuario

Arguivo de
Imagem?

Extrai logica e
gera pseudocodigo

I

Exlbe pseudocddigo
Aguarda validagao

Implementa codigo

Exibe cddigo

Figura 3: Fluxograma da interagdo entre agentes no sistema.

projeto. A decisao pela confeccdo manual dos dados visou garantir o controle absoluto sobre
a complexidade logica e a correcao funcional dos exemplos. Este conjunto foi desenhado
para atuar como um “padrao-ouro”, garantindo que tanto a etapa de interpretacao visual
quanto a de geracao de cédigo fossem submetidas a cendrios controlados e verificaveis.

O processo de elaboragao dos artefatos seguiu uma abordagem reversa e sequencial,
estruturada em trés etapas para assegurar a consisténcia entre a imagem e o cédigo. Inici-
almente, os cédigos-fonte em MicroPython foram implementados e testados diretamente na
placa BitDogLab. Apenas apds a confirmacao de que o cidigo executava a tarefa desejada
sem erros (validagao funcional), o exemplo era aprovado para compor o dataset. Baseando-
se na logica validada, os fluxogramas foram entdo desenhados manualmente utilizando lapis
e papel. Essa escolha metodolégica introduz um desafio adicional e realista aos modelos de
visdo: a necessidade de interpretar tracos imperfeitos, variagoes de caligrafia e rascunhos,
simulando o cendario de uso real previsto para os modelos. Por fim, foram redigidos os pseu-
docoédigos correspondentes, servindo como o elo intermediario ideal entre a representacao
visual e o codigo estruturado.

Cada instancia do dataset é, portanto, composta por uma tripla de artefatos alinhados,
que representam o fluxo completo de transformacao esperado pela ferramenta: fluxograma
(entrada), pseudocddigo (referéncia intermedidria) e o cdigo MicroPython (referéncia final).
A Figura [4] mostra um exemplo de entrada do dataset.

Um aspecto metodoldgico central na elaboragao dos fluxogramas e pseudocddigos foi
a omissao deliberada de detalhes de implementacao de baixo nivel, tais como diretivas de
importagao de bibliotecas e rotinas de configuragao inicial dos pinos GPIO dos componentes.
Essa decisao visa avaliar a capacidade inferencial do modelo gerador de cédigo, forcando-
o a deduzir a infraestrutura necessaria a partir da documentacao técnica fornecida via

8 Lozano, Santanché e Costa

(¢) Descrigao textual (pseudocédigo)

Figura 4: Exemplo de entrada do dataset.

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 9

contexto, em vez de apenas replicar instrucoes explicitas. Adicionalmente, adotou-se um
nivel de abstracao elevado nas descri¢oes logicas: operagoes de manipulacao de hardware
complexas foram representadas em linguagem natural (por exemplo, “para cada led na
sequéncia, acenda na cor vermelha e aguarde”) em detrimento da sintaxe de programagao,
transferindo ao modelo a responsabilidade de mapear essas intencoes seménticas para a
estrutura de codigo correta.

A criagao dos 20 casos de teste foi orientada pela necessidade de cobertura dos compo-
nentes principais presentes no hardware da BitDoglab. Os exemplos variam desde légicas
simples de acionamento tnico de LEDs até aplicagoes integradas que coordenam o uso de
diversos componentes. A Tabela [I| apresenta a distribuicdo dos casos de teste em relacao
aos componentes acionados. Observa-se uma predominancia de testes envolvendo Matrizes
de LED e LEDs RGB, enquanto o joystick e o microfone foram os componentes menos
representados.

Componente de Hardware | N.2 de Exemplos | Frequéncia Relativeﬂ
Matriz de LEDs (5x5) 8 40%
LED RGB 8 40%
Botoes (A/B) 7 35%
Buzzer (Passivo) 7 35%
Display OLED (SSD1306) 4 20%
Joystick 2 10%
Microfone 2 10%

Tabela 1: Distribuicao dos casos de teste por componente de hardware da BitDoglLab.

3.2 Selecao de Modelos

Dada a vasta disponibilidade de LLMs no estado da arte, foi necessario estabelecer um
critério de filtragem rigoroso para selecionar os candidatos mais aptos as tarefas de trans-
cricao de fluxogramas em pseudocédigo e implementagao em coédigo. A selecao dos modelos
avaliados neste trabalho baseou-se, primariamente, na andlise de desempenho em bench-
marks publicos que avaliam as competéncias necessdrias para a realizacao de tais tarefas.

Concomitantemente, estabeleceu-se um limite superior de 20 bilhoes de parametros aos
candidatos. Esta decisao foi calculada para viabilizar a arquitetura multiagentes proposta:
a GPU utilizada para hospedar o assistente virtual deve ser capaz de alocar, simultane-
amente na VRAM, tanto o modelo de visao (leitor de fluxograma) quanto o modelo de
cbdigo (gerador), permitindo a interacao fluida entre os agentes sem a laténcia proibitiva de
descarregamento e recarregamento de pesos (model swapping). Tal recorte alinha-se, ainda,
a recente tendéncia da literatura onde modelos compactos otimizados tém demonstrado de-
sempenho competitivo em dominios especificos, dispensando a onerosidade computacional
de modelos massivos para a aplicagdo proposta [15].

!'Nota: A soma das frequéncias supera 100% devido & natureza integradora dos testes, onde um tinico
exemplo pode exigir a interacao entre multiplos componentes.

10 Lozano, Santanché e Costa

3.2.1 Ciritérios de Selecao dos Modelos de Interpretacao Visual

A selecdo dos modelos baseou-se na premissa de que a interpretacdo correta de um fluxo-
grama exige a orquestragao de multiplas competéncias cognitivas. Para validar essas com-
peténcias, foram selecionados benchmarks especificos que cobrem as seguintes dimensoes:

Compreensao de Diagramas e Raciocinio Algoritmico Nesta categoria, buscou-se
avaliar a capacidade dos modelos de compreender a estrutura topoldgica (nds e arestas) e
a légica sequencial implicita em representagoes visuais.

e AI2D [16]: Este é o benchmark de maior correlacao direta com o objeto deste estudo.
O AI2D avalia especificamente a compreensao de diagramas cientificos e esquematicos,
exigindo que o modelo identifique constituintes visuais e suas relagoes semanticas. Sua
inclusao justifica-se pela necessidade de o modelo distinguir corretamente entre blocos
de processamento e setas de fluxo de dados.

e MathVista [17]: Embora focado em matemaética, este benchmark é crucial por avaliar
o raciocinio visual complexo e a resolugdo de problemas passo a passo (chain-of-
thought). A habilidade de seguir uma sequéncia légica em um problema mateméatico
visual transfere-se diretamente para a capacidade de interpretar estruturas de controle
(como lagos e condicionais) em um algoritmo visual.

e ChartQA |[18]: Focado na interpretagao de dados em gréficos (barras, linhas), este
benchmark avalia a precisao na extracao de valores associados a elementos visuais.
Sua relevancia reside na verificacao da capacidade do modelo de alinhar corretamente
o texto (rétulos) com sua representacao grafica correspondente, essencial para nao
dissociar o conteiido de uma caixa de fluxograma de sua posi¢ao no fluxo.

Reconhecimento Optico de Caracteres (OCR) Dado que a logica do cédigo (nomes
de varidveis, interacao com componentes) reside no texto inscrito nas formas geométricas,
a robustez do OCR é outro pré-requisito funcional. Um alto desempenho nestas métricas
minimiza a perda de informacgoes semanticas contidas nos nés do diagrama.

e OCRBench [19]: Por ser um agregador abrangente de diversas tarefas de reconheci-
mento de texto, o OCRBench serve como o indicador priméario de legibilidade. Um
baixo desempenho aqui inviabilizaria a transcricao correta da sintaxe contida nos
blocos do fluxograma.

o TextVQA [20]: Este dataset de Visual Question Answering exige que o modelo nao
apenas leia o texto, mas o utilize para responder a perguntas sobre a imagem. Essa
competéncia é fundamental para garantir que o modelo compreenda o texto em con-
texto (por exemplo, entender que o texto X < 10 estd dentro de um losango de decisao
e nao em um retangulo de processo).

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 11

Integridade Visual e Mitigacao de Alucinacgoes A geragao de codigo funcional exige
fidelidade absoluta a estrutura desenhada. A confiabilidade na identificacdo de conexodes e
fluxos de decisao ¢ critica, visto que a invencao de arestas ou nds inexistentes compromete
a funcionalidade do cédigo gerado.

e HallusionBench [21]: Diferentemente de métricas de alucinagao focadas em objetos
naturais, o HallusionBench avalia a consisténcia do raciocinio visual e a resisténcia a
ilusoes perceptivas. Sua inclusao é estratégica para filtrar modelos propensos a “in-
ventar” conexoes ou inverter a direcao de setas em diagramas complexos, assegurando

que a topologia do grafo gerado no cédigo corresponda fielmente a imagem de entrada.

Modelos focados primariamente em imagens naturais ou descricao de cenas cotidianas
foram preteridos em favor daqueles com especializacao demonstrada nos dominios de docu-
mentos, diagramas e OCR. denso, conforme os critérios supracitados.

3.2.2 Critérios de Selecao dos Modelos de Geragao de Cédigo

Analogamente a etapa visual, a sele¢do dos modelos para a fase de implementagao nao se
baseou apenas na popularidade dos modelos, mas em métricas quantitativas de desempenho
em tarefas de engenharia de software. Além disso, a geragao de cédigo para a BitDogLab
impoe desafios que extrapolam a simples sintaxe correta: o modelo deve ser capaz de operar
com o subconjunto de bibliotecas do MicroPython, respeitar restri¢oes de idioma (varidveis
em portugués) e aderir a diretrizes de formatagao (comentérios explicativos). Para validar
essas capacidades, os modelos foram filtrados com base nos seguintes critérios de avaliagao:

e HumanEval [22|: Considerado o padrao-ouro na avaliagdo de LLMs para codificagao,
este benchmark consiste em problemas de programagao que exigem a implementagao
de corpos de fungoes a partir de assinaturas e docstrings. Dado que o MicroPython
é uma implementacao otimizada do Python 3, o desempenho no HumanEval serve
como o indicador primdrio de que o modelo domina as estruturas de controle de fluxo,
manipulagao de dados e sintaxe da linguagem.

e MBPP (Mostly Basic Python Problems) [23]: Enquanto o HumanEval pode conter
desafios algoritmicos complexos, o MBPP foca em conceitos fundamentais de pro-
gramacao e tarefas procedurais. Sua inclusao é estratégica para este trabalho, pois os
scripts de controle para sistemas embarcados iniciantes (como acender LEDs ou ler
botoes) assemelham-se mais a légica procedural direta avaliada no MBPP do que a
algoritmos de competigao avancgados.

e IFEval (Instruction Following Evaluation) [24]: Este benchmark nao avalia apenas a
corretude do codigo, mas a fidelidade do modelo em seguir restri¢coes verificaveis im-
postas pelo usuério (por exemplo, “nao use bibliotecas externas” ou “gere comentarios
explicativos”). No contexto deste trabalho, um alto desempenho no IFEval é crucial
para garantir que o modelo respeite as diretrizes de localizacao (uso de portugués
em varidveis e comentarios) e as especificidades da API do MicroPython, evitando a
geracao de codigo genérico que falharia na execugao ou na compreensao pedagdgica
pelo usuério final.

12 Lozano, Santanché e Costa

3.2.3 Modelos Selecionados

A Tabela [2] consolida o conjunto final de arquiteturas selecionadas apds a aplicacao dos
filtros de desempenho em benchmarks e eficiéncia computacional supracitados. Os mo-
delos estao organizados conforme a tarefa atribuida no fluxo de processamento da ferra-
menta (interpretagao visual ou geracao de cddigo), sendo caracterizados pela organizacao
desenvolvedora, escala de parametros e respectiva referéncia técnica, visando assegurar a
reprodutibilidade dos experimentos.

Modelo Desenvolvedor = Parametros Tarefa Fonte
Qwen3-VL-Instruct Alibaba Cloud 8 bilhoes Leitura de Fluxograma [25]
InternVL3.5 OpenGVLab 8 bilhoes Leitura de Fluxograma [26]
MiniCPM-V 4.5 OpenBMB 8 bilhoes Leitura de Fluxograma [27]
Gemma 3-12b-it Google DeepMind 12 bilhoes Leitura de Fluxograma [28§]
Kimi-VL-A3B Moonshot Al 12 bilhées Leitura de Fluxograma [29]
Qwen2.5-Coder Alibaba Cloud 14 bilhdes Codificacao [30]
MiniCPM4.1 OpenBMB 8 bilhoes Codificacao [31]
Phi-4 Microsoft 14 bilhdes Codificacao [32]
NextCoder-14B Microsoft 14 bilhoes Codificacao [33]
GPT-0OSS-20B OpenAlI 20 bilhdes Codificagao [34]

Tabela 2: Especificagoes técnicas e fontes dos modelos selecionados para avaliacao.

3.3 Ambiente de Inferéncia Local

Para a execucao local dos Grandes Modelos de Linguagem (LLMs) e Multimodais (LMMs),
adotou-se a plataforma Ollama [35]. Esta ferramenta atua como um ambiente de execugao
de alto desempenho, projetado para simplificar a implantacao de modelos de cédigo aberto
em infraestruturas locais, abstraindo as complexidades de configuracao de bibliotecas de
baixo nivel (como PyTorch ou TensorFlow) e drivers de GPU.

A escolha do Ollama fundamenta-se, primariamente, na sua arquitetura otimizada ba-
seada no backend llama.cpp. Essa base tecnolégica permite a execucao eficiente de modelos
quantizados, reduzindo drasticamente os requisitos de meméria VRAM, quando comparado
a alternativas como HuggingFace Transformers [36] e vLLM [37], sem perdas significativas
de precisao. Além disso, a plataforma oferece uma interface unificada via API REST, o que
elimina a necessidade de escrever scripts de carregamento especificos para cada arquitetura
de modelo, garantindo interoperabilidade e facilitando a troca rdpida de modelos.

3.4 Framework DSPy

A construcao de aplicagoes robustas baseadas em Modelos de Linguagem Grande (LLMs)
enfrenta desafios significativos relacionados a estabilidade e reprodutibilidade dos prompts.
A abordagem tradicional, frequentemente denominada “engenharia de prompts”, depende

1
2
3

INENC SIS

oo

10
11
12
13
14
15
16
17
18
19

20

21
22

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 13

de ajustes manuais e empiricos em strings de texto para guiar o comportamento do mo-
delo. Essa metodologia apresenta limitacoes criticas: é fragil a pequenas variagoes léxicas,
dificilmente escalavel e acopla rigidamente a légica do programa a representagao textual
especifica que um determinado modelo compreende melhor.

Para mitigar esses problemas, este projeto adotou o framework DSPy (Declarative Self-
improving Language Programs in Python) . Diferentemente de bibliotecas que ape-
nas gerenciam templates de texto, o DSPy propoe uma mudanca de paradigma ao tratar
prompts nao como cadeias estaticas, mas como parametros otimizaveis de um programa.
O framework abstrai a interagdo com o LLM, separando o fluxo l6gico da aplicacdo (o
que o sistema deve fazer) da representagao textual enviada ao modelo (como a instrucao
é formulada). A implementacao do DSPy baseia-se em dois conceitos fundamentais que
foram empregados na arquitetura deste trabalho: Assinaturas (Signatures) e Médulos
(Modules) [40].

As Assinaturas definem a especificacao declarativa do comportamento de entrada e saida
de uma transformacao, abstraindo as instrucgoes textuais de baixo nivel. Analogamente as
assinaturas de funcao em linguagens tipadas, uma Signature no DSPy declara o que o modelo
deve realizar, especificando os campos de entrada e os campos de saida esperados, sem ditar
o texto exato que deve ser passado ao modelo para atingir esse objetivo. No contexto deste
trabalho, as assinaturas foram definidas para estruturar a conversao do fluxograma e a
geragao do cédigo final, conforme mostrado na Listing

Listing 1: Cédigo Python definindo as Signatures

class FlowchartToPseudocode (dspy.Signature):
nnn
Read a flowchart image and extract the logic in a pseudocode in
Portuguese (Pt-BR).
Keep the exact logic structure (conditionals, loops, start/end).

nnun

image: str = dspy.InputField(desc="Image of the flowchart encoded as
base64")
pseudocode: str = dspy.OutputField(
desc="Pseudocode in Portuguese describing the logic extracted from
the flowchart"

class PseudocodeToMicroPython (dspy.Signature):

Convert a pseudocode in Portuguese to a valid MicroPython code.

CRITICAL INSTRUCTIONS:

1. Read the ’hardware_context’ carefully.

2. You MUST use the exact GPIO pins, libraries, and instantiation
methods described in the ’hardware_context’.

3. Do not invent pins or libraries not supported by the hardware
documentation provided.

23
24

25
26
27
28
29
30
31

[<2 30 B U]

14 Lozano, Santanché e Costa

hardware_context: str = dspy.InputField(
desc="Technical documentation containing GPIO mappings, required
libraries, and how to instantiate components."
)
pseudocode: str = dspy.InputField(
desc="The pseudocode in Portuguese describing the logic."
)
micropython_code: dspy.Code["python"] = dspy.OutputField (
desc="The generated MicroPython code implementing the logic."

)

A classe FlowchartToPseudocode encapsula a tarefa de percepcdo multimodal, rece-
bendo a representagao codificada da imagem e instruindo o modelo a preservar a fidelidade
estrutural (condicionais e lagos) na transcri¢ao para pseudocddigo. Subsequentemente, a as-
sinatura PseudocodeToMicroPython modela a etapa de sintese de c6digo, incorporando ex-
plicitamente um mecanismo de ancoragem através do campo de entrada hardware_context,
acompanhado de instrugoes criticas que restringem o espaco de geracao as bibliotecas e pi-
nagens validas documentadas, visando mitigar alucinacoes de hardware.

Enquanto as Assinaturas definem a interface, os Médulos sao as abstracoes arquiteturais
que implementam a estratégia de execugao dessas assinaturas. Um médulo no DSPy pode
encapsular técnicas complexas de prompting, como Chain-of-Thought [41] ou ReAct [42],
de maneira transparente ao desenvolvedor. Ao instanciar um médulo parametrizado com
uma assinatura especifica, o framework gerencia automaticamente a construcao do prompt,
a inclusao de exemplos (se houver) e a formatacao da saida.

Para a execugao de ambas as tarefas, os mdédulos foram instanciados utilizando a es-
tratégia dspy.ChainOfThought, induzindo o modelo a gerar passos intermediarios de ra-
ciocinio antes da producao da resposta final, o que favorece a robustez na interpretacao de
diagramas complexos e na implementacgao de légicas dependentes de contexto. A Listing
mostra a mensagem de sistema gerada automaticamente a partir da Assinatura definida
para o modelo de geracao de cédigo, enquanto a Listing [3| mostra como a entrada fornecida
pelo usuério é formatada e passada para o modelo no formato especificado.

Listing 2: System message gerada pelo DSPy para o médulo de geracao de codigo

Your input fields are:

1. ‘hardware_context ¢ (str): Technical documentation containing GPIO
mappings, required libraries, and how to instantiate components.

2. ‘pseudocode ‘ (str): The pseudocode in Portuguese describing the logic.

Your output fields are:

1. ‘reasoning ‘¢ (str):

2. ‘micropython_code ¢ (Code_python): The generated MicroPython code
implementing the logic.
Type description of Code_python: Code represented in a string,
specified in the ‘code‘ field. If this is an output field, the code
field should follow the markdown code block format, e.g.
¢ ‘python
{code}

C ¢

[

or

{{{CPP
{code}

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

36

N o oA W N

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 15

[

Programming language: python
All interactions will be structured in the following way, with the
appropriate values filled in.

[[## hardware_context ##]]
{hardware_context}

[[## pseudocode ## 1]
{pseudocode}

[[## reasoning ##]]
{reasoning}

[[## micropython_code ##]]

{micropython_code} # note: the value you produce must adhere to the
JSON schema: {"type": "object", "properties": {"code": {"type":
"string", "title": "Code"}}, "required": ["code"], "title":

"Code_python"}

[[## completed ## 1]
In adhering to this structure, your objective is:
Convert a pseudocode in Portuguese to a valid MicroPython code.

CRITICAL INSTRUCTIONS:

1. Read the ’hardware_context’ carefully.

2. You MUST use the exact GPIO pins, libraries, and instantiation
methods described in the ’hardware_context ’.

3. Do not invent pins or libraries not supported by the hardware
documentation provided.

Listing 3: Formatagao gerada pelo DSPy para a mensagem de usuéario no médulo de geragao
de cédigo

[[## hardware_context ## 1]

[[## pseudocode ## 1]

Respond with the corresponding output fields, starting with the field ‘[[
reasoning ##]1]°¢, then ‘[[## micropython_code ##]]°‘ (must be
formatted as a valid Python Code_python), and then ending with the
marker for ‘[[## completed ##]1]°.

Durante a fase de integracao experimental, identificaram-se obstaculos técnicos de inte-
roperabilidade entre o framework DSPy e o servidor de inferéncia Ollama, especificamente
no processamento de entradas multimodais. Observou-se uma incompatibilidade critica nos
protocolos de serializacdo de imagens: o formato de codificagao utilizado pelo DSPy di-
verge do formato suportado pela API do Ollama, ocasionando falhas de execugdo. Embora
correcoes preliminares tenham sido aplicadas para contornar esse obstéculo, persistiram
inconsisténcias no pipeline de resposta, uma vez que a saida bruta gerada pelos modelos

16 Lozano, Santanché e Costa

no Ollama nao aderia estritamente ao formato estruturado exigido pelos parsers de saida
do DSPy. Diante dessas restricoes e visando assegurar a estabilidade do sistema, optou-se
por uma arquitetura de orquestracao hibrida: o médulo de interpretagao de fluxogramas foi
desacoplado do DSPy e implementado via chamadas diretas & API do Ollama, reservando
o uso do framework DSPy exclusivamente para a etapa de geracao de codigo.

3.5 Meétricas de Avaliagao

Em sua revisdo critica sobre o tema, Paul, Zhu e Bayley [43] descrevem que as formas
mais comuns para se avaliar a qualidade de um LLM no contexto de geracao de codigo sao
a corretude funcional do cdédigo gerado (mensurada via execucao de testes, verificando em
quantos casos de teste o programa gerado produz a saida correta) e a proximidade sintética,
utilizando métricas de similaridade derivadas da linguagem natural (por exemplo, BLEU
[44], ROUGE [45], METEOR [46] e ChrF [47]) ou propostas especificamente para cédigo
(como RUBY [48] e CodeBLEU [49]), sendo que a maioria das avaliagdes de performance
em geracao de cédigo emprega corregdo em testes.

Contudo, em cendrios de geragao de codigo voltados para sistemas embarcados, como
é o caso da BitDoglLab, a inexisténcia de simuladores ou ambiente de teste de software
robustos impd&e desafios significativos a validacao da corretude funcional. A impossibilidade
de emular interagoes com componentes fisicos, como o acionamento de botGes ou a resposta
sonora de um buzzer, torna inviavel a execucao de testes automatizados. Diante dessa
limitagao, a alternativa convencional seria recorrer a andlise de similaridade sintatica em
comparacao a cddigos de referéncia produzidos manualmente.

Entretanto, a literatura recente aponta severas restricoes quanto a eficacia dessa abor-
dagem. Um estudo conduzido por Evtikhiev et al. [50] demonstrou que mesmo as métricas
desenvolvidas especificamente para esse propésito, como RUBY e CodeBLEU, nao apresen-
tam desempenho superior a métricas genéricas de traducao automatica; dentre as avaliadas,
a métrica ChrF foi a que mais se aproximou da avaliacao humana, embora ainda distante
de ser considerada ideal. Corroborando essa andlise, Naik [51] investigou a capacidade de
métricas baseadas em embeddings, como a CodeBERTScore [52], para mensurar corretude
funcional, observando uma baixa correlagao nos resultados. Consequentemente, Paul, Zhu
e Bayley [43] concluem que, a despeito dos esforgos de pesquisa, a avaliagdo automaética de
c6digo via andlise estatica permanece um problema em aberto.

Considerando a inviabilidade técnica de testes automaticos, seja funcionais ou de simi-
laridade sintatica, este trabalho nao empregou métricas automatizadas para a selecao dos
modelos. Em vez disso, optou-se por realizar uma avaliagao manual tanto dos pseudocédigos
gerados pelo agente leitor de fluxograma quanto dos cédigos produzidos pelo agente codifi-
cador. Para sistematizar a andlise qualitativa e garantir a consisténcia da avaliagao manual,
foram estabelecidos critérios objetivos de pontuagao para as duas etapas principais do fluxo
de trabalho.

Na primeira etapa, referente a conversao de fluxogramas em pseudocddigo, foi elaborada
uma escala de avaliacdo de quatro niveis (0 a 3), desenvolvida para capturar as nuances
da interpretagao visual de algoritmos e permitindo distinguir desde alucinacoes severas até
inconsisténcias leves na légica recuperada. Os critérios adotados sao definidos a seguir:

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 17

e Pontuacao 0 (Dissociagdo Semantica): O modelo apresenta alucinagao severa
ou fuga total do tema, gerando um texto que nao possui nenhuma correlagdo com os
elementos visuais ou logicos presentes no fluxograma de entrada;

e Pontuacgao 1 (Tangéncia): O modelo identifica elementos isolados (como textos in-
ternos ou nds especificos), mas falha na reconstrucao da topologia do grafo, resultando
em uma estrutura légica incoerente ou fragmentada;

e Pontuacgao 2 (Consisténcia Parcial): A estrutura global e o fluxo 16gico principal
foram compreendidos corretamente) e ndo houve alucinagdes, porém o pseudocddigo
apresenta erros na légica ou omissoes;

e Pontuagao 3 (Correspondéncia Plena): O pseudocédigo gerado reproduz fiel-
mente a logica, a estrutura e o conteudo textual do fluxograma original, sem alu-
cinagoes ou omissoes.

Para a segunda etapa, que consiste na geracao do cédigo executavel para a BitDogLab,
foi desenvolvida uma rubrica especifica de quatro niveis (0 a 3). Essa escala foi desenhada
para distinguir erros de sintaxe de erros semanticos e, crucialmente, para isolar alucinagoes
relacionadas as especificidades do hardware (como pinagem e bibliotecas):

e Pontuacgao 0 (Erro de Sintaxe): O cédigo gerado é sintaticamente invélido, resul-
tando em erro de execucao;

e Pontuagao 1 (Erro de Configuracao de Hardware): O cédigo é sintaticamente
véalido, mas apresenta erros na instanciagdo dos componentes fisicos (como definigao
incorreta de pinos GPIO ou importacao de bibliotecas incorretas);

e Pontuagao 2 (Erro de Légica): O cédigo é sintaticamente vélido e inicializa o hard-
ware corretamente, mas a execucao nao produz o comportamento funcional esperado
(erro semantico);

e Pontuagao 3 (Funcional): O cédigo estéd correto e executa a tarefa desejada na
placa BitDogLab sem necessidade de correcoes.

4 Resultados e Discussao

Esta secao apresenta os resultados obtidos a partir da avaliagao dos modelos selecionados
no dataset de teste. Para cada um dos 20 casos de uso, foram coletadas métricas de
pontuacao (conforme as escalas de 0 a 3 definidas), tempo de execucdo da inferéncia e
consumo maximo de memoria de video (VRAM). Todos os experimentos de benchmarking,
bem como a execugao da ferramenta final, foram conduzidos em uma estagao de trabalho
que utiliza como sistema operacional a distribuicao Linux Ubuntu 24.04 equipada com uma
unidade de processamento gréfico (GPU) modelo NVIDIA GeForce RTX 4090 dedicada,
dispondo de 24 GiB de meméria de video (VRAM) e versao do CUDA 12.2.

Tempo (segundos)

18 Lozano, Santanché e Costa

Tempo Médio de Execucio - Visual Uso Maximo de VRAM - Visual
W Eiii 11574.00
. epny 11056.00
35 10290.00
10000
]
25 2 so00
Z 666200 644,00
20 % 5000
15 =
4000
10 877
B 2000
— -
o _ P
& S
£ ,te &
"* @x‘ 4\\ "z o @ \@
o o
Modelo Modelo

Figura 5: Comparativos entre os tempos médios de execugao (a esquerda) e o uso maximo
de VRAM (a direita) para os modelos visuais

A Tabela[3|sumariza o desempenho geral dos modelos, detalhando a distribui¢ao percen-
tual das notas atribuidas e a pontuagao média final. Os modelos estao agrupados conforme
a tarefa desempenhada: interpretacao visual de fluxogramas e geracao de cédigo em Mi-
croPython. Além disso, as Figuras [f] e [f] comparam os tempos médios de execugao e o uso
de VRAM de cada modelo.

Distribuicao de Pontuagao (%)

Modelo Média
0 1 2 3
Tarefa: Leitura de Fluzograma
Qwen3-VL-Instruct 0% 0% 50% 50% 2,50
Gemma 3-12b-it 0% 40% 45% 15% 1,75
MiniCPM-V 4.5 20% 25% 40% 15% 1,50
InternVL3.5 65% 10% 10% 15% 0,75
Kimi-VL-A3B 0% 0% 0% 0% 0,00%*
Tarefa: Codificagdo
GPT-0SS-20B 5% 5% 0% 90% 2,75
NextCoder-14B 10% 10% 10% 70% 2,40
Phi-4 15% 15% 20% 50% 2,05
Qwen2.5-Coder-14B 35% 5% 10% 50% 1,75
MiniCPM4.1 50% 35% 5% 10% 0,75

*O modelo Kimi-VL-A3B nao produziu saidas vélidas em nenhuma iteragao.

Tabela 3: Distribuicao de pontuacoes e média final dos modelos avaliados.

Tempo (segundos)

20

10

117

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 19

Tempo Médio de Execucdo - Coder Uso Maximo de VRAM - Coder
20.86 14000

12000

2096.00 10182.00
— 10000 =g
=
11.21 £ so00
=
2 so0o 5640.00
£.99 =
4000
2000
0
& £ @2 v] 5
(_,EQ' o tal S E L-_pbg
£ & & & &
< £ =
Modelo Modelo

Figura 6: Comparativos entre os tempos médios de execugao (a esquerda) e 0 uso maximo
de VRAM (a direita) para os modelos de geragao de cédigo

4.1 Desempenho na Interpretacao de Fluxogramas

No que tange a tarefa de extracao de légica visual, os resultados consolidados na Tabela
indicam uma disparidade significativa entre os candidatos. O modelo Qwen3-VL-Instruct
obteve o melhor desempenho do grupo, com média de 2,50, sendo o Unico a nao registrar
pontuagoes 0 (fuga total) ou 1 (tangéncia), concentrando 100% de suas respostas nos estratos
de alta fidelidade (notas 2 e 3). A andlise manual revelou que a maioria de suas penalidades
(nota 2) deveu-se a erros pontuais de OCR (leitura incorreta de valores numéricos), enquanto
a estrutura légica (condicionais e lagos) manteve-se correta. Houve apenas um caso de erro
l6gico grave, o que reforca sua robustez para a tarefa de raciocinio espacial.

O Gemma 3-12b-it apresentou o segundo melhor desempenho (média 1,75), caracteri-
zado por uma consisténcia na pontua¢ao mediana (9 casos com nota 2), embora com menor
capacidade de atingir a pontuagao maxima (apenas 3 exemplos). Este modelo mostrou-se
competente na captura da topologia do fluxograma, acertando a légica do fluxo principal
na maioria dos casos. Entretanto, apresentou dificuldades em dois pontos, que ocasionaram
uma diminui¢ao significativa de sua nota: erros frequentes de OCR, especialmente em listas
de valores, e a omissao de procedimentos auxiliares definidos fora do fluxo principal, sendo
este o mais critico e, portanto, o principal causador da significativa reducao de pontos.

Ja os modelos MiniCPM-V 4.5 e InternVL3.5 demonstraram instabilidade, com médias
de 1,50 e 0,75 respectivamente. O InternVL3.5, em particular, apresentou falha severa na
maioria dos casos, recebendo pontuacao 0 em 13 dos 20 casos testados devido a um compor-
tamento caracteristico de “colapso de alucinacao”: além de inventar l6gicas inexistentes sem
relacdo nenhuma com o conteido do fluxograma, o modelo frequentemente gerava respostas
contendo caracteres em chinés, indicando uma falha grave na generalizagao para o dominio
especifico do dataset e possivelmente uma contaminacao pelos dados de pré-treino.

O modelo MiniCPM-V 4.5, por outro lado, foi o que demonstrou a maior robustez
em OCR, transcrevendo corretamente listas numéricas longas e densas. Contudo, falhou

13042.00

T

20 Lozano, Santanché e Costa

criticamente no quesito “instruction following”: em diversos casos, gerou cédigo Python
diretamente em vez do pseudocddigo solicitado. Essa violagao do formato de saida foi
penalizada com nota 0, mascarando sua excelente capacidade de percepcao visual e causando
a baixa pontuacao geral reportada.

Por fim, o modelo Kimi-VL-A3B, apesar de sua arquitetura promissora, apresentou uma
falha sistémica na ingestao dos dados visuais. Em todas as iteragoes, o modelo reportou
incapacidade de ler a imagem ou alegou que nenhum arquivo havia sido fornecido, resultando
em nulidade funcional.

4.2 Desempenho na Geragao de Cdédigo MicroPython

Para a etapa de implementacao, a Tabela [3|evidencia a lideranca do modelo GPT-OSS-20B,
que alcangou a maior média global do experimento (2,75). Este modelo atingiu a pontuacao
méxima (codigo correto e funcional) em 90% dos casos de teste. O NextCoder-14B também
apresentou performance destacada, com média de 2,40 e 70% de acertos totais.

Os modelos Phi-4 e Qwen2.5-Coder-14B apresentaram desempenho intermedidrio, com
médias de 2,05 e 1,75. Observa-se uma polarizagdo no desempenho do Qwen2.5-Coder:
embora tenha atingido a nota maxima em 50% dos casos, falhou completamente (nota 0)
em 35% das tentativas. O MiniCPM4.1 obteve o menor desempenho do grupo (média 0,75),
com metade das geragoes resultando em cédigo sintaticamente invalido e mais um terco,
aproximadamente, apresentando erro na configuragao do hardware, ou seja, 17 dos 20 casos
testados resultaram em erro de execugao.

A andlise manual dos c6digos gerados por cada modelo possibilitou identificar as di-
ficuldades mais frequentes dos LLMs. A seguir, sdo apresentados os erros mais comuns
observados em cada nivel da hierarquia de pontuagao:

e Erros de Sintaxe e Dependéncias (Pontuagao 0): A falha mais recorrente nessa
categoria foi a omissao de importagoes necessdrias. Mesmo com o contexto fornecido,
modelos menores como o MiniCPM4.1 frequentemente tentavam utilizar classes sem
importé-las, gerando erros de execucao imediatos.

e Alucinagao de Hardware e Configuragao (Pontuacgao 1): Erros classificados
como falha de configuracao revelaram a dificuldade dos modelos em respeitar restrigoes
fisicas. Um exemplo critico foi a definicao da frequéncia do buzzer como 0 Hz, o que
levanta uma excecao ValueError: freq too small na biblioteca do MicroPython.
Outro erro comum, embora silencioso (sem travar o c6digo), foi a inversao dos pinos
referentes a leitura das posi¢oes nos eixos X e Y do joystick ao instanciar o componente.
Tais erros indicam que, embora o modelo gere cédigo sintaticamente valido, ele falha
em ancorar a légica na documentacao de hardware fornecida.

e Erros Semanticos de Estado (Pontuagao 2): Nos casos onde o c6digo executava
e a configuragao estava correta, o erro predominante foi a auséncia do comando de
atualizacao de estado, especificamente np.write() para a matriz de LEDs. Esse é
um erro classico em bibliotecas do tipo NeoPixel, onde o modelo altera o buffer de

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 21

memoéria mas “esquece” de enviar o sinal para o hardware, resultando em um programa
que roda mas nao produz resposta visual.

Em suma, o GPT-OSS-20B e o NextCoder-14B destacaram-se por evitar esses erros
comuns, demonstrando uma capacidade superior de gerenciar tanto as dependéncias de
biblioteca quanto as especificidades da BitDogLab.

4.3 Eficiéncia Computacional

A andlise dos custos computacionais, apresentada nas Figuras[5|e[6] revela o trade-off entre
tamanho do modelo, eficiéncia computacional e desempenho na tarefa.

Entre os modelos visuais, o Qwen3-VL, que obteve o melhor desempenho qualitativo,
também registrou o maior tempo médio de execugao (38,26 segundos) e o maior pico de
tempo absoluto (cerca de 83 segundos). Além disso, consumiu aproximadamente 11,5 GiB
de VRAM. Embora tenha se destacado no desempenho, sendo o melhor por uma grande
margem, também foi o modelo mais lento, o que pode ser um ponto negativo em cenarios
onde a laténcia é critica. No entanto, em casos onde o tempo de espera nao seja um
problema, o desempenho superior pode justificar a escolha.

Na tarefa de codificacao, o GPT-OSS-20B, devido & sua grande escala paramétrica (20
bilhdes de parametros), demandou o maior volume de memoria (cerca de 13 GiB) e apresen-
tou um tempo médio de inferéncia de 11,21 segundos. Esse nimero elevado de parametros,
quando comparado aos demais modelos, pode ser uma possivel justificativa para seu desem-
penho qualitativo superior. Por outro lado, o MiniCPM4.1, embora seja um modelo menor
(o tnico desta categoria com apenas 8 bilhdes de parametros), consistentemente apresen-
tou uma anomalia no tempo de execucao, com um pico de 309 segundos em um dos casos
de teste. Somado ao fato dele ter sido o modelo com pior pontuagao geral, isso sugere
dificuldades de convergéncia ou lagos de geracao excessivos.

Os modelos Gemma 3-12B (na tarefa visual) e NextCoder-14B (na tarefa de codificagao)
apresentaram uma relacao equilibrada de custo-beneficio, operando na faixa de 10 GiB de
VRAM e com tempos de resposta abaixo de 7 segundos. Ambos se destacaram como os se-
gundos melhores em termos de pontuacao média em suas respectivas categorias, oferecendo
um bom equilibrio entre desempenho e eficiéncia.

5 Conclusao e Trabalhos Futuros

O presente trabalho dedicou-se a validacao experimental de uma arquitetura de inteligéncia
artificial generativa aplicada ao ensino de légica de programacao através de um sistema
embarcado. Diante do desafio de converter diagramas visuais em cédigo funcional para a
placa de hardware BitDogLab, o estudo buscou identificar, através de benchmarking, quais
Modelos de Linguagem (LLMs) e Multimodais (LMMs) oferecem o equilibrio ideal entre
precisao cognitiva e viabilidade computacional em hardware local.

Os resultados obtidos demonstram a viabilidade técnica de utilizar modelos de médio
porte (até 20 bilhoes de parametros) para tarefas complexas de engenharia, refutando a pre-
missa de que apenas modelos proprietarios massivos seriam aptos a tais funcoes. Na etapa

22 Lozano, Santanché e Costa

de interpretacao visual, o modelo Qwen3-VL-Instruct (versao com 8 bilhoes de parametros)
consolidou-se como a referéncia de desempenho, apresentando a maior robustez na compre-
ensao de estruturas légicas e topologias de fluxo, superando concorrentes em consisténcia
estrutural. A andlise qualitativa revelou que, para a tarefa de transcricdo de algoritmos, a
capacidade de raciocinio espacial e seguimento de instrugoes prevalece sobre a capacidade
de OCR bruto.

No tocante a geragao de cédigo, o GPT-OSS-20B apresentou a maior taxa de acerto fun-
cional. Contudo, considerando a restricao arquitetural imposta pelo ambiente de execucao
(uma GPU com 24 GiB de VRAM destinada a alocar ambos os agentes simultaneamente), a
escolha étima recai sobre o NextCoder-14B. Este modelo apresentou desempenho estatisti-
camente proximo ao lider, mas com uma eficiéncia de meméria que permite sua coexisténcia
com o agente visual no mesmo dispositivo, garantindo a laténcia operacional necessaria para
um assistente interativo. Portanto, a configuracao final recomendada para a ferramenta as-
sistiva da BitDogLab é a orquestragao hibrida entre Qwen3-VL (Visao) e NextCoder-14B
(Cédigo).

Para a evolugao do projeto, vislumbram-se oportunidades cruciais de aprimoramento
tanto na base de dados quanto na engenharia de software. Primeiramente, recomenda-se
a expansao do dataset de avaliacao, atualmente restrito a uma unica caligrafia e condigoes
controladas; a inclusao de uma maior variedade de estilos de escrita e imagens com ruidos
reais (baixa iluminagao, desfoque) é fundamental para garantir a generalizacao da ferra-
menta em sala de aula. No ambito da implementacao, trabalhos futuros devem priorizar
a correcao da interoperabilidade entre o framework DSPy e os modelos visuais. A plena
integracao permitird a utilizagao de otimizadores autométicos (compilagao de prompts) e
estratégias de aprendizado few-shot, além de viabilizar a construcao de (Chain-of-Thought)
de multiplas etapas, refinando o raciocinio intermedidrio do agente.

Por fim, apesar do éxito na abordagem zero-shot, a persisténcia de erros de “alucinagao
de hardware” sugere que o fornecimento de contexto via prompt possui um limite de eficacia.
Sugere-se, portanto, a combinagao das melhorias de pipeline citadas acima com técnicas
de ajuste fino supervisionado, especializando os pesos das redes na sintaxe especifica da
BitDoglab para atingir niveis de confiabilidade de produgao.

6 Disponibilidade de Cédigo e Reprodutibilidade

Visando fomentar a transparéncia cientifica e permitir a replicagao dos experimentos deta-
lhados neste trabalho, todos os artefatos de software desenvolvidos e instrugoes para seu
uso foram disponibilizados em repositérios publicos.

O cédigo-fonte completo da ferramenta assistiva, incluindo a implementacao da ar-
quitetura multiagentes e a interface de interagdo, encontra-se hospedado em https://
github.com/AI-Unicamp/BitDogLab-Chatbot.

Paralelamente, os scripts de automacao utilizados para o benchmarking, bem como
o dataset proprietario e os resultados das avaliacbes dos modelos, estao disponiveis em:
https://github.com/Lozavival/BitDoglab-Benchmarking.

https://github.com/AI-Unicamp/BitDogLab-Chatbot
https://github.com/AI-Unicamp/BitDogLab-Chatbot
https://github.com/Lozavival/BitDogLab-Benchmarking

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 23

Agradecimentos

A realizacao deste trabalho nao seria possivel sem a presenca e o apoio daqueles que cami-
nharam ao meu lado durante esta jornada.

Aos meus pais, Wiliam e Marcia Lozano, a minha eterna gratidao. Vocés sao os pilares
da minha vida e os principais responsaveis por eu ter chegado até aqui. Obrigado pelo amor
incondicional, pelos sacrificios feitos em prol da minha educacgado e por sempre acreditarem
no meu potencial, mesmo quando eu hesitava. Esta conquista também é de vocés.

A minha familia, pelo incentivo constante e pela compreensao nos momentos de auséncia
necessarios para a dedicagao aos estudos.

Aos meus orientadores, Prof. André Santancheé e Prof?. Paula Dornhofer Paro Costa,
agradeco imensamente pela orientacao segura, pela paciéncia e pela generosidade em com-
partilhar seus conhecimentos. Suas corregoes e sugestoes foram essenciais para o meu ama-
durecimento académico e profissional.

Aos meus amigos e colegas de curso, agradeco pelo companheirismo, pelas trocas de
experiéncia e pelos momentos de descontragao que tornaram a caminhada mais leve.

Por fim, a minha namorada, Vitoria, meu carinho especial. Obrigado por estar ao meu
lado em todos os momentos, pela paciéncia incansavel durante as longas horas de estudo e
por ser meu refligio e incentivo diario. Sua presenca tornou esta etapa muito mais feliz.

Referéncias

[1] Hugo Horta. “Education in Brazil: Access, quality and STEM”. Em: B. Freeman
(Ed.), Consultant Report Securing Australia’s Future STEM: Country comparison
(2013), pp. 28-29.

[2] Fabiano Fruett et al. “Empowering STEAM Activities With Artificial Intelligence and
Open Hardware: The BitDogLab”. Em: IEEE Transactions on Education (2024).

[3] Aryaman Darda e Reetu Jain. “Code Generation from Flowchart using Optical Cha-
racter Recognition & Large Language Model”. Em: Authorea Preprints (2024).

[4] Pratul Trivedi et al. “System model for syntax free coding”. Em: 2019 Global Confe-
rence for Advancement in Technology (GCAT). IEEE. 2019, pp. 1-5.

[5] Ashish Vaswani et al. “Attention is all you need”. Em: Advances in neural information
processing systems 30 (2017).

[6) COLE STRYKER. What are large language models (LLMs)? Disponivel em: https:
//www.ibm.com/think/topics/large-language-models. Acesso em: 13 out. 2025.

[7] GitHub. GitHub Copilot. Disponivel em: https://github.com/features/copilotl.
Acesso em: 13 out. 2025.

[8] Anysphere. Cursor - The AI Code Editor. Disponivel em: https://cursor . com/.
Acesso em: 13 out. 2025.

[9] Christian Bird et al. “Taking Flight with Copilot: Early insights and opportunities of
Al-powered pair-programming tools”. Em: Queue 20.6 (2022), pp. 35-57.

https://www.ibm.com/think/topics/large-language-models
https://www.ibm.com/think/topics/large-language-models
https://github.com/features/copilot
https://cursor.com/

Lozano, Santanché e Costa

BitDoglLab. BitDogLab. Acesso em: 12 dez. 2025. URL: https://bitdoglab.webcontent.

website/.

MicroPython. MicroPython. Acesso em: 12 dez. 2025. URL: https://micropython.
org/.

Amal El Fallah Seghrouchni, Adina Magda Florea e Andrei Olaru. “Multi-agent sys-
tems: a paradigm to design ambient intelligent applications”. Em: Intelligent Distri-
buted Computing IV: Proceedings of the 4th International Symposium on Intelligent
Distributed Computing-1DC 2010, Tangier, Morocco, September 2010. Springer. 2010,
pp. 3-9.

Zia Babar. LLM-Based Multi-Agent Systems. 2024. URL: https : //medium . com/
Q@zbabar/llm-based-multi-agent-systems-62£d8c47£678.

Bill O’Neill. What is an LLM Agnostic Approach to AI Implementation? https :
//quiq.com/blog/1lm-agnostic-ai/. [Acesso em: 29 jul. 2025]. 2025.

Fali Wang et al. “A comprehensive survey of small language models in the era of large
language models: Techniques, enhancements, applications, collaboration with Ilms,
and trustworthiness”. Em: ACM Transactions on Intelligent Systems and Technology
(2024).

Aniruddha Kembhavi et al. “A diagram is worth a dozen images”. Em: European
conference on computer vision. Springer. 2016, pp. 235-251.

Pan Lu et al. “Mathvista: Evaluating mathematical reasoning of foundation models
in visual contexts”. Em: arXiv preprint arXiv:2310.02255 (2023).

Ahmed Masry et al. “Chartqa: A benchmark for question answering about charts
with visual and logical reasoning”. Em: Findings of the association for computational
linguistics: ACL 2022. 2022, pp. 2263-2279.

Yuliang Liu et al. “Ocrbench: on the hidden mystery of ocr in large multimodal
models”. Em: Science China Information Sciences 67.12 (2024), p. 220102.

Amanpreet Singh et al. “Towards vqa models that can read”. Em: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 8317—
8326.

Tianrui Guan et al. “Hallusionbench: an advanced diagnostic suite for entangled lan-
guage hallucination and visual illusion in large vision-language models”. Em: Proce-
edings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2024, pp. 14375-14385.

Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv:
2107.03374 [cs.LG]. URL: https://arxiv.org/abs/2107.03374.

Jacob Austin et al. “Program synthesis with large language models”. Em: arXiv pre-
print arXiv:2108.07732 (2021).

Jeffrey Zhou et al. “Instruction-following evaluation for large language models”. Em:
arXiv preprint arXiw:2311.07911 (2023).

https://bitdoglab.webcontent.website/
https://bitdoglab.webcontent.website/
https://micropython.org/
https://micropython.org/
https://medium.com/@zbabar/llm-based-multi-agent-systems-62fd8c47f678
https://medium.com/@zbabar/llm-based-multi-agent-systems-62fd8c47f678
https://quiq.com/blog/llm-agnostic-ai/
https://quiq.com/blog/llm-agnostic-ai/
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Avaliacao de LLMs na Conversao de Fluxogramas para Cédigo 25

[25] Shuai Bai et al. Qwen3-VL Technical Report. 2025. arXiv: 2511.21631 [cs.CV]. URL:
https://arxiv.org/abs/2511.21631.

[26] Weiyun Wang et al. InternVL3.5: Advancing Open-Source Multimodal Models in Ver-
satility, Reasoning, and Efficiency. 2025. arXiv: |25608.18265 [cs.CV]. URL: https:
//arxiv.org/abs/2508.18265.

[27] Tianyu Yu et al. MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data,
and Training Recipe. 2025. arXiv: [2609.18154 [cs.LG]. URL: https://arxiv.org/
abs/2509.18154.

[28] Gemma Team et al. Gemma 3 Technical Report. 2025. arXiv: 2503.19786 [cs.CL].
URL: https://arxiv.org/abs/2503.19786.

[29] Kimi Team et al. Kimi-VL Technical Report. 2025. arXiv: 25604.07491 [cs.CV]. URL:
https://arxiv.org/abs/2504.07491.

[30] Binyuan Hui et al. Qwen2.5-Coder Technical Report. 2024. arXiv: 2409.12186 [cs.CL].
URL: https://arxiv.org/abs/2409.12186.

[31] MiniCPM Team et al. MiniCPMj: Ultra-Efficient LLMs on End Devices. 2025. arXiv:
2506.07900 [cs.CL]. URL: https://arxiv.org/abs/2506.07900

[32] Marah Abdin et al. Phi-4 Technical Report. 2024. arXiv: 2412.08905 [cs.CL]. URL:
https://arxiv.org/abs/2412.08905.

[33] Tushar Aggarwal et al. “NextCoder: Robust Adaptation of Code LMs to Diverse Code
Edits”. Em: Forty-second International Conference on Machine Learning. 2025.

[34] OpenAlet al. gpt-0ss-120b gpt-oss-20b Model Card. 2025. arXiv: 2508.10925 [cs.CL].
URL: https://arxiv.org/abs/2508.10925.

[35] Ollama. Ollama: A Tool for Building AI Apps. Accessed: 08 nov. 2025. URL: https:
//ollama.com/.

[36] Hugging Face. Transformers Documentation (em Portugués). Accessed: 12 dez. 2025.
URL: https://huggingface.co/docs/transformers/pt/index.

[37] vLLM. vLLM Documentation. Accessed: 12 dez. 2025. URL: https://docs.v1lm.ai/
en/latest/.

[38] Omar Khattab et al. “Dspy: Compiling declarative language model calls into self-
improving pipelines”. Em: arXiv preprint arXiv:2310.03714 (2023).

[39] DSpy.ai. Signatures. Accessed: 12 dez. 2025. URL: https://dspy.ai/learn/programming/
signatures/.

[40] DSpy.ai. Module. Accessed: 12 dez. 2025. URL: https://dspy.ai/learn/programming/

modules/.

[41] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language mo-
dels”. Em: Advances in neural information processing systems 35 (2022), pp. 24824—
24837.

[42] Shunyu Yao et al. “React: Synergizing reasoning and acting in language models”. Em:
The eleventh international conference on learning representations. 2022.

https://arxiv.org/abs/2511.21631
https://arxiv.org/abs/2511.21631
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2509.18154
https://arxiv.org/abs/2509.18154
https://arxiv.org/abs/2509.18154
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2506.07900
https://arxiv.org/abs/2506.07900
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://ollama.com/
https://ollama.com/
https://huggingface.co/docs/transformers/pt/index
https://docs.vllm.ai/en/latest/
https://docs.vllm.ai/en/latest/
https://dspy.ai/learn/programming/signatures/
https://dspy.ai/learn/programming/signatures/
https://dspy.ai/learn/programming/modules/
https://dspy.ai/learn/programming/modules/

26

[43]

Lozano, Santanché e Costa

Debalina Ghosh Paul, Hong Zhu e Ian Bayley. “Benchmarks and Metrics for Evalu-
ations of Code Generation: A Critical Review”. Em: 202/ IEEE International Con-
ference on Artificial Intelligence Testing (AlTest). 2024, pp. 87-94. DOI: [10.1109/
ATTest62860.2024.00019.

Kishore Papineni et al. “Bleu: a method for automatic evaluation of machine trans-
lation”. Em: Proceedings of the 40th annual meeting of the Association for Computa-
tional Linguistics. 2002, pp. 311-318.

Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries”. Em: Text
summarization branches out. 2004, pp. 74-81.

Satanjeev Banerjee e Alon Lavie. “METEOR: An automatic metric for MT eva-
luation with improved correlation with human judgments”. Em: Proceedings of the
acl workshop on intrinsic and extrinsic evaluation measures for machine translation
and/or summarization. 2005, pp. 65-72.

Maja Popovié. “chrF: character n-gram F-score for automatic MT evaluation”. Em:
Proceedings of the tenth workshop on statistical machine translation. 2015, pp. 392—
395.

Ngoc Tran et al. “Does BLEU score work for code migration?” Em: 2019 IEE-
E/ACM 27th International Conference on Program Comprehension (ICPC). IEEE.
2019, pp. 165-176.

Shuo Ren et al. “Codebleu: a method for automatic evaluation of code synthesis”.
Em: arXiv preprint arXiv:2009.10297 (2020).

Mikhail Evtikhiev et al. “Out of the BLEU: How should we assess quality of the Code
Generation models?” Em: Journal of Systems and Software 203 (2023), p. 111741.
ISSN: 0164-1212. poOI: https://doi.org/10.1016/j . jss.2023. 111741, URL:
https://www.sciencedirect.com/science/article/pii/S016412122300136X.

Atharva Naik. “On the limitations of embedding based methods for measuring func-
tional correctness for code generation”. Em: arXiv preprint arXiv:2405.01580 (2024).

Shuyan Zhou et al. “Codebertscore: Evaluating code generation with pretrained mo-
dels of code”. Em: arXiv preprint arXiv:2302.05527 (2023).

https://doi.org/10.1109/AITest62860.2024.00019
https://doi.org/10.1109/AITest62860.2024.00019
https://doi.org/https://doi.org/10.1016/j.jss.2023.111741
https://www.sciencedirect.com/science/article/pii/S016412122300136X

	Introdução
	Cenário de Aplicação
	Hardware Alvo
	Arquitetura Multiagentes do Assistente Virtual

	Metodologia
	Conjunto de Dados
	Seleção de Modelos
	Critérios de Seleção dos Modelos de Interpretação Visual
	Critérios de Seleção dos Modelos de Geração de Código
	Modelos Selecionados

	Ambiente de Inferência Local
	Framework DSPy
	Métricas de Avaliação

	Resultados e Discussão
	Desempenho na Interpretação de Fluxogramas
	Desempenho na Geração de Código MicroPython
	Eficiência Computacional

	Conclusão e Trabalhos Futuros
	Disponibilidade de Código e Reprodutibilidade

